2 * linux/kernel/time/tick-common.c
4 * This file contains the base functions to manage periodic tick
7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
11 * This code is licenced under the GPL version 2. For details see
12 * kernel-base/COPYING.
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/tick.h>
23 #include <asm/irq_regs.h>
25 #include "tick-internal.h"
30 DEFINE_PER_CPU(struct tick_device, tick_cpu_device);
32 * Tick next event: keeps track of the tick time
34 ktime_t tick_next_period;
36 int tick_do_timer_cpu __read_mostly = -1;
37 DEFINE_SPINLOCK(tick_device_lock);
40 * Debugging: see timer_list.c
42 struct tick_device *tick_get_device(int cpu)
44 return &per_cpu(tick_cpu_device, cpu);
48 * tick_is_oneshot_available - check for a oneshot capable event device
50 int tick_is_oneshot_available(void)
52 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
54 return dev && (dev->features & CLOCK_EVT_FEAT_ONESHOT);
60 static void tick_periodic(int cpu)
62 if (tick_do_timer_cpu == cpu) {
63 write_seqlock(&xtime_lock);
65 /* Keep track of the next tick event */
66 tick_next_period = ktime_add(tick_next_period, tick_period);
69 write_sequnlock(&xtime_lock);
72 update_process_times(user_mode(get_irq_regs()));
73 profile_tick(CPU_PROFILING);
77 * Event handler for periodic ticks
79 void tick_handle_periodic(struct clock_event_device *dev)
81 int cpu = smp_processor_id();
86 if (dev->mode != CLOCK_EVT_MODE_ONESHOT)
89 * Setup the next period for devices, which do not have
92 next = ktime_add(dev->next_event, tick_period);
94 if (!clockevents_program_event(dev, next, ktime_get()))
97 next = ktime_add(next, tick_period);
102 * Setup the device for a periodic tick
104 void tick_setup_periodic(struct clock_event_device *dev, int broadcast)
106 tick_set_periodic_handler(dev, broadcast);
108 /* Broadcast setup ? */
109 if (!tick_device_is_functional(dev))
112 if (dev->features & CLOCK_EVT_FEAT_PERIODIC) {
113 clockevents_set_mode(dev, CLOCK_EVT_MODE_PERIODIC);
119 seq = read_seqbegin(&xtime_lock);
120 next = tick_next_period;
121 } while (read_seqretry(&xtime_lock, seq));
123 clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
126 if (!clockevents_program_event(dev, next, ktime_get()))
128 next = ktime_add(next, tick_period);
134 * Setup the tick device
136 static void tick_setup_device(struct tick_device *td,
137 struct clock_event_device *newdev, int cpu,
138 const cpumask_t *cpumask)
141 void (*handler)(struct clock_event_device *) = NULL;
144 * First device setup ?
148 * If no cpu took the do_timer update, assign it to
151 if (tick_do_timer_cpu == -1) {
152 tick_do_timer_cpu = cpu;
153 tick_next_period = ktime_get();
154 tick_period = ktime_set(0, NSEC_PER_SEC / HZ);
158 * Startup in periodic mode first.
160 td->mode = TICKDEV_MODE_PERIODIC;
162 handler = td->evtdev->event_handler;
163 next_event = td->evtdev->next_event;
169 * When the device is not per cpu, pin the interrupt to the
172 if (!cpus_equal(newdev->cpumask, *cpumask))
173 irq_set_affinity(newdev->irq, *cpumask);
176 * When global broadcasting is active, check if the current
177 * device is registered as a placeholder for broadcast mode.
178 * This allows us to handle this x86 misfeature in a generic
181 if (tick_device_uses_broadcast(newdev, cpu))
184 if (td->mode == TICKDEV_MODE_PERIODIC)
185 tick_setup_periodic(newdev, 0);
187 tick_setup_oneshot(newdev, handler, next_event);
191 * Check, if the new registered device should be used.
193 static int tick_check_new_device(struct clock_event_device *newdev)
195 struct clock_event_device *curdev;
196 struct tick_device *td;
197 int cpu, ret = NOTIFY_OK;
200 spin_lock_irqsave(&tick_device_lock, flags);
202 cpu = smp_processor_id();
203 if (!cpu_isset(cpu, newdev->cpumask))
206 td = &per_cpu(tick_cpu_device, cpu);
209 /* cpu local device ? */
210 if (!cpus_equal(newdev->cpumask, cpumask_of_cpu(cpu))) {
213 * If the cpu affinity of the device interrupt can not
216 if (!irq_can_set_affinity(newdev->irq))
220 * If we have a cpu local device already, do not replace it
221 * by a non cpu local device
223 if (curdev && cpus_equal(curdev->cpumask, cpumask_of_cpu(cpu)))
228 * If we have an active device, then check the rating and the oneshot
233 * Prefer one shot capable devices !
235 if ((curdev->features & CLOCK_EVT_FEAT_ONESHOT) &&
236 !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
241 if (curdev->rating >= newdev->rating)
246 * Replace the eventually existing device by the new
247 * device. If the current device is the broadcast device, do
248 * not give it back to the clockevents layer !
250 if (tick_is_broadcast_device(curdev)) {
251 clockevents_set_mode(curdev, CLOCK_EVT_MODE_SHUTDOWN);
254 clockevents_exchange_device(curdev, newdev);
255 tick_setup_device(td, newdev, cpu, &cpumask_of_cpu(cpu));
256 if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
257 tick_oneshot_notify();
259 spin_unlock_irqrestore(&tick_device_lock, flags);
264 * Can the new device be used as a broadcast device ?
266 if (tick_check_broadcast_device(newdev))
269 spin_unlock_irqrestore(&tick_device_lock, flags);
275 * Shutdown an event device on a given cpu:
277 * This is called on a life CPU, when a CPU is dead. So we cannot
278 * access the hardware device itself.
279 * We just set the mode and remove it from the lists.
281 static void tick_shutdown(unsigned int *cpup)
283 struct tick_device *td = &per_cpu(tick_cpu_device, *cpup);
284 struct clock_event_device *dev = td->evtdev;
287 spin_lock_irqsave(&tick_device_lock, flags);
288 td->mode = TICKDEV_MODE_PERIODIC;
291 * Prevent that the clock events layer tries to call
292 * the set mode function!
294 dev->mode = CLOCK_EVT_MODE_UNUSED;
295 clockevents_exchange_device(dev, NULL);
298 /* Transfer the do_timer job away from this cpu */
299 if (*cpup == tick_do_timer_cpu) {
300 int cpu = first_cpu(cpu_online_map);
302 tick_do_timer_cpu = (cpu != NR_CPUS) ? cpu : -1;
304 spin_unlock_irqrestore(&tick_device_lock, flags);
307 static void tick_suspend(void)
309 struct tick_device *td = &__get_cpu_var(tick_cpu_device);
312 spin_lock_irqsave(&tick_device_lock, flags);
313 clockevents_set_mode(td->evtdev, CLOCK_EVT_MODE_SHUTDOWN);
314 spin_unlock_irqrestore(&tick_device_lock, flags);
317 static void tick_resume(void)
319 struct tick_device *td = &__get_cpu_var(tick_cpu_device);
321 int broadcast = tick_resume_broadcast();
323 spin_lock_irqsave(&tick_device_lock, flags);
324 clockevents_set_mode(td->evtdev, CLOCK_EVT_MODE_RESUME);
327 if (td->mode == TICKDEV_MODE_PERIODIC)
328 tick_setup_periodic(td->evtdev, 0);
330 tick_resume_oneshot();
332 spin_unlock_irqrestore(&tick_device_lock, flags);
336 * Notification about clock event devices
338 static int tick_notify(struct notifier_block *nb, unsigned long reason,
343 case CLOCK_EVT_NOTIFY_ADD:
344 return tick_check_new_device(dev);
346 case CLOCK_EVT_NOTIFY_BROADCAST_ON:
347 case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
348 case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
349 tick_broadcast_on_off(reason, dev);
352 case CLOCK_EVT_NOTIFY_BROADCAST_ENTER:
353 case CLOCK_EVT_NOTIFY_BROADCAST_EXIT:
354 tick_broadcast_oneshot_control(reason);
357 case CLOCK_EVT_NOTIFY_CPU_DEAD:
358 tick_shutdown_broadcast_oneshot(dev);
359 tick_shutdown_broadcast(dev);
363 case CLOCK_EVT_NOTIFY_SUSPEND:
365 tick_suspend_broadcast();
368 case CLOCK_EVT_NOTIFY_RESUME:
379 static struct notifier_block tick_notifier = {
380 .notifier_call = tick_notify,
384 * tick_init - initialize the tick control
386 * Register the notifier with the clockevents framework
388 void __init tick_init(void)
390 clockevents_register_notifier(&tick_notifier);