2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6 #include <linux/magic.h> /* STACK_END_MAGIC */
7 #include <linux/sched.h> /* test_thread_flag(), ... */
8 #include <linux/kdebug.h> /* oops_begin/end, ... */
9 #include <linux/module.h> /* search_exception_table */
10 #include <linux/bootmem.h> /* max_low_pfn */
11 #include <linux/kprobes.h> /* __kprobes, ... */
12 #include <linux/mmiotrace.h> /* kmmio_handler, ... */
13 #include <linux/perf_counter.h> /* perf_swcounter_event */
15 #include <asm/traps.h> /* dotraplinkage, ... */
16 #include <asm/pgalloc.h> /* pgd_*(), ... */
17 #include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
20 * Page fault error code bits:
22 * bit 0 == 0: no page found 1: protection fault
23 * bit 1 == 0: read access 1: write access
24 * bit 2 == 0: kernel-mode access 1: user-mode access
25 * bit 3 == 1: use of reserved bit detected
26 * bit 4 == 1: fault was an instruction fetch
28 enum x86_pf_error_code {
38 * Returns 0 if mmiotrace is disabled, or if the fault is not
39 * handled by mmiotrace:
41 static inline int kmmio_fault(struct pt_regs *regs, unsigned long addr)
43 if (unlikely(is_kmmio_active()))
44 if (kmmio_handler(regs, addr) == 1)
49 static inline int notify_page_fault(struct pt_regs *regs)
53 /* kprobe_running() needs smp_processor_id() */
54 if (kprobes_built_in() && !user_mode_vm(regs)) {
56 if (kprobe_running() && kprobe_fault_handler(regs, 14))
69 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
70 * Check that here and ignore it.
74 * Sometimes the CPU reports invalid exceptions on prefetch.
75 * Check that here and ignore it.
77 * Opcode checker based on code by Richard Brunner.
80 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
81 unsigned char opcode, int *prefetch)
83 unsigned char instr_hi = opcode & 0xf0;
84 unsigned char instr_lo = opcode & 0x0f;
90 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
91 * In X86_64 long mode, the CPU will signal invalid
92 * opcode if some of these prefixes are present so
93 * X86_64 will never get here anyway
95 return ((instr_lo & 7) == 0x6);
99 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
100 * Need to figure out under what instruction mode the
101 * instruction was issued. Could check the LDT for lm,
102 * but for now it's good enough to assume that long
103 * mode only uses well known segments or kernel.
105 return (!user_mode(regs)) || (regs->cs == __USER_CS);
108 /* 0x64 thru 0x67 are valid prefixes in all modes. */
109 return (instr_lo & 0xC) == 0x4;
111 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
112 return !instr_lo || (instr_lo>>1) == 1;
114 /* Prefetch instruction is 0x0F0D or 0x0F18 */
115 if (probe_kernel_address(instr, opcode))
118 *prefetch = (instr_lo == 0xF) &&
119 (opcode == 0x0D || opcode == 0x18);
127 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
129 unsigned char *max_instr;
130 unsigned char *instr;
134 * If it was a exec (instruction fetch) fault on NX page, then
135 * do not ignore the fault:
137 if (error_code & PF_INSTR)
140 instr = (void *)convert_ip_to_linear(current, regs);
141 max_instr = instr + 15;
143 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
146 while (instr < max_instr) {
147 unsigned char opcode;
149 if (probe_kernel_address(instr, opcode))
154 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
161 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
162 struct task_struct *tsk)
166 info.si_signo = si_signo;
168 info.si_code = si_code;
169 info.si_addr = (void __user *)address;
171 force_sig_info(si_signo, &info, tsk);
174 DEFINE_SPINLOCK(pgd_lock);
178 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
180 unsigned index = pgd_index(address);
186 pgd_k = init_mm.pgd + index;
188 if (!pgd_present(*pgd_k))
192 * set_pgd(pgd, *pgd_k); here would be useless on PAE
193 * and redundant with the set_pmd() on non-PAE. As would
196 pud = pud_offset(pgd, address);
197 pud_k = pud_offset(pgd_k, address);
198 if (!pud_present(*pud_k))
201 pmd = pmd_offset(pud, address);
202 pmd_k = pmd_offset(pud_k, address);
203 if (!pmd_present(*pmd_k))
206 if (!pmd_present(*pmd))
207 set_pmd(pmd, *pmd_k);
209 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
214 void vmalloc_sync_all(void)
216 unsigned long address;
218 if (SHARED_KERNEL_PMD)
221 for (address = VMALLOC_START & PMD_MASK;
222 address >= TASK_SIZE && address < FIXADDR_TOP;
223 address += PMD_SIZE) {
228 spin_lock_irqsave(&pgd_lock, flags);
229 list_for_each_entry(page, &pgd_list, lru) {
230 if (!vmalloc_sync_one(page_address(page), address))
233 spin_unlock_irqrestore(&pgd_lock, flags);
240 * Handle a fault on the vmalloc or module mapping area
242 static noinline int vmalloc_fault(unsigned long address)
244 unsigned long pgd_paddr;
248 /* Make sure we are in vmalloc area: */
249 if (!(address >= VMALLOC_START && address < VMALLOC_END))
253 * Synchronize this task's top level page-table
254 * with the 'reference' page table.
256 * Do _not_ use "current" here. We might be inside
257 * an interrupt in the middle of a task switch..
259 pgd_paddr = read_cr3();
260 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
264 pte_k = pte_offset_kernel(pmd_k, address);
265 if (!pte_present(*pte_k))
272 * Did it hit the DOS screen memory VA from vm86 mode?
275 check_v8086_mode(struct pt_regs *regs, unsigned long address,
276 struct task_struct *tsk)
280 if (!v8086_mode(regs))
283 bit = (address - 0xA0000) >> PAGE_SHIFT;
285 tsk->thread.screen_bitmap |= 1 << bit;
288 static void dump_pagetable(unsigned long address)
290 __typeof__(pte_val(__pte(0))) page;
293 page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT];
295 #ifdef CONFIG_X86_PAE
296 printk("*pdpt = %016Lx ", page);
297 if ((page >> PAGE_SHIFT) < max_low_pfn
298 && page & _PAGE_PRESENT) {
300 page = ((__typeof__(page) *) __va(page))[(address >> PMD_SHIFT)
301 & (PTRS_PER_PMD - 1)];
302 printk(KERN_CONT "*pde = %016Lx ", page);
306 printk("*pde = %08lx ", page);
310 * We must not directly access the pte in the highpte
311 * case if the page table is located in highmem.
312 * And let's rather not kmap-atomic the pte, just in case
313 * it's allocated already:
315 if ((page >> PAGE_SHIFT) < max_low_pfn
316 && (page & _PAGE_PRESENT)
317 && !(page & _PAGE_PSE)) {
320 page = ((__typeof__(page) *) __va(page))[(address >> PAGE_SHIFT)
321 & (PTRS_PER_PTE - 1)];
322 printk("*pte = %0*Lx ", sizeof(page)*2, (u64)page);
328 #else /* CONFIG_X86_64: */
330 void vmalloc_sync_all(void)
332 unsigned long address;
334 for (address = VMALLOC_START & PGDIR_MASK; address <= VMALLOC_END;
335 address += PGDIR_SIZE) {
337 const pgd_t *pgd_ref = pgd_offset_k(address);
341 if (pgd_none(*pgd_ref))
344 spin_lock_irqsave(&pgd_lock, flags);
345 list_for_each_entry(page, &pgd_list, lru) {
347 pgd = (pgd_t *)page_address(page) + pgd_index(address);
349 set_pgd(pgd, *pgd_ref);
351 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
353 spin_unlock_irqrestore(&pgd_lock, flags);
360 * Handle a fault on the vmalloc area
362 * This assumes no large pages in there.
364 static noinline int vmalloc_fault(unsigned long address)
366 pgd_t *pgd, *pgd_ref;
367 pud_t *pud, *pud_ref;
368 pmd_t *pmd, *pmd_ref;
369 pte_t *pte, *pte_ref;
371 /* Make sure we are in vmalloc area: */
372 if (!(address >= VMALLOC_START && address < VMALLOC_END))
376 * Copy kernel mappings over when needed. This can also
377 * happen within a race in page table update. In the later
380 pgd = pgd_offset(current->active_mm, address);
381 pgd_ref = pgd_offset_k(address);
382 if (pgd_none(*pgd_ref))
386 set_pgd(pgd, *pgd_ref);
388 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
391 * Below here mismatches are bugs because these lower tables
395 pud = pud_offset(pgd, address);
396 pud_ref = pud_offset(pgd_ref, address);
397 if (pud_none(*pud_ref))
400 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
403 pmd = pmd_offset(pud, address);
404 pmd_ref = pmd_offset(pud_ref, address);
405 if (pmd_none(*pmd_ref))
408 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
411 pte_ref = pte_offset_kernel(pmd_ref, address);
412 if (!pte_present(*pte_ref))
415 pte = pte_offset_kernel(pmd, address);
418 * Don't use pte_page here, because the mappings can point
419 * outside mem_map, and the NUMA hash lookup cannot handle
422 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
428 static const char errata93_warning[] =
429 KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
430 KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n"
431 KERN_ERR "******* Please consider a BIOS update.\n"
432 KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n";
435 * No vm86 mode in 64-bit mode:
438 check_v8086_mode(struct pt_regs *regs, unsigned long address,
439 struct task_struct *tsk)
443 static int bad_address(void *p)
447 return probe_kernel_address((unsigned long *)p, dummy);
450 static void dump_pagetable(unsigned long address)
457 pgd = (pgd_t *)read_cr3();
459 pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK);
461 pgd += pgd_index(address);
462 if (bad_address(pgd))
465 printk("PGD %lx ", pgd_val(*pgd));
467 if (!pgd_present(*pgd))
470 pud = pud_offset(pgd, address);
471 if (bad_address(pud))
474 printk("PUD %lx ", pud_val(*pud));
475 if (!pud_present(*pud) || pud_large(*pud))
478 pmd = pmd_offset(pud, address);
479 if (bad_address(pmd))
482 printk("PMD %lx ", pmd_val(*pmd));
483 if (!pmd_present(*pmd) || pmd_large(*pmd))
486 pte = pte_offset_kernel(pmd, address);
487 if (bad_address(pte))
490 printk("PTE %lx", pte_val(*pte));
498 #endif /* CONFIG_X86_64 */
501 * Workaround for K8 erratum #93 & buggy BIOS.
503 * BIOS SMM functions are required to use a specific workaround
504 * to avoid corruption of the 64bit RIP register on C stepping K8.
506 * A lot of BIOS that didn't get tested properly miss this.
508 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
509 * Try to work around it here.
511 * Note we only handle faults in kernel here.
512 * Does nothing on 32-bit.
514 static int is_errata93(struct pt_regs *regs, unsigned long address)
517 if (address != regs->ip)
520 if ((address >> 32) != 0)
523 address |= 0xffffffffUL << 32;
524 if ((address >= (u64)_stext && address <= (u64)_etext) ||
525 (address >= MODULES_VADDR && address <= MODULES_END)) {
526 printk_once(errata93_warning);
535 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
536 * to illegal addresses >4GB.
538 * We catch this in the page fault handler because these addresses
539 * are not reachable. Just detect this case and return. Any code
540 * segment in LDT is compatibility mode.
542 static int is_errata100(struct pt_regs *regs, unsigned long address)
545 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
551 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
553 #ifdef CONFIG_X86_F00F_BUG
557 * Pentium F0 0F C7 C8 bug workaround:
559 if (boot_cpu_data.f00f_bug) {
560 nr = (address - idt_descr.address) >> 3;
563 do_invalid_op(regs, 0);
571 static const char nx_warning[] = KERN_CRIT
572 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
575 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
576 unsigned long address)
578 if (!oops_may_print())
581 if (error_code & PF_INSTR) {
584 pte_t *pte = lookup_address(address, &level);
586 if (pte && pte_present(*pte) && !pte_exec(*pte))
587 printk(nx_warning, current_uid());
590 printk(KERN_ALERT "BUG: unable to handle kernel ");
591 if (address < PAGE_SIZE)
592 printk(KERN_CONT "NULL pointer dereference");
594 printk(KERN_CONT "paging request");
596 printk(KERN_CONT " at %p\n", (void *) address);
597 printk(KERN_ALERT "IP:");
598 printk_address(regs->ip, 1);
600 dump_pagetable(address);
604 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
605 unsigned long address)
607 struct task_struct *tsk;
611 flags = oops_begin();
615 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
617 dump_pagetable(address);
619 tsk->thread.cr2 = address;
620 tsk->thread.trap_no = 14;
621 tsk->thread.error_code = error_code;
623 if (__die("Bad pagetable", regs, error_code))
626 oops_end(flags, regs, sig);
630 no_context(struct pt_regs *regs, unsigned long error_code,
631 unsigned long address)
633 struct task_struct *tsk = current;
634 unsigned long *stackend;
638 /* Are we prepared to handle this kernel fault? */
639 if (fixup_exception(regs))
645 * Valid to do another page fault here, because if this fault
646 * had been triggered by is_prefetch fixup_exception would have
651 * Hall of shame of CPU/BIOS bugs.
653 if (is_prefetch(regs, error_code, address))
656 if (is_errata93(regs, address))
660 * Oops. The kernel tried to access some bad page. We'll have to
661 * terminate things with extreme prejudice:
663 flags = oops_begin();
665 show_fault_oops(regs, error_code, address);
667 stackend = end_of_stack(tsk);
668 if (*stackend != STACK_END_MAGIC)
669 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
671 tsk->thread.cr2 = address;
672 tsk->thread.trap_no = 14;
673 tsk->thread.error_code = error_code;
676 if (__die("Oops", regs, error_code))
679 /* Executive summary in case the body of the oops scrolled away */
680 printk(KERN_EMERG "CR2: %016lx\n", address);
682 oops_end(flags, regs, sig);
686 * Print out info about fatal segfaults, if the show_unhandled_signals
690 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
691 unsigned long address, struct task_struct *tsk)
693 if (!unhandled_signal(tsk, SIGSEGV))
696 if (!printk_ratelimit())
699 printk(KERN_CONT "%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
700 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
701 tsk->comm, task_pid_nr(tsk), address,
702 (void *)regs->ip, (void *)regs->sp, error_code);
704 print_vma_addr(KERN_CONT " in ", regs->ip);
706 printk(KERN_CONT "\n");
710 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
711 unsigned long address, int si_code)
713 struct task_struct *tsk = current;
715 /* User mode accesses just cause a SIGSEGV */
716 if (error_code & PF_USER) {
718 * It's possible to have interrupts off here:
723 * Valid to do another page fault here because this one came
726 if (is_prefetch(regs, error_code, address))
729 if (is_errata100(regs, address))
732 if (unlikely(show_unhandled_signals))
733 show_signal_msg(regs, error_code, address, tsk);
735 /* Kernel addresses are always protection faults: */
736 tsk->thread.cr2 = address;
737 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
738 tsk->thread.trap_no = 14;
740 force_sig_info_fault(SIGSEGV, si_code, address, tsk);
745 if (is_f00f_bug(regs, address))
748 no_context(regs, error_code, address);
752 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
753 unsigned long address)
755 __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
759 __bad_area(struct pt_regs *regs, unsigned long error_code,
760 unsigned long address, int si_code)
762 struct mm_struct *mm = current->mm;
765 * Something tried to access memory that isn't in our memory map..
766 * Fix it, but check if it's kernel or user first..
768 up_read(&mm->mmap_sem);
770 __bad_area_nosemaphore(regs, error_code, address, si_code);
774 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
776 __bad_area(regs, error_code, address, SEGV_MAPERR);
780 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
781 unsigned long address)
783 __bad_area(regs, error_code, address, SEGV_ACCERR);
786 /* TODO: fixup for "mm-invoke-oom-killer-from-page-fault.patch" */
788 out_of_memory(struct pt_regs *regs, unsigned long error_code,
789 unsigned long address)
792 * We ran out of memory, call the OOM killer, and return the userspace
793 * (which will retry the fault, or kill us if we got oom-killed):
795 up_read(¤t->mm->mmap_sem);
797 pagefault_out_of_memory();
801 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address)
803 struct task_struct *tsk = current;
804 struct mm_struct *mm = tsk->mm;
806 up_read(&mm->mmap_sem);
808 /* Kernel mode? Handle exceptions or die: */
809 if (!(error_code & PF_USER))
810 no_context(regs, error_code, address);
812 /* User-space => ok to do another page fault: */
813 if (is_prefetch(regs, error_code, address))
816 tsk->thread.cr2 = address;
817 tsk->thread.error_code = error_code;
818 tsk->thread.trap_no = 14;
820 force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk);
824 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
825 unsigned long address, unsigned int fault)
827 if (fault & VM_FAULT_OOM) {
828 out_of_memory(regs, error_code, address);
830 if (fault & VM_FAULT_SIGBUS)
831 do_sigbus(regs, error_code, address);
837 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
839 if ((error_code & PF_WRITE) && !pte_write(*pte))
842 if ((error_code & PF_INSTR) && !pte_exec(*pte))
849 * Handle a spurious fault caused by a stale TLB entry.
851 * This allows us to lazily refresh the TLB when increasing the
852 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
853 * eagerly is very expensive since that implies doing a full
854 * cross-processor TLB flush, even if no stale TLB entries exist
855 * on other processors.
857 * There are no security implications to leaving a stale TLB when
858 * increasing the permissions on a page.
861 spurious_fault(unsigned long error_code, unsigned long address)
869 /* Reserved-bit violation or user access to kernel space? */
870 if (error_code & (PF_USER | PF_RSVD))
873 pgd = init_mm.pgd + pgd_index(address);
874 if (!pgd_present(*pgd))
877 pud = pud_offset(pgd, address);
878 if (!pud_present(*pud))
882 return spurious_fault_check(error_code, (pte_t *) pud);
884 pmd = pmd_offset(pud, address);
885 if (!pmd_present(*pmd))
889 return spurious_fault_check(error_code, (pte_t *) pmd);
891 pte = pte_offset_kernel(pmd, address);
892 if (!pte_present(*pte))
895 ret = spurious_fault_check(error_code, pte);
900 * Make sure we have permissions in PMD.
901 * If not, then there's a bug in the page tables:
903 ret = spurious_fault_check(error_code, (pte_t *) pmd);
904 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
909 int show_unhandled_signals = 1;
912 access_error(unsigned long error_code, int write, struct vm_area_struct *vma)
915 /* write, present and write, not present: */
916 if (unlikely(!(vma->vm_flags & VM_WRITE)))
922 if (unlikely(error_code & PF_PROT))
925 /* read, not present: */
926 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
932 static int fault_in_kernel_space(unsigned long address)
934 return address >= TASK_SIZE_MAX;
938 * This routine handles page faults. It determines the address,
939 * and the problem, and then passes it off to one of the appropriate
942 dotraplinkage void __kprobes
943 do_page_fault(struct pt_regs *regs, unsigned long error_code)
945 struct vm_area_struct *vma;
946 struct task_struct *tsk;
947 unsigned long address;
948 struct mm_struct *mm;
955 /* Get the faulting address: */
956 address = read_cr2();
959 * Detect and handle instructions that would cause a page fault for
960 * both a tracked kernel page and a userspace page.
962 if (kmemcheck_active(regs))
963 kmemcheck_hide(regs);
964 prefetchw(&mm->mmap_sem);
966 if (unlikely(kmmio_fault(regs, address)))
970 * We fault-in kernel-space virtual memory on-demand. The
971 * 'reference' page table is init_mm.pgd.
973 * NOTE! We MUST NOT take any locks for this case. We may
974 * be in an interrupt or a critical region, and should
975 * only copy the information from the master page table,
978 * This verifies that the fault happens in kernel space
979 * (error_code & 4) == 0, and that the fault was not a
980 * protection error (error_code & 9) == 0.
982 if (unlikely(fault_in_kernel_space(address))) {
983 if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
984 if (vmalloc_fault(address) >= 0)
987 if (kmemcheck_fault(regs, address, error_code))
991 /* Can handle a stale RO->RW TLB: */
992 if (spurious_fault(error_code, address))
995 /* kprobes don't want to hook the spurious faults: */
996 if (notify_page_fault(regs))
999 * Don't take the mm semaphore here. If we fixup a prefetch
1000 * fault we could otherwise deadlock:
1002 bad_area_nosemaphore(regs, error_code, address);
1007 /* kprobes don't want to hook the spurious faults: */
1008 if (unlikely(notify_page_fault(regs)))
1011 * It's safe to allow irq's after cr2 has been saved and the
1012 * vmalloc fault has been handled.
1014 * User-mode registers count as a user access even for any
1015 * potential system fault or CPU buglet:
1017 if (user_mode_vm(regs)) {
1019 error_code |= PF_USER;
1021 if (regs->flags & X86_EFLAGS_IF)
1025 if (unlikely(error_code & PF_RSVD))
1026 pgtable_bad(regs, error_code, address);
1028 perf_swcounter_event(PERF_COUNT_SW_PAGE_FAULTS, 1, 0, regs, address);
1031 * If we're in an interrupt, have no user context or are running
1032 * in an atomic region then we must not take the fault:
1034 if (unlikely(in_atomic() || !mm)) {
1035 bad_area_nosemaphore(regs, error_code, address);
1040 * When running in the kernel we expect faults to occur only to
1041 * addresses in user space. All other faults represent errors in
1042 * the kernel and should generate an OOPS. Unfortunately, in the
1043 * case of an erroneous fault occurring in a code path which already
1044 * holds mmap_sem we will deadlock attempting to validate the fault
1045 * against the address space. Luckily the kernel only validly
1046 * references user space from well defined areas of code, which are
1047 * listed in the exceptions table.
1049 * As the vast majority of faults will be valid we will only perform
1050 * the source reference check when there is a possibility of a
1051 * deadlock. Attempt to lock the address space, if we cannot we then
1052 * validate the source. If this is invalid we can skip the address
1053 * space check, thus avoiding the deadlock:
1055 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1056 if ((error_code & PF_USER) == 0 &&
1057 !search_exception_tables(regs->ip)) {
1058 bad_area_nosemaphore(regs, error_code, address);
1061 down_read(&mm->mmap_sem);
1064 * The above down_read_trylock() might have succeeded in
1065 * which case we'll have missed the might_sleep() from
1071 vma = find_vma(mm, address);
1072 if (unlikely(!vma)) {
1073 bad_area(regs, error_code, address);
1076 if (likely(vma->vm_start <= address))
1078 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1079 bad_area(regs, error_code, address);
1082 if (error_code & PF_USER) {
1084 * Accessing the stack below %sp is always a bug.
1085 * The large cushion allows instructions like enter
1086 * and pusha to work. ("enter $65535, $31" pushes
1087 * 32 pointers and then decrements %sp by 65535.)
1089 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1090 bad_area(regs, error_code, address);
1094 if (unlikely(expand_stack(vma, address))) {
1095 bad_area(regs, error_code, address);
1100 * Ok, we have a good vm_area for this memory access, so
1101 * we can handle it..
1104 write = error_code & PF_WRITE;
1106 if (unlikely(access_error(error_code, write, vma))) {
1107 bad_area_access_error(regs, error_code, address);
1112 * If for any reason at all we couldn't handle the fault,
1113 * make sure we exit gracefully rather than endlessly redo
1116 fault = handle_mm_fault(mm, vma, address, write ? FAULT_FLAG_WRITE : 0);
1118 if (unlikely(fault & VM_FAULT_ERROR)) {
1119 mm_fault_error(regs, error_code, address, fault);
1123 if (fault & VM_FAULT_MAJOR) {
1125 perf_swcounter_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, 0,
1129 perf_swcounter_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, 0,
1133 check_v8086_mode(regs, address, tsk);
1135 up_read(&mm->mmap_sem);