Merge branch 'master'
[linux-2.6] / drivers / mtd / nand / nand_base.c
1 /*
2  *  drivers/mtd/nand.c
3  *
4  *  Overview:
5  *   This is the generic MTD driver for NAND flash devices. It should be
6  *   capable of working with almost all NAND chips currently available.
7  *   Basic support for AG-AND chips is provided.
8  *
9  *      Additional technical information is available on
10  *      http://www.linux-mtd.infradead.org/tech/nand.html
11  *
12  *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13  *                2002-2006 Thomas Gleixner (tglx@linutronix.de)
14  *
15  *  Credits:
16  *      David Woodhouse for adding multichip support
17  *
18  *      Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19  *      rework for 2K page size chips
20  *
21  *  TODO:
22  *      Enable cached programming for 2k page size chips
23  *      Check, if mtd->ecctype should be set to MTD_ECC_HW
24  *      if we have HW ecc support.
25  *      The AG-AND chips have nice features for speed improvement,
26  *      which are not supported yet. Read / program 4 pages in one go.
27  *
28  * This program is free software; you can redistribute it and/or modify
29  * it under the terms of the GNU General Public License version 2 as
30  * published by the Free Software Foundation.
31  *
32  */
33
34 #include <linux/module.h>
35 #include <linux/delay.h>
36 #include <linux/errno.h>
37 #include <linux/err.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/types.h>
41 #include <linux/mtd/mtd.h>
42 #include <linux/mtd/nand.h>
43 #include <linux/mtd/nand_ecc.h>
44 #include <linux/mtd/compatmac.h>
45 #include <linux/interrupt.h>
46 #include <linux/bitops.h>
47 #include <linux/leds.h>
48 #include <asm/io.h>
49
50 #ifdef CONFIG_MTD_PARTITIONS
51 #include <linux/mtd/partitions.h>
52 #endif
53
54 /* Define default oob placement schemes for large and small page devices */
55 static struct nand_ecclayout nand_oob_8 = {
56         .eccbytes = 3,
57         .eccpos = {0, 1, 2},
58         .oobfree = {
59                 {.offset = 3,
60                  .length = 2},
61                 {.offset = 6,
62                  .length = 2}}
63 };
64
65 static struct nand_ecclayout nand_oob_16 = {
66         .eccbytes = 6,
67         .eccpos = {0, 1, 2, 3, 6, 7},
68         .oobfree = {
69                 {.offset = 8,
70                  . length = 8}}
71 };
72
73 static struct nand_ecclayout nand_oob_64 = {
74         .eccbytes = 24,
75         .eccpos = {
76                    40, 41, 42, 43, 44, 45, 46, 47,
77                    48, 49, 50, 51, 52, 53, 54, 55,
78                    56, 57, 58, 59, 60, 61, 62, 63},
79         .oobfree = {
80                 {.offset = 2,
81                  .length = 38}}
82 };
83
84 static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd,
85                            int new_state);
86
87 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
88                              struct mtd_oob_ops *ops);
89
90 /*
91  * For devices which display every fart in the system on a seperate LED. Is
92  * compiled away when LED support is disabled.
93  */
94 DEFINE_LED_TRIGGER(nand_led_trigger);
95
96 /**
97  * nand_release_device - [GENERIC] release chip
98  * @mtd:        MTD device structure
99  *
100  * Deselect, release chip lock and wake up anyone waiting on the device
101  */
102 static void nand_release_device(struct mtd_info *mtd)
103 {
104         struct nand_chip *chip = mtd->priv;
105
106         /* De-select the NAND device */
107         chip->select_chip(mtd, -1);
108
109         /* Release the controller and the chip */
110         spin_lock(&chip->controller->lock);
111         chip->controller->active = NULL;
112         chip->state = FL_READY;
113         wake_up(&chip->controller->wq);
114         spin_unlock(&chip->controller->lock);
115 }
116
117 /**
118  * nand_read_byte - [DEFAULT] read one byte from the chip
119  * @mtd:        MTD device structure
120  *
121  * Default read function for 8bit buswith
122  */
123 static uint8_t nand_read_byte(struct mtd_info *mtd)
124 {
125         struct nand_chip *chip = mtd->priv;
126         return readb(chip->IO_ADDR_R);
127 }
128
129 /**
130  * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
131  * @mtd:        MTD device structure
132  *
133  * Default read function for 16bit buswith with
134  * endianess conversion
135  */
136 static uint8_t nand_read_byte16(struct mtd_info *mtd)
137 {
138         struct nand_chip *chip = mtd->priv;
139         return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
140 }
141
142 /**
143  * nand_read_word - [DEFAULT] read one word from the chip
144  * @mtd:        MTD device structure
145  *
146  * Default read function for 16bit buswith without
147  * endianess conversion
148  */
149 static u16 nand_read_word(struct mtd_info *mtd)
150 {
151         struct nand_chip *chip = mtd->priv;
152         return readw(chip->IO_ADDR_R);
153 }
154
155 /**
156  * nand_select_chip - [DEFAULT] control CE line
157  * @mtd:        MTD device structure
158  * @chipnr:     chipnumber to select, -1 for deselect
159  *
160  * Default select function for 1 chip devices.
161  */
162 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
163 {
164         struct nand_chip *chip = mtd->priv;
165
166         switch (chipnr) {
167         case -1:
168                 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
169                 break;
170         case 0:
171                 break;
172
173         default:
174                 BUG();
175         }
176 }
177
178 /**
179  * nand_write_buf - [DEFAULT] write buffer to chip
180  * @mtd:        MTD device structure
181  * @buf:        data buffer
182  * @len:        number of bytes to write
183  *
184  * Default write function for 8bit buswith
185  */
186 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
187 {
188         int i;
189         struct nand_chip *chip = mtd->priv;
190
191         for (i = 0; i < len; i++)
192                 writeb(buf[i], chip->IO_ADDR_W);
193 }
194
195 /**
196  * nand_read_buf - [DEFAULT] read chip data into buffer
197  * @mtd:        MTD device structure
198  * @buf:        buffer to store date
199  * @len:        number of bytes to read
200  *
201  * Default read function for 8bit buswith
202  */
203 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
204 {
205         int i;
206         struct nand_chip *chip = mtd->priv;
207
208         for (i = 0; i < len; i++)
209                 buf[i] = readb(chip->IO_ADDR_R);
210 }
211
212 /**
213  * nand_verify_buf - [DEFAULT] Verify chip data against buffer
214  * @mtd:        MTD device structure
215  * @buf:        buffer containing the data to compare
216  * @len:        number of bytes to compare
217  *
218  * Default verify function for 8bit buswith
219  */
220 static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
221 {
222         int i;
223         struct nand_chip *chip = mtd->priv;
224
225         for (i = 0; i < len; i++)
226                 if (buf[i] != readb(chip->IO_ADDR_R))
227                         return -EFAULT;
228         return 0;
229 }
230
231 /**
232  * nand_write_buf16 - [DEFAULT] write buffer to chip
233  * @mtd:        MTD device structure
234  * @buf:        data buffer
235  * @len:        number of bytes to write
236  *
237  * Default write function for 16bit buswith
238  */
239 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
240 {
241         int i;
242         struct nand_chip *chip = mtd->priv;
243         u16 *p = (u16 *) buf;
244         len >>= 1;
245
246         for (i = 0; i < len; i++)
247                 writew(p[i], chip->IO_ADDR_W);
248
249 }
250
251 /**
252  * nand_read_buf16 - [DEFAULT] read chip data into buffer
253  * @mtd:        MTD device structure
254  * @buf:        buffer to store date
255  * @len:        number of bytes to read
256  *
257  * Default read function for 16bit buswith
258  */
259 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
260 {
261         int i;
262         struct nand_chip *chip = mtd->priv;
263         u16 *p = (u16 *) buf;
264         len >>= 1;
265
266         for (i = 0; i < len; i++)
267                 p[i] = readw(chip->IO_ADDR_R);
268 }
269
270 /**
271  * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
272  * @mtd:        MTD device structure
273  * @buf:        buffer containing the data to compare
274  * @len:        number of bytes to compare
275  *
276  * Default verify function for 16bit buswith
277  */
278 static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
279 {
280         int i;
281         struct nand_chip *chip = mtd->priv;
282         u16 *p = (u16 *) buf;
283         len >>= 1;
284
285         for (i = 0; i < len; i++)
286                 if (p[i] != readw(chip->IO_ADDR_R))
287                         return -EFAULT;
288
289         return 0;
290 }
291
292 /**
293  * nand_block_bad - [DEFAULT] Read bad block marker from the chip
294  * @mtd:        MTD device structure
295  * @ofs:        offset from device start
296  * @getchip:    0, if the chip is already selected
297  *
298  * Check, if the block is bad.
299  */
300 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
301 {
302         int page, chipnr, res = 0;
303         struct nand_chip *chip = mtd->priv;
304         u16 bad;
305
306         if (getchip) {
307                 page = (int)(ofs >> chip->page_shift);
308                 chipnr = (int)(ofs >> chip->chip_shift);
309
310                 nand_get_device(chip, mtd, FL_READING);
311
312                 /* Select the NAND device */
313                 chip->select_chip(mtd, chipnr);
314         } else
315                 page = (int)ofs;
316
317         if (chip->options & NAND_BUSWIDTH_16) {
318                 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos & 0xFE,
319                               page & chip->pagemask);
320                 bad = cpu_to_le16(chip->read_word(mtd));
321                 if (chip->badblockpos & 0x1)
322                         bad >>= 8;
323                 if ((bad & 0xFF) != 0xff)
324                         res = 1;
325         } else {
326                 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
327                               page & chip->pagemask);
328                 if (chip->read_byte(mtd) != 0xff)
329                         res = 1;
330         }
331
332         if (getchip)
333                 nand_release_device(mtd);
334
335         return res;
336 }
337
338 /**
339  * nand_default_block_markbad - [DEFAULT] mark a block bad
340  * @mtd:        MTD device structure
341  * @ofs:        offset from device start
342  *
343  * This is the default implementation, which can be overridden by
344  * a hardware specific driver.
345 */
346 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
347 {
348         struct nand_chip *chip = mtd->priv;
349         uint8_t buf[2] = { 0, 0 };
350         int block, ret;
351
352         /* Get block number */
353         block = ((int)ofs) >> chip->bbt_erase_shift;
354         if (chip->bbt)
355                 chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
356
357         /* Do we have a flash based bad block table ? */
358         if (chip->options & NAND_USE_FLASH_BBT)
359                 ret = nand_update_bbt(mtd, ofs);
360         else {
361                 /* We write two bytes, so we dont have to mess with 16 bit
362                  * access
363                  */
364                 ofs += mtd->oobsize;
365                 chip->ops.len = 2;
366                 chip->ops.datbuf = NULL;
367                 chip->ops.oobbuf = buf;
368                 chip->ops.ooboffs = chip->badblockpos & ~0x01;
369
370                 ret = nand_do_write_oob(mtd, ofs, &chip->ops);
371         }
372         if (!ret)
373                 mtd->ecc_stats.badblocks++;
374         return ret;
375 }
376
377 /**
378  * nand_check_wp - [GENERIC] check if the chip is write protected
379  * @mtd:        MTD device structure
380  * Check, if the device is write protected
381  *
382  * The function expects, that the device is already selected
383  */
384 static int nand_check_wp(struct mtd_info *mtd)
385 {
386         struct nand_chip *chip = mtd->priv;
387         /* Check the WP bit */
388         chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
389         return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
390 }
391
392 /**
393  * nand_block_checkbad - [GENERIC] Check if a block is marked bad
394  * @mtd:        MTD device structure
395  * @ofs:        offset from device start
396  * @getchip:    0, if the chip is already selected
397  * @allowbbt:   1, if its allowed to access the bbt area
398  *
399  * Check, if the block is bad. Either by reading the bad block table or
400  * calling of the scan function.
401  */
402 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
403                                int allowbbt)
404 {
405         struct nand_chip *chip = mtd->priv;
406
407         if (!chip->bbt)
408                 return chip->block_bad(mtd, ofs, getchip);
409
410         /* Return info from the table */
411         return nand_isbad_bbt(mtd, ofs, allowbbt);
412 }
413
414 /*
415  * Wait for the ready pin, after a command
416  * The timeout is catched later.
417  */
418 static void nand_wait_ready(struct mtd_info *mtd)
419 {
420         struct nand_chip *chip = mtd->priv;
421         unsigned long timeo = jiffies + 2;
422
423         led_trigger_event(nand_led_trigger, LED_FULL);
424         /* wait until command is processed or timeout occures */
425         do {
426                 if (chip->dev_ready(mtd))
427                         break;
428                 touch_softlockup_watchdog();
429         } while (time_before(jiffies, timeo));
430         led_trigger_event(nand_led_trigger, LED_OFF);
431 }
432
433 /**
434  * nand_command - [DEFAULT] Send command to NAND device
435  * @mtd:        MTD device structure
436  * @command:    the command to be sent
437  * @column:     the column address for this command, -1 if none
438  * @page_addr:  the page address for this command, -1 if none
439  *
440  * Send command to NAND device. This function is used for small page
441  * devices (256/512 Bytes per page)
442  */
443 static void nand_command(struct mtd_info *mtd, unsigned int command,
444                          int column, int page_addr)
445 {
446         register struct nand_chip *chip = mtd->priv;
447         int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
448
449         /*
450          * Write out the command to the device.
451          */
452         if (command == NAND_CMD_SEQIN) {
453                 int readcmd;
454
455                 if (column >= mtd->writesize) {
456                         /* OOB area */
457                         column -= mtd->writesize;
458                         readcmd = NAND_CMD_READOOB;
459                 } else if (column < 256) {
460                         /* First 256 bytes --> READ0 */
461                         readcmd = NAND_CMD_READ0;
462                 } else {
463                         column -= 256;
464                         readcmd = NAND_CMD_READ1;
465                 }
466                 chip->cmd_ctrl(mtd, readcmd, ctrl);
467                 ctrl &= ~NAND_CTRL_CHANGE;
468         }
469         chip->cmd_ctrl(mtd, command, ctrl);
470
471         /*
472          * Address cycle, when necessary
473          */
474         ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
475         /* Serially input address */
476         if (column != -1) {
477                 /* Adjust columns for 16 bit buswidth */
478                 if (chip->options & NAND_BUSWIDTH_16)
479                         column >>= 1;
480                 chip->cmd_ctrl(mtd, column, ctrl);
481                 ctrl &= ~NAND_CTRL_CHANGE;
482         }
483         if (page_addr != -1) {
484                 chip->cmd_ctrl(mtd, page_addr, ctrl);
485                 ctrl &= ~NAND_CTRL_CHANGE;
486                 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
487                 /* One more address cycle for devices > 32MiB */
488                 if (chip->chipsize > (32 << 20))
489                         chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
490         }
491         chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
492
493         /*
494          * program and erase have their own busy handlers
495          * status and sequential in needs no delay
496          */
497         switch (command) {
498
499         case NAND_CMD_PAGEPROG:
500         case NAND_CMD_ERASE1:
501         case NAND_CMD_ERASE2:
502         case NAND_CMD_SEQIN:
503         case NAND_CMD_STATUS:
504                 return;
505
506         case NAND_CMD_RESET:
507                 if (chip->dev_ready)
508                         break;
509                 udelay(chip->chip_delay);
510                 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
511                                NAND_CTRL_CLE | NAND_CTRL_CHANGE);
512                 chip->cmd_ctrl(mtd,
513                                NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
514                 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ;
515                 return;
516
517                 /* This applies to read commands */
518         default:
519                 /*
520                  * If we don't have access to the busy pin, we apply the given
521                  * command delay
522                  */
523                 if (!chip->dev_ready) {
524                         udelay(chip->chip_delay);
525                         return;
526                 }
527         }
528         /* Apply this short delay always to ensure that we do wait tWB in
529          * any case on any machine. */
530         ndelay(100);
531
532         nand_wait_ready(mtd);
533 }
534
535 /**
536  * nand_command_lp - [DEFAULT] Send command to NAND large page device
537  * @mtd:        MTD device structure
538  * @command:    the command to be sent
539  * @column:     the column address for this command, -1 if none
540  * @page_addr:  the page address for this command, -1 if none
541  *
542  * Send command to NAND device. This is the version for the new large page
543  * devices We dont have the separate regions as we have in the small page
544  * devices.  We must emulate NAND_CMD_READOOB to keep the code compatible.
545  */
546 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
547                             int column, int page_addr)
548 {
549         register struct nand_chip *chip = mtd->priv;
550
551         /* Emulate NAND_CMD_READOOB */
552         if (command == NAND_CMD_READOOB) {
553                 column += mtd->writesize;
554                 command = NAND_CMD_READ0;
555         }
556
557         /* Command latch cycle */
558         chip->cmd_ctrl(mtd, command & 0xff,
559                        NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
560
561         if (column != -1 || page_addr != -1) {
562                 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
563
564                 /* Serially input address */
565                 if (column != -1) {
566                         /* Adjust columns for 16 bit buswidth */
567                         if (chip->options & NAND_BUSWIDTH_16)
568                                 column >>= 1;
569                         chip->cmd_ctrl(mtd, column, ctrl);
570                         ctrl &= ~NAND_CTRL_CHANGE;
571                         chip->cmd_ctrl(mtd, column >> 8, ctrl);
572                 }
573                 if (page_addr != -1) {
574                         chip->cmd_ctrl(mtd, page_addr, ctrl);
575                         chip->cmd_ctrl(mtd, page_addr >> 8,
576                                        NAND_NCE | NAND_ALE);
577                         /* One more address cycle for devices > 128MiB */
578                         if (chip->chipsize > (128 << 20))
579                                 chip->cmd_ctrl(mtd, page_addr >> 16,
580                                                NAND_NCE | NAND_ALE);
581                 }
582         }
583         chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
584
585         /*
586          * program and erase have their own busy handlers
587          * status, sequential in, and deplete1 need no delay
588          */
589         switch (command) {
590
591         case NAND_CMD_CACHEDPROG:
592         case NAND_CMD_PAGEPROG:
593         case NAND_CMD_ERASE1:
594         case NAND_CMD_ERASE2:
595         case NAND_CMD_SEQIN:
596         case NAND_CMD_RNDIN:
597         case NAND_CMD_STATUS:
598         case NAND_CMD_DEPLETE1:
599                 return;
600
601                 /*
602                  * read error status commands require only a short delay
603                  */
604         case NAND_CMD_STATUS_ERROR:
605         case NAND_CMD_STATUS_ERROR0:
606         case NAND_CMD_STATUS_ERROR1:
607         case NAND_CMD_STATUS_ERROR2:
608         case NAND_CMD_STATUS_ERROR3:
609                 udelay(chip->chip_delay);
610                 return;
611
612         case NAND_CMD_RESET:
613                 if (chip->dev_ready)
614                         break;
615                 udelay(chip->chip_delay);
616                 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
617                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
618                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
619                                NAND_NCE | NAND_CTRL_CHANGE);
620                 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ;
621                 return;
622
623         case NAND_CMD_RNDOUT:
624                 /* No ready / busy check necessary */
625                 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
626                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
627                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
628                                NAND_NCE | NAND_CTRL_CHANGE);
629                 return;
630
631         case NAND_CMD_READ0:
632                 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
633                                NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
634                 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
635                                NAND_NCE | NAND_CTRL_CHANGE);
636
637                 /* This applies to read commands */
638         default:
639                 /*
640                  * If we don't have access to the busy pin, we apply the given
641                  * command delay
642                  */
643                 if (!chip->dev_ready) {
644                         udelay(chip->chip_delay);
645                         return;
646                 }
647         }
648
649         /* Apply this short delay always to ensure that we do wait tWB in
650          * any case on any machine. */
651         ndelay(100);
652
653         nand_wait_ready(mtd);
654 }
655
656 /**
657  * nand_get_device - [GENERIC] Get chip for selected access
658  * @chip:       the nand chip descriptor
659  * @mtd:        MTD device structure
660  * @new_state:  the state which is requested
661  *
662  * Get the device and lock it for exclusive access
663  */
664 static int
665 nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state)
666 {
667         spinlock_t *lock = &chip->controller->lock;
668         wait_queue_head_t *wq = &chip->controller->wq;
669         DECLARE_WAITQUEUE(wait, current);
670  retry:
671         spin_lock(lock);
672
673         /* Hardware controller shared among independend devices */
674         /* Hardware controller shared among independend devices */
675         if (!chip->controller->active)
676                 chip->controller->active = chip;
677
678         if (chip->controller->active == chip && chip->state == FL_READY) {
679                 chip->state = new_state;
680                 spin_unlock(lock);
681                 return 0;
682         }
683         if (new_state == FL_PM_SUSPENDED) {
684                 spin_unlock(lock);
685                 return (chip->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
686         }
687         set_current_state(TASK_UNINTERRUPTIBLE);
688         add_wait_queue(wq, &wait);
689         spin_unlock(lock);
690         schedule();
691         remove_wait_queue(wq, &wait);
692         goto retry;
693 }
694
695 /**
696  * nand_wait - [DEFAULT]  wait until the command is done
697  * @mtd:        MTD device structure
698  * @chip:       NAND chip structure
699  *
700  * Wait for command done. This applies to erase and program only
701  * Erase can take up to 400ms and program up to 20ms according to
702  * general NAND and SmartMedia specs
703  */
704 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
705 {
706
707         unsigned long timeo = jiffies;
708         int status, state = chip->state;
709
710         if (state == FL_ERASING)
711                 timeo += (HZ * 400) / 1000;
712         else
713                 timeo += (HZ * 20) / 1000;
714
715         led_trigger_event(nand_led_trigger, LED_FULL);
716
717         /* Apply this short delay always to ensure that we do wait tWB in
718          * any case on any machine. */
719         ndelay(100);
720
721         if ((state == FL_ERASING) && (chip->options & NAND_IS_AND))
722                 chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
723         else
724                 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
725
726         while (time_before(jiffies, timeo)) {
727                 if (chip->dev_ready) {
728                         if (chip->dev_ready(mtd))
729                                 break;
730                 } else {
731                         if (chip->read_byte(mtd) & NAND_STATUS_READY)
732                                 break;
733                 }
734                 cond_resched();
735         }
736         led_trigger_event(nand_led_trigger, LED_OFF);
737
738         status = (int)chip->read_byte(mtd);
739         return status;
740 }
741
742 /**
743  * nand_read_page_raw - [Intern] read raw page data without ecc
744  * @mtd:        mtd info structure
745  * @chip:       nand chip info structure
746  * @buf:        buffer to store read data
747  */
748 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
749                               uint8_t *buf)
750 {
751         chip->read_buf(mtd, buf, mtd->writesize);
752         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
753         return 0;
754 }
755
756 /**
757  * nand_read_page_swecc - {REPLACABLE] software ecc based page read function
758  * @mtd:        mtd info structure
759  * @chip:       nand chip info structure
760  * @buf:        buffer to store read data
761  */
762 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
763                                 uint8_t *buf)
764 {
765         int i, eccsize = chip->ecc.size;
766         int eccbytes = chip->ecc.bytes;
767         int eccsteps = chip->ecc.steps;
768         uint8_t *p = buf;
769         uint8_t *ecc_calc = chip->buffers.ecccalc;
770         uint8_t *ecc_code = chip->buffers.ecccode;
771         int *eccpos = chip->ecc.layout->eccpos;
772
773         nand_read_page_raw(mtd, chip, buf);
774
775         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
776                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
777
778         for (i = 0; i < chip->ecc.total; i++)
779                 ecc_code[i] = chip->oob_poi[eccpos[i]];
780
781         eccsteps = chip->ecc.steps;
782         p = buf;
783
784         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
785                 int stat;
786
787                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
788                 if (stat == -1)
789                         mtd->ecc_stats.failed++;
790                 else
791                         mtd->ecc_stats.corrected += stat;
792         }
793         return 0;
794 }
795
796 /**
797  * nand_read_page_hwecc - {REPLACABLE] hardware ecc based page read function
798  * @mtd:        mtd info structure
799  * @chip:       nand chip info structure
800  * @buf:        buffer to store read data
801  *
802  * Not for syndrome calculating ecc controllers which need a special oob layout
803  */
804 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
805                                 uint8_t *buf)
806 {
807         int i, eccsize = chip->ecc.size;
808         int eccbytes = chip->ecc.bytes;
809         int eccsteps = chip->ecc.steps;
810         uint8_t *p = buf;
811         uint8_t *ecc_calc = chip->buffers.ecccalc;
812         uint8_t *ecc_code = chip->buffers.ecccode;
813         int *eccpos = chip->ecc.layout->eccpos;
814
815         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
816                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
817                 chip->read_buf(mtd, p, eccsize);
818                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
819         }
820         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
821
822         for (i = 0; i < chip->ecc.total; i++)
823                 ecc_code[i] = chip->oob_poi[eccpos[i]];
824
825         eccsteps = chip->ecc.steps;
826         p = buf;
827
828         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
829                 int stat;
830
831                 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
832                 if (stat == -1)
833                         mtd->ecc_stats.failed++;
834                 else
835                         mtd->ecc_stats.corrected += stat;
836         }
837         return 0;
838 }
839
840 /**
841  * nand_read_page_syndrome - {REPLACABLE] hardware ecc syndrom based page read
842  * @mtd:        mtd info structure
843  * @chip:       nand chip info structure
844  * @buf:        buffer to store read data
845  *
846  * The hw generator calculates the error syndrome automatically. Therefor
847  * we need a special oob layout and handling.
848  */
849 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
850                                    uint8_t *buf)
851 {
852         int i, eccsize = chip->ecc.size;
853         int eccbytes = chip->ecc.bytes;
854         int eccsteps = chip->ecc.steps;
855         uint8_t *p = buf;
856         uint8_t *oob = chip->oob_poi;
857
858         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
859                 int stat;
860
861                 chip->ecc.hwctl(mtd, NAND_ECC_READ);
862                 chip->read_buf(mtd, p, eccsize);
863
864                 if (chip->ecc.prepad) {
865                         chip->read_buf(mtd, oob, chip->ecc.prepad);
866                         oob += chip->ecc.prepad;
867                 }
868
869                 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
870                 chip->read_buf(mtd, oob, eccbytes);
871                 stat = chip->ecc.correct(mtd, p, oob, NULL);
872
873                 if (stat == -1)
874                         mtd->ecc_stats.failed++;
875                 else
876                         mtd->ecc_stats.corrected += stat;
877
878                 oob += eccbytes;
879
880                 if (chip->ecc.postpad) {
881                         chip->read_buf(mtd, oob, chip->ecc.postpad);
882                         oob += chip->ecc.postpad;
883                 }
884         }
885
886         /* Calculate remaining oob bytes */
887         i = mtd->oobsize - (oob - chip->oob_poi);
888         if (i)
889                 chip->read_buf(mtd, oob, i);
890
891         return 0;
892 }
893
894 /**
895  * nand_transfer_oob - [Internal] Transfer oob to client buffer
896  * @chip:       nand chip structure
897  * @oob:        oob destination address
898  * @ops:        oob ops structure
899  */
900 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
901                                   struct mtd_oob_ops *ops)
902 {
903         size_t len = ops->ooblen;
904
905         switch(ops->mode) {
906
907         case MTD_OOB_PLACE:
908         case MTD_OOB_RAW:
909                 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
910                 return oob + len;
911
912         case MTD_OOB_AUTO: {
913                 struct nand_oobfree *free = chip->ecc.layout->oobfree;
914                 uint32_t boffs = 0, roffs = ops->ooboffs;
915                 size_t bytes = 0;
916
917                 for(; free->length && len; free++, len -= bytes) {
918                         /* Read request not from offset 0 ? */
919                         if (unlikely(roffs)) {
920                                 if (roffs >= free->length) {
921                                         roffs -= free->length;
922                                         continue;
923                                 }
924                                 boffs = free->offset + roffs;
925                                 bytes = min_t(size_t, len,
926                                               (free->length - roffs));
927                                 roffs = 0;
928                         } else {
929                                 bytes = min_t(size_t, len, free->length);
930                                 boffs = free->offset;
931                         }
932                         memcpy(oob, chip->oob_poi + boffs, bytes);
933                         oob += bytes;
934                 }
935                 return oob;
936         }
937         default:
938                 BUG();
939         }
940         return NULL;
941 }
942
943 /**
944  * nand_do_read_ops - [Internal] Read data with ECC
945  *
946  * @mtd:        MTD device structure
947  * @from:       offset to read from
948  * @ops:        oob ops structure
949  *
950  * Internal function. Called with chip held.
951  */
952 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
953                             struct mtd_oob_ops *ops)
954 {
955         int chipnr, page, realpage, col, bytes, aligned;
956         struct nand_chip *chip = mtd->priv;
957         struct mtd_ecc_stats stats;
958         int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
959         int sndcmd = 1;
960         int ret = 0;
961         uint32_t readlen = ops->len;
962         uint8_t *bufpoi, *oob, *buf;
963
964         stats = mtd->ecc_stats;
965
966         chipnr = (int)(from >> chip->chip_shift);
967         chip->select_chip(mtd, chipnr);
968
969         realpage = (int)(from >> chip->page_shift);
970         page = realpage & chip->pagemask;
971
972         col = (int)(from & (mtd->writesize - 1));
973         chip->oob_poi = chip->buffers.oobrbuf;
974
975         buf = ops->datbuf;
976         oob = ops->oobbuf;
977
978         while(1) {
979                 bytes = min(mtd->writesize - col, readlen);
980                 aligned = (bytes == mtd->writesize);
981
982                 /* Is the current page in the buffer ? */
983                 if (realpage != chip->pagebuf || oob) {
984                         bufpoi = aligned ? buf : chip->buffers.databuf;
985
986                         if (likely(sndcmd)) {
987                                 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
988                                 sndcmd = 0;
989                         }
990
991                         /* Now read the page into the buffer */
992                         ret = chip->ecc.read_page(mtd, chip, bufpoi);
993                         if (ret < 0)
994                                 break;
995
996                         /* Transfer not aligned data */
997                         if (!aligned) {
998                                 chip->pagebuf = realpage;
999                                 memcpy(buf, chip->buffers.databuf + col, bytes);
1000                         }
1001
1002                         buf += bytes;
1003
1004                         if (unlikely(oob)) {
1005                                 /* Raw mode does data:oob:data:oob */
1006                                 if (ops->mode != MTD_OOB_RAW)
1007                                         oob = nand_transfer_oob(chip, oob, ops);
1008                                 else
1009                                         buf = nand_transfer_oob(chip, buf, ops);
1010                         }
1011
1012                         if (!(chip->options & NAND_NO_READRDY)) {
1013                                 /*
1014                                  * Apply delay or wait for ready/busy pin. Do
1015                                  * this before the AUTOINCR check, so no
1016                                  * problems arise if a chip which does auto
1017                                  * increment is marked as NOAUTOINCR by the
1018                                  * board driver.
1019                                  */
1020                                 if (!chip->dev_ready)
1021                                         udelay(chip->chip_delay);
1022                                 else
1023                                         nand_wait_ready(mtd);
1024                         }
1025                 } else {
1026                         memcpy(buf, chip->buffers.databuf + col, bytes);
1027                         buf += bytes;
1028                 }
1029
1030                 readlen -= bytes;
1031
1032                 if (!readlen)
1033                         break;
1034
1035                 /* For subsequent reads align to page boundary. */
1036                 col = 0;
1037                 /* Increment page address */
1038                 realpage++;
1039
1040                 page = realpage & chip->pagemask;
1041                 /* Check, if we cross a chip boundary */
1042                 if (!page) {
1043                         chipnr++;
1044                         chip->select_chip(mtd, -1);
1045                         chip->select_chip(mtd, chipnr);
1046                 }
1047
1048                 /* Check, if the chip supports auto page increment
1049                  * or if we have hit a block boundary.
1050                  */
1051                 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1052                         sndcmd = 1;
1053         }
1054
1055         ops->retlen = ops->len - (size_t) readlen;
1056
1057         if (ret)
1058                 return ret;
1059
1060         if (mtd->ecc_stats.failed - stats.failed)
1061                 return -EBADMSG;
1062
1063         return  mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1064 }
1065
1066 /**
1067  * nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc
1068  * @mtd:        MTD device structure
1069  * @from:       offset to read from
1070  * @len:        number of bytes to read
1071  * @retlen:     pointer to variable to store the number of read bytes
1072  * @buf:        the databuffer to put data
1073  *
1074  * Get hold of the chip and call nand_do_read
1075  */
1076 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1077                      size_t *retlen, uint8_t *buf)
1078 {
1079         struct nand_chip *chip = mtd->priv;
1080         int ret;
1081
1082         /* Do not allow reads past end of device */
1083         if ((from + len) > mtd->size)
1084                 return -EINVAL;
1085         if (!len)
1086                 return 0;
1087
1088         nand_get_device(chip, mtd, FL_READING);
1089
1090         chip->ops.len = len;
1091         chip->ops.datbuf = buf;
1092         chip->ops.oobbuf = NULL;
1093
1094         ret = nand_do_read_ops(mtd, from, &chip->ops);
1095
1096         nand_release_device(mtd);
1097
1098         *retlen = chip->ops.retlen;
1099         return ret;
1100 }
1101
1102 /**
1103  * nand_read_oob_std - [REPLACABLE] the most common OOB data read function
1104  * @mtd:        mtd info structure
1105  * @chip:       nand chip info structure
1106  * @page:       page number to read
1107  * @sndcmd:     flag whether to issue read command or not
1108  */
1109 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1110                              int page, int sndcmd)
1111 {
1112         if (sndcmd) {
1113                 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1114                 sndcmd = 0;
1115         }
1116         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1117         return sndcmd;
1118 }
1119
1120 /**
1121  * nand_read_oob_syndrome - [REPLACABLE] OOB data read function for HW ECC
1122  *                          with syndromes
1123  * @mtd:        mtd info structure
1124  * @chip:       nand chip info structure
1125  * @page:       page number to read
1126  * @sndcmd:     flag whether to issue read command or not
1127  */
1128 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1129                                   int page, int sndcmd)
1130 {
1131         uint8_t *buf = chip->oob_poi;
1132         int length = mtd->oobsize;
1133         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1134         int eccsize = chip->ecc.size;
1135         uint8_t *bufpoi = buf;
1136         int i, toread, sndrnd = 0, pos;
1137
1138         chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1139         for (i = 0; i < chip->ecc.steps; i++) {
1140                 if (sndrnd) {
1141                         pos = eccsize + i * (eccsize + chunk);
1142                         if (mtd->writesize > 512)
1143                                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1144                         else
1145                                 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1146                 } else
1147                         sndrnd = 1;
1148                 toread = min_t(int, length, chunk);
1149                 chip->read_buf(mtd, bufpoi, toread);
1150                 bufpoi += toread;
1151                 length -= toread;
1152         }
1153         if (length > 0)
1154                 chip->read_buf(mtd, bufpoi, length);
1155
1156         return 1;
1157 }
1158
1159 /**
1160  * nand_write_oob_std - [REPLACABLE] the most common OOB data write function
1161  * @mtd:        mtd info structure
1162  * @chip:       nand chip info structure
1163  * @page:       page number to write
1164  */
1165 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1166                               int page)
1167 {
1168         int status = 0;
1169         const uint8_t *buf = chip->oob_poi;
1170         int length = mtd->oobsize;
1171
1172         chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1173         chip->write_buf(mtd, buf, length);
1174         /* Send command to program the OOB data */
1175         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1176
1177         status = chip->waitfunc(mtd, chip);
1178
1179         return status & NAND_STATUS_FAIL ? -EIO : 0;
1180 }
1181
1182 /**
1183  * nand_write_oob_syndrome - [REPLACABLE] OOB data write function for HW ECC
1184  *                           with syndrome - only for large page flash !
1185  * @mtd:        mtd info structure
1186  * @chip:       nand chip info structure
1187  * @page:       page number to write
1188  */
1189 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1190                                    struct nand_chip *chip, int page)
1191 {
1192         int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1193         int eccsize = chip->ecc.size, length = mtd->oobsize;
1194         int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1195         const uint8_t *bufpoi = chip->oob_poi;
1196
1197         /*
1198          * data-ecc-data-ecc ... ecc-oob
1199          * or
1200          * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1201          */
1202         if (!chip->ecc.prepad && !chip->ecc.postpad) {
1203                 pos = steps * (eccsize + chunk);
1204                 steps = 0;
1205         } else
1206                 pos = eccsize + chunk;
1207
1208         chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1209         for (i = 0; i < steps; i++) {
1210                 if (sndcmd) {
1211                         if (mtd->writesize <= 512) {
1212                                 uint32_t fill = 0xFFFFFFFF;
1213
1214                                 len = eccsize;
1215                                 while (len > 0) {
1216                                         int num = min_t(int, len, 4);
1217                                         chip->write_buf(mtd, (uint8_t *)&fill,
1218                                                         num);
1219                                         len -= num;
1220                                 }
1221                         } else {
1222                                 pos = eccsize + i * (eccsize + chunk);
1223                                 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1224                         }
1225                 } else
1226                         sndcmd = 1;
1227                 len = min_t(int, length, chunk);
1228                 chip->write_buf(mtd, bufpoi, len);
1229                 bufpoi += len;
1230                 length -= len;
1231         }
1232         if (length > 0)
1233                 chip->write_buf(mtd, bufpoi, length);
1234
1235         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1236         status = chip->waitfunc(mtd, chip);
1237
1238         return status & NAND_STATUS_FAIL ? -EIO : 0;
1239 }
1240
1241 /**
1242  * nand_do_read_oob - [Intern] NAND read out-of-band
1243  * @mtd:        MTD device structure
1244  * @from:       offset to read from
1245  * @ops:        oob operations description structure
1246  *
1247  * NAND read out-of-band data from the spare area
1248  */
1249 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1250                             struct mtd_oob_ops *ops)
1251 {
1252         int page, realpage, chipnr, sndcmd = 1;
1253         struct nand_chip *chip = mtd->priv;
1254         int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1255         int readlen = ops->len;
1256         uint8_t *buf = ops->oobbuf;
1257
1258         DEBUG(MTD_DEBUG_LEVEL3, "nand_read_oob: from = 0x%08Lx, len = %i\n",
1259               (unsigned long long)from, readlen);
1260
1261         chipnr = (int)(from >> chip->chip_shift);
1262         chip->select_chip(mtd, chipnr);
1263
1264         /* Shift to get page */
1265         realpage = (int)(from >> chip->page_shift);
1266         page = realpage & chip->pagemask;
1267
1268         chip->oob_poi = chip->buffers.oobrbuf;
1269
1270         while(1) {
1271                 sndcmd = chip->ecc.read_oob(mtd, chip, page, sndcmd);
1272                 buf = nand_transfer_oob(chip, buf, ops);
1273
1274                 if (!(chip->options & NAND_NO_READRDY)) {
1275                         /*
1276                          * Apply delay or wait for ready/busy pin. Do this
1277                          * before the AUTOINCR check, so no problems arise if a
1278                          * chip which does auto increment is marked as
1279                          * NOAUTOINCR by the board driver.
1280                          */
1281                         if (!chip->dev_ready)
1282                                 udelay(chip->chip_delay);
1283                         else
1284                                 nand_wait_ready(mtd);
1285                 }
1286
1287                 readlen -= ops->ooblen;
1288                 if (!readlen)
1289                         break;
1290
1291                 /* Increment page address */
1292                 realpage++;
1293
1294                 page = realpage & chip->pagemask;
1295                 /* Check, if we cross a chip boundary */
1296                 if (!page) {
1297                         chipnr++;
1298                         chip->select_chip(mtd, -1);
1299                         chip->select_chip(mtd, chipnr);
1300                 }
1301
1302                 /* Check, if the chip supports auto page increment
1303                  * or if we have hit a block boundary.
1304                  */
1305                 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1306                         sndcmd = 1;
1307         }
1308
1309         ops->retlen = ops->len;
1310         return 0;
1311 }
1312
1313 /**
1314  * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1315  * @mtd:        MTD device structure
1316  * @from:       offset to read from
1317  * @ops:        oob operation description structure
1318  *
1319  * NAND read data and/or out-of-band data
1320  */
1321 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1322                          struct mtd_oob_ops *ops)
1323 {
1324         int (*read_page)(struct mtd_info *mtd, struct nand_chip *chip,
1325                          uint8_t *buf) = NULL;
1326         struct nand_chip *chip = mtd->priv;
1327         int ret = -ENOTSUPP;
1328
1329         ops->retlen = 0;
1330
1331         /* Do not allow reads past end of device */
1332         if ((from + ops->len) > mtd->size) {
1333                 DEBUG(MTD_DEBUG_LEVEL0, "nand_read_oob: "
1334                       "Attempt read beyond end of device\n");
1335                 return -EINVAL;
1336         }
1337
1338         nand_get_device(chip, mtd, FL_READING);
1339
1340         switch(ops->mode) {
1341         case MTD_OOB_PLACE:
1342         case MTD_OOB_AUTO:
1343                 break;
1344
1345         case MTD_OOB_RAW:
1346                 /* Replace the read_page algorithm temporary */
1347                 read_page = chip->ecc.read_page;
1348                 chip->ecc.read_page = nand_read_page_raw;
1349                 break;
1350
1351         default:
1352                 goto out;
1353         }
1354
1355         if (!ops->datbuf)
1356                 ret = nand_do_read_oob(mtd, from, ops);
1357         else
1358                 ret = nand_do_read_ops(mtd, from, ops);
1359
1360         if (unlikely(ops->mode == MTD_OOB_RAW))
1361                 chip->ecc.read_page = read_page;
1362  out:
1363         nand_release_device(mtd);
1364         return ret;
1365 }
1366
1367
1368 /**
1369  * nand_write_page_raw - [Intern] raw page write function
1370  * @mtd:        mtd info structure
1371  * @chip:       nand chip info structure
1372  * @buf:        data buffer
1373  */
1374 static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1375                                 const uint8_t *buf)
1376 {
1377         chip->write_buf(mtd, buf, mtd->writesize);
1378         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1379 }
1380
1381 /**
1382  * nand_write_page_swecc - {REPLACABLE] software ecc based page write function
1383  * @mtd:        mtd info structure
1384  * @chip:       nand chip info structure
1385  * @buf:        data buffer
1386  */
1387 static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1388                                   const uint8_t *buf)
1389 {
1390         int i, eccsize = chip->ecc.size;
1391         int eccbytes = chip->ecc.bytes;
1392         int eccsteps = chip->ecc.steps;
1393         uint8_t *ecc_calc = chip->buffers.ecccalc;
1394         const uint8_t *p = buf;
1395         int *eccpos = chip->ecc.layout->eccpos;
1396
1397         /* Software ecc calculation */
1398         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1399                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1400
1401         for (i = 0; i < chip->ecc.total; i++)
1402                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1403
1404         nand_write_page_raw(mtd, chip, buf);
1405 }
1406
1407 /**
1408  * nand_write_page_hwecc - {REPLACABLE] hardware ecc based page write function
1409  * @mtd:        mtd info structure
1410  * @chip:       nand chip info structure
1411  * @buf:        data buffer
1412  */
1413 static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1414                                   const uint8_t *buf)
1415 {
1416         int i, eccsize = chip->ecc.size;
1417         int eccbytes = chip->ecc.bytes;
1418         int eccsteps = chip->ecc.steps;
1419         uint8_t *ecc_calc = chip->buffers.ecccalc;
1420         const uint8_t *p = buf;
1421         int *eccpos = chip->ecc.layout->eccpos;
1422
1423         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1424                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1425                 chip->write_buf(mtd, p, eccsize);
1426                 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1427         }
1428
1429         for (i = 0; i < chip->ecc.total; i++)
1430                 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1431
1432         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1433 }
1434
1435 /**
1436  * nand_write_page_syndrome - {REPLACABLE] hardware ecc syndrom based page write
1437  * @mtd:        mtd info structure
1438  * @chip:       nand chip info structure
1439  * @buf:        data buffer
1440  *
1441  * The hw generator calculates the error syndrome automatically. Therefor
1442  * we need a special oob layout and handling.
1443  */
1444 static void nand_write_page_syndrome(struct mtd_info *mtd,
1445                                     struct nand_chip *chip, const uint8_t *buf)
1446 {
1447         int i, eccsize = chip->ecc.size;
1448         int eccbytes = chip->ecc.bytes;
1449         int eccsteps = chip->ecc.steps;
1450         const uint8_t *p = buf;
1451         uint8_t *oob = chip->oob_poi;
1452
1453         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1454
1455                 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1456                 chip->write_buf(mtd, p, eccsize);
1457
1458                 if (chip->ecc.prepad) {
1459                         chip->write_buf(mtd, oob, chip->ecc.prepad);
1460                         oob += chip->ecc.prepad;
1461                 }
1462
1463                 chip->ecc.calculate(mtd, p, oob);
1464                 chip->write_buf(mtd, oob, eccbytes);
1465                 oob += eccbytes;
1466
1467                 if (chip->ecc.postpad) {
1468                         chip->write_buf(mtd, oob, chip->ecc.postpad);
1469                         oob += chip->ecc.postpad;
1470                 }
1471         }
1472
1473         /* Calculate remaining oob bytes */
1474         i = mtd->oobsize - (oob - chip->oob_poi);
1475         if (i)
1476                 chip->write_buf(mtd, oob, i);
1477 }
1478
1479 /**
1480  * nand_write_page - [INTERNAL] write one page
1481  * @mtd:        MTD device structure
1482  * @chip:       NAND chip descriptor
1483  * @buf:        the data to write
1484  * @page:       page number to write
1485  * @cached:     cached programming
1486  */
1487 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1488                            const uint8_t *buf, int page, int cached)
1489 {
1490         int status;
1491
1492         chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
1493
1494         chip->ecc.write_page(mtd, chip, buf);
1495
1496         /*
1497          * Cached progamming disabled for now, Not sure if its worth the
1498          * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
1499          */
1500         cached = 0;
1501
1502         if (!cached || !(chip->options & NAND_CACHEPRG)) {
1503
1504                 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1505                 status = chip->waitfunc(mtd, chip);
1506                 /*
1507                  * See if operation failed and additional status checks are
1508                  * available
1509                  */
1510                 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
1511                         status = chip->errstat(mtd, chip, FL_WRITING, status,
1512                                                page);
1513
1514                 if (status & NAND_STATUS_FAIL)
1515                         return -EIO;
1516         } else {
1517                 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
1518                 status = chip->waitfunc(mtd, chip);
1519         }
1520
1521 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
1522         /* Send command to read back the data */
1523         chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1524
1525         if (chip->verify_buf(mtd, buf, mtd->writesize))
1526                 return -EIO;
1527 #endif
1528         return 0;
1529 }
1530
1531 /**
1532  * nand_fill_oob - [Internal] Transfer client buffer to oob
1533  * @chip:       nand chip structure
1534  * @oob:        oob data buffer
1535  * @ops:        oob ops structure
1536  */
1537 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob,
1538                                   struct mtd_oob_ops *ops)
1539 {
1540         size_t len = ops->ooblen;
1541
1542         switch(ops->mode) {
1543
1544         case MTD_OOB_PLACE:
1545         case MTD_OOB_RAW:
1546                 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
1547                 return oob + len;
1548
1549         case MTD_OOB_AUTO: {
1550                 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1551                 uint32_t boffs = 0, woffs = ops->ooboffs;
1552                 size_t bytes = 0;
1553
1554                 for(; free->length && len; free++, len -= bytes) {
1555                         /* Write request not from offset 0 ? */
1556                         if (unlikely(woffs)) {
1557                                 if (woffs >= free->length) {
1558                                         woffs -= free->length;
1559                                         continue;
1560                                 }
1561                                 boffs = free->offset + woffs;
1562                                 bytes = min_t(size_t, len,
1563                                               (free->length - woffs));
1564                                 woffs = 0;
1565                         } else {
1566                                 bytes = min_t(size_t, len, free->length);
1567                                 boffs = free->offset;
1568                         }
1569                         memcpy(chip->oob_poi + woffs, oob, bytes);
1570                         oob += bytes;
1571                 }
1572                 return oob;
1573         }
1574         default:
1575                 BUG();
1576         }
1577         return NULL;
1578 }
1579
1580 #define NOTALIGNED(x) (x & (mtd->writesize-1)) != 0
1581
1582 /**
1583  * nand_do_write_ops - [Internal] NAND write with ECC
1584  * @mtd:        MTD device structure
1585  * @to:         offset to write to
1586  * @ops:        oob operations description structure
1587  *
1588  * NAND write with ECC
1589  */
1590 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
1591                              struct mtd_oob_ops *ops)
1592 {
1593         int chipnr, realpage, page, blockmask;
1594         struct nand_chip *chip = mtd->priv;
1595         uint32_t writelen = ops->len;
1596         uint8_t *oob = ops->oobbuf;
1597         uint8_t *buf = ops->datbuf;
1598         int bytes = mtd->writesize;
1599         int ret;
1600
1601         ops->retlen = 0;
1602
1603         /* reject writes, which are not page aligned */
1604         if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
1605                 printk(KERN_NOTICE "nand_write: "
1606                        "Attempt to write not page aligned data\n");
1607                 return -EINVAL;
1608         }
1609
1610         if (!writelen)
1611                 return 0;
1612
1613         chipnr = (int)(to >> chip->chip_shift);
1614         chip->select_chip(mtd, chipnr);
1615
1616         /* Check, if it is write protected */
1617         if (nand_check_wp(mtd))
1618                 return -EIO;
1619
1620         realpage = (int)(to >> chip->page_shift);
1621         page = realpage & chip->pagemask;
1622         blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1623
1624         /* Invalidate the page cache, when we write to the cached page */
1625         if (to <= (chip->pagebuf << chip->page_shift) &&
1626             (chip->pagebuf << chip->page_shift) < (to + ops->len))
1627                 chip->pagebuf = -1;
1628
1629         chip->oob_poi = chip->buffers.oobwbuf;
1630
1631         while(1) {
1632                 int cached = writelen > bytes && page != blockmask;
1633
1634                 if (unlikely(oob))
1635                         oob = nand_fill_oob(chip, oob, ops);
1636
1637                 ret = nand_write_page(mtd, chip, buf, page, cached);
1638                 if (ret)
1639                         break;
1640
1641                 writelen -= bytes;
1642                 if (!writelen)
1643                         break;
1644
1645                 buf += bytes;
1646                 realpage++;
1647
1648                 page = realpage & chip->pagemask;
1649                 /* Check, if we cross a chip boundary */
1650                 if (!page) {
1651                         chipnr++;
1652                         chip->select_chip(mtd, -1);
1653                         chip->select_chip(mtd, chipnr);
1654                 }
1655         }
1656
1657         if (unlikely(oob))
1658                 memset(chip->oob_poi, 0xff, mtd->oobsize);
1659
1660         ops->retlen = ops->len - writelen;
1661         return ret;
1662 }
1663
1664 /**
1665  * nand_write - [MTD Interface] NAND write with ECC
1666  * @mtd:        MTD device structure
1667  * @to:         offset to write to
1668  * @len:        number of bytes to write
1669  * @retlen:     pointer to variable to store the number of written bytes
1670  * @buf:        the data to write
1671  *
1672  * NAND write with ECC
1673  */
1674 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
1675                           size_t *retlen, const uint8_t *buf)
1676 {
1677         struct nand_chip *chip = mtd->priv;
1678         int ret;
1679
1680         /* Do not allow reads past end of device */
1681         if ((to + len) > mtd->size)
1682                 return -EINVAL;
1683         if (!len)
1684                 return 0;
1685
1686         nand_get_device(chip, mtd, FL_WRITING);
1687
1688         chip->ops.len = len;
1689         chip->ops.datbuf = (uint8_t *)buf;
1690         chip->ops.oobbuf = NULL;
1691
1692         ret = nand_do_write_ops(mtd, to, &chip->ops);
1693
1694         nand_release_device(mtd);
1695
1696         *retlen = chip->ops.retlen;
1697         return ret;
1698 }
1699
1700 /**
1701  * nand_do_write_oob - [MTD Interface] NAND write out-of-band
1702  * @mtd:        MTD device structure
1703  * @to:         offset to write to
1704  * @ops:        oob operation description structure
1705  *
1706  * NAND write out-of-band
1707  */
1708 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
1709                              struct mtd_oob_ops *ops)
1710 {
1711         int chipnr, page, status;
1712         struct nand_chip *chip = mtd->priv;
1713
1714         DEBUG(MTD_DEBUG_LEVEL3, "nand_write_oob: to = 0x%08x, len = %i\n",
1715               (unsigned int)to, (int)ops->len);
1716
1717         /* Do not allow write past end of page */
1718         if ((ops->ooboffs + ops->len) > mtd->oobsize) {
1719                 DEBUG(MTD_DEBUG_LEVEL0, "nand_write_oob: "
1720                       "Attempt to write past end of page\n");
1721                 return -EINVAL;
1722         }
1723
1724         chipnr = (int)(to >> chip->chip_shift);
1725         chip->select_chip(mtd, chipnr);
1726
1727         /* Shift to get page */
1728         page = (int)(to >> chip->page_shift);
1729
1730         /*
1731          * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
1732          * of my DiskOnChip 2000 test units) will clear the whole data page too
1733          * if we don't do this. I have no clue why, but I seem to have 'fixed'
1734          * it in the doc2000 driver in August 1999.  dwmw2.
1735          */
1736         chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1737
1738         /* Check, if it is write protected */
1739         if (nand_check_wp(mtd))
1740                 return -EROFS;
1741
1742         /* Invalidate the page cache, if we write to the cached page */
1743         if (page == chip->pagebuf)
1744                 chip->pagebuf = -1;
1745
1746         chip->oob_poi = chip->buffers.oobwbuf;
1747         memset(chip->oob_poi, 0xff, mtd->oobsize);
1748         nand_fill_oob(chip, ops->oobbuf, ops);
1749         status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
1750         memset(chip->oob_poi, 0xff, mtd->oobsize);
1751
1752         if (status)
1753                 return status;
1754
1755         ops->retlen = ops->len;
1756
1757         return 0;
1758 }
1759
1760 /**
1761  * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
1762  * @mtd:        MTD device structure
1763  * @to:         offset to write to
1764  * @ops:        oob operation description structure
1765  */
1766 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
1767                           struct mtd_oob_ops *ops)
1768 {
1769         void (*write_page)(struct mtd_info *mtd, struct nand_chip *chip,
1770                           const uint8_t *buf) = NULL;
1771         struct nand_chip *chip = mtd->priv;
1772         int ret = -ENOTSUPP;
1773
1774         ops->retlen = 0;
1775
1776         /* Do not allow writes past end of device */
1777         if ((to + ops->len) > mtd->size) {
1778                 DEBUG(MTD_DEBUG_LEVEL0, "nand_read_oob: "
1779                       "Attempt read beyond end of device\n");
1780                 return -EINVAL;
1781         }
1782
1783         nand_get_device(chip, mtd, FL_WRITING);
1784
1785         switch(ops->mode) {
1786         case MTD_OOB_PLACE:
1787         case MTD_OOB_AUTO:
1788                 break;
1789
1790         case MTD_OOB_RAW:
1791                 /* Replace the write_page algorithm temporary */
1792                 write_page = chip->ecc.write_page;
1793                 chip->ecc.write_page = nand_write_page_raw;
1794                 break;
1795
1796         default:
1797                 goto out;
1798         }
1799
1800         if (!ops->datbuf)
1801                 ret = nand_do_write_oob(mtd, to, ops);
1802         else
1803                 ret = nand_do_write_ops(mtd, to, ops);
1804
1805         if (unlikely(ops->mode == MTD_OOB_RAW))
1806                 chip->ecc.write_page = write_page;
1807  out:
1808         nand_release_device(mtd);
1809         return ret;
1810 }
1811
1812 /**
1813  * single_erease_cmd - [GENERIC] NAND standard block erase command function
1814  * @mtd:        MTD device structure
1815  * @page:       the page address of the block which will be erased
1816  *
1817  * Standard erase command for NAND chips
1818  */
1819 static void single_erase_cmd(struct mtd_info *mtd, int page)
1820 {
1821         struct nand_chip *chip = mtd->priv;
1822         /* Send commands to erase a block */
1823         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
1824         chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1825 }
1826
1827 /**
1828  * multi_erease_cmd - [GENERIC] AND specific block erase command function
1829  * @mtd:        MTD device structure
1830  * @page:       the page address of the block which will be erased
1831  *
1832  * AND multi block erase command function
1833  * Erase 4 consecutive blocks
1834  */
1835 static void multi_erase_cmd(struct mtd_info *mtd, int page)
1836 {
1837         struct nand_chip *chip = mtd->priv;
1838         /* Send commands to erase a block */
1839         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
1840         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
1841         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
1842         chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
1843         chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1844 }
1845
1846 /**
1847  * nand_erase - [MTD Interface] erase block(s)
1848  * @mtd:        MTD device structure
1849  * @instr:      erase instruction
1850  *
1851  * Erase one ore more blocks
1852  */
1853 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
1854 {
1855         return nand_erase_nand(mtd, instr, 0);
1856 }
1857
1858 #define BBT_PAGE_MASK   0xffffff3f
1859 /**
1860  * nand_erase_nand - [Internal] erase block(s)
1861  * @mtd:        MTD device structure
1862  * @instr:      erase instruction
1863  * @allowbbt:   allow erasing the bbt area
1864  *
1865  * Erase one ore more blocks
1866  */
1867 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
1868                     int allowbbt)
1869 {
1870         int page, len, status, pages_per_block, ret, chipnr;
1871         struct nand_chip *chip = mtd->priv;
1872         int rewrite_bbt[NAND_MAX_CHIPS]={0};
1873         unsigned int bbt_masked_page = 0xffffffff;
1874
1875         DEBUG(MTD_DEBUG_LEVEL3, "nand_erase: start = 0x%08x, len = %i\n",
1876               (unsigned int)instr->addr, (unsigned int)instr->len);
1877
1878         /* Start address must align on block boundary */
1879         if (instr->addr & ((1 << chip->phys_erase_shift) - 1)) {
1880                 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: Unaligned address\n");
1881                 return -EINVAL;
1882         }
1883
1884         /* Length must align on block boundary */
1885         if (instr->len & ((1 << chip->phys_erase_shift) - 1)) {
1886                 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: "
1887                       "Length not block aligned\n");
1888                 return -EINVAL;
1889         }
1890
1891         /* Do not allow erase past end of device */
1892         if ((instr->len + instr->addr) > mtd->size) {
1893                 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: "
1894                       "Erase past end of device\n");
1895                 return -EINVAL;
1896         }
1897
1898         instr->fail_addr = 0xffffffff;
1899
1900         /* Grab the lock and see if the device is available */
1901         nand_get_device(chip, mtd, FL_ERASING);
1902
1903         /* Shift to get first page */
1904         page = (int)(instr->addr >> chip->page_shift);
1905         chipnr = (int)(instr->addr >> chip->chip_shift);
1906
1907         /* Calculate pages in each block */
1908         pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
1909
1910         /* Select the NAND device */
1911         chip->select_chip(mtd, chipnr);
1912
1913         /* Check, if it is write protected */
1914         if (nand_check_wp(mtd)) {
1915                 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: "
1916                       "Device is write protected!!!\n");
1917                 instr->state = MTD_ERASE_FAILED;
1918                 goto erase_exit;
1919         }
1920
1921         /*
1922          * If BBT requires refresh, set the BBT page mask to see if the BBT
1923          * should be rewritten. Otherwise the mask is set to 0xffffffff which
1924          * can not be matched. This is also done when the bbt is actually
1925          * erased to avoid recusrsive updates
1926          */
1927         if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
1928                 bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
1929
1930         /* Loop through the pages */
1931         len = instr->len;
1932
1933         instr->state = MTD_ERASING;
1934
1935         while (len) {
1936                 /*
1937                  * heck if we have a bad block, we do not erase bad blocks !
1938                  */
1939                 if (nand_block_checkbad(mtd, ((loff_t) page) <<
1940                                         chip->page_shift, 0, allowbbt)) {
1941                         printk(KERN_WARNING "nand_erase: attempt to erase a "
1942                                "bad block at page 0x%08x\n", page);
1943                         instr->state = MTD_ERASE_FAILED;
1944                         goto erase_exit;
1945                 }
1946
1947                 /*
1948                  * Invalidate the page cache, if we erase the block which
1949                  * contains the current cached page
1950                  */
1951                 if (page <= chip->pagebuf && chip->pagebuf <
1952                     (page + pages_per_block))
1953                         chip->pagebuf = -1;
1954
1955                 chip->erase_cmd(mtd, page & chip->pagemask);
1956
1957                 status = chip->waitfunc(mtd, chip);
1958
1959                 /*
1960                  * See if operation failed and additional status checks are
1961                  * available
1962                  */
1963                 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
1964                         status = chip->errstat(mtd, chip, FL_ERASING,
1965                                                status, page);
1966
1967                 /* See if block erase succeeded */
1968                 if (status & NAND_STATUS_FAIL) {
1969                         DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: "
1970                               "Failed erase, page 0x%08x\n", page);
1971                         instr->state = MTD_ERASE_FAILED;
1972                         instr->fail_addr = (page << chip->page_shift);
1973                         goto erase_exit;
1974                 }
1975
1976                 /*
1977                  * If BBT requires refresh, set the BBT rewrite flag to the
1978                  * page being erased
1979                  */
1980                 if (bbt_masked_page != 0xffffffff &&
1981                     (page & BBT_PAGE_MASK) == bbt_masked_page)
1982                             rewrite_bbt[chipnr] = (page << chip->page_shift);
1983
1984                 /* Increment page address and decrement length */
1985                 len -= (1 << chip->phys_erase_shift);
1986                 page += pages_per_block;
1987
1988                 /* Check, if we cross a chip boundary */
1989                 if (len && !(page & chip->pagemask)) {
1990                         chipnr++;
1991                         chip->select_chip(mtd, -1);
1992                         chip->select_chip(mtd, chipnr);
1993
1994                         /*
1995                          * If BBT requires refresh and BBT-PERCHIP, set the BBT
1996                          * page mask to see if this BBT should be rewritten
1997                          */
1998                         if (bbt_masked_page != 0xffffffff &&
1999                             (chip->bbt_td->options & NAND_BBT_PERCHIP))
2000                                 bbt_masked_page = chip->bbt_td->pages[chipnr] &
2001                                         BBT_PAGE_MASK;
2002                 }
2003         }
2004         instr->state = MTD_ERASE_DONE;
2005
2006  erase_exit:
2007
2008         ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2009         /* Do call back function */
2010         if (!ret)
2011                 mtd_erase_callback(instr);
2012
2013         /* Deselect and wake up anyone waiting on the device */
2014         nand_release_device(mtd);
2015
2016         /*
2017          * If BBT requires refresh and erase was successful, rewrite any
2018          * selected bad block tables
2019          */
2020         if (bbt_masked_page == 0xffffffff || ret)
2021                 return ret;
2022
2023         for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
2024                 if (!rewrite_bbt[chipnr])
2025                         continue;
2026                 /* update the BBT for chip */
2027                 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase_nand: nand_update_bbt "
2028                       "(%d:0x%0x 0x%0x)\n", chipnr, rewrite_bbt[chipnr],
2029                       chip->bbt_td->pages[chipnr]);
2030                 nand_update_bbt(mtd, rewrite_bbt[chipnr]);
2031         }
2032
2033         /* Return more or less happy */
2034         return ret;
2035 }
2036
2037 /**
2038  * nand_sync - [MTD Interface] sync
2039  * @mtd:        MTD device structure
2040  *
2041  * Sync is actually a wait for chip ready function
2042  */
2043 static void nand_sync(struct mtd_info *mtd)
2044 {
2045         struct nand_chip *chip = mtd->priv;
2046
2047         DEBUG(MTD_DEBUG_LEVEL3, "nand_sync: called\n");
2048
2049         /* Grab the lock and see if the device is available */
2050         nand_get_device(chip, mtd, FL_SYNCING);
2051         /* Release it and go back */
2052         nand_release_device(mtd);
2053 }
2054
2055 /**
2056  * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2057  * @mtd:        MTD device structure
2058  * @offs:       offset relative to mtd start
2059  */
2060 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2061 {
2062         /* Check for invalid offset */
2063         if (offs > mtd->size)
2064                 return -EINVAL;
2065
2066         return nand_block_checkbad(mtd, offs, 1, 0);
2067 }
2068
2069 /**
2070  * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2071  * @mtd:        MTD device structure
2072  * @ofs:        offset relative to mtd start
2073  */
2074 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2075 {
2076         struct nand_chip *chip = mtd->priv;
2077         int ret;
2078
2079         if ((ret = nand_block_isbad(mtd, ofs))) {
2080                 /* If it was bad already, return success and do nothing. */
2081                 if (ret > 0)
2082                         return 0;
2083                 return ret;
2084         }
2085
2086         return chip->block_markbad(mtd, ofs);
2087 }
2088
2089 /**
2090  * nand_suspend - [MTD Interface] Suspend the NAND flash
2091  * @mtd:        MTD device structure
2092  */
2093 static int nand_suspend(struct mtd_info *mtd)
2094 {
2095         struct nand_chip *chip = mtd->priv;
2096
2097         return nand_get_device(chip, mtd, FL_PM_SUSPENDED);
2098 }
2099
2100 /**
2101  * nand_resume - [MTD Interface] Resume the NAND flash
2102  * @mtd:        MTD device structure
2103  */
2104 static void nand_resume(struct mtd_info *mtd)
2105 {
2106         struct nand_chip *chip = mtd->priv;
2107
2108         if (chip->state == FL_PM_SUSPENDED)
2109                 nand_release_device(mtd);
2110         else
2111                 printk(KERN_ERR "nand_resume() called for a chip which is not "
2112                        "in suspended state\n");
2113 }
2114
2115 /*
2116  * Set default functions
2117  */
2118 static void nand_set_defaults(struct nand_chip *chip, int busw)
2119 {
2120         /* check for proper chip_delay setup, set 20us if not */
2121         if (!chip->chip_delay)
2122                 chip->chip_delay = 20;
2123
2124         /* check, if a user supplied command function given */
2125         if (chip->cmdfunc == NULL)
2126                 chip->cmdfunc = nand_command;
2127
2128         /* check, if a user supplied wait function given */
2129         if (chip->waitfunc == NULL)
2130                 chip->waitfunc = nand_wait;
2131
2132         if (!chip->select_chip)
2133                 chip->select_chip = nand_select_chip;
2134         if (!chip->read_byte)
2135                 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2136         if (!chip->read_word)
2137                 chip->read_word = nand_read_word;
2138         if (!chip->block_bad)
2139                 chip->block_bad = nand_block_bad;
2140         if (!chip->block_markbad)
2141                 chip->block_markbad = nand_default_block_markbad;
2142         if (!chip->write_buf)
2143                 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2144         if (!chip->read_buf)
2145                 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2146         if (!chip->verify_buf)
2147                 chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
2148         if (!chip->scan_bbt)
2149                 chip->scan_bbt = nand_default_bbt;
2150
2151         if (!chip->controller) {
2152                 chip->controller = &chip->hwcontrol;
2153                 spin_lock_init(&chip->controller->lock);
2154                 init_waitqueue_head(&chip->controller->wq);
2155         }
2156
2157 }
2158
2159 /*
2160  * Get the flash and manufacturer id and lookup if the type is supported
2161  */
2162 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
2163                                                   struct nand_chip *chip,
2164                                                   int busw, int *maf_id)
2165 {
2166         struct nand_flash_dev *type = NULL;
2167         int i, dev_id, maf_idx;
2168
2169         /* Select the device */
2170         chip->select_chip(mtd, 0);
2171
2172         /* Send the command for reading device ID */
2173         chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2174
2175         /* Read manufacturer and device IDs */
2176         *maf_id = chip->read_byte(mtd);
2177         dev_id = chip->read_byte(mtd);
2178
2179         /* Lookup the flash id */
2180         for (i = 0; nand_flash_ids[i].name != NULL; i++) {
2181                 if (dev_id == nand_flash_ids[i].id) {
2182                         type =  &nand_flash_ids[i];
2183                         break;
2184                 }
2185         }
2186
2187         if (!type)
2188                 return ERR_PTR(-ENODEV);
2189
2190         if (!mtd->name)
2191                 mtd->name = type->name;
2192
2193         chip->chipsize = type->chipsize << 20;
2194
2195         /* Newer devices have all the information in additional id bytes */
2196         if (!type->pagesize) {
2197                 int extid;
2198                 /* The 3rd id byte contains non relevant data ATM */
2199                 extid = chip->read_byte(mtd);
2200                 /* The 4th id byte is the important one */
2201                 extid = chip->read_byte(mtd);
2202                 /* Calc pagesize */
2203                 mtd->writesize = 1024 << (extid & 0x3);
2204                 extid >>= 2;
2205                 /* Calc oobsize */
2206                 mtd->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
2207                 extid >>= 2;
2208                 /* Calc blocksize. Blocksize is multiples of 64KiB */
2209                 mtd->erasesize = (64 * 1024) << (extid & 0x03);
2210                 extid >>= 2;
2211                 /* Get buswidth information */
2212                 busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
2213
2214         } else {
2215                 /*
2216                  * Old devices have chip data hardcoded in the device id table
2217                  */
2218                 mtd->erasesize = type->erasesize;
2219                 mtd->writesize = type->pagesize;
2220                 mtd->oobsize = mtd->writesize / 32;
2221                 busw = type->options & NAND_BUSWIDTH_16;
2222         }
2223
2224         /* Try to identify manufacturer */
2225         for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_id++) {
2226                 if (nand_manuf_ids[maf_idx].id == *maf_id)
2227                         break;
2228         }
2229
2230         /*
2231          * Check, if buswidth is correct. Hardware drivers should set
2232          * chip correct !
2233          */
2234         if (busw != (chip->options & NAND_BUSWIDTH_16)) {
2235                 printk(KERN_INFO "NAND device: Manufacturer ID:"
2236                        " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
2237                        dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
2238                 printk(KERN_WARNING "NAND bus width %d instead %d bit\n",
2239                        (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
2240                        busw ? 16 : 8);
2241                 return ERR_PTR(-EINVAL);
2242         }
2243
2244         /* Calculate the address shift from the page size */
2245         chip->page_shift = ffs(mtd->writesize) - 1;
2246         /* Convert chipsize to number of pages per chip -1. */
2247         chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2248
2249         chip->bbt_erase_shift = chip->phys_erase_shift =
2250                 ffs(mtd->erasesize) - 1;
2251         chip->chip_shift = ffs(chip->chipsize) - 1;
2252
2253         /* Set the bad block position */
2254         chip->badblockpos = mtd->writesize > 512 ?
2255                 NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS;
2256
2257         /* Get chip options, preserve non chip based options */
2258         chip->options &= ~NAND_CHIPOPTIONS_MSK;
2259         chip->options |= type->options & NAND_CHIPOPTIONS_MSK;
2260
2261         /*
2262          * Set chip as a default. Board drivers can override it, if necessary
2263          */
2264         chip->options |= NAND_NO_AUTOINCR;
2265
2266         /* Check if chip is a not a samsung device. Do not clear the
2267          * options for chips which are not having an extended id.
2268          */
2269         if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
2270                 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
2271
2272         /* Check for AND chips with 4 page planes */
2273         if (chip->options & NAND_4PAGE_ARRAY)
2274                 chip->erase_cmd = multi_erase_cmd;
2275         else
2276                 chip->erase_cmd = single_erase_cmd;
2277
2278         /* Do not replace user supplied command function ! */
2279         if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
2280                 chip->cmdfunc = nand_command_lp;
2281
2282         printk(KERN_INFO "NAND device: Manufacturer ID:"
2283                " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, dev_id,
2284                nand_manuf_ids[maf_idx].name, type->name);
2285
2286         return type;
2287 }
2288
2289 /* module_text_address() isn't exported, and it's mostly a pointless
2290    test if this is a module _anyway_ -- they'd have to try _really_ hard
2291    to call us from in-kernel code if the core NAND support is modular. */
2292 #ifdef MODULE
2293 #define caller_is_module() (1)
2294 #else
2295 #define caller_is_module() \
2296         module_text_address((unsigned long)__builtin_return_address(0))
2297 #endif
2298
2299 /**
2300  * nand_scan - [NAND Interface] Scan for the NAND device
2301  * @mtd:        MTD device structure
2302  * @maxchips:   Number of chips to scan for
2303  *
2304  * This fills out all the uninitialized function pointers
2305  * with the defaults.
2306  * The flash ID is read and the mtd/chip structures are
2307  * filled with the appropriate values.
2308  * The mtd->owner field must be set to the module of the caller
2309  *
2310  */
2311 int nand_scan(struct mtd_info *mtd, int maxchips)
2312 {
2313         int i, busw, nand_maf_id;
2314         struct nand_chip *chip = mtd->priv;
2315         struct nand_flash_dev *type;
2316
2317         /* Many callers got this wrong, so check for it for a while... */
2318         if (!mtd->owner && caller_is_module()) {
2319                 printk(KERN_CRIT "nand_scan() called with NULL mtd->owner!\n");
2320                 BUG();
2321         }
2322
2323         /* Get buswidth to select the correct functions */
2324         busw = chip->options & NAND_BUSWIDTH_16;
2325         /* Set the default functions */
2326         nand_set_defaults(chip, busw);
2327
2328         /* Read the flash type */
2329         type = nand_get_flash_type(mtd, chip, busw, &nand_maf_id);
2330
2331         if (IS_ERR(type)) {
2332                 printk(KERN_WARNING "No NAND device found!!!\n");
2333                 chip->select_chip(mtd, -1);
2334                 return PTR_ERR(type);
2335         }
2336
2337         /* Check for a chip array */
2338         for (i = 1; i < maxchips; i++) {
2339                 chip->select_chip(mtd, i);
2340                 /* Send the command for reading device ID */
2341                 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2342                 /* Read manufacturer and device IDs */
2343                 if (nand_maf_id != chip->read_byte(mtd) ||
2344                     type->id != chip->read_byte(mtd))
2345                         break;
2346         }
2347         if (i > 1)
2348                 printk(KERN_INFO "%d NAND chips detected\n", i);
2349
2350         /* Store the number of chips and calc total size for mtd */
2351         chip->numchips = i;
2352         mtd->size = i * chip->chipsize;
2353
2354         /* Preset the internal oob write buffer */
2355         memset(chip->buffers.oobwbuf, 0xff, mtd->oobsize);
2356
2357         /*
2358          * If no default placement scheme is given, select an appropriate one
2359          */
2360         if (!chip->ecc.layout) {
2361                 switch (mtd->oobsize) {
2362                 case 8:
2363                         chip->ecc.layout = &nand_oob_8;
2364                         break;
2365                 case 16:
2366                         chip->ecc.layout = &nand_oob_16;
2367                         break;
2368                 case 64:
2369                         chip->ecc.layout = &nand_oob_64;
2370                         break;
2371                 default:
2372                         printk(KERN_WARNING "No oob scheme defined for "
2373                                "oobsize %d\n", mtd->oobsize);
2374                         BUG();
2375                 }
2376         }
2377
2378         /*
2379          * check ECC mode, default to software if 3byte/512byte hardware ECC is
2380          * selected and we have 256 byte pagesize fallback to software ECC
2381          */
2382         switch (chip->ecc.mode) {
2383         case NAND_ECC_HW:
2384                 /* Use standard hwecc read page function ? */
2385                 if (!chip->ecc.read_page)
2386                         chip->ecc.read_page = nand_read_page_hwecc;
2387                 if (!chip->ecc.write_page)
2388                         chip->ecc.write_page = nand_write_page_hwecc;
2389                 if (!chip->ecc.read_oob)
2390                         chip->ecc.read_oob = nand_read_oob_std;
2391                 if (!chip->ecc.write_oob)
2392                         chip->ecc.write_oob = nand_write_oob_std;
2393
2394         case NAND_ECC_HW_SYNDROME:
2395                 if (!chip->ecc.calculate || !chip->ecc.correct ||
2396                     !chip->ecc.hwctl) {
2397                         printk(KERN_WARNING "No ECC functions supplied, "
2398                                "Hardware ECC not possible\n");
2399                         BUG();
2400                 }
2401                 /* Use standard syndrome read/write page function ? */
2402                 if (!chip->ecc.read_page)
2403                         chip->ecc.read_page = nand_read_page_syndrome;
2404                 if (!chip->ecc.write_page)
2405                         chip->ecc.write_page = nand_write_page_syndrome;
2406                 if (!chip->ecc.read_oob)
2407                         chip->ecc.read_oob = nand_read_oob_syndrome;
2408                 if (!chip->ecc.write_oob)
2409                         chip->ecc.write_oob = nand_write_oob_syndrome;
2410
2411                 if (mtd->writesize >= chip->ecc.size)
2412                         break;
2413                 printk(KERN_WARNING "%d byte HW ECC not possible on "
2414                        "%d byte page size, fallback to SW ECC\n",
2415                        chip->ecc.size, mtd->writesize);
2416                 chip->ecc.mode = NAND_ECC_SOFT;
2417
2418         case NAND_ECC_SOFT:
2419                 chip->ecc.calculate = nand_calculate_ecc;
2420                 chip->ecc.correct = nand_correct_data;
2421                 chip->ecc.read_page = nand_read_page_swecc;
2422                 chip->ecc.write_page = nand_write_page_swecc;
2423                 chip->ecc.read_oob = nand_read_oob_std;
2424                 chip->ecc.write_oob = nand_write_oob_std;
2425                 chip->ecc.size = 256;
2426                 chip->ecc.bytes = 3;
2427                 break;
2428
2429         case NAND_ECC_NONE:
2430                 printk(KERN_WARNING "NAND_ECC_NONE selected by board driver. "
2431                        "This is not recommended !!\n");
2432                 chip->ecc.read_page = nand_read_page_raw;
2433                 chip->ecc.write_page = nand_write_page_raw;
2434                 chip->ecc.read_oob = nand_read_oob_std;
2435                 chip->ecc.write_oob = nand_write_oob_std;
2436                 chip->ecc.size = mtd->writesize;
2437                 chip->ecc.bytes = 0;
2438                 break;
2439         default:
2440                 printk(KERN_WARNING "Invalid NAND_ECC_MODE %d\n",
2441                        chip->ecc.mode);
2442                 BUG();
2443         }
2444
2445         /*
2446          * The number of bytes available for a client to place data into
2447          * the out of band area
2448          */
2449         chip->ecc.layout->oobavail = 0;
2450         for (i = 0; chip->ecc.layout->oobfree[i].length; i++)
2451                 chip->ecc.layout->oobavail +=
2452                         chip->ecc.layout->oobfree[i].length;
2453
2454         /*
2455          * Set the number of read / write steps for one page depending on ECC
2456          * mode
2457          */
2458         chip->ecc.steps = mtd->writesize / chip->ecc.size;
2459         if(chip->ecc.steps * chip->ecc.size != mtd->writesize) {
2460                 printk(KERN_WARNING "Invalid ecc parameters\n");
2461                 BUG();
2462         }
2463         chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
2464
2465         /* Initialize state */
2466         chip->state = FL_READY;
2467
2468         /* De-select the device */
2469         chip->select_chip(mtd, -1);
2470
2471         /* Invalidate the pagebuffer reference */
2472         chip->pagebuf = -1;
2473
2474         /* Fill in remaining MTD driver data */
2475         mtd->type = MTD_NANDFLASH;
2476         mtd->flags = MTD_CAP_NANDFLASH;
2477         mtd->ecctype = MTD_ECC_SW;
2478         mtd->erase = nand_erase;
2479         mtd->point = NULL;
2480         mtd->unpoint = NULL;
2481         mtd->read = nand_read;
2482         mtd->write = nand_write;
2483         mtd->read_oob = nand_read_oob;
2484         mtd->write_oob = nand_write_oob;
2485         mtd->sync = nand_sync;
2486         mtd->lock = NULL;
2487         mtd->unlock = NULL;
2488         mtd->suspend = nand_suspend;
2489         mtd->resume = nand_resume;
2490         mtd->block_isbad = nand_block_isbad;
2491         mtd->block_markbad = nand_block_markbad;
2492
2493         /* propagate ecc.layout to mtd_info */
2494         mtd->ecclayout = chip->ecc.layout;
2495
2496         /* Check, if we should skip the bad block table scan */
2497         if (chip->options & NAND_SKIP_BBTSCAN)
2498                 return 0;
2499
2500         /* Build bad block table */
2501         return chip->scan_bbt(mtd);
2502 }
2503
2504 /**
2505  * nand_release - [NAND Interface] Free resources held by the NAND device
2506  * @mtd:        MTD device structure
2507 */
2508 void nand_release(struct mtd_info *mtd)
2509 {
2510         struct nand_chip *chip = mtd->priv;
2511
2512 #ifdef CONFIG_MTD_PARTITIONS
2513         /* Deregister partitions */
2514         del_mtd_partitions(mtd);
2515 #endif
2516         /* Deregister the device */
2517         del_mtd_device(mtd);
2518
2519         /* Free bad block table memory */
2520         kfree(chip->bbt);
2521 }
2522
2523 EXPORT_SYMBOL_GPL(nand_scan);
2524 EXPORT_SYMBOL_GPL(nand_release);
2525
2526 static int __init nand_base_init(void)
2527 {
2528         led_trigger_register_simple("nand-disk", &nand_led_trigger);
2529         return 0;
2530 }
2531
2532 static void __exit nand_base_exit(void)
2533 {
2534         led_trigger_unregister_simple(nand_led_trigger);
2535 }
2536
2537 module_init(nand_base_init);
2538 module_exit(nand_base_exit);
2539
2540 MODULE_LICENSE("GPL");
2541 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>");
2542 MODULE_DESCRIPTION("Generic NAND flash driver code");