sched, cpuset: rework sched domains and CPU hotplug handling (v4)
[linux-2.6] / arch / parisc / kernel / processor.c
1 /*    $Id: processor.c,v 1.1 2002/07/20 16:27:06 rhirst Exp $
2  *
3  *    Initial setup-routines for HP 9000 based hardware.
4  *
5  *    Copyright (C) 1991, 1992, 1995  Linus Torvalds
6  *    Modifications for PA-RISC (C) 1999 Helge Deller <deller@gmx.de>
7  *    Modifications copyright 1999 SuSE GmbH (Philipp Rumpf)
8  *    Modifications copyright 2000 Martin K. Petersen <mkp@mkp.net>
9  *    Modifications copyright 2000 Philipp Rumpf <prumpf@tux.org>
10  *    Modifications copyright 2001 Ryan Bradetich <rbradetich@uswest.net>
11  *
12  *    Initial PA-RISC Version: 04-23-1999 by Helge Deller
13  *
14  *    This program is free software; you can redistribute it and/or modify
15  *    it under the terms of the GNU General Public License as published by
16  *    the Free Software Foundation; either version 2, or (at your option)
17  *    any later version.
18  *
19  *    This program is distributed in the hope that it will be useful,
20  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
21  *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22  *    GNU General Public License for more details.
23  *
24  *    You should have received a copy of the GNU General Public License
25  *    along with this program; if not, write to the Free Software
26  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27  *
28  */
29 #include <linux/delay.h>
30 #include <linux/init.h>
31 #include <linux/mm.h>
32 #include <linux/module.h>
33 #include <linux/seq_file.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <asm/param.h>
37 #include <asm/cache.h>
38 #include <asm/hardware.h>       /* for register_parisc_driver() stuff */
39 #include <asm/processor.h>
40 #include <asm/page.h>
41 #include <asm/pdc.h>
42 #include <asm/pdcpat.h>
43 #include <asm/irq.h>            /* for struct irq_region */
44 #include <asm/parisc-device.h>
45
46 struct system_cpuinfo_parisc boot_cpu_data __read_mostly;
47 EXPORT_SYMBOL(boot_cpu_data);
48
49 struct cpuinfo_parisc cpu_data[NR_CPUS] __read_mostly;
50
51 extern int update_cr16_clocksource(void);       /* from time.c */
52
53 /*
54 **      PARISC CPU driver - claim "device" and initialize CPU data structures.
55 **
56 ** Consolidate per CPU initialization into (mostly) one module.
57 ** Monarch CPU will initialize boot_cpu_data which shouldn't
58 ** change once the system has booted.
59 **
60 ** The callback *should* do per-instance initialization of
61 ** everything including the monarch. "Per CPU" init code in
62 ** setup.c:start_parisc() has migrated here and start_parisc()
63 ** will call register_parisc_driver(&cpu_driver) before calling do_inventory().
64 **
65 ** The goal of consolidating CPU initialization into one place is
66 ** to make sure all CPUs get initialized the same way.
67 ** The code path not shared is how PDC hands control of the CPU to the OS.
68 ** The initialization of OS data structures is the same (done below).
69 */
70
71 /**
72  * processor_probe - Determine if processor driver should claim this device.
73  * @dev: The device which has been found.
74  *
75  * Determine if processor driver should claim this chip (return 0) or not 
76  * (return 1).  If so, initialize the chip and tell other partners in crime 
77  * they have work to do.
78  */
79 static int __cpuinit processor_probe(struct parisc_device *dev)
80 {
81         unsigned long txn_addr;
82         unsigned long cpuid;
83         struct cpuinfo_parisc *p;
84
85 #ifdef CONFIG_SMP
86         if (num_online_cpus() >= NR_CPUS) {
87                 printk(KERN_INFO "num_online_cpus() >= NR_CPUS\n");
88                 return 1;
89         }
90 #else
91         if (boot_cpu_data.cpu_count > 0) {
92                 printk(KERN_INFO "CONFIG_SMP=n  ignoring additional CPUs\n");
93                 return 1;
94         }
95 #endif
96
97         /* logical CPU ID and update global counter
98          * May get overwritten by PAT code.
99          */
100         cpuid = boot_cpu_data.cpu_count;
101         txn_addr = dev->hpa.start;      /* for legacy PDC */
102
103 #ifdef CONFIG_64BIT
104         if (is_pdc_pat()) {
105                 ulong status;
106                 unsigned long bytecnt;
107                 pdc_pat_cell_mod_maddr_block_t pa_pdc_cell;
108 #undef USE_PAT_CPUID
109 #ifdef USE_PAT_CPUID
110                 struct pdc_pat_cpu_num cpu_info;
111 #endif
112
113                 status = pdc_pat_cell_module(&bytecnt, dev->pcell_loc,
114                         dev->mod_index, PA_VIEW, &pa_pdc_cell);
115
116                 BUG_ON(PDC_OK != status);
117
118                 /* verify it's the same as what do_pat_inventory() found */
119                 BUG_ON(dev->mod_info != pa_pdc_cell.mod_info);
120                 BUG_ON(dev->pmod_loc != pa_pdc_cell.mod_location);
121
122                 txn_addr = pa_pdc_cell.mod[0];   /* id_eid for IO sapic */
123
124 #ifdef USE_PAT_CPUID
125 /* We need contiguous numbers for cpuid. Firmware's notion
126  * of cpuid is for physical CPUs and we just don't care yet.
127  * We'll care when we need to query PAT PDC about a CPU *after*
128  * boot time (ie shutdown a CPU from an OS perspective).
129  */
130                 /* get the cpu number */
131                 status = pdc_pat_cpu_get_number(&cpu_info, dev->hpa.start);
132
133                 BUG_ON(PDC_OK != status);
134
135                 if (cpu_info.cpu_num >= NR_CPUS) {
136                         printk(KERN_WARNING "IGNORING CPU at 0x%x,"
137                                 " cpu_slot_id > NR_CPUS"
138                                 " (%ld > %d)\n",
139                                 dev->hpa.start, cpu_info.cpu_num, NR_CPUS);
140                         /* Ignore CPU since it will only crash */
141                         boot_cpu_data.cpu_count--;
142                         return 1;
143                 } else {
144                         cpuid = cpu_info.cpu_num;
145                 }
146 #endif
147         }
148 #endif
149
150         p = &cpu_data[cpuid];
151         boot_cpu_data.cpu_count++;
152
153         /* initialize counters - CPU 0 gets it_value set in time_init() */
154         if (cpuid)
155                 memset(p, 0, sizeof(struct cpuinfo_parisc));
156
157         p->loops_per_jiffy = loops_per_jiffy;
158         p->dev = dev;           /* Save IODC data in case we need it */
159         p->hpa = dev->hpa.start;        /* save CPU hpa */
160         p->cpuid = cpuid;       /* save CPU id */
161         p->txn_addr = txn_addr; /* save CPU IRQ address */
162 #ifdef CONFIG_SMP
163         /*
164         ** FIXME: review if any other initialization is clobbered
165         **      for boot_cpu by the above memset().
166         */
167
168         /* stolen from init_percpu_prof() */
169         cpu_data[cpuid].prof_counter = 1;
170         cpu_data[cpuid].prof_multiplier = 1;
171 #endif
172
173         /*
174         ** CONFIG_SMP: init_smp_config() will attempt to get CPUs into
175         ** OS control. RENDEZVOUS is the default state - see mem_set above.
176         **      p->state = STATE_RENDEZVOUS;
177         */
178
179 #if 0
180         /* CPU 0 IRQ table is statically allocated/initialized */
181         if (cpuid) {
182                 struct irqaction actions[];
183
184                 /*
185                 ** itimer and ipi IRQ handlers are statically initialized in
186                 ** arch/parisc/kernel/irq.c. ie Don't need to register them.
187                 */
188                 actions = kmalloc(sizeof(struct irqaction)*MAX_CPU_IRQ, GFP_ATOMIC);
189                 if (!actions) {
190                         /* not getting it's own table, share with monarch */
191                         actions = cpu_irq_actions[0];
192                 }
193
194                 cpu_irq_actions[cpuid] = actions;
195         }
196 #endif
197
198         /* 
199          * Bring this CPU up now! (ignore bootstrap cpuid == 0)
200          */
201 #ifdef CONFIG_SMP
202         if (cpuid) {
203                 cpu_set(cpuid, cpu_present_map);
204                 cpu_up(cpuid);
205         }
206 #endif
207
208         /* If we've registered more than one cpu,
209          * we'll use the jiffies clocksource since cr16
210          * is not synchronized between CPUs.
211          */
212         update_cr16_clocksource();
213
214         return 0;
215 }
216
217 /**
218  * collect_boot_cpu_data - Fill the boot_cpu_data structure.
219  *
220  * This function collects and stores the generic processor information
221  * in the boot_cpu_data structure.
222  */
223 void __init collect_boot_cpu_data(void)
224 {
225         memset(&boot_cpu_data, 0, sizeof(boot_cpu_data));
226
227         boot_cpu_data.cpu_hz = 100 * PAGE0->mem_10msec; /* Hz of this PARISC */
228
229         /* get CPU-Model Information... */
230 #define p ((unsigned long *)&boot_cpu_data.pdc.model)
231         if (pdc_model_info(&boot_cpu_data.pdc.model) == PDC_OK)
232                 printk(KERN_INFO 
233                         "model %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
234                         p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], p[8]);
235 #undef p
236
237         if (pdc_model_versions(&boot_cpu_data.pdc.versions, 0) == PDC_OK)
238                 printk(KERN_INFO "vers  %08lx\n", 
239                         boot_cpu_data.pdc.versions);
240
241         if (pdc_model_cpuid(&boot_cpu_data.pdc.cpuid) == PDC_OK)
242                 printk(KERN_INFO "CPUID vers %ld rev %ld (0x%08lx)\n",
243                         (boot_cpu_data.pdc.cpuid >> 5) & 127,
244                         boot_cpu_data.pdc.cpuid & 31,
245                         boot_cpu_data.pdc.cpuid);
246
247         if (pdc_model_capabilities(&boot_cpu_data.pdc.capabilities) == PDC_OK)
248                 printk(KERN_INFO "capabilities 0x%lx\n",
249                         boot_cpu_data.pdc.capabilities);
250
251         if (pdc_model_sysmodel(boot_cpu_data.pdc.sys_model_name) == PDC_OK)
252                 printk(KERN_INFO "model %s\n",
253                         boot_cpu_data.pdc.sys_model_name);
254
255         boot_cpu_data.hversion =  boot_cpu_data.pdc.model.hversion;
256         boot_cpu_data.sversion =  boot_cpu_data.pdc.model.sversion;
257
258         boot_cpu_data.cpu_type = parisc_get_cpu_type(boot_cpu_data.hversion);
259         boot_cpu_data.cpu_name = cpu_name_version[boot_cpu_data.cpu_type][0];
260         boot_cpu_data.family_name = cpu_name_version[boot_cpu_data.cpu_type][1];
261 }
262
263
264 /**
265  * init_cpu_profiler - enable/setup per cpu profiling hooks.
266  * @cpunum: The processor instance.
267  *
268  * FIXME: doesn't do much yet...
269  */
270 static inline void __init
271 init_percpu_prof(int cpunum)
272 {
273         cpu_data[cpunum].prof_counter = 1;
274         cpu_data[cpunum].prof_multiplier = 1;
275 }
276
277
278 /**
279  * init_per_cpu - Handle individual processor initializations.
280  * @cpunum: logical processor number.
281  *
282  * This function handles initialization for *every* CPU
283  * in the system:
284  *
285  * o Set "default" CPU width for trap handlers
286  *
287  * o Enable FP coprocessor
288  *   REVISIT: this could be done in the "code 22" trap handler.
289  *      (frowands idea - that way we know which processes need FP
290  *      registers saved on the interrupt stack.)
291  *   NEWS FLASH: wide kernels need FP coprocessor enabled to handle
292  *      formatted printing of %lx for example (double divides I think)
293  *
294  * o Enable CPU profiling hooks.
295  */
296 int __init init_per_cpu(int cpunum)
297 {
298         int ret;
299         struct pdc_coproc_cfg coproc_cfg;
300
301         set_firmware_width();
302         ret = pdc_coproc_cfg(&coproc_cfg);
303
304         if(ret >= 0 && coproc_cfg.ccr_functional) {
305                 mtctl(coproc_cfg.ccr_functional, 10);  /* 10 == Coprocessor Control Reg */
306
307                 /* FWIW, FP rev/model is a more accurate way to determine
308                 ** CPU type. CPU rev/model has some ambiguous cases.
309                 */
310                 cpu_data[cpunum].fp_rev = coproc_cfg.revision;
311                 cpu_data[cpunum].fp_model = coproc_cfg.model;
312
313                 printk(KERN_INFO  "FP[%d] enabled: Rev %ld Model %ld\n",
314                         cpunum, coproc_cfg.revision, coproc_cfg.model);
315
316                 /*
317                 ** store status register to stack (hopefully aligned)
318                 ** and clear the T-bit.
319                 */
320                 asm volatile ("fstd    %fr0,8(%sp)");
321
322         } else {
323                 printk(KERN_WARNING  "WARNING: No FP CoProcessor?!"
324                         " (coproc_cfg.ccr_functional == 0x%lx, expected 0xc0)\n"
325 #ifdef CONFIG_64BIT
326                         "Halting Machine - FP required\n"
327 #endif
328                         , coproc_cfg.ccr_functional);
329 #ifdef CONFIG_64BIT
330                 mdelay(100);    /* previous chars get pushed to console */
331                 panic("FP CoProc not reported");
332 #endif
333         }
334
335         /* FUTURE: Enable Performance Monitor : ccr bit 0x20 */
336         init_percpu_prof(cpunum);
337
338         return ret;
339 }
340
341 /*
342  * Display CPU info for all CPUs.
343  */
344 int
345 show_cpuinfo (struct seq_file *m, void *v)
346 {
347         int     n;
348
349         for(n=0; n<boot_cpu_data.cpu_count; n++) {
350 #ifdef CONFIG_SMP
351                 if (0 == cpu_data[n].hpa)
352                         continue;
353 #endif
354                 seq_printf(m, "processor\t: %d\n"
355                                 "cpu family\t: PA-RISC %s\n",
356                                  n, boot_cpu_data.family_name);
357
358                 seq_printf(m, "cpu\t\t: %s\n",  boot_cpu_data.cpu_name );
359
360                 /* cpu MHz */
361                 seq_printf(m, "cpu MHz\t\t: %d.%06d\n",
362                                  boot_cpu_data.cpu_hz / 1000000,
363                                  boot_cpu_data.cpu_hz % 1000000  );
364
365                 seq_printf(m, "model\t\t: %s\n"
366                                 "model name\t: %s\n",
367                                  boot_cpu_data.pdc.sys_model_name,
368                                  cpu_data[n].dev ? 
369                                  cpu_data[n].dev->name : "Unknown" );
370
371                 seq_printf(m, "hversion\t: 0x%08x\n"
372                                 "sversion\t: 0x%08x\n",
373                                  boot_cpu_data.hversion,
374                                  boot_cpu_data.sversion );
375
376                 /* print cachesize info */
377                 show_cache_info(m);
378
379                 seq_printf(m, "bogomips\t: %lu.%02lu\n",
380                              cpu_data[n].loops_per_jiffy / (500000 / HZ),
381                              (cpu_data[n].loops_per_jiffy / (5000 / HZ)) % 100);
382
383                 seq_printf(m, "software id\t: %ld\n\n",
384                                 boot_cpu_data.pdc.model.sw_id);
385         }
386         return 0;
387 }
388
389 static const struct parisc_device_id processor_tbl[] = {
390         { HPHW_NPROC, HVERSION_REV_ANY_ID, HVERSION_ANY_ID, SVERSION_ANY_ID },
391         { 0, }
392 };
393
394 static struct parisc_driver cpu_driver = {
395         .name           = "CPU",
396         .id_table       = processor_tbl,
397         .probe          = processor_probe
398 };
399
400 /**
401  * processor_init - Processor initialization procedure.
402  *
403  * Register this driver.
404  */
405 void __init processor_init(void)
406 {
407         register_parisc_driver(&cpu_driver);
408 }