Merge branch 'proc-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/adobriyan...
[linux-2.6] / arch / ia64 / sn / kernel / sn2 / sn2_smp.c
1 /*
2  * SN2 Platform specific SMP Support
3  *
4  * This file is subject to the terms and conditions of the GNU General Public
5  * License.  See the file "COPYING" in the main directory of this archive
6  * for more details.
7  *
8  * Copyright (C) 2000-2006 Silicon Graphics, Inc. All rights reserved.
9  */
10
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/spinlock.h>
14 #include <linux/threads.h>
15 #include <linux/sched.h>
16 #include <linux/smp.h>
17 #include <linux/interrupt.h>
18 #include <linux/irq.h>
19 #include <linux/mmzone.h>
20 #include <linux/module.h>
21 #include <linux/bitops.h>
22 #include <linux/nodemask.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25
26 #include <asm/processor.h>
27 #include <asm/irq.h>
28 #include <asm/sal.h>
29 #include <asm/system.h>
30 #include <asm/delay.h>
31 #include <asm/io.h>
32 #include <asm/smp.h>
33 #include <asm/tlb.h>
34 #include <asm/numa.h>
35 #include <asm/hw_irq.h>
36 #include <asm/current.h>
37 #include <asm/sn/sn_cpuid.h>
38 #include <asm/sn/sn_sal.h>
39 #include <asm/sn/addrs.h>
40 #include <asm/sn/shub_mmr.h>
41 #include <asm/sn/nodepda.h>
42 #include <asm/sn/rw_mmr.h>
43 #include <asm/sn/sn_feature_sets.h>
44
45 DEFINE_PER_CPU(struct ptc_stats, ptcstats);
46 DECLARE_PER_CPU(struct ptc_stats, ptcstats);
47
48 static  __cacheline_aligned DEFINE_SPINLOCK(sn2_global_ptc_lock);
49
50 /* 0 = old algorithm (no IPI flushes), 1 = ipi deadlock flush, 2 = ipi instead of SHUB ptc, >2 = always ipi */
51 static int sn2_flush_opt = 0;
52
53 extern unsigned long
54 sn2_ptc_deadlock_recovery_core(volatile unsigned long *, unsigned long,
55                                volatile unsigned long *, unsigned long,
56                                volatile unsigned long *, unsigned long);
57 void
58 sn2_ptc_deadlock_recovery(short *, short, short, int,
59                           volatile unsigned long *, unsigned long,
60                           volatile unsigned long *, unsigned long);
61
62 /*
63  * Note: some is the following is captured here to make degugging easier
64  * (the macros make more sense if you see the debug patch - not posted)
65  */
66 #define sn2_ptctest     0
67 #define local_node_uses_ptc_ga(sh1)     ((sh1) ? 1 : 0)
68 #define max_active_pio(sh1)             ((sh1) ? 32 : 7)
69 #define reset_max_active_on_deadlock()  1
70 #define PTC_LOCK(sh1)                   ((sh1) ? &sn2_global_ptc_lock : &sn_nodepda->ptc_lock)
71
72 struct ptc_stats {
73         unsigned long ptc_l;
74         unsigned long change_rid;
75         unsigned long shub_ptc_flushes;
76         unsigned long nodes_flushed;
77         unsigned long deadlocks;
78         unsigned long deadlocks2;
79         unsigned long lock_itc_clocks;
80         unsigned long shub_itc_clocks;
81         unsigned long shub_itc_clocks_max;
82         unsigned long shub_ptc_flushes_not_my_mm;
83         unsigned long shub_ipi_flushes;
84         unsigned long shub_ipi_flushes_itc_clocks;
85 };
86
87 #define sn2_ptctest     0
88
89 static inline unsigned long wait_piowc(void)
90 {
91         volatile unsigned long *piows;
92         unsigned long zeroval, ws;
93
94         piows = pda->pio_write_status_addr;
95         zeroval = pda->pio_write_status_val;
96         do {
97                 cpu_relax();
98         } while (((ws = *piows) & SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK) != zeroval);
99         return (ws & SH_PIO_WRITE_STATUS_WRITE_DEADLOCK_MASK) != 0;
100 }
101
102 /**
103  * sn_migrate - SN-specific task migration actions
104  * @task: Task being migrated to new CPU
105  *
106  * SN2 PIO writes from separate CPUs are not guaranteed to arrive in order.
107  * Context switching user threads which have memory-mapped MMIO may cause
108  * PIOs to issue from separate CPUs, thus the PIO writes must be drained
109  * from the previous CPU's Shub before execution resumes on the new CPU.
110  */
111 void sn_migrate(struct task_struct *task)
112 {
113         pda_t *last_pda = pdacpu(task_thread_info(task)->last_cpu);
114         volatile unsigned long *adr = last_pda->pio_write_status_addr;
115         unsigned long val = last_pda->pio_write_status_val;
116
117         /* Drain PIO writes from old CPU's Shub */
118         while (unlikely((*adr & SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK)
119                         != val))
120                 cpu_relax();
121 }
122
123 void sn_tlb_migrate_finish(struct mm_struct *mm)
124 {
125         /* flush_tlb_mm is inefficient if more than 1 users of mm */
126         if (mm == current->mm && mm && atomic_read(&mm->mm_users) == 1)
127                 flush_tlb_mm(mm);
128 }
129
130 static void
131 sn2_ipi_flush_all_tlb(struct mm_struct *mm)
132 {
133         unsigned long itc;
134
135         itc = ia64_get_itc();
136         smp_flush_tlb_cpumask(mm->cpu_vm_mask);
137         itc = ia64_get_itc() - itc;
138         __get_cpu_var(ptcstats).shub_ipi_flushes_itc_clocks += itc;
139         __get_cpu_var(ptcstats).shub_ipi_flushes++;
140 }
141
142 /**
143  * sn2_global_tlb_purge - globally purge translation cache of virtual address range
144  * @mm: mm_struct containing virtual address range
145  * @start: start of virtual address range
146  * @end: end of virtual address range
147  * @nbits: specifies number of bytes to purge per instruction (num = 1<<(nbits & 0xfc))
148  *
149  * Purges the translation caches of all processors of the given virtual address
150  * range.
151  *
152  * Note:
153  *      - cpu_vm_mask is a bit mask that indicates which cpus have loaded the context.
154  *      - cpu_vm_mask is converted into a nodemask of the nodes containing the
155  *        cpus in cpu_vm_mask.
156  *      - if only one bit is set in cpu_vm_mask & it is the current cpu & the
157  *        process is purging its own virtual address range, then only the
158  *        local TLB needs to be flushed. This flushing can be done using
159  *        ptc.l. This is the common case & avoids the global spinlock.
160  *      - if multiple cpus have loaded the context, then flushing has to be
161  *        done with ptc.g/MMRs under protection of the global ptc_lock.
162  */
163
164 void
165 sn2_global_tlb_purge(struct mm_struct *mm, unsigned long start,
166                      unsigned long end, unsigned long nbits)
167 {
168         int i, ibegin, shub1, cnode, mynasid, cpu, lcpu = 0, nasid;
169         int mymm = (mm == current->active_mm && mm == current->mm);
170         int use_cpu_ptcga;
171         volatile unsigned long *ptc0, *ptc1;
172         unsigned long itc, itc2, flags, data0 = 0, data1 = 0, rr_value, old_rr = 0;
173         short nasids[MAX_NUMNODES], nix;
174         nodemask_t nodes_flushed;
175         int active, max_active, deadlock, flush_opt = sn2_flush_opt;
176
177         if (flush_opt > 2) {
178                 sn2_ipi_flush_all_tlb(mm);
179                 return;
180         }
181
182         nodes_clear(nodes_flushed);
183         i = 0;
184
185         for_each_cpu_mask(cpu, mm->cpu_vm_mask) {
186                 cnode = cpu_to_node(cpu);
187                 node_set(cnode, nodes_flushed);
188                 lcpu = cpu;
189                 i++;
190         }
191
192         if (i == 0)
193                 return;
194
195         preempt_disable();
196
197         if (likely(i == 1 && lcpu == smp_processor_id() && mymm)) {
198                 do {
199                         ia64_ptcl(start, nbits << 2);
200                         start += (1UL << nbits);
201                 } while (start < end);
202                 ia64_srlz_i();
203                 __get_cpu_var(ptcstats).ptc_l++;
204                 preempt_enable();
205                 return;
206         }
207
208         if (atomic_read(&mm->mm_users) == 1 && mymm) {
209                 flush_tlb_mm(mm);
210                 __get_cpu_var(ptcstats).change_rid++;
211                 preempt_enable();
212                 return;
213         }
214
215         if (flush_opt == 2) {
216                 sn2_ipi_flush_all_tlb(mm);
217                 preempt_enable();
218                 return;
219         }
220
221         itc = ia64_get_itc();
222         nix = 0;
223         for_each_node_mask(cnode, nodes_flushed)
224                 nasids[nix++] = cnodeid_to_nasid(cnode);
225
226         rr_value = (mm->context << 3) | REGION_NUMBER(start);
227
228         shub1 = is_shub1();
229         if (shub1) {
230                 data0 = (1UL << SH1_PTC_0_A_SHFT) |
231                         (nbits << SH1_PTC_0_PS_SHFT) |
232                         (rr_value << SH1_PTC_0_RID_SHFT) |
233                         (1UL << SH1_PTC_0_START_SHFT);
234                 ptc0 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH1_PTC_0);
235                 ptc1 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH1_PTC_1);
236         } else {
237                 data0 = (1UL << SH2_PTC_A_SHFT) |
238                         (nbits << SH2_PTC_PS_SHFT) |
239                         (1UL << SH2_PTC_START_SHFT);
240                 ptc0 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH2_PTC + 
241                         (rr_value << SH2_PTC_RID_SHFT));
242                 ptc1 = NULL;
243         }
244         
245
246         mynasid = get_nasid();
247         use_cpu_ptcga = local_node_uses_ptc_ga(shub1);
248         max_active = max_active_pio(shub1);
249
250         itc = ia64_get_itc();
251         spin_lock_irqsave(PTC_LOCK(shub1), flags);
252         itc2 = ia64_get_itc();
253
254         __get_cpu_var(ptcstats).lock_itc_clocks += itc2 - itc;
255         __get_cpu_var(ptcstats).shub_ptc_flushes++;
256         __get_cpu_var(ptcstats).nodes_flushed += nix;
257         if (!mymm)
258                  __get_cpu_var(ptcstats).shub_ptc_flushes_not_my_mm++;
259
260         if (use_cpu_ptcga && !mymm) {
261                 old_rr = ia64_get_rr(start);
262                 ia64_set_rr(start, (old_rr & 0xff) | (rr_value << 8));
263                 ia64_srlz_d();
264         }
265
266         wait_piowc();
267         do {
268                 if (shub1)
269                         data1 = start | (1UL << SH1_PTC_1_START_SHFT);
270                 else
271                         data0 = (data0 & ~SH2_PTC_ADDR_MASK) | (start & SH2_PTC_ADDR_MASK);
272                 deadlock = 0;
273                 active = 0;
274                 for (ibegin = 0, i = 0; i < nix; i++) {
275                         nasid = nasids[i];
276                         if (use_cpu_ptcga && unlikely(nasid == mynasid)) {
277                                 ia64_ptcga(start, nbits << 2);
278                                 ia64_srlz_i();
279                         } else {
280                                 ptc0 = CHANGE_NASID(nasid, ptc0);
281                                 if (ptc1)
282                                         ptc1 = CHANGE_NASID(nasid, ptc1);
283                                 pio_atomic_phys_write_mmrs(ptc0, data0, ptc1, data1);
284                                 active++;
285                         }
286                         if (active >= max_active || i == (nix - 1)) {
287                                 if ((deadlock = wait_piowc())) {
288                                         if (flush_opt == 1)
289                                                 goto done;
290                                         sn2_ptc_deadlock_recovery(nasids, ibegin, i, mynasid, ptc0, data0, ptc1, data1);
291                                         if (reset_max_active_on_deadlock())
292                                                 max_active = 1;
293                                 }
294                                 active = 0;
295                                 ibegin = i + 1;
296                         }
297                 }
298                 start += (1UL << nbits);
299         } while (start < end);
300
301 done:
302         itc2 = ia64_get_itc() - itc2;
303         __get_cpu_var(ptcstats).shub_itc_clocks += itc2;
304         if (itc2 > __get_cpu_var(ptcstats).shub_itc_clocks_max)
305                 __get_cpu_var(ptcstats).shub_itc_clocks_max = itc2;
306
307         if (old_rr) {
308                 ia64_set_rr(start, old_rr);
309                 ia64_srlz_d();
310         }
311
312         spin_unlock_irqrestore(PTC_LOCK(shub1), flags);
313
314         if (flush_opt == 1 && deadlock) {
315                 __get_cpu_var(ptcstats).deadlocks++;
316                 sn2_ipi_flush_all_tlb(mm);
317         }
318
319         preempt_enable();
320 }
321
322 /*
323  * sn2_ptc_deadlock_recovery
324  *
325  * Recover from PTC deadlocks conditions. Recovery requires stepping thru each 
326  * TLB flush transaction.  The recovery sequence is somewhat tricky & is
327  * coded in assembly language.
328  */
329
330 void
331 sn2_ptc_deadlock_recovery(short *nasids, short ib, short ie, int mynasid,
332                           volatile unsigned long *ptc0, unsigned long data0,
333                           volatile unsigned long *ptc1, unsigned long data1)
334 {
335         short nasid, i;
336         unsigned long *piows, zeroval, n;
337
338         __get_cpu_var(ptcstats).deadlocks++;
339
340         piows = (unsigned long *) pda->pio_write_status_addr;
341         zeroval = pda->pio_write_status_val;
342
343
344         for (i=ib; i <= ie; i++) {
345                 nasid = nasids[i];
346                 if (local_node_uses_ptc_ga(is_shub1()) && nasid == mynasid)
347                         continue;
348                 ptc0 = CHANGE_NASID(nasid, ptc0);
349                 if (ptc1)
350                         ptc1 = CHANGE_NASID(nasid, ptc1);
351
352                 n = sn2_ptc_deadlock_recovery_core(ptc0, data0, ptc1, data1, piows, zeroval);
353                 __get_cpu_var(ptcstats).deadlocks2 += n;
354         }
355
356 }
357
358 /**
359  * sn_send_IPI_phys - send an IPI to a Nasid and slice
360  * @nasid: nasid to receive the interrupt (may be outside partition)
361  * @physid: physical cpuid to receive the interrupt.
362  * @vector: command to send
363  * @delivery_mode: delivery mechanism
364  *
365  * Sends an IPI (interprocessor interrupt) to the processor specified by
366  * @physid
367  *
368  * @delivery_mode can be one of the following
369  *
370  * %IA64_IPI_DM_INT - pend an interrupt
371  * %IA64_IPI_DM_PMI - pend a PMI
372  * %IA64_IPI_DM_NMI - pend an NMI
373  * %IA64_IPI_DM_INIT - pend an INIT interrupt
374  */
375 void sn_send_IPI_phys(int nasid, long physid, int vector, int delivery_mode)
376 {
377         long val;
378         unsigned long flags = 0;
379         volatile long *p;
380
381         p = (long *)GLOBAL_MMR_PHYS_ADDR(nasid, SH_IPI_INT);
382         val = (1UL << SH_IPI_INT_SEND_SHFT) |
383             (physid << SH_IPI_INT_PID_SHFT) |
384             ((long)delivery_mode << SH_IPI_INT_TYPE_SHFT) |
385             ((long)vector << SH_IPI_INT_IDX_SHFT) |
386             (0x000feeUL << SH_IPI_INT_BASE_SHFT);
387
388         mb();
389         if (enable_shub_wars_1_1()) {
390                 spin_lock_irqsave(&sn2_global_ptc_lock, flags);
391         }
392         pio_phys_write_mmr(p, val);
393         if (enable_shub_wars_1_1()) {
394                 wait_piowc();
395                 spin_unlock_irqrestore(&sn2_global_ptc_lock, flags);
396         }
397
398 }
399
400 EXPORT_SYMBOL(sn_send_IPI_phys);
401
402 /**
403  * sn2_send_IPI - send an IPI to a processor
404  * @cpuid: target of the IPI
405  * @vector: command to send
406  * @delivery_mode: delivery mechanism
407  * @redirect: redirect the IPI?
408  *
409  * Sends an IPI (InterProcessor Interrupt) to the processor specified by
410  * @cpuid.  @vector specifies the command to send, while @delivery_mode can 
411  * be one of the following
412  *
413  * %IA64_IPI_DM_INT - pend an interrupt
414  * %IA64_IPI_DM_PMI - pend a PMI
415  * %IA64_IPI_DM_NMI - pend an NMI
416  * %IA64_IPI_DM_INIT - pend an INIT interrupt
417  */
418 void sn2_send_IPI(int cpuid, int vector, int delivery_mode, int redirect)
419 {
420         long physid;
421         int nasid;
422
423         physid = cpu_physical_id(cpuid);
424         nasid = cpuid_to_nasid(cpuid);
425
426         /* the following is used only when starting cpus at boot time */
427         if (unlikely(nasid == -1))
428                 ia64_sn_get_sapic_info(physid, &nasid, NULL, NULL);
429
430         sn_send_IPI_phys(nasid, physid, vector, delivery_mode);
431 }
432
433 #ifdef CONFIG_HOTPLUG_CPU
434 /**
435  * sn_cpu_disable_allowed - Determine if a CPU can be disabled.
436  * @cpu - CPU that is requested to be disabled.
437  *
438  * CPU disable is only allowed on SHub2 systems running with a PROM
439  * that supports CPU disable. It is not permitted to disable the boot processor.
440  */
441 bool sn_cpu_disable_allowed(int cpu)
442 {
443         if (is_shub2() && sn_prom_feature_available(PRF_CPU_DISABLE_SUPPORT)) {
444                 if (cpu != 0)
445                         return true;
446                 else
447                         printk(KERN_WARNING
448                               "Disabling the boot processor is not allowed.\n");
449
450         } else
451                 printk(KERN_WARNING
452                        "CPU disable is not supported on this system.\n");
453
454         return false;
455 }
456 #endif /* CONFIG_HOTPLUG_CPU */
457
458 #ifdef CONFIG_PROC_FS
459
460 #define PTC_BASENAME    "sgi_sn/ptc_statistics"
461
462 static void *sn2_ptc_seq_start(struct seq_file *file, loff_t * offset)
463 {
464         if (*offset < NR_CPUS)
465                 return offset;
466         return NULL;
467 }
468
469 static void *sn2_ptc_seq_next(struct seq_file *file, void *data, loff_t * offset)
470 {
471         (*offset)++;
472         if (*offset < NR_CPUS)
473                 return offset;
474         return NULL;
475 }
476
477 static void sn2_ptc_seq_stop(struct seq_file *file, void *data)
478 {
479 }
480
481 static int sn2_ptc_seq_show(struct seq_file *file, void *data)
482 {
483         struct ptc_stats *stat;
484         int cpu;
485
486         cpu = *(loff_t *) data;
487
488         if (!cpu) {
489                 seq_printf(file,
490                            "# cpu ptc_l newrid ptc_flushes nodes_flushed deadlocks lock_nsec shub_nsec shub_nsec_max not_my_mm deadlock2 ipi_fluches ipi_nsec\n");
491                 seq_printf(file, "# ptctest %d, flushopt %d\n", sn2_ptctest, sn2_flush_opt);
492         }
493
494         if (cpu < NR_CPUS && cpu_online(cpu)) {
495                 stat = &per_cpu(ptcstats, cpu);
496                 seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld\n", cpu, stat->ptc_l,
497                                 stat->change_rid, stat->shub_ptc_flushes, stat->nodes_flushed,
498                                 stat->deadlocks,
499                                 1000 * stat->lock_itc_clocks / per_cpu(cpu_info, cpu).cyc_per_usec,
500                                 1000 * stat->shub_itc_clocks / per_cpu(cpu_info, cpu).cyc_per_usec,
501                                 1000 * stat->shub_itc_clocks_max / per_cpu(cpu_info, cpu).cyc_per_usec,
502                                 stat->shub_ptc_flushes_not_my_mm,
503                                 stat->deadlocks2,
504                                 stat->shub_ipi_flushes,
505                                 1000 * stat->shub_ipi_flushes_itc_clocks / per_cpu(cpu_info, cpu).cyc_per_usec);
506         }
507         return 0;
508 }
509
510 static ssize_t sn2_ptc_proc_write(struct file *file, const char __user *user, size_t count, loff_t *data)
511 {
512         int cpu;
513         char optstr[64];
514
515         if (count == 0 || count > sizeof(optstr))
516                 return -EINVAL;
517         if (copy_from_user(optstr, user, count))
518                 return -EFAULT;
519         optstr[count - 1] = '\0';
520         sn2_flush_opt = simple_strtoul(optstr, NULL, 0);
521
522         for_each_online_cpu(cpu)
523                 memset(&per_cpu(ptcstats, cpu), 0, sizeof(struct ptc_stats));
524
525         return count;
526 }
527
528 static const struct seq_operations sn2_ptc_seq_ops = {
529         .start = sn2_ptc_seq_start,
530         .next = sn2_ptc_seq_next,
531         .stop = sn2_ptc_seq_stop,
532         .show = sn2_ptc_seq_show
533 };
534
535 static int sn2_ptc_proc_open(struct inode *inode, struct file *file)
536 {
537         return seq_open(file, &sn2_ptc_seq_ops);
538 }
539
540 static const struct file_operations proc_sn2_ptc_operations = {
541         .open = sn2_ptc_proc_open,
542         .read = seq_read,
543         .write = sn2_ptc_proc_write,
544         .llseek = seq_lseek,
545         .release = seq_release,
546 };
547
548 static struct proc_dir_entry *proc_sn2_ptc;
549
550 static int __init sn2_ptc_init(void)
551 {
552         if (!ia64_platform_is("sn2"))
553                 return 0;
554
555         proc_sn2_ptc = proc_create(PTC_BASENAME, 0444,
556                                    NULL, &proc_sn2_ptc_operations);
557         if (!&proc_sn2_ptc_operations) {
558                 printk(KERN_ERR "unable to create %s proc entry", PTC_BASENAME);
559                 return -EINVAL;
560         }
561         spin_lock_init(&sn2_global_ptc_lock);
562         return 0;
563 }
564
565 static void __exit sn2_ptc_exit(void)
566 {
567         remove_proc_entry(PTC_BASENAME, NULL);
568 }
569
570 module_init(sn2_ptc_init);
571 module_exit(sn2_ptc_exit);
572 #endif /* CONFIG_PROC_FS */
573