5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
7 * Basic support for AG-AND chips is provided.
9 * Additional technical information is available on
10 * http://www.linux-mtd.infradead.org/tech/nand.html
12 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
16 * David Woodhouse for adding multichip support
18 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19 * rework for 2K page size chips
22 * Enable cached programming for 2k page size chips
23 * Check, if mtd->ecctype should be set to MTD_ECC_HW
24 * if we have HW ecc support.
25 * The AG-AND chips have nice features for speed improvement,
26 * which are not supported yet. Read / program 4 pages in one go.
28 * This program is free software; you can redistribute it and/or modify
29 * it under the terms of the GNU General Public License version 2 as
30 * published by the Free Software Foundation.
34 #include <linux/module.h>
35 #include <linux/delay.h>
36 #include <linux/errno.h>
37 #include <linux/err.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/types.h>
41 #include <linux/mtd/mtd.h>
42 #include <linux/mtd/nand.h>
43 #include <linux/mtd/nand_ecc.h>
44 #include <linux/mtd/compatmac.h>
45 #include <linux/interrupt.h>
46 #include <linux/bitops.h>
47 #include <linux/leds.h>
50 #ifdef CONFIG_MTD_PARTITIONS
51 #include <linux/mtd/partitions.h>
54 /* Define default oob placement schemes for large and small page devices */
55 static struct nand_ecclayout nand_oob_8 = {
65 static struct nand_ecclayout nand_oob_16 = {
67 .eccpos = {0, 1, 2, 3, 6, 7},
73 static struct nand_ecclayout nand_oob_64 = {
76 40, 41, 42, 43, 44, 45, 46, 47,
77 48, 49, 50, 51, 52, 53, 54, 55,
78 56, 57, 58, 59, 60, 61, 62, 63},
84 static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd,
87 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
88 struct mtd_oob_ops *ops);
91 * For devices which display every fart in the system on a seperate LED. Is
92 * compiled away when LED support is disabled.
94 DEFINE_LED_TRIGGER(nand_led_trigger);
97 * nand_release_device - [GENERIC] release chip
98 * @mtd: MTD device structure
100 * Deselect, release chip lock and wake up anyone waiting on the device
102 static void nand_release_device(struct mtd_info *mtd)
104 struct nand_chip *chip = mtd->priv;
106 /* De-select the NAND device */
107 chip->select_chip(mtd, -1);
109 /* Release the controller and the chip */
110 spin_lock(&chip->controller->lock);
111 chip->controller->active = NULL;
112 chip->state = FL_READY;
113 wake_up(&chip->controller->wq);
114 spin_unlock(&chip->controller->lock);
118 * nand_read_byte - [DEFAULT] read one byte from the chip
119 * @mtd: MTD device structure
121 * Default read function for 8bit buswith
123 static uint8_t nand_read_byte(struct mtd_info *mtd)
125 struct nand_chip *chip = mtd->priv;
126 return readb(chip->IO_ADDR_R);
130 * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
131 * @mtd: MTD device structure
133 * Default read function for 16bit buswith with
134 * endianess conversion
136 static uint8_t nand_read_byte16(struct mtd_info *mtd)
138 struct nand_chip *chip = mtd->priv;
139 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
143 * nand_read_word - [DEFAULT] read one word from the chip
144 * @mtd: MTD device structure
146 * Default read function for 16bit buswith without
147 * endianess conversion
149 static u16 nand_read_word(struct mtd_info *mtd)
151 struct nand_chip *chip = mtd->priv;
152 return readw(chip->IO_ADDR_R);
156 * nand_select_chip - [DEFAULT] control CE line
157 * @mtd: MTD device structure
158 * @chipnr: chipnumber to select, -1 for deselect
160 * Default select function for 1 chip devices.
162 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
164 struct nand_chip *chip = mtd->priv;
168 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
179 * nand_write_buf - [DEFAULT] write buffer to chip
180 * @mtd: MTD device structure
182 * @len: number of bytes to write
184 * Default write function for 8bit buswith
186 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
189 struct nand_chip *chip = mtd->priv;
191 for (i = 0; i < len; i++)
192 writeb(buf[i], chip->IO_ADDR_W);
196 * nand_read_buf - [DEFAULT] read chip data into buffer
197 * @mtd: MTD device structure
198 * @buf: buffer to store date
199 * @len: number of bytes to read
201 * Default read function for 8bit buswith
203 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
206 struct nand_chip *chip = mtd->priv;
208 for (i = 0; i < len; i++)
209 buf[i] = readb(chip->IO_ADDR_R);
213 * nand_verify_buf - [DEFAULT] Verify chip data against buffer
214 * @mtd: MTD device structure
215 * @buf: buffer containing the data to compare
216 * @len: number of bytes to compare
218 * Default verify function for 8bit buswith
220 static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
223 struct nand_chip *chip = mtd->priv;
225 for (i = 0; i < len; i++)
226 if (buf[i] != readb(chip->IO_ADDR_R))
232 * nand_write_buf16 - [DEFAULT] write buffer to chip
233 * @mtd: MTD device structure
235 * @len: number of bytes to write
237 * Default write function for 16bit buswith
239 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
242 struct nand_chip *chip = mtd->priv;
243 u16 *p = (u16 *) buf;
246 for (i = 0; i < len; i++)
247 writew(p[i], chip->IO_ADDR_W);
252 * nand_read_buf16 - [DEFAULT] read chip data into buffer
253 * @mtd: MTD device structure
254 * @buf: buffer to store date
255 * @len: number of bytes to read
257 * Default read function for 16bit buswith
259 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
262 struct nand_chip *chip = mtd->priv;
263 u16 *p = (u16 *) buf;
266 for (i = 0; i < len; i++)
267 p[i] = readw(chip->IO_ADDR_R);
271 * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
272 * @mtd: MTD device structure
273 * @buf: buffer containing the data to compare
274 * @len: number of bytes to compare
276 * Default verify function for 16bit buswith
278 static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
281 struct nand_chip *chip = mtd->priv;
282 u16 *p = (u16 *) buf;
285 for (i = 0; i < len; i++)
286 if (p[i] != readw(chip->IO_ADDR_R))
293 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
294 * @mtd: MTD device structure
295 * @ofs: offset from device start
296 * @getchip: 0, if the chip is already selected
298 * Check, if the block is bad.
300 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
302 int page, chipnr, res = 0;
303 struct nand_chip *chip = mtd->priv;
307 page = (int)(ofs >> chip->page_shift);
308 chipnr = (int)(ofs >> chip->chip_shift);
310 nand_get_device(chip, mtd, FL_READING);
312 /* Select the NAND device */
313 chip->select_chip(mtd, chipnr);
317 if (chip->options & NAND_BUSWIDTH_16) {
318 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos & 0xFE,
319 page & chip->pagemask);
320 bad = cpu_to_le16(chip->read_word(mtd));
321 if (chip->badblockpos & 0x1)
323 if ((bad & 0xFF) != 0xff)
326 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
327 page & chip->pagemask);
328 if (chip->read_byte(mtd) != 0xff)
333 nand_release_device(mtd);
339 * nand_default_block_markbad - [DEFAULT] mark a block bad
340 * @mtd: MTD device structure
341 * @ofs: offset from device start
343 * This is the default implementation, which can be overridden by
344 * a hardware specific driver.
346 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
348 struct nand_chip *chip = mtd->priv;
349 uint8_t buf[2] = { 0, 0 };
352 /* Get block number */
353 block = ((int)ofs) >> chip->bbt_erase_shift;
355 chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
357 /* Do we have a flash based bad block table ? */
358 if (chip->options & NAND_USE_FLASH_BBT)
359 ret = nand_update_bbt(mtd, ofs);
361 /* We write two bytes, so we dont have to mess with 16 bit
366 chip->ops.datbuf = NULL;
367 chip->ops.oobbuf = buf;
368 chip->ops.ooboffs = chip->badblockpos & ~0x01;
370 ret = nand_do_write_oob(mtd, ofs, &chip->ops);
373 mtd->ecc_stats.badblocks++;
378 * nand_check_wp - [GENERIC] check if the chip is write protected
379 * @mtd: MTD device structure
380 * Check, if the device is write protected
382 * The function expects, that the device is already selected
384 static int nand_check_wp(struct mtd_info *mtd)
386 struct nand_chip *chip = mtd->priv;
387 /* Check the WP bit */
388 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
389 return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
393 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
394 * @mtd: MTD device structure
395 * @ofs: offset from device start
396 * @getchip: 0, if the chip is already selected
397 * @allowbbt: 1, if its allowed to access the bbt area
399 * Check, if the block is bad. Either by reading the bad block table or
400 * calling of the scan function.
402 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
405 struct nand_chip *chip = mtd->priv;
408 return chip->block_bad(mtd, ofs, getchip);
410 /* Return info from the table */
411 return nand_isbad_bbt(mtd, ofs, allowbbt);
415 * Wait for the ready pin, after a command
416 * The timeout is catched later.
418 static void nand_wait_ready(struct mtd_info *mtd)
420 struct nand_chip *chip = mtd->priv;
421 unsigned long timeo = jiffies + 2;
423 led_trigger_event(nand_led_trigger, LED_FULL);
424 /* wait until command is processed or timeout occures */
426 if (chip->dev_ready(mtd))
428 touch_softlockup_watchdog();
429 } while (time_before(jiffies, timeo));
430 led_trigger_event(nand_led_trigger, LED_OFF);
434 * nand_command - [DEFAULT] Send command to NAND device
435 * @mtd: MTD device structure
436 * @command: the command to be sent
437 * @column: the column address for this command, -1 if none
438 * @page_addr: the page address for this command, -1 if none
440 * Send command to NAND device. This function is used for small page
441 * devices (256/512 Bytes per page)
443 static void nand_command(struct mtd_info *mtd, unsigned int command,
444 int column, int page_addr)
446 register struct nand_chip *chip = mtd->priv;
447 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
450 * Write out the command to the device.
452 if (command == NAND_CMD_SEQIN) {
455 if (column >= mtd->writesize) {
457 column -= mtd->writesize;
458 readcmd = NAND_CMD_READOOB;
459 } else if (column < 256) {
460 /* First 256 bytes --> READ0 */
461 readcmd = NAND_CMD_READ0;
464 readcmd = NAND_CMD_READ1;
466 chip->cmd_ctrl(mtd, readcmd, ctrl);
467 ctrl &= ~NAND_CTRL_CHANGE;
469 chip->cmd_ctrl(mtd, command, ctrl);
472 * Address cycle, when necessary
474 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
475 /* Serially input address */
477 /* Adjust columns for 16 bit buswidth */
478 if (chip->options & NAND_BUSWIDTH_16)
480 chip->cmd_ctrl(mtd, column, ctrl);
481 ctrl &= ~NAND_CTRL_CHANGE;
483 if (page_addr != -1) {
484 chip->cmd_ctrl(mtd, page_addr, ctrl);
485 ctrl &= ~NAND_CTRL_CHANGE;
486 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
487 /* One more address cycle for devices > 32MiB */
488 if (chip->chipsize > (32 << 20))
489 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
491 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
494 * program and erase have their own busy handlers
495 * status and sequential in needs no delay
499 case NAND_CMD_PAGEPROG:
500 case NAND_CMD_ERASE1:
501 case NAND_CMD_ERASE2:
503 case NAND_CMD_STATUS:
509 udelay(chip->chip_delay);
510 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
511 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
513 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
514 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ;
517 /* This applies to read commands */
520 * If we don't have access to the busy pin, we apply the given
523 if (!chip->dev_ready) {
524 udelay(chip->chip_delay);
528 /* Apply this short delay always to ensure that we do wait tWB in
529 * any case on any machine. */
532 nand_wait_ready(mtd);
536 * nand_command_lp - [DEFAULT] Send command to NAND large page device
537 * @mtd: MTD device structure
538 * @command: the command to be sent
539 * @column: the column address for this command, -1 if none
540 * @page_addr: the page address for this command, -1 if none
542 * Send command to NAND device. This is the version for the new large page
543 * devices We dont have the separate regions as we have in the small page
544 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
546 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
547 int column, int page_addr)
549 register struct nand_chip *chip = mtd->priv;
551 /* Emulate NAND_CMD_READOOB */
552 if (command == NAND_CMD_READOOB) {
553 column += mtd->writesize;
554 command = NAND_CMD_READ0;
557 /* Command latch cycle */
558 chip->cmd_ctrl(mtd, command & 0xff,
559 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
561 if (column != -1 || page_addr != -1) {
562 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
564 /* Serially input address */
566 /* Adjust columns for 16 bit buswidth */
567 if (chip->options & NAND_BUSWIDTH_16)
569 chip->cmd_ctrl(mtd, column, ctrl);
570 ctrl &= ~NAND_CTRL_CHANGE;
571 chip->cmd_ctrl(mtd, column >> 8, ctrl);
573 if (page_addr != -1) {
574 chip->cmd_ctrl(mtd, page_addr, ctrl);
575 chip->cmd_ctrl(mtd, page_addr >> 8,
576 NAND_NCE | NAND_ALE);
577 /* One more address cycle for devices > 128MiB */
578 if (chip->chipsize > (128 << 20))
579 chip->cmd_ctrl(mtd, page_addr >> 16,
580 NAND_NCE | NAND_ALE);
583 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
586 * program and erase have their own busy handlers
587 * status, sequential in, and deplete1 need no delay
591 case NAND_CMD_CACHEDPROG:
592 case NAND_CMD_PAGEPROG:
593 case NAND_CMD_ERASE1:
594 case NAND_CMD_ERASE2:
597 case NAND_CMD_STATUS:
598 case NAND_CMD_DEPLETE1:
602 * read error status commands require only a short delay
604 case NAND_CMD_STATUS_ERROR:
605 case NAND_CMD_STATUS_ERROR0:
606 case NAND_CMD_STATUS_ERROR1:
607 case NAND_CMD_STATUS_ERROR2:
608 case NAND_CMD_STATUS_ERROR3:
609 udelay(chip->chip_delay);
615 udelay(chip->chip_delay);
616 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
617 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
618 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
619 NAND_NCE | NAND_CTRL_CHANGE);
620 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ;
623 case NAND_CMD_RNDOUT:
624 /* No ready / busy check necessary */
625 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
626 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
627 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
628 NAND_NCE | NAND_CTRL_CHANGE);
632 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
633 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
634 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
635 NAND_NCE | NAND_CTRL_CHANGE);
637 /* This applies to read commands */
640 * If we don't have access to the busy pin, we apply the given
643 if (!chip->dev_ready) {
644 udelay(chip->chip_delay);
649 /* Apply this short delay always to ensure that we do wait tWB in
650 * any case on any machine. */
653 nand_wait_ready(mtd);
657 * nand_get_device - [GENERIC] Get chip for selected access
658 * @chip: the nand chip descriptor
659 * @mtd: MTD device structure
660 * @new_state: the state which is requested
662 * Get the device and lock it for exclusive access
665 nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state)
667 spinlock_t *lock = &chip->controller->lock;
668 wait_queue_head_t *wq = &chip->controller->wq;
669 DECLARE_WAITQUEUE(wait, current);
673 /* Hardware controller shared among independend devices */
674 /* Hardware controller shared among independend devices */
675 if (!chip->controller->active)
676 chip->controller->active = chip;
678 if (chip->controller->active == chip && chip->state == FL_READY) {
679 chip->state = new_state;
683 if (new_state == FL_PM_SUSPENDED) {
685 return (chip->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
687 set_current_state(TASK_UNINTERRUPTIBLE);
688 add_wait_queue(wq, &wait);
691 remove_wait_queue(wq, &wait);
696 * nand_wait - [DEFAULT] wait until the command is done
697 * @mtd: MTD device structure
698 * @chip: NAND chip structure
700 * Wait for command done. This applies to erase and program only
701 * Erase can take up to 400ms and program up to 20ms according to
702 * general NAND and SmartMedia specs
704 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
707 unsigned long timeo = jiffies;
708 int status, state = chip->state;
710 if (state == FL_ERASING)
711 timeo += (HZ * 400) / 1000;
713 timeo += (HZ * 20) / 1000;
715 led_trigger_event(nand_led_trigger, LED_FULL);
717 /* Apply this short delay always to ensure that we do wait tWB in
718 * any case on any machine. */
721 if ((state == FL_ERASING) && (chip->options & NAND_IS_AND))
722 chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
724 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
726 while (time_before(jiffies, timeo)) {
727 if (chip->dev_ready) {
728 if (chip->dev_ready(mtd))
731 if (chip->read_byte(mtd) & NAND_STATUS_READY)
736 led_trigger_event(nand_led_trigger, LED_OFF);
738 status = (int)chip->read_byte(mtd);
743 * nand_read_page_raw - [Intern] read raw page data without ecc
744 * @mtd: mtd info structure
745 * @chip: nand chip info structure
746 * @buf: buffer to store read data
748 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
751 chip->read_buf(mtd, buf, mtd->writesize);
752 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
757 * nand_read_page_swecc - {REPLACABLE] software ecc based page read function
758 * @mtd: mtd info structure
759 * @chip: nand chip info structure
760 * @buf: buffer to store read data
762 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
765 int i, eccsize = chip->ecc.size;
766 int eccbytes = chip->ecc.bytes;
767 int eccsteps = chip->ecc.steps;
769 uint8_t *ecc_calc = chip->buffers.ecccalc;
770 uint8_t *ecc_code = chip->buffers.ecccode;
771 int *eccpos = chip->ecc.layout->eccpos;
773 nand_read_page_raw(mtd, chip, buf);
775 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
776 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
778 for (i = 0; i < chip->ecc.total; i++)
779 ecc_code[i] = chip->oob_poi[eccpos[i]];
781 eccsteps = chip->ecc.steps;
784 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
787 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
789 mtd->ecc_stats.failed++;
791 mtd->ecc_stats.corrected += stat;
797 * nand_read_page_hwecc - {REPLACABLE] hardware ecc based page read function
798 * @mtd: mtd info structure
799 * @chip: nand chip info structure
800 * @buf: buffer to store read data
802 * Not for syndrome calculating ecc controllers which need a special oob layout
804 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
807 int i, eccsize = chip->ecc.size;
808 int eccbytes = chip->ecc.bytes;
809 int eccsteps = chip->ecc.steps;
811 uint8_t *ecc_calc = chip->buffers.ecccalc;
812 uint8_t *ecc_code = chip->buffers.ecccode;
813 int *eccpos = chip->ecc.layout->eccpos;
815 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
816 chip->ecc.hwctl(mtd, NAND_ECC_READ);
817 chip->read_buf(mtd, p, eccsize);
818 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
820 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
822 for (i = 0; i < chip->ecc.total; i++)
823 ecc_code[i] = chip->oob_poi[eccpos[i]];
825 eccsteps = chip->ecc.steps;
828 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
831 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
833 mtd->ecc_stats.failed++;
835 mtd->ecc_stats.corrected += stat;
841 * nand_read_page_syndrome - {REPLACABLE] hardware ecc syndrom based page read
842 * @mtd: mtd info structure
843 * @chip: nand chip info structure
844 * @buf: buffer to store read data
846 * The hw generator calculates the error syndrome automatically. Therefor
847 * we need a special oob layout and handling.
849 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
852 int i, eccsize = chip->ecc.size;
853 int eccbytes = chip->ecc.bytes;
854 int eccsteps = chip->ecc.steps;
856 uint8_t *oob = chip->oob_poi;
858 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
861 chip->ecc.hwctl(mtd, NAND_ECC_READ);
862 chip->read_buf(mtd, p, eccsize);
864 if (chip->ecc.prepad) {
865 chip->read_buf(mtd, oob, chip->ecc.prepad);
866 oob += chip->ecc.prepad;
869 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
870 chip->read_buf(mtd, oob, eccbytes);
871 stat = chip->ecc.correct(mtd, p, oob, NULL);
874 mtd->ecc_stats.failed++;
876 mtd->ecc_stats.corrected += stat;
880 if (chip->ecc.postpad) {
881 chip->read_buf(mtd, oob, chip->ecc.postpad);
882 oob += chip->ecc.postpad;
886 /* Calculate remaining oob bytes */
887 i = mtd->oobsize - (oob - chip->oob_poi);
889 chip->read_buf(mtd, oob, i);
895 * nand_transfer_oob - [Internal] Transfer oob to client buffer
896 * @chip: nand chip structure
897 * @oob: oob destination address
898 * @ops: oob ops structure
900 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
901 struct mtd_oob_ops *ops)
903 size_t len = ops->ooblen;
909 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
913 struct nand_oobfree *free = chip->ecc.layout->oobfree;
914 uint32_t boffs = 0, roffs = ops->ooboffs;
917 for(; free->length && len; free++, len -= bytes) {
918 /* Read request not from offset 0 ? */
919 if (unlikely(roffs)) {
920 if (roffs >= free->length) {
921 roffs -= free->length;
924 boffs = free->offset + roffs;
925 bytes = min_t(size_t, len,
926 (free->length - roffs));
929 bytes = min_t(size_t, len, free->length);
930 boffs = free->offset;
932 memcpy(oob, chip->oob_poi + boffs, bytes);
944 * nand_do_read_ops - [Internal] Read data with ECC
946 * @mtd: MTD device structure
947 * @from: offset to read from
948 * @ops: oob ops structure
950 * Internal function. Called with chip held.
952 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
953 struct mtd_oob_ops *ops)
955 int chipnr, page, realpage, col, bytes, aligned;
956 struct nand_chip *chip = mtd->priv;
957 struct mtd_ecc_stats stats;
958 int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
961 uint32_t readlen = ops->len;
962 uint8_t *bufpoi, *oob, *buf;
964 stats = mtd->ecc_stats;
966 chipnr = (int)(from >> chip->chip_shift);
967 chip->select_chip(mtd, chipnr);
969 realpage = (int)(from >> chip->page_shift);
970 page = realpage & chip->pagemask;
972 col = (int)(from & (mtd->writesize - 1));
973 chip->oob_poi = chip->buffers.oobrbuf;
979 bytes = min(mtd->writesize - col, readlen);
980 aligned = (bytes == mtd->writesize);
982 /* Is the current page in the buffer ? */
983 if (realpage != chip->pagebuf || oob) {
984 bufpoi = aligned ? buf : chip->buffers.databuf;
986 if (likely(sndcmd)) {
987 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
991 /* Now read the page into the buffer */
992 ret = chip->ecc.read_page(mtd, chip, bufpoi);
996 /* Transfer not aligned data */
998 chip->pagebuf = realpage;
999 memcpy(buf, chip->buffers.databuf + col, bytes);
1004 if (unlikely(oob)) {
1005 /* Raw mode does data:oob:data:oob */
1006 if (ops->mode != MTD_OOB_RAW)
1007 oob = nand_transfer_oob(chip, oob, ops);
1009 buf = nand_transfer_oob(chip, buf, ops);
1012 if (!(chip->options & NAND_NO_READRDY)) {
1014 * Apply delay or wait for ready/busy pin. Do
1015 * this before the AUTOINCR check, so no
1016 * problems arise if a chip which does auto
1017 * increment is marked as NOAUTOINCR by the
1020 if (!chip->dev_ready)
1021 udelay(chip->chip_delay);
1023 nand_wait_ready(mtd);
1026 memcpy(buf, chip->buffers.databuf + col, bytes);
1035 /* For subsequent reads align to page boundary. */
1037 /* Increment page address */
1040 page = realpage & chip->pagemask;
1041 /* Check, if we cross a chip boundary */
1044 chip->select_chip(mtd, -1);
1045 chip->select_chip(mtd, chipnr);
1048 /* Check, if the chip supports auto page increment
1049 * or if we have hit a block boundary.
1051 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1055 ops->retlen = ops->len - (size_t) readlen;
1060 if (mtd->ecc_stats.failed - stats.failed)
1063 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1067 * nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc
1068 * @mtd: MTD device structure
1069 * @from: offset to read from
1070 * @len: number of bytes to read
1071 * @retlen: pointer to variable to store the number of read bytes
1072 * @buf: the databuffer to put data
1074 * Get hold of the chip and call nand_do_read
1076 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1077 size_t *retlen, uint8_t *buf)
1079 struct nand_chip *chip = mtd->priv;
1082 /* Do not allow reads past end of device */
1083 if ((from + len) > mtd->size)
1088 nand_get_device(chip, mtd, FL_READING);
1090 chip->ops.len = len;
1091 chip->ops.datbuf = buf;
1092 chip->ops.oobbuf = NULL;
1094 ret = nand_do_read_ops(mtd, from, &chip->ops);
1096 nand_release_device(mtd);
1098 *retlen = chip->ops.retlen;
1103 * nand_read_oob_std - [REPLACABLE] the most common OOB data read function
1104 * @mtd: mtd info structure
1105 * @chip: nand chip info structure
1106 * @page: page number to read
1107 * @sndcmd: flag whether to issue read command or not
1109 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1110 int page, int sndcmd)
1113 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1116 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1121 * nand_read_oob_syndrome - [REPLACABLE] OOB data read function for HW ECC
1123 * @mtd: mtd info structure
1124 * @chip: nand chip info structure
1125 * @page: page number to read
1126 * @sndcmd: flag whether to issue read command or not
1128 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1129 int page, int sndcmd)
1131 uint8_t *buf = chip->oob_poi;
1132 int length = mtd->oobsize;
1133 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1134 int eccsize = chip->ecc.size;
1135 uint8_t *bufpoi = buf;
1136 int i, toread, sndrnd = 0, pos;
1138 chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1139 for (i = 0; i < chip->ecc.steps; i++) {
1141 pos = eccsize + i * (eccsize + chunk);
1142 if (mtd->writesize > 512)
1143 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1145 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1148 toread = min_t(int, length, chunk);
1149 chip->read_buf(mtd, bufpoi, toread);
1154 chip->read_buf(mtd, bufpoi, length);
1160 * nand_write_oob_std - [REPLACABLE] the most common OOB data write function
1161 * @mtd: mtd info structure
1162 * @chip: nand chip info structure
1163 * @page: page number to write
1165 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1169 const uint8_t *buf = chip->oob_poi;
1170 int length = mtd->oobsize;
1172 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1173 chip->write_buf(mtd, buf, length);
1174 /* Send command to program the OOB data */
1175 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1177 status = chip->waitfunc(mtd, chip);
1179 return status & NAND_STATUS_FAIL ? -EIO : 0;
1183 * nand_write_oob_syndrome - [REPLACABLE] OOB data write function for HW ECC
1184 * with syndrome - only for large page flash !
1185 * @mtd: mtd info structure
1186 * @chip: nand chip info structure
1187 * @page: page number to write
1189 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1190 struct nand_chip *chip, int page)
1192 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1193 int eccsize = chip->ecc.size, length = mtd->oobsize;
1194 int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1195 const uint8_t *bufpoi = chip->oob_poi;
1198 * data-ecc-data-ecc ... ecc-oob
1200 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1202 if (!chip->ecc.prepad && !chip->ecc.postpad) {
1203 pos = steps * (eccsize + chunk);
1206 pos = eccsize + chunk;
1208 chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1209 for (i = 0; i < steps; i++) {
1211 if (mtd->writesize <= 512) {
1212 uint32_t fill = 0xFFFFFFFF;
1216 int num = min_t(int, len, 4);
1217 chip->write_buf(mtd, (uint8_t *)&fill,
1222 pos = eccsize + i * (eccsize + chunk);
1223 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1227 len = min_t(int, length, chunk);
1228 chip->write_buf(mtd, bufpoi, len);
1233 chip->write_buf(mtd, bufpoi, length);
1235 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1236 status = chip->waitfunc(mtd, chip);
1238 return status & NAND_STATUS_FAIL ? -EIO : 0;
1242 * nand_do_read_oob - [Intern] NAND read out-of-band
1243 * @mtd: MTD device structure
1244 * @from: offset to read from
1245 * @ops: oob operations description structure
1247 * NAND read out-of-band data from the spare area
1249 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1250 struct mtd_oob_ops *ops)
1252 int page, realpage, chipnr, sndcmd = 1;
1253 struct nand_chip *chip = mtd->priv;
1254 int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1255 int readlen = ops->len;
1256 uint8_t *buf = ops->oobbuf;
1258 DEBUG(MTD_DEBUG_LEVEL3, "nand_read_oob: from = 0x%08Lx, len = %i\n",
1259 (unsigned long long)from, readlen);
1261 chipnr = (int)(from >> chip->chip_shift);
1262 chip->select_chip(mtd, chipnr);
1264 /* Shift to get page */
1265 realpage = (int)(from >> chip->page_shift);
1266 page = realpage & chip->pagemask;
1268 chip->oob_poi = chip->buffers.oobrbuf;
1271 sndcmd = chip->ecc.read_oob(mtd, chip, page, sndcmd);
1272 buf = nand_transfer_oob(chip, buf, ops);
1274 if (!(chip->options & NAND_NO_READRDY)) {
1276 * Apply delay or wait for ready/busy pin. Do this
1277 * before the AUTOINCR check, so no problems arise if a
1278 * chip which does auto increment is marked as
1279 * NOAUTOINCR by the board driver.
1281 if (!chip->dev_ready)
1282 udelay(chip->chip_delay);
1284 nand_wait_ready(mtd);
1287 readlen -= ops->ooblen;
1291 /* Increment page address */
1294 page = realpage & chip->pagemask;
1295 /* Check, if we cross a chip boundary */
1298 chip->select_chip(mtd, -1);
1299 chip->select_chip(mtd, chipnr);
1302 /* Check, if the chip supports auto page increment
1303 * or if we have hit a block boundary.
1305 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1309 ops->retlen = ops->len;
1314 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1315 * @mtd: MTD device structure
1316 * @from: offset to read from
1317 * @ops: oob operation description structure
1319 * NAND read data and/or out-of-band data
1321 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1322 struct mtd_oob_ops *ops)
1324 int (*read_page)(struct mtd_info *mtd, struct nand_chip *chip,
1325 uint8_t *buf) = NULL;
1326 struct nand_chip *chip = mtd->priv;
1327 int ret = -ENOTSUPP;
1331 /* Do not allow reads past end of device */
1332 if ((from + ops->len) > mtd->size) {
1333 DEBUG(MTD_DEBUG_LEVEL0, "nand_read_oob: "
1334 "Attempt read beyond end of device\n");
1338 nand_get_device(chip, mtd, FL_READING);
1346 /* Replace the read_page algorithm temporary */
1347 read_page = chip->ecc.read_page;
1348 chip->ecc.read_page = nand_read_page_raw;
1356 ret = nand_do_read_oob(mtd, from, ops);
1358 ret = nand_do_read_ops(mtd, from, ops);
1360 if (unlikely(ops->mode == MTD_OOB_RAW))
1361 chip->ecc.read_page = read_page;
1363 nand_release_device(mtd);
1369 * nand_write_page_raw - [Intern] raw page write function
1370 * @mtd: mtd info structure
1371 * @chip: nand chip info structure
1374 static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1377 chip->write_buf(mtd, buf, mtd->writesize);
1378 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1382 * nand_write_page_swecc - {REPLACABLE] software ecc based page write function
1383 * @mtd: mtd info structure
1384 * @chip: nand chip info structure
1387 static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1390 int i, eccsize = chip->ecc.size;
1391 int eccbytes = chip->ecc.bytes;
1392 int eccsteps = chip->ecc.steps;
1393 uint8_t *ecc_calc = chip->buffers.ecccalc;
1394 const uint8_t *p = buf;
1395 int *eccpos = chip->ecc.layout->eccpos;
1397 /* Software ecc calculation */
1398 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1399 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1401 for (i = 0; i < chip->ecc.total; i++)
1402 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1404 nand_write_page_raw(mtd, chip, buf);
1408 * nand_write_page_hwecc - {REPLACABLE] hardware ecc based page write function
1409 * @mtd: mtd info structure
1410 * @chip: nand chip info structure
1413 static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1416 int i, eccsize = chip->ecc.size;
1417 int eccbytes = chip->ecc.bytes;
1418 int eccsteps = chip->ecc.steps;
1419 uint8_t *ecc_calc = chip->buffers.ecccalc;
1420 const uint8_t *p = buf;
1421 int *eccpos = chip->ecc.layout->eccpos;
1423 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1424 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1425 chip->write_buf(mtd, p, eccsize);
1426 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1429 for (i = 0; i < chip->ecc.total; i++)
1430 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1432 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1436 * nand_write_page_syndrome - {REPLACABLE] hardware ecc syndrom based page write
1437 * @mtd: mtd info structure
1438 * @chip: nand chip info structure
1441 * The hw generator calculates the error syndrome automatically. Therefor
1442 * we need a special oob layout and handling.
1444 static void nand_write_page_syndrome(struct mtd_info *mtd,
1445 struct nand_chip *chip, const uint8_t *buf)
1447 int i, eccsize = chip->ecc.size;
1448 int eccbytes = chip->ecc.bytes;
1449 int eccsteps = chip->ecc.steps;
1450 const uint8_t *p = buf;
1451 uint8_t *oob = chip->oob_poi;
1453 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1455 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1456 chip->write_buf(mtd, p, eccsize);
1458 if (chip->ecc.prepad) {
1459 chip->write_buf(mtd, oob, chip->ecc.prepad);
1460 oob += chip->ecc.prepad;
1463 chip->ecc.calculate(mtd, p, oob);
1464 chip->write_buf(mtd, oob, eccbytes);
1467 if (chip->ecc.postpad) {
1468 chip->write_buf(mtd, oob, chip->ecc.postpad);
1469 oob += chip->ecc.postpad;
1473 /* Calculate remaining oob bytes */
1474 i = mtd->oobsize - (oob - chip->oob_poi);
1476 chip->write_buf(mtd, oob, i);
1480 * nand_write_page - [INTERNAL] write one page
1481 * @mtd: MTD device structure
1482 * @chip: NAND chip descriptor
1483 * @buf: the data to write
1484 * @page: page number to write
1485 * @cached: cached programming
1487 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1488 const uint8_t *buf, int page, int cached)
1492 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
1494 chip->ecc.write_page(mtd, chip, buf);
1497 * Cached progamming disabled for now, Not sure if its worth the
1498 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
1502 if (!cached || !(chip->options & NAND_CACHEPRG)) {
1504 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1505 status = chip->waitfunc(mtd, chip);
1507 * See if operation failed and additional status checks are
1510 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
1511 status = chip->errstat(mtd, chip, FL_WRITING, status,
1514 if (status & NAND_STATUS_FAIL)
1517 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
1518 status = chip->waitfunc(mtd, chip);
1521 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
1522 /* Send command to read back the data */
1523 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1525 if (chip->verify_buf(mtd, buf, mtd->writesize))
1532 * nand_fill_oob - [Internal] Transfer client buffer to oob
1533 * @chip: nand chip structure
1534 * @oob: oob data buffer
1535 * @ops: oob ops structure
1537 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob,
1538 struct mtd_oob_ops *ops)
1540 size_t len = ops->ooblen;
1546 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
1549 case MTD_OOB_AUTO: {
1550 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1551 uint32_t boffs = 0, woffs = ops->ooboffs;
1554 for(; free->length && len; free++, len -= bytes) {
1555 /* Write request not from offset 0 ? */
1556 if (unlikely(woffs)) {
1557 if (woffs >= free->length) {
1558 woffs -= free->length;
1561 boffs = free->offset + woffs;
1562 bytes = min_t(size_t, len,
1563 (free->length - woffs));
1566 bytes = min_t(size_t, len, free->length);
1567 boffs = free->offset;
1569 memcpy(chip->oob_poi + woffs, oob, bytes);
1580 #define NOTALIGNED(x) (x & (mtd->writesize-1)) != 0
1583 * nand_do_write_ops - [Internal] NAND write with ECC
1584 * @mtd: MTD device structure
1585 * @to: offset to write to
1586 * @ops: oob operations description structure
1588 * NAND write with ECC
1590 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
1591 struct mtd_oob_ops *ops)
1593 int chipnr, realpage, page, blockmask;
1594 struct nand_chip *chip = mtd->priv;
1595 uint32_t writelen = ops->len;
1596 uint8_t *oob = ops->oobbuf;
1597 uint8_t *buf = ops->datbuf;
1598 int bytes = mtd->writesize;
1603 /* reject writes, which are not page aligned */
1604 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
1605 printk(KERN_NOTICE "nand_write: "
1606 "Attempt to write not page aligned data\n");
1613 chipnr = (int)(to >> chip->chip_shift);
1614 chip->select_chip(mtd, chipnr);
1616 /* Check, if it is write protected */
1617 if (nand_check_wp(mtd))
1620 realpage = (int)(to >> chip->page_shift);
1621 page = realpage & chip->pagemask;
1622 blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1624 /* Invalidate the page cache, when we write to the cached page */
1625 if (to <= (chip->pagebuf << chip->page_shift) &&
1626 (chip->pagebuf << chip->page_shift) < (to + ops->len))
1629 chip->oob_poi = chip->buffers.oobwbuf;
1632 int cached = writelen > bytes && page != blockmask;
1635 oob = nand_fill_oob(chip, oob, ops);
1637 ret = nand_write_page(mtd, chip, buf, page, cached);
1648 page = realpage & chip->pagemask;
1649 /* Check, if we cross a chip boundary */
1652 chip->select_chip(mtd, -1);
1653 chip->select_chip(mtd, chipnr);
1658 memset(chip->oob_poi, 0xff, mtd->oobsize);
1660 ops->retlen = ops->len - writelen;
1665 * nand_write - [MTD Interface] NAND write with ECC
1666 * @mtd: MTD device structure
1667 * @to: offset to write to
1668 * @len: number of bytes to write
1669 * @retlen: pointer to variable to store the number of written bytes
1670 * @buf: the data to write
1672 * NAND write with ECC
1674 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
1675 size_t *retlen, const uint8_t *buf)
1677 struct nand_chip *chip = mtd->priv;
1680 /* Do not allow reads past end of device */
1681 if ((to + len) > mtd->size)
1686 nand_get_device(chip, mtd, FL_WRITING);
1688 chip->ops.len = len;
1689 chip->ops.datbuf = (uint8_t *)buf;
1690 chip->ops.oobbuf = NULL;
1692 ret = nand_do_write_ops(mtd, to, &chip->ops);
1694 nand_release_device(mtd);
1696 *retlen = chip->ops.retlen;
1701 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
1702 * @mtd: MTD device structure
1703 * @to: offset to write to
1704 * @ops: oob operation description structure
1706 * NAND write out-of-band
1708 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
1709 struct mtd_oob_ops *ops)
1711 int chipnr, page, status;
1712 struct nand_chip *chip = mtd->priv;
1714 DEBUG(MTD_DEBUG_LEVEL3, "nand_write_oob: to = 0x%08x, len = %i\n",
1715 (unsigned int)to, (int)ops->len);
1717 /* Do not allow write past end of page */
1718 if ((ops->ooboffs + ops->len) > mtd->oobsize) {
1719 DEBUG(MTD_DEBUG_LEVEL0, "nand_write_oob: "
1720 "Attempt to write past end of page\n");
1724 chipnr = (int)(to >> chip->chip_shift);
1725 chip->select_chip(mtd, chipnr);
1727 /* Shift to get page */
1728 page = (int)(to >> chip->page_shift);
1731 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
1732 * of my DiskOnChip 2000 test units) will clear the whole data page too
1733 * if we don't do this. I have no clue why, but I seem to have 'fixed'
1734 * it in the doc2000 driver in August 1999. dwmw2.
1736 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1738 /* Check, if it is write protected */
1739 if (nand_check_wp(mtd))
1742 /* Invalidate the page cache, if we write to the cached page */
1743 if (page == chip->pagebuf)
1746 chip->oob_poi = chip->buffers.oobwbuf;
1747 memset(chip->oob_poi, 0xff, mtd->oobsize);
1748 nand_fill_oob(chip, ops->oobbuf, ops);
1749 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
1750 memset(chip->oob_poi, 0xff, mtd->oobsize);
1755 ops->retlen = ops->len;
1761 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
1762 * @mtd: MTD device structure
1763 * @to: offset to write to
1764 * @ops: oob operation description structure
1766 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
1767 struct mtd_oob_ops *ops)
1769 void (*write_page)(struct mtd_info *mtd, struct nand_chip *chip,
1770 const uint8_t *buf) = NULL;
1771 struct nand_chip *chip = mtd->priv;
1772 int ret = -ENOTSUPP;
1776 /* Do not allow writes past end of device */
1777 if ((to + ops->len) > mtd->size) {
1778 DEBUG(MTD_DEBUG_LEVEL0, "nand_read_oob: "
1779 "Attempt read beyond end of device\n");
1783 nand_get_device(chip, mtd, FL_WRITING);
1791 /* Replace the write_page algorithm temporary */
1792 write_page = chip->ecc.write_page;
1793 chip->ecc.write_page = nand_write_page_raw;
1801 ret = nand_do_write_oob(mtd, to, ops);
1803 ret = nand_do_write_ops(mtd, to, ops);
1805 if (unlikely(ops->mode == MTD_OOB_RAW))
1806 chip->ecc.write_page = write_page;
1808 nand_release_device(mtd);
1813 * single_erease_cmd - [GENERIC] NAND standard block erase command function
1814 * @mtd: MTD device structure
1815 * @page: the page address of the block which will be erased
1817 * Standard erase command for NAND chips
1819 static void single_erase_cmd(struct mtd_info *mtd, int page)
1821 struct nand_chip *chip = mtd->priv;
1822 /* Send commands to erase a block */
1823 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
1824 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1828 * multi_erease_cmd - [GENERIC] AND specific block erase command function
1829 * @mtd: MTD device structure
1830 * @page: the page address of the block which will be erased
1832 * AND multi block erase command function
1833 * Erase 4 consecutive blocks
1835 static void multi_erase_cmd(struct mtd_info *mtd, int page)
1837 struct nand_chip *chip = mtd->priv;
1838 /* Send commands to erase a block */
1839 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
1840 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
1841 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
1842 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
1843 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1847 * nand_erase - [MTD Interface] erase block(s)
1848 * @mtd: MTD device structure
1849 * @instr: erase instruction
1851 * Erase one ore more blocks
1853 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
1855 return nand_erase_nand(mtd, instr, 0);
1858 #define BBT_PAGE_MASK 0xffffff3f
1860 * nand_erase_nand - [Internal] erase block(s)
1861 * @mtd: MTD device structure
1862 * @instr: erase instruction
1863 * @allowbbt: allow erasing the bbt area
1865 * Erase one ore more blocks
1867 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
1870 int page, len, status, pages_per_block, ret, chipnr;
1871 struct nand_chip *chip = mtd->priv;
1872 int rewrite_bbt[NAND_MAX_CHIPS]={0};
1873 unsigned int bbt_masked_page = 0xffffffff;
1875 DEBUG(MTD_DEBUG_LEVEL3, "nand_erase: start = 0x%08x, len = %i\n",
1876 (unsigned int)instr->addr, (unsigned int)instr->len);
1878 /* Start address must align on block boundary */
1879 if (instr->addr & ((1 << chip->phys_erase_shift) - 1)) {
1880 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: Unaligned address\n");
1884 /* Length must align on block boundary */
1885 if (instr->len & ((1 << chip->phys_erase_shift) - 1)) {
1886 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: "
1887 "Length not block aligned\n");
1891 /* Do not allow erase past end of device */
1892 if ((instr->len + instr->addr) > mtd->size) {
1893 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: "
1894 "Erase past end of device\n");
1898 instr->fail_addr = 0xffffffff;
1900 /* Grab the lock and see if the device is available */
1901 nand_get_device(chip, mtd, FL_ERASING);
1903 /* Shift to get first page */
1904 page = (int)(instr->addr >> chip->page_shift);
1905 chipnr = (int)(instr->addr >> chip->chip_shift);
1907 /* Calculate pages in each block */
1908 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
1910 /* Select the NAND device */
1911 chip->select_chip(mtd, chipnr);
1913 /* Check, if it is write protected */
1914 if (nand_check_wp(mtd)) {
1915 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: "
1916 "Device is write protected!!!\n");
1917 instr->state = MTD_ERASE_FAILED;
1922 * If BBT requires refresh, set the BBT page mask to see if the BBT
1923 * should be rewritten. Otherwise the mask is set to 0xffffffff which
1924 * can not be matched. This is also done when the bbt is actually
1925 * erased to avoid recusrsive updates
1927 if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
1928 bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
1930 /* Loop through the pages */
1933 instr->state = MTD_ERASING;
1937 * heck if we have a bad block, we do not erase bad blocks !
1939 if (nand_block_checkbad(mtd, ((loff_t) page) <<
1940 chip->page_shift, 0, allowbbt)) {
1941 printk(KERN_WARNING "nand_erase: attempt to erase a "
1942 "bad block at page 0x%08x\n", page);
1943 instr->state = MTD_ERASE_FAILED;
1948 * Invalidate the page cache, if we erase the block which
1949 * contains the current cached page
1951 if (page <= chip->pagebuf && chip->pagebuf <
1952 (page + pages_per_block))
1955 chip->erase_cmd(mtd, page & chip->pagemask);
1957 status = chip->waitfunc(mtd, chip);
1960 * See if operation failed and additional status checks are
1963 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
1964 status = chip->errstat(mtd, chip, FL_ERASING,
1967 /* See if block erase succeeded */
1968 if (status & NAND_STATUS_FAIL) {
1969 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: "
1970 "Failed erase, page 0x%08x\n", page);
1971 instr->state = MTD_ERASE_FAILED;
1972 instr->fail_addr = (page << chip->page_shift);
1977 * If BBT requires refresh, set the BBT rewrite flag to the
1980 if (bbt_masked_page != 0xffffffff &&
1981 (page & BBT_PAGE_MASK) == bbt_masked_page)
1982 rewrite_bbt[chipnr] = (page << chip->page_shift);
1984 /* Increment page address and decrement length */
1985 len -= (1 << chip->phys_erase_shift);
1986 page += pages_per_block;
1988 /* Check, if we cross a chip boundary */
1989 if (len && !(page & chip->pagemask)) {
1991 chip->select_chip(mtd, -1);
1992 chip->select_chip(mtd, chipnr);
1995 * If BBT requires refresh and BBT-PERCHIP, set the BBT
1996 * page mask to see if this BBT should be rewritten
1998 if (bbt_masked_page != 0xffffffff &&
1999 (chip->bbt_td->options & NAND_BBT_PERCHIP))
2000 bbt_masked_page = chip->bbt_td->pages[chipnr] &
2004 instr->state = MTD_ERASE_DONE;
2008 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2009 /* Do call back function */
2011 mtd_erase_callback(instr);
2013 /* Deselect and wake up anyone waiting on the device */
2014 nand_release_device(mtd);
2017 * If BBT requires refresh and erase was successful, rewrite any
2018 * selected bad block tables
2020 if (bbt_masked_page == 0xffffffff || ret)
2023 for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
2024 if (!rewrite_bbt[chipnr])
2026 /* update the BBT for chip */
2027 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase_nand: nand_update_bbt "
2028 "(%d:0x%0x 0x%0x)\n", chipnr, rewrite_bbt[chipnr],
2029 chip->bbt_td->pages[chipnr]);
2030 nand_update_bbt(mtd, rewrite_bbt[chipnr]);
2033 /* Return more or less happy */
2038 * nand_sync - [MTD Interface] sync
2039 * @mtd: MTD device structure
2041 * Sync is actually a wait for chip ready function
2043 static void nand_sync(struct mtd_info *mtd)
2045 struct nand_chip *chip = mtd->priv;
2047 DEBUG(MTD_DEBUG_LEVEL3, "nand_sync: called\n");
2049 /* Grab the lock and see if the device is available */
2050 nand_get_device(chip, mtd, FL_SYNCING);
2051 /* Release it and go back */
2052 nand_release_device(mtd);
2056 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2057 * @mtd: MTD device structure
2058 * @offs: offset relative to mtd start
2060 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2062 /* Check for invalid offset */
2063 if (offs > mtd->size)
2066 return nand_block_checkbad(mtd, offs, 1, 0);
2070 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2071 * @mtd: MTD device structure
2072 * @ofs: offset relative to mtd start
2074 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2076 struct nand_chip *chip = mtd->priv;
2079 if ((ret = nand_block_isbad(mtd, ofs))) {
2080 /* If it was bad already, return success and do nothing. */
2086 return chip->block_markbad(mtd, ofs);
2090 * nand_suspend - [MTD Interface] Suspend the NAND flash
2091 * @mtd: MTD device structure
2093 static int nand_suspend(struct mtd_info *mtd)
2095 struct nand_chip *chip = mtd->priv;
2097 return nand_get_device(chip, mtd, FL_PM_SUSPENDED);
2101 * nand_resume - [MTD Interface] Resume the NAND flash
2102 * @mtd: MTD device structure
2104 static void nand_resume(struct mtd_info *mtd)
2106 struct nand_chip *chip = mtd->priv;
2108 if (chip->state == FL_PM_SUSPENDED)
2109 nand_release_device(mtd);
2111 printk(KERN_ERR "nand_resume() called for a chip which is not "
2112 "in suspended state\n");
2116 * Set default functions
2118 static void nand_set_defaults(struct nand_chip *chip, int busw)
2120 /* check for proper chip_delay setup, set 20us if not */
2121 if (!chip->chip_delay)
2122 chip->chip_delay = 20;
2124 /* check, if a user supplied command function given */
2125 if (chip->cmdfunc == NULL)
2126 chip->cmdfunc = nand_command;
2128 /* check, if a user supplied wait function given */
2129 if (chip->waitfunc == NULL)
2130 chip->waitfunc = nand_wait;
2132 if (!chip->select_chip)
2133 chip->select_chip = nand_select_chip;
2134 if (!chip->read_byte)
2135 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2136 if (!chip->read_word)
2137 chip->read_word = nand_read_word;
2138 if (!chip->block_bad)
2139 chip->block_bad = nand_block_bad;
2140 if (!chip->block_markbad)
2141 chip->block_markbad = nand_default_block_markbad;
2142 if (!chip->write_buf)
2143 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2144 if (!chip->read_buf)
2145 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2146 if (!chip->verify_buf)
2147 chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
2148 if (!chip->scan_bbt)
2149 chip->scan_bbt = nand_default_bbt;
2151 if (!chip->controller) {
2152 chip->controller = &chip->hwcontrol;
2153 spin_lock_init(&chip->controller->lock);
2154 init_waitqueue_head(&chip->controller->wq);
2160 * Get the flash and manufacturer id and lookup if the type is supported
2162 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
2163 struct nand_chip *chip,
2164 int busw, int *maf_id)
2166 struct nand_flash_dev *type = NULL;
2167 int i, dev_id, maf_idx;
2169 /* Select the device */
2170 chip->select_chip(mtd, 0);
2172 /* Send the command for reading device ID */
2173 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2175 /* Read manufacturer and device IDs */
2176 *maf_id = chip->read_byte(mtd);
2177 dev_id = chip->read_byte(mtd);
2179 /* Lookup the flash id */
2180 for (i = 0; nand_flash_ids[i].name != NULL; i++) {
2181 if (dev_id == nand_flash_ids[i].id) {
2182 type = &nand_flash_ids[i];
2188 return ERR_PTR(-ENODEV);
2191 mtd->name = type->name;
2193 chip->chipsize = type->chipsize << 20;
2195 /* Newer devices have all the information in additional id bytes */
2196 if (!type->pagesize) {
2198 /* The 3rd id byte contains non relevant data ATM */
2199 extid = chip->read_byte(mtd);
2200 /* The 4th id byte is the important one */
2201 extid = chip->read_byte(mtd);
2203 mtd->writesize = 1024 << (extid & 0x3);
2206 mtd->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
2208 /* Calc blocksize. Blocksize is multiples of 64KiB */
2209 mtd->erasesize = (64 * 1024) << (extid & 0x03);
2211 /* Get buswidth information */
2212 busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
2216 * Old devices have chip data hardcoded in the device id table
2218 mtd->erasesize = type->erasesize;
2219 mtd->writesize = type->pagesize;
2220 mtd->oobsize = mtd->writesize / 32;
2221 busw = type->options & NAND_BUSWIDTH_16;
2224 /* Try to identify manufacturer */
2225 for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_id++) {
2226 if (nand_manuf_ids[maf_idx].id == *maf_id)
2231 * Check, if buswidth is correct. Hardware drivers should set
2234 if (busw != (chip->options & NAND_BUSWIDTH_16)) {
2235 printk(KERN_INFO "NAND device: Manufacturer ID:"
2236 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
2237 dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
2238 printk(KERN_WARNING "NAND bus width %d instead %d bit\n",
2239 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
2241 return ERR_PTR(-EINVAL);
2244 /* Calculate the address shift from the page size */
2245 chip->page_shift = ffs(mtd->writesize) - 1;
2246 /* Convert chipsize to number of pages per chip -1. */
2247 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2249 chip->bbt_erase_shift = chip->phys_erase_shift =
2250 ffs(mtd->erasesize) - 1;
2251 chip->chip_shift = ffs(chip->chipsize) - 1;
2253 /* Set the bad block position */
2254 chip->badblockpos = mtd->writesize > 512 ?
2255 NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS;
2257 /* Get chip options, preserve non chip based options */
2258 chip->options &= ~NAND_CHIPOPTIONS_MSK;
2259 chip->options |= type->options & NAND_CHIPOPTIONS_MSK;
2262 * Set chip as a default. Board drivers can override it, if necessary
2264 chip->options |= NAND_NO_AUTOINCR;
2266 /* Check if chip is a not a samsung device. Do not clear the
2267 * options for chips which are not having an extended id.
2269 if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
2270 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
2272 /* Check for AND chips with 4 page planes */
2273 if (chip->options & NAND_4PAGE_ARRAY)
2274 chip->erase_cmd = multi_erase_cmd;
2276 chip->erase_cmd = single_erase_cmd;
2278 /* Do not replace user supplied command function ! */
2279 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
2280 chip->cmdfunc = nand_command_lp;
2282 printk(KERN_INFO "NAND device: Manufacturer ID:"
2283 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, dev_id,
2284 nand_manuf_ids[maf_idx].name, type->name);
2289 /* module_text_address() isn't exported, and it's mostly a pointless
2290 test if this is a module _anyway_ -- they'd have to try _really_ hard
2291 to call us from in-kernel code if the core NAND support is modular. */
2293 #define caller_is_module() (1)
2295 #define caller_is_module() \
2296 module_text_address((unsigned long)__builtin_return_address(0))
2300 * nand_scan - [NAND Interface] Scan for the NAND device
2301 * @mtd: MTD device structure
2302 * @maxchips: Number of chips to scan for
2304 * This fills out all the uninitialized function pointers
2305 * with the defaults.
2306 * The flash ID is read and the mtd/chip structures are
2307 * filled with the appropriate values.
2308 * The mtd->owner field must be set to the module of the caller
2311 int nand_scan(struct mtd_info *mtd, int maxchips)
2313 int i, busw, nand_maf_id;
2314 struct nand_chip *chip = mtd->priv;
2315 struct nand_flash_dev *type;
2317 /* Many callers got this wrong, so check for it for a while... */
2318 if (!mtd->owner && caller_is_module()) {
2319 printk(KERN_CRIT "nand_scan() called with NULL mtd->owner!\n");
2323 /* Get buswidth to select the correct functions */
2324 busw = chip->options & NAND_BUSWIDTH_16;
2325 /* Set the default functions */
2326 nand_set_defaults(chip, busw);
2328 /* Read the flash type */
2329 type = nand_get_flash_type(mtd, chip, busw, &nand_maf_id);
2332 printk(KERN_WARNING "No NAND device found!!!\n");
2333 chip->select_chip(mtd, -1);
2334 return PTR_ERR(type);
2337 /* Check for a chip array */
2338 for (i = 1; i < maxchips; i++) {
2339 chip->select_chip(mtd, i);
2340 /* Send the command for reading device ID */
2341 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2342 /* Read manufacturer and device IDs */
2343 if (nand_maf_id != chip->read_byte(mtd) ||
2344 type->id != chip->read_byte(mtd))
2348 printk(KERN_INFO "%d NAND chips detected\n", i);
2350 /* Store the number of chips and calc total size for mtd */
2352 mtd->size = i * chip->chipsize;
2354 /* Preset the internal oob write buffer */
2355 memset(chip->buffers.oobwbuf, 0xff, mtd->oobsize);
2358 * If no default placement scheme is given, select an appropriate one
2360 if (!chip->ecc.layout) {
2361 switch (mtd->oobsize) {
2363 chip->ecc.layout = &nand_oob_8;
2366 chip->ecc.layout = &nand_oob_16;
2369 chip->ecc.layout = &nand_oob_64;
2372 printk(KERN_WARNING "No oob scheme defined for "
2373 "oobsize %d\n", mtd->oobsize);
2379 * check ECC mode, default to software if 3byte/512byte hardware ECC is
2380 * selected and we have 256 byte pagesize fallback to software ECC
2382 switch (chip->ecc.mode) {
2384 /* Use standard hwecc read page function ? */
2385 if (!chip->ecc.read_page)
2386 chip->ecc.read_page = nand_read_page_hwecc;
2387 if (!chip->ecc.write_page)
2388 chip->ecc.write_page = nand_write_page_hwecc;
2389 if (!chip->ecc.read_oob)
2390 chip->ecc.read_oob = nand_read_oob_std;
2391 if (!chip->ecc.write_oob)
2392 chip->ecc.write_oob = nand_write_oob_std;
2394 case NAND_ECC_HW_SYNDROME:
2395 if (!chip->ecc.calculate || !chip->ecc.correct ||
2397 printk(KERN_WARNING "No ECC functions supplied, "
2398 "Hardware ECC not possible\n");
2401 /* Use standard syndrome read/write page function ? */
2402 if (!chip->ecc.read_page)
2403 chip->ecc.read_page = nand_read_page_syndrome;
2404 if (!chip->ecc.write_page)
2405 chip->ecc.write_page = nand_write_page_syndrome;
2406 if (!chip->ecc.read_oob)
2407 chip->ecc.read_oob = nand_read_oob_syndrome;
2408 if (!chip->ecc.write_oob)
2409 chip->ecc.write_oob = nand_write_oob_syndrome;
2411 if (mtd->writesize >= chip->ecc.size)
2413 printk(KERN_WARNING "%d byte HW ECC not possible on "
2414 "%d byte page size, fallback to SW ECC\n",
2415 chip->ecc.size, mtd->writesize);
2416 chip->ecc.mode = NAND_ECC_SOFT;
2419 chip->ecc.calculate = nand_calculate_ecc;
2420 chip->ecc.correct = nand_correct_data;
2421 chip->ecc.read_page = nand_read_page_swecc;
2422 chip->ecc.write_page = nand_write_page_swecc;
2423 chip->ecc.read_oob = nand_read_oob_std;
2424 chip->ecc.write_oob = nand_write_oob_std;
2425 chip->ecc.size = 256;
2426 chip->ecc.bytes = 3;
2430 printk(KERN_WARNING "NAND_ECC_NONE selected by board driver. "
2431 "This is not recommended !!\n");
2432 chip->ecc.read_page = nand_read_page_raw;
2433 chip->ecc.write_page = nand_write_page_raw;
2434 chip->ecc.read_oob = nand_read_oob_std;
2435 chip->ecc.write_oob = nand_write_oob_std;
2436 chip->ecc.size = mtd->writesize;
2437 chip->ecc.bytes = 0;
2440 printk(KERN_WARNING "Invalid NAND_ECC_MODE %d\n",
2446 * The number of bytes available for a client to place data into
2447 * the out of band area
2449 chip->ecc.layout->oobavail = 0;
2450 for (i = 0; chip->ecc.layout->oobfree[i].length; i++)
2451 chip->ecc.layout->oobavail +=
2452 chip->ecc.layout->oobfree[i].length;
2455 * Set the number of read / write steps for one page depending on ECC
2458 chip->ecc.steps = mtd->writesize / chip->ecc.size;
2459 if(chip->ecc.steps * chip->ecc.size != mtd->writesize) {
2460 printk(KERN_WARNING "Invalid ecc parameters\n");
2463 chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
2465 /* Initialize state */
2466 chip->state = FL_READY;
2468 /* De-select the device */
2469 chip->select_chip(mtd, -1);
2471 /* Invalidate the pagebuffer reference */
2474 /* Fill in remaining MTD driver data */
2475 mtd->type = MTD_NANDFLASH;
2476 mtd->flags = MTD_CAP_NANDFLASH;
2477 mtd->ecctype = MTD_ECC_SW;
2478 mtd->erase = nand_erase;
2480 mtd->unpoint = NULL;
2481 mtd->read = nand_read;
2482 mtd->write = nand_write;
2483 mtd->read_oob = nand_read_oob;
2484 mtd->write_oob = nand_write_oob;
2485 mtd->sync = nand_sync;
2488 mtd->suspend = nand_suspend;
2489 mtd->resume = nand_resume;
2490 mtd->block_isbad = nand_block_isbad;
2491 mtd->block_markbad = nand_block_markbad;
2493 /* propagate ecc.layout to mtd_info */
2494 mtd->ecclayout = chip->ecc.layout;
2496 /* Check, if we should skip the bad block table scan */
2497 if (chip->options & NAND_SKIP_BBTSCAN)
2500 /* Build bad block table */
2501 return chip->scan_bbt(mtd);
2505 * nand_release - [NAND Interface] Free resources held by the NAND device
2506 * @mtd: MTD device structure
2508 void nand_release(struct mtd_info *mtd)
2510 struct nand_chip *chip = mtd->priv;
2512 #ifdef CONFIG_MTD_PARTITIONS
2513 /* Deregister partitions */
2514 del_mtd_partitions(mtd);
2516 /* Deregister the device */
2517 del_mtd_device(mtd);
2519 /* Free bad block table memory */
2523 EXPORT_SYMBOL_GPL(nand_scan);
2524 EXPORT_SYMBOL_GPL(nand_release);
2526 static int __init nand_base_init(void)
2528 led_trigger_register_simple("nand-disk", &nand_led_trigger);
2532 static void __exit nand_base_exit(void)
2534 led_trigger_unregister_simple(nand_led_trigger);
2537 module_init(nand_base_init);
2538 module_exit(nand_base_exit);
2540 MODULE_LICENSE("GPL");
2541 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>");
2542 MODULE_DESCRIPTION("Generic NAND flash driver code");