2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Version: $Id: tcp.c,v 1.216 2002/02/01 22:01:04 davem Exp $
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
23 * Alan Cox : Numerous verify_area() calls
24 * Alan Cox : Set the ACK bit on a reset
25 * Alan Cox : Stopped it crashing if it closed while
26 * sk->inuse=1 and was trying to connect
28 * Alan Cox : All icmp error handling was broken
29 * pointers passed where wrong and the
30 * socket was looked up backwards. Nobody
31 * tested any icmp error code obviously.
32 * Alan Cox : tcp_err() now handled properly. It
33 * wakes people on errors. poll
34 * behaves and the icmp error race
35 * has gone by moving it into sock.c
36 * Alan Cox : tcp_send_reset() fixed to work for
37 * everything not just packets for
39 * Alan Cox : tcp option processing.
40 * Alan Cox : Reset tweaked (still not 100%) [Had
42 * Herp Rosmanith : More reset fixes
43 * Alan Cox : No longer acks invalid rst frames.
44 * Acking any kind of RST is right out.
45 * Alan Cox : Sets an ignore me flag on an rst
46 * receive otherwise odd bits of prattle
48 * Alan Cox : Fixed another acking RST frame bug.
49 * Should stop LAN workplace lockups.
50 * Alan Cox : Some tidyups using the new skb list
52 * Alan Cox : sk->keepopen now seems to work
53 * Alan Cox : Pulls options out correctly on accepts
54 * Alan Cox : Fixed assorted sk->rqueue->next errors
55 * Alan Cox : PSH doesn't end a TCP read. Switched a
57 * Alan Cox : Tidied tcp_data to avoid a potential
59 * Alan Cox : Added some better commenting, as the
60 * tcp is hard to follow
61 * Alan Cox : Removed incorrect check for 20 * psh
62 * Michael O'Reilly : ack < copied bug fix.
63 * Johannes Stille : Misc tcp fixes (not all in yet).
64 * Alan Cox : FIN with no memory -> CRASH
65 * Alan Cox : Added socket option proto entries.
66 * Also added awareness of them to accept.
67 * Alan Cox : Added TCP options (SOL_TCP)
68 * Alan Cox : Switched wakeup calls to callbacks,
69 * so the kernel can layer network
71 * Alan Cox : Use ip_tos/ip_ttl settings.
72 * Alan Cox : Handle FIN (more) properly (we hope).
73 * Alan Cox : RST frames sent on unsynchronised
75 * Alan Cox : Put in missing check for SYN bit.
76 * Alan Cox : Added tcp_select_window() aka NET2E
77 * window non shrink trick.
78 * Alan Cox : Added a couple of small NET2E timer
80 * Charles Hedrick : TCP fixes
81 * Toomas Tamm : TCP window fixes
82 * Alan Cox : Small URG fix to rlogin ^C ack fight
83 * Charles Hedrick : Rewrote most of it to actually work
84 * Linus : Rewrote tcp_read() and URG handling
86 * Gerhard Koerting: Fixed some missing timer handling
87 * Matthew Dillon : Reworked TCP machine states as per RFC
88 * Gerhard Koerting: PC/TCP workarounds
89 * Adam Caldwell : Assorted timer/timing errors
90 * Matthew Dillon : Fixed another RST bug
91 * Alan Cox : Move to kernel side addressing changes.
92 * Alan Cox : Beginning work on TCP fastpathing
94 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
95 * Alan Cox : TCP fast path debugging
96 * Alan Cox : Window clamping
97 * Michael Riepe : Bug in tcp_check()
98 * Matt Dillon : More TCP improvements and RST bug fixes
99 * Matt Dillon : Yet more small nasties remove from the
100 * TCP code (Be very nice to this man if
101 * tcp finally works 100%) 8)
102 * Alan Cox : BSD accept semantics.
103 * Alan Cox : Reset on closedown bug.
104 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
105 * Michael Pall : Handle poll() after URG properly in
107 * Michael Pall : Undo the last fix in tcp_read_urg()
108 * (multi URG PUSH broke rlogin).
109 * Michael Pall : Fix the multi URG PUSH problem in
110 * tcp_readable(), poll() after URG
112 * Michael Pall : recv(...,MSG_OOB) never blocks in the
114 * Alan Cox : Changed the semantics of sk->socket to
115 * fix a race and a signal problem with
116 * accept() and async I/O.
117 * Alan Cox : Relaxed the rules on tcp_sendto().
118 * Yury Shevchuk : Really fixed accept() blocking problem.
119 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
120 * clients/servers which listen in on
122 * Alan Cox : Cleaned the above up and shrank it to
123 * a sensible code size.
124 * Alan Cox : Self connect lockup fix.
125 * Alan Cox : No connect to multicast.
126 * Ross Biro : Close unaccepted children on master
128 * Alan Cox : Reset tracing code.
129 * Alan Cox : Spurious resets on shutdown.
130 * Alan Cox : Giant 15 minute/60 second timer error
131 * Alan Cox : Small whoops in polling before an
133 * Alan Cox : Kept the state trace facility since
134 * it's handy for debugging.
135 * Alan Cox : More reset handler fixes.
136 * Alan Cox : Started rewriting the code based on
137 * the RFC's for other useful protocol
138 * references see: Comer, KA9Q NOS, and
139 * for a reference on the difference
140 * between specifications and how BSD
141 * works see the 4.4lite source.
142 * A.N.Kuznetsov : Don't time wait on completion of tidy
144 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
145 * Linus Torvalds : Fixed BSD port reuse to work first syn
146 * Alan Cox : Reimplemented timers as per the RFC
147 * and using multiple timers for sanity.
148 * Alan Cox : Small bug fixes, and a lot of new
150 * Alan Cox : Fixed dual reader crash by locking
151 * the buffers (much like datagram.c)
152 * Alan Cox : Fixed stuck sockets in probe. A probe
153 * now gets fed up of retrying without
154 * (even a no space) answer.
155 * Alan Cox : Extracted closing code better
156 * Alan Cox : Fixed the closing state machine to
158 * Alan Cox : More 'per spec' fixes.
159 * Jorge Cwik : Even faster checksumming.
160 * Alan Cox : tcp_data() doesn't ack illegal PSH
161 * only frames. At least one pc tcp stack
163 * Alan Cox : Cache last socket.
164 * Alan Cox : Per route irtt.
165 * Matt Day : poll()->select() match BSD precisely on error
166 * Alan Cox : New buffers
167 * Marc Tamsky : Various sk->prot->retransmits and
168 * sk->retransmits misupdating fixed.
169 * Fixed tcp_write_timeout: stuck close,
170 * and TCP syn retries gets used now.
171 * Mark Yarvis : In tcp_read_wakeup(), don't send an
172 * ack if state is TCP_CLOSED.
173 * Alan Cox : Look up device on a retransmit - routes may
174 * change. Doesn't yet cope with MSS shrink right
176 * Marc Tamsky : Closing in closing fixes.
177 * Mike Shaver : RFC1122 verifications.
178 * Alan Cox : rcv_saddr errors.
179 * Alan Cox : Block double connect().
180 * Alan Cox : Small hooks for enSKIP.
181 * Alexey Kuznetsov: Path MTU discovery.
182 * Alan Cox : Support soft errors.
183 * Alan Cox : Fix MTU discovery pathological case
184 * when the remote claims no mtu!
185 * Marc Tamsky : TCP_CLOSE fix.
186 * Colin (G3TNE) : Send a reset on syn ack replies in
187 * window but wrong (fixes NT lpd problems)
188 * Pedro Roque : Better TCP window handling, delayed ack.
189 * Joerg Reuter : No modification of locked buffers in
190 * tcp_do_retransmit()
191 * Eric Schenk : Changed receiver side silly window
192 * avoidance algorithm to BSD style
193 * algorithm. This doubles throughput
194 * against machines running Solaris,
195 * and seems to result in general
197 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
198 * Willy Konynenberg : Transparent proxying support.
199 * Mike McLagan : Routing by source
200 * Keith Owens : Do proper merging with partial SKB's in
201 * tcp_do_sendmsg to avoid burstiness.
202 * Eric Schenk : Fix fast close down bug with
203 * shutdown() followed by close().
204 * Andi Kleen : Make poll agree with SIGIO
205 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
206 * lingertime == 0 (RFC 793 ABORT Call)
207 * Hirokazu Takahashi : Use copy_from_user() instead of
208 * csum_and_copy_from_user() if possible.
210 * This program is free software; you can redistribute it and/or
211 * modify it under the terms of the GNU General Public License
212 * as published by the Free Software Foundation; either version
213 * 2 of the License, or(at your option) any later version.
215 * Description of States:
217 * TCP_SYN_SENT sent a connection request, waiting for ack
219 * TCP_SYN_RECV received a connection request, sent ack,
220 * waiting for final ack in three-way handshake.
222 * TCP_ESTABLISHED connection established
224 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
225 * transmission of remaining buffered data
227 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
230 * TCP_CLOSING both sides have shutdown but we still have
231 * data we have to finish sending
233 * TCP_TIME_WAIT timeout to catch resent junk before entering
234 * closed, can only be entered from FIN_WAIT2
235 * or CLOSING. Required because the other end
236 * may not have gotten our last ACK causing it
237 * to retransmit the data packet (which we ignore)
239 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
240 * us to finish writing our data and to shutdown
241 * (we have to close() to move on to LAST_ACK)
243 * TCP_LAST_ACK out side has shutdown after remote has
244 * shutdown. There may still be data in our
245 * buffer that we have to finish sending
247 * TCP_CLOSE socket is finished
250 #include <linux/kernel.h>
251 #include <linux/module.h>
252 #include <linux/types.h>
253 #include <linux/fcntl.h>
254 #include <linux/poll.h>
255 #include <linux/init.h>
256 #include <linux/fs.h>
257 #include <linux/random.h>
258 #include <linux/bootmem.h>
259 #include <linux/cache.h>
260 #include <linux/err.h>
261 #include <linux/crypto.h>
263 #include <net/icmp.h>
265 #include <net/xfrm.h>
267 #include <net/netdma.h>
269 #include <asm/uaccess.h>
270 #include <asm/ioctls.h>
272 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
274 DEFINE_SNMP_STAT(struct tcp_mib, tcp_statistics) __read_mostly;
276 atomic_t tcp_orphan_count = ATOMIC_INIT(0);
278 EXPORT_SYMBOL_GPL(tcp_orphan_count);
280 int sysctl_tcp_mem[3] __read_mostly;
281 int sysctl_tcp_wmem[3] __read_mostly;
282 int sysctl_tcp_rmem[3] __read_mostly;
284 EXPORT_SYMBOL(sysctl_tcp_mem);
285 EXPORT_SYMBOL(sysctl_tcp_rmem);
286 EXPORT_SYMBOL(sysctl_tcp_wmem);
288 atomic_t tcp_memory_allocated; /* Current allocated memory. */
289 atomic_t tcp_sockets_allocated; /* Current number of TCP sockets. */
291 EXPORT_SYMBOL(tcp_memory_allocated);
292 EXPORT_SYMBOL(tcp_sockets_allocated);
295 * Pressure flag: try to collapse.
296 * Technical note: it is used by multiple contexts non atomically.
297 * All the sk_stream_mem_schedule() is of this nature: accounting
298 * is strict, actions are advisory and have some latency.
300 int tcp_memory_pressure __read_mostly;
302 EXPORT_SYMBOL(tcp_memory_pressure);
304 void tcp_enter_memory_pressure(void)
306 if (!tcp_memory_pressure) {
307 NET_INC_STATS(LINUX_MIB_TCPMEMORYPRESSURES);
308 tcp_memory_pressure = 1;
312 EXPORT_SYMBOL(tcp_enter_memory_pressure);
315 * Wait for a TCP event.
317 * Note that we don't need to lock the socket, as the upper poll layers
318 * take care of normal races (between the test and the event) and we don't
319 * go look at any of the socket buffers directly.
321 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
324 struct sock *sk = sock->sk;
325 struct tcp_sock *tp = tcp_sk(sk);
327 poll_wait(file, sk->sk_sleep, wait);
328 if (sk->sk_state == TCP_LISTEN)
329 return inet_csk_listen_poll(sk);
331 /* Socket is not locked. We are protected from async events
332 by poll logic and correct handling of state changes
333 made by another threads is impossible in any case.
341 * POLLHUP is certainly not done right. But poll() doesn't
342 * have a notion of HUP in just one direction, and for a
343 * socket the read side is more interesting.
345 * Some poll() documentation says that POLLHUP is incompatible
346 * with the POLLOUT/POLLWR flags, so somebody should check this
347 * all. But careful, it tends to be safer to return too many
348 * bits than too few, and you can easily break real applications
349 * if you don't tell them that something has hung up!
353 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
354 * our fs/select.c). It means that after we received EOF,
355 * poll always returns immediately, making impossible poll() on write()
356 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
357 * if and only if shutdown has been made in both directions.
358 * Actually, it is interesting to look how Solaris and DUX
359 * solve this dilemma. I would prefer, if PULLHUP were maskable,
360 * then we could set it on SND_SHUTDOWN. BTW examples given
361 * in Stevens' books assume exactly this behaviour, it explains
362 * why PULLHUP is incompatible with POLLOUT. --ANK
364 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
365 * blocking on fresh not-connected or disconnected socket. --ANK
367 if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
369 if (sk->sk_shutdown & RCV_SHUTDOWN)
370 mask |= POLLIN | POLLRDNORM | POLLRDHUP;
373 if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
374 /* Potential race condition. If read of tp below will
375 * escape above sk->sk_state, we can be illegally awaken
376 * in SYN_* states. */
377 if ((tp->rcv_nxt != tp->copied_seq) &&
378 (tp->urg_seq != tp->copied_seq ||
379 tp->rcv_nxt != tp->copied_seq + 1 ||
380 sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data))
381 mask |= POLLIN | POLLRDNORM;
383 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
384 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
385 mask |= POLLOUT | POLLWRNORM;
386 } else { /* send SIGIO later */
387 set_bit(SOCK_ASYNC_NOSPACE,
388 &sk->sk_socket->flags);
389 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
391 /* Race breaker. If space is freed after
392 * wspace test but before the flags are set,
393 * IO signal will be lost.
395 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
396 mask |= POLLOUT | POLLWRNORM;
400 if (tp->urg_data & TCP_URG_VALID)
406 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
408 struct tcp_sock *tp = tcp_sk(sk);
413 if (sk->sk_state == TCP_LISTEN)
417 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
419 else if (sock_flag(sk, SOCK_URGINLINE) ||
421 before(tp->urg_seq, tp->copied_seq) ||
422 !before(tp->urg_seq, tp->rcv_nxt)) {
423 answ = tp->rcv_nxt - tp->copied_seq;
425 /* Subtract 1, if FIN is in queue. */
426 if (answ && !skb_queue_empty(&sk->sk_receive_queue))
428 tcp_hdr((struct sk_buff *)sk->sk_receive_queue.prev)->fin;
430 answ = tp->urg_seq - tp->copied_seq;
434 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
437 if (sk->sk_state == TCP_LISTEN)
440 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
443 answ = tp->write_seq - tp->snd_una;
449 return put_user(answ, (int __user *)arg);
452 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
454 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
455 tp->pushed_seq = tp->write_seq;
458 static inline int forced_push(struct tcp_sock *tp)
460 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
463 static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
465 struct tcp_sock *tp = tcp_sk(sk);
466 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
469 tcb->seq = tcb->end_seq = tp->write_seq;
470 tcb->flags = TCPCB_FLAG_ACK;
472 skb_header_release(skb);
473 tcp_add_write_queue_tail(sk, skb);
474 sk_charge_skb(sk, skb);
475 if (tp->nonagle & TCP_NAGLE_PUSH)
476 tp->nonagle &= ~TCP_NAGLE_PUSH;
479 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags,
482 if (flags & MSG_OOB) {
484 tp->snd_up = tp->write_seq;
485 TCP_SKB_CB(skb)->sacked |= TCPCB_URG;
489 static inline void tcp_push(struct sock *sk, int flags, int mss_now,
492 struct tcp_sock *tp = tcp_sk(sk);
494 if (tcp_send_head(sk)) {
495 struct sk_buff *skb = tcp_write_queue_tail(sk);
496 if (!(flags & MSG_MORE) || forced_push(tp))
497 tcp_mark_push(tp, skb);
498 tcp_mark_urg(tp, flags, skb);
499 __tcp_push_pending_frames(sk, mss_now,
500 (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
504 static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
505 size_t psize, int flags)
507 struct tcp_sock *tp = tcp_sk(sk);
508 int mss_now, size_goal;
511 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
513 /* Wait for a connection to finish. */
514 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
515 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
518 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
520 mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
521 size_goal = tp->xmit_size_goal;
525 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
529 struct sk_buff *skb = tcp_write_queue_tail(sk);
530 struct page *page = pages[poffset / PAGE_SIZE];
531 int copy, i, can_coalesce;
532 int offset = poffset % PAGE_SIZE;
533 int size = min_t(size_t, psize, PAGE_SIZE - offset);
535 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
537 if (!sk_stream_memory_free(sk))
538 goto wait_for_sndbuf;
540 skb = sk_stream_alloc_pskb(sk, 0, 0,
543 goto wait_for_memory;
552 i = skb_shinfo(skb)->nr_frags;
553 can_coalesce = skb_can_coalesce(skb, i, page, offset);
554 if (!can_coalesce && i >= MAX_SKB_FRAGS) {
555 tcp_mark_push(tp, skb);
558 if (!sk_stream_wmem_schedule(sk, copy))
559 goto wait_for_memory;
562 skb_shinfo(skb)->frags[i - 1].size += copy;
565 skb_fill_page_desc(skb, i, page, offset, copy);
569 skb->data_len += copy;
570 skb->truesize += copy;
571 sk->sk_wmem_queued += copy;
572 sk->sk_forward_alloc -= copy;
573 skb->ip_summed = CHECKSUM_PARTIAL;
574 tp->write_seq += copy;
575 TCP_SKB_CB(skb)->end_seq += copy;
576 skb_shinfo(skb)->gso_segs = 0;
579 TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH;
583 if (!(psize -= copy))
586 if (skb->len < mss_now || (flags & MSG_OOB))
589 if (forced_push(tp)) {
590 tcp_mark_push(tp, skb);
591 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
592 } else if (skb == tcp_send_head(sk))
593 tcp_push_one(sk, mss_now);
597 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
600 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
602 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
605 mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
606 size_goal = tp->xmit_size_goal;
611 tcp_push(sk, flags, mss_now, tp->nonagle);
618 return sk_stream_error(sk, flags, err);
621 ssize_t tcp_sendpage(struct socket *sock, struct page *page, int offset,
622 size_t size, int flags)
625 struct sock *sk = sock->sk;
627 if (!(sk->sk_route_caps & NETIF_F_SG) ||
628 !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
629 return sock_no_sendpage(sock, page, offset, size, flags);
633 res = do_tcp_sendpages(sk, &page, offset, size, flags);
639 #define TCP_PAGE(sk) (sk->sk_sndmsg_page)
640 #define TCP_OFF(sk) (sk->sk_sndmsg_off)
642 static inline int select_size(struct sock *sk)
644 struct tcp_sock *tp = tcp_sk(sk);
645 int tmp = tp->mss_cache;
647 if (sk->sk_route_caps & NETIF_F_SG) {
651 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
653 if (tmp >= pgbreak &&
654 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
662 int tcp_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg,
665 struct sock *sk = sock->sk;
667 struct tcp_sock *tp = tcp_sk(sk);
670 int mss_now, size_goal;
677 flags = msg->msg_flags;
678 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
680 /* Wait for a connection to finish. */
681 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
682 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
685 /* This should be in poll */
686 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
688 mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
689 size_goal = tp->xmit_size_goal;
691 /* Ok commence sending. */
692 iovlen = msg->msg_iovlen;
697 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
700 while (--iovlen >= 0) {
701 int seglen = iov->iov_len;
702 unsigned char __user *from = iov->iov_base;
709 skb = tcp_write_queue_tail(sk);
711 if (!tcp_send_head(sk) ||
712 (copy = size_goal - skb->len) <= 0) {
715 /* Allocate new segment. If the interface is SG,
716 * allocate skb fitting to single page.
718 if (!sk_stream_memory_free(sk))
719 goto wait_for_sndbuf;
721 skb = sk_stream_alloc_pskb(sk, select_size(sk),
722 0, sk->sk_allocation);
724 goto wait_for_memory;
727 * Check whether we can use HW checksum.
729 if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
730 skb->ip_summed = CHECKSUM_PARTIAL;
736 /* Try to append data to the end of skb. */
740 /* Where to copy to? */
741 if (skb_tailroom(skb) > 0) {
742 /* We have some space in skb head. Superb! */
743 if (copy > skb_tailroom(skb))
744 copy = skb_tailroom(skb);
745 if ((err = skb_add_data(skb, from, copy)) != 0)
749 int i = skb_shinfo(skb)->nr_frags;
750 struct page *page = TCP_PAGE(sk);
751 int off = TCP_OFF(sk);
753 if (skb_can_coalesce(skb, i, page, off) &&
755 /* We can extend the last page
758 } else if (i == MAX_SKB_FRAGS ||
760 !(sk->sk_route_caps & NETIF_F_SG))) {
761 /* Need to add new fragment and cannot
762 * do this because interface is non-SG,
763 * or because all the page slots are
765 tcp_mark_push(tp, skb);
768 if (off == PAGE_SIZE) {
770 TCP_PAGE(sk) = page = NULL;
776 if (copy > PAGE_SIZE - off)
777 copy = PAGE_SIZE - off;
779 if (!sk_stream_wmem_schedule(sk, copy))
780 goto wait_for_memory;
783 /* Allocate new cache page. */
784 if (!(page = sk_stream_alloc_page(sk)))
785 goto wait_for_memory;
788 /* Time to copy data. We are close to
790 err = skb_copy_to_page(sk, from, skb, page,
793 /* If this page was new, give it to the
794 * socket so it does not get leaked.
803 /* Update the skb. */
805 skb_shinfo(skb)->frags[i - 1].size +=
808 skb_fill_page_desc(skb, i, page, off, copy);
811 } else if (off + copy < PAGE_SIZE) {
817 TCP_OFF(sk) = off + copy;
821 TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_PSH;
823 tp->write_seq += copy;
824 TCP_SKB_CB(skb)->end_seq += copy;
825 skb_shinfo(skb)->gso_segs = 0;
829 if ((seglen -= copy) == 0 && iovlen == 0)
832 if (skb->len < mss_now || (flags & MSG_OOB))
835 if (forced_push(tp)) {
836 tcp_mark_push(tp, skb);
837 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
838 } else if (skb == tcp_send_head(sk))
839 tcp_push_one(sk, mss_now);
843 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
846 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
848 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
851 mss_now = tcp_current_mss(sk, !(flags&MSG_OOB));
852 size_goal = tp->xmit_size_goal;
858 tcp_push(sk, flags, mss_now, tp->nonagle);
865 tcp_unlink_write_queue(skb, sk);
866 /* It is the one place in all of TCP, except connection
867 * reset, where we can be unlinking the send_head.
869 tcp_check_send_head(sk, skb);
870 sk_stream_free_skb(sk, skb);
877 err = sk_stream_error(sk, flags, err);
884 * Handle reading urgent data. BSD has very simple semantics for
885 * this, no blocking and very strange errors 8)
888 static int tcp_recv_urg(struct sock *sk, long timeo,
889 struct msghdr *msg, int len, int flags,
892 struct tcp_sock *tp = tcp_sk(sk);
894 /* No URG data to read. */
895 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
896 tp->urg_data == TCP_URG_READ)
897 return -EINVAL; /* Yes this is right ! */
899 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
902 if (tp->urg_data & TCP_URG_VALID) {
904 char c = tp->urg_data;
906 if (!(flags & MSG_PEEK))
907 tp->urg_data = TCP_URG_READ;
909 /* Read urgent data. */
910 msg->msg_flags |= MSG_OOB;
913 if (!(flags & MSG_TRUNC))
914 err = memcpy_toiovec(msg->msg_iov, &c, 1);
917 msg->msg_flags |= MSG_TRUNC;
919 return err ? -EFAULT : len;
922 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
925 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
926 * the available implementations agree in this case:
927 * this call should never block, independent of the
928 * blocking state of the socket.
929 * Mike <pall@rz.uni-karlsruhe.de>
934 /* Clean up the receive buffer for full frames taken by the user,
935 * then send an ACK if necessary. COPIED is the number of bytes
936 * tcp_recvmsg has given to the user so far, it speeds up the
937 * calculation of whether or not we must ACK for the sake of
940 void tcp_cleanup_rbuf(struct sock *sk, int copied)
942 struct tcp_sock *tp = tcp_sk(sk);
946 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
948 BUG_TRAP(!skb || before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq));
951 if (inet_csk_ack_scheduled(sk)) {
952 const struct inet_connection_sock *icsk = inet_csk(sk);
953 /* Delayed ACKs frequently hit locked sockets during bulk
955 if (icsk->icsk_ack.blocked ||
956 /* Once-per-two-segments ACK was not sent by tcp_input.c */
957 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
959 * If this read emptied read buffer, we send ACK, if
960 * connection is not bidirectional, user drained
961 * receive buffer and there was a small segment
965 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
966 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
967 !icsk->icsk_ack.pingpong)) &&
968 !atomic_read(&sk->sk_rmem_alloc)))
972 /* We send an ACK if we can now advertise a non-zero window
973 * which has been raised "significantly".
975 * Even if window raised up to infinity, do not send window open ACK
976 * in states, where we will not receive more. It is useless.
978 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
979 __u32 rcv_window_now = tcp_receive_window(tp);
981 /* Optimize, __tcp_select_window() is not cheap. */
982 if (2*rcv_window_now <= tp->window_clamp) {
983 __u32 new_window = __tcp_select_window(sk);
985 /* Send ACK now, if this read freed lots of space
986 * in our buffer. Certainly, new_window is new window.
987 * We can advertise it now, if it is not less than current one.
988 * "Lots" means "at least twice" here.
990 if (new_window && new_window >= 2 * rcv_window_now)
998 static void tcp_prequeue_process(struct sock *sk)
1000 struct sk_buff *skb;
1001 struct tcp_sock *tp = tcp_sk(sk);
1003 NET_INC_STATS_USER(LINUX_MIB_TCPPREQUEUED);
1005 /* RX process wants to run with disabled BHs, though it is not
1008 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1009 sk->sk_backlog_rcv(sk, skb);
1012 /* Clear memory counter. */
1013 tp->ucopy.memory = 0;
1016 static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1018 struct sk_buff *skb;
1021 skb_queue_walk(&sk->sk_receive_queue, skb) {
1022 offset = seq - TCP_SKB_CB(skb)->seq;
1023 if (tcp_hdr(skb)->syn)
1025 if (offset < skb->len || tcp_hdr(skb)->fin) {
1034 * This routine provides an alternative to tcp_recvmsg() for routines
1035 * that would like to handle copying from skbuffs directly in 'sendfile'
1038 * - It is assumed that the socket was locked by the caller.
1039 * - The routine does not block.
1040 * - At present, there is no support for reading OOB data
1041 * or for 'peeking' the socket using this routine
1042 * (although both would be easy to implement).
1044 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1045 sk_read_actor_t recv_actor)
1047 struct sk_buff *skb;
1048 struct tcp_sock *tp = tcp_sk(sk);
1049 u32 seq = tp->copied_seq;
1053 if (sk->sk_state == TCP_LISTEN)
1055 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1056 if (offset < skb->len) {
1059 len = skb->len - offset;
1060 /* Stop reading if we hit a patch of urgent data */
1062 u32 urg_offset = tp->urg_seq - seq;
1063 if (urg_offset < len)
1068 used = recv_actor(desc, skb, offset, len);
1073 } else if (used <= len) {
1078 if (offset != skb->len)
1081 if (tcp_hdr(skb)->fin) {
1082 sk_eat_skb(sk, skb, 0);
1086 sk_eat_skb(sk, skb, 0);
1090 tp->copied_seq = seq;
1092 tcp_rcv_space_adjust(sk);
1094 /* Clean up data we have read: This will do ACK frames. */
1096 tcp_cleanup_rbuf(sk, copied);
1101 * This routine copies from a sock struct into the user buffer.
1103 * Technical note: in 2.3 we work on _locked_ socket, so that
1104 * tricks with *seq access order and skb->users are not required.
1105 * Probably, code can be easily improved even more.
1108 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1109 size_t len, int nonblock, int flags, int *addr_len)
1111 struct tcp_sock *tp = tcp_sk(sk);
1117 int target; /* Read at least this many bytes */
1119 struct task_struct *user_recv = NULL;
1120 int copied_early = 0;
1121 struct sk_buff *skb;
1125 TCP_CHECK_TIMER(sk);
1128 if (sk->sk_state == TCP_LISTEN)
1131 timeo = sock_rcvtimeo(sk, nonblock);
1133 /* Urgent data needs to be handled specially. */
1134 if (flags & MSG_OOB)
1137 seq = &tp->copied_seq;
1138 if (flags & MSG_PEEK) {
1139 peek_seq = tp->copied_seq;
1143 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1145 #ifdef CONFIG_NET_DMA
1146 tp->ucopy.dma_chan = NULL;
1148 skb = skb_peek_tail(&sk->sk_receive_queue);
1153 available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1154 if ((available < target) &&
1155 (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1156 !sysctl_tcp_low_latency &&
1157 __get_cpu_var(softnet_data).net_dma) {
1158 preempt_enable_no_resched();
1159 tp->ucopy.pinned_list =
1160 dma_pin_iovec_pages(msg->msg_iov, len);
1162 preempt_enable_no_resched();
1170 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1171 if (tp->urg_data && tp->urg_seq == *seq) {
1174 if (signal_pending(current)) {
1175 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1180 /* Next get a buffer. */
1182 skb = skb_peek(&sk->sk_receive_queue);
1187 /* Now that we have two receive queues this
1190 if (before(*seq, TCP_SKB_CB(skb)->seq)) {
1191 printk(KERN_INFO "recvmsg bug: copied %X "
1192 "seq %X\n", *seq, TCP_SKB_CB(skb)->seq);
1195 offset = *seq - TCP_SKB_CB(skb)->seq;
1196 if (tcp_hdr(skb)->syn)
1198 if (offset < skb->len)
1200 if (tcp_hdr(skb)->fin)
1202 BUG_TRAP(flags & MSG_PEEK);
1204 } while (skb != (struct sk_buff *)&sk->sk_receive_queue);
1206 /* Well, if we have backlog, try to process it now yet. */
1208 if (copied >= target && !sk->sk_backlog.tail)
1213 sk->sk_state == TCP_CLOSE ||
1214 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1216 signal_pending(current) ||
1220 if (sock_flag(sk, SOCK_DONE))
1224 copied = sock_error(sk);
1228 if (sk->sk_shutdown & RCV_SHUTDOWN)
1231 if (sk->sk_state == TCP_CLOSE) {
1232 if (!sock_flag(sk, SOCK_DONE)) {
1233 /* This occurs when user tries to read
1234 * from never connected socket.
1247 if (signal_pending(current)) {
1248 copied = sock_intr_errno(timeo);
1253 tcp_cleanup_rbuf(sk, copied);
1255 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1256 /* Install new reader */
1257 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1258 user_recv = current;
1259 tp->ucopy.task = user_recv;
1260 tp->ucopy.iov = msg->msg_iov;
1263 tp->ucopy.len = len;
1265 BUG_TRAP(tp->copied_seq == tp->rcv_nxt ||
1266 (flags & (MSG_PEEK | MSG_TRUNC)));
1268 /* Ugly... If prequeue is not empty, we have to
1269 * process it before releasing socket, otherwise
1270 * order will be broken at second iteration.
1271 * More elegant solution is required!!!
1273 * Look: we have the following (pseudo)queues:
1275 * 1. packets in flight
1280 * Each queue can be processed only if the next ones
1281 * are empty. At this point we have empty receive_queue.
1282 * But prequeue _can_ be not empty after 2nd iteration,
1283 * when we jumped to start of loop because backlog
1284 * processing added something to receive_queue.
1285 * We cannot release_sock(), because backlog contains
1286 * packets arrived _after_ prequeued ones.
1288 * Shortly, algorithm is clear --- to process all
1289 * the queues in order. We could make it more directly,
1290 * requeueing packets from backlog to prequeue, if
1291 * is not empty. It is more elegant, but eats cycles,
1294 if (!skb_queue_empty(&tp->ucopy.prequeue))
1297 /* __ Set realtime policy in scheduler __ */
1300 if (copied >= target) {
1301 /* Do not sleep, just process backlog. */
1305 sk_wait_data(sk, &timeo);
1307 #ifdef CONFIG_NET_DMA
1308 tp->ucopy.wakeup = 0;
1314 /* __ Restore normal policy in scheduler __ */
1316 if ((chunk = len - tp->ucopy.len) != 0) {
1317 NET_ADD_STATS_USER(LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1322 if (tp->rcv_nxt == tp->copied_seq &&
1323 !skb_queue_empty(&tp->ucopy.prequeue)) {
1325 tcp_prequeue_process(sk);
1327 if ((chunk = len - tp->ucopy.len) != 0) {
1328 NET_ADD_STATS_USER(LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1334 if ((flags & MSG_PEEK) && peek_seq != tp->copied_seq) {
1335 if (net_ratelimit())
1336 printk(KERN_DEBUG "TCP(%s:%d): Application bug, race in MSG_PEEK.\n",
1337 current->comm, task_pid_nr(current));
1338 peek_seq = tp->copied_seq;
1343 /* Ok so how much can we use? */
1344 used = skb->len - offset;
1348 /* Do we have urgent data here? */
1350 u32 urg_offset = tp->urg_seq - *seq;
1351 if (urg_offset < used) {
1353 if (!sock_flag(sk, SOCK_URGINLINE)) {
1365 if (!(flags & MSG_TRUNC)) {
1366 #ifdef CONFIG_NET_DMA
1367 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1368 tp->ucopy.dma_chan = get_softnet_dma();
1370 if (tp->ucopy.dma_chan) {
1371 tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1372 tp->ucopy.dma_chan, skb, offset,
1374 tp->ucopy.pinned_list);
1376 if (tp->ucopy.dma_cookie < 0) {
1378 printk(KERN_ALERT "dma_cookie < 0\n");
1380 /* Exception. Bailout! */
1385 if ((offset + used) == skb->len)
1391 err = skb_copy_datagram_iovec(skb, offset,
1392 msg->msg_iov, used);
1394 /* Exception. Bailout! */
1406 tcp_rcv_space_adjust(sk);
1409 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1411 tcp_fast_path_check(sk);
1413 if (used + offset < skb->len)
1416 if (tcp_hdr(skb)->fin)
1418 if (!(flags & MSG_PEEK)) {
1419 sk_eat_skb(sk, skb, copied_early);
1425 /* Process the FIN. */
1427 if (!(flags & MSG_PEEK)) {
1428 sk_eat_skb(sk, skb, copied_early);
1435 if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1438 tp->ucopy.len = copied > 0 ? len : 0;
1440 tcp_prequeue_process(sk);
1442 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1443 NET_ADD_STATS_USER(LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1449 tp->ucopy.task = NULL;
1453 #ifdef CONFIG_NET_DMA
1454 if (tp->ucopy.dma_chan) {
1455 dma_cookie_t done, used;
1457 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1459 while (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1460 tp->ucopy.dma_cookie, &done,
1461 &used) == DMA_IN_PROGRESS) {
1462 /* do partial cleanup of sk_async_wait_queue */
1463 while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1464 (dma_async_is_complete(skb->dma_cookie, done,
1465 used) == DMA_SUCCESS)) {
1466 __skb_dequeue(&sk->sk_async_wait_queue);
1471 /* Safe to free early-copied skbs now */
1472 __skb_queue_purge(&sk->sk_async_wait_queue);
1473 dma_chan_put(tp->ucopy.dma_chan);
1474 tp->ucopy.dma_chan = NULL;
1476 if (tp->ucopy.pinned_list) {
1477 dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1478 tp->ucopy.pinned_list = NULL;
1482 /* According to UNIX98, msg_name/msg_namelen are ignored
1483 * on connected socket. I was just happy when found this 8) --ANK
1486 /* Clean up data we have read: This will do ACK frames. */
1487 tcp_cleanup_rbuf(sk, copied);
1489 TCP_CHECK_TIMER(sk);
1494 TCP_CHECK_TIMER(sk);
1499 err = tcp_recv_urg(sk, timeo, msg, len, flags, addr_len);
1504 * State processing on a close. This implements the state shift for
1505 * sending our FIN frame. Note that we only send a FIN for some
1506 * states. A shutdown() may have already sent the FIN, or we may be
1510 static const unsigned char new_state[16] = {
1511 /* current state: new state: action: */
1512 /* (Invalid) */ TCP_CLOSE,
1513 /* TCP_ESTABLISHED */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1514 /* TCP_SYN_SENT */ TCP_CLOSE,
1515 /* TCP_SYN_RECV */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1516 /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1,
1517 /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2,
1518 /* TCP_TIME_WAIT */ TCP_CLOSE,
1519 /* TCP_CLOSE */ TCP_CLOSE,
1520 /* TCP_CLOSE_WAIT */ TCP_LAST_ACK | TCP_ACTION_FIN,
1521 /* TCP_LAST_ACK */ TCP_LAST_ACK,
1522 /* TCP_LISTEN */ TCP_CLOSE,
1523 /* TCP_CLOSING */ TCP_CLOSING,
1526 static int tcp_close_state(struct sock *sk)
1528 int next = (int)new_state[sk->sk_state];
1529 int ns = next & TCP_STATE_MASK;
1531 tcp_set_state(sk, ns);
1533 return next & TCP_ACTION_FIN;
1537 * Shutdown the sending side of a connection. Much like close except
1538 * that we don't receive shut down or set_sock_flag(sk, SOCK_DEAD).
1541 void tcp_shutdown(struct sock *sk, int how)
1543 /* We need to grab some memory, and put together a FIN,
1544 * and then put it into the queue to be sent.
1545 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1547 if (!(how & SEND_SHUTDOWN))
1550 /* If we've already sent a FIN, or it's a closed state, skip this. */
1551 if ((1 << sk->sk_state) &
1552 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1553 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1554 /* Clear out any half completed packets. FIN if needed. */
1555 if (tcp_close_state(sk))
1560 void tcp_close(struct sock *sk, long timeout)
1562 struct sk_buff *skb;
1563 int data_was_unread = 0;
1567 sk->sk_shutdown = SHUTDOWN_MASK;
1569 if (sk->sk_state == TCP_LISTEN) {
1570 tcp_set_state(sk, TCP_CLOSE);
1573 inet_csk_listen_stop(sk);
1575 goto adjudge_to_death;
1578 /* We need to flush the recv. buffs. We do this only on the
1579 * descriptor close, not protocol-sourced closes, because the
1580 * reader process may not have drained the data yet!
1582 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
1583 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
1585 data_was_unread += len;
1589 sk_stream_mem_reclaim(sk);
1591 /* As outlined in RFC 2525, section 2.17, we send a RST here because
1592 * data was lost. To witness the awful effects of the old behavior of
1593 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
1594 * GET in an FTP client, suspend the process, wait for the client to
1595 * advertise a zero window, then kill -9 the FTP client, wheee...
1596 * Note: timeout is always zero in such a case.
1598 if (data_was_unread) {
1599 /* Unread data was tossed, zap the connection. */
1600 NET_INC_STATS_USER(LINUX_MIB_TCPABORTONCLOSE);
1601 tcp_set_state(sk, TCP_CLOSE);
1602 tcp_send_active_reset(sk, GFP_KERNEL);
1603 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
1604 /* Check zero linger _after_ checking for unread data. */
1605 sk->sk_prot->disconnect(sk, 0);
1606 NET_INC_STATS_USER(LINUX_MIB_TCPABORTONDATA);
1607 } else if (tcp_close_state(sk)) {
1608 /* We FIN if the application ate all the data before
1609 * zapping the connection.
1612 /* RED-PEN. Formally speaking, we have broken TCP state
1613 * machine. State transitions:
1615 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
1616 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
1617 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
1619 * are legal only when FIN has been sent (i.e. in window),
1620 * rather than queued out of window. Purists blame.
1622 * F.e. "RFC state" is ESTABLISHED,
1623 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
1625 * The visible declinations are that sometimes
1626 * we enter time-wait state, when it is not required really
1627 * (harmless), do not send active resets, when they are
1628 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
1629 * they look as CLOSING or LAST_ACK for Linux)
1630 * Probably, I missed some more holelets.
1636 sk_stream_wait_close(sk, timeout);
1639 state = sk->sk_state;
1642 atomic_inc(sk->sk_prot->orphan_count);
1644 /* It is the last release_sock in its life. It will remove backlog. */
1648 /* Now socket is owned by kernel and we acquire BH lock
1649 to finish close. No need to check for user refs.
1653 BUG_TRAP(!sock_owned_by_user(sk));
1655 /* Have we already been destroyed by a softirq or backlog? */
1656 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
1659 /* This is a (useful) BSD violating of the RFC. There is a
1660 * problem with TCP as specified in that the other end could
1661 * keep a socket open forever with no application left this end.
1662 * We use a 3 minute timeout (about the same as BSD) then kill
1663 * our end. If they send after that then tough - BUT: long enough
1664 * that we won't make the old 4*rto = almost no time - whoops
1667 * Nope, it was not mistake. It is really desired behaviour
1668 * f.e. on http servers, when such sockets are useless, but
1669 * consume significant resources. Let's do it with special
1670 * linger2 option. --ANK
1673 if (sk->sk_state == TCP_FIN_WAIT2) {
1674 struct tcp_sock *tp = tcp_sk(sk);
1675 if (tp->linger2 < 0) {
1676 tcp_set_state(sk, TCP_CLOSE);
1677 tcp_send_active_reset(sk, GFP_ATOMIC);
1678 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONLINGER);
1680 const int tmo = tcp_fin_time(sk);
1682 if (tmo > TCP_TIMEWAIT_LEN) {
1683 inet_csk_reset_keepalive_timer(sk,
1684 tmo - TCP_TIMEWAIT_LEN);
1686 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
1691 if (sk->sk_state != TCP_CLOSE) {
1692 sk_stream_mem_reclaim(sk);
1693 if (tcp_too_many_orphans(sk,
1694 atomic_read(sk->sk_prot->orphan_count))) {
1695 if (net_ratelimit())
1696 printk(KERN_INFO "TCP: too many of orphaned "
1698 tcp_set_state(sk, TCP_CLOSE);
1699 tcp_send_active_reset(sk, GFP_ATOMIC);
1700 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONMEMORY);
1704 if (sk->sk_state == TCP_CLOSE)
1705 inet_csk_destroy_sock(sk);
1706 /* Otherwise, socket is reprieved until protocol close. */
1714 /* These states need RST on ABORT according to RFC793 */
1716 static inline int tcp_need_reset(int state)
1718 return (1 << state) &
1719 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
1720 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
1723 int tcp_disconnect(struct sock *sk, int flags)
1725 struct inet_sock *inet = inet_sk(sk);
1726 struct inet_connection_sock *icsk = inet_csk(sk);
1727 struct tcp_sock *tp = tcp_sk(sk);
1729 int old_state = sk->sk_state;
1731 if (old_state != TCP_CLOSE)
1732 tcp_set_state(sk, TCP_CLOSE);
1734 /* ABORT function of RFC793 */
1735 if (old_state == TCP_LISTEN) {
1736 inet_csk_listen_stop(sk);
1737 } else if (tcp_need_reset(old_state) ||
1738 (tp->snd_nxt != tp->write_seq &&
1739 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
1740 /* The last check adjusts for discrepancy of Linux wrt. RFC
1743 tcp_send_active_reset(sk, gfp_any());
1744 sk->sk_err = ECONNRESET;
1745 } else if (old_state == TCP_SYN_SENT)
1746 sk->sk_err = ECONNRESET;
1748 tcp_clear_xmit_timers(sk);
1749 __skb_queue_purge(&sk->sk_receive_queue);
1750 tcp_write_queue_purge(sk);
1751 __skb_queue_purge(&tp->out_of_order_queue);
1752 #ifdef CONFIG_NET_DMA
1753 __skb_queue_purge(&sk->sk_async_wait_queue);
1758 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1759 inet_reset_saddr(sk);
1761 sk->sk_shutdown = 0;
1762 sock_reset_flag(sk, SOCK_DONE);
1764 if ((tp->write_seq += tp->max_window + 2) == 0)
1766 icsk->icsk_backoff = 0;
1768 icsk->icsk_probes_out = 0;
1769 tp->packets_out = 0;
1770 tp->snd_ssthresh = 0x7fffffff;
1771 tp->snd_cwnd_cnt = 0;
1772 tp->bytes_acked = 0;
1773 tcp_set_ca_state(sk, TCP_CA_Open);
1774 tcp_clear_retrans(tp);
1775 inet_csk_delack_init(sk);
1776 tcp_init_send_head(sk);
1777 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
1780 BUG_TRAP(!inet->num || icsk->icsk_bind_hash);
1782 sk->sk_error_report(sk);
1787 * Socket option code for TCP.
1789 static int do_tcp_setsockopt(struct sock *sk, int level,
1790 int optname, char __user *optval, int optlen)
1792 struct tcp_sock *tp = tcp_sk(sk);
1793 struct inet_connection_sock *icsk = inet_csk(sk);
1797 /* This is a string value all the others are int's */
1798 if (optname == TCP_CONGESTION) {
1799 char name[TCP_CA_NAME_MAX];
1804 val = strncpy_from_user(name, optval,
1805 min(TCP_CA_NAME_MAX-1, optlen));
1811 err = tcp_set_congestion_control(sk, name);
1816 if (optlen < sizeof(int))
1819 if (get_user(val, (int __user *)optval))
1826 /* Values greater than interface MTU won't take effect. However
1827 * at the point when this call is done we typically don't yet
1828 * know which interface is going to be used */
1829 if (val < 8 || val > MAX_TCP_WINDOW) {
1833 tp->rx_opt.user_mss = val;
1838 /* TCP_NODELAY is weaker than TCP_CORK, so that
1839 * this option on corked socket is remembered, but
1840 * it is not activated until cork is cleared.
1842 * However, when TCP_NODELAY is set we make
1843 * an explicit push, which overrides even TCP_CORK
1844 * for currently queued segments.
1846 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
1847 tcp_push_pending_frames(sk);
1849 tp->nonagle &= ~TCP_NAGLE_OFF;
1854 /* When set indicates to always queue non-full frames.
1855 * Later the user clears this option and we transmit
1856 * any pending partial frames in the queue. This is
1857 * meant to be used alongside sendfile() to get properly
1858 * filled frames when the user (for example) must write
1859 * out headers with a write() call first and then use
1860 * sendfile to send out the data parts.
1862 * TCP_CORK can be set together with TCP_NODELAY and it is
1863 * stronger than TCP_NODELAY.
1866 tp->nonagle |= TCP_NAGLE_CORK;
1868 tp->nonagle &= ~TCP_NAGLE_CORK;
1869 if (tp->nonagle&TCP_NAGLE_OFF)
1870 tp->nonagle |= TCP_NAGLE_PUSH;
1871 tcp_push_pending_frames(sk);
1876 if (val < 1 || val > MAX_TCP_KEEPIDLE)
1879 tp->keepalive_time = val * HZ;
1880 if (sock_flag(sk, SOCK_KEEPOPEN) &&
1881 !((1 << sk->sk_state) &
1882 (TCPF_CLOSE | TCPF_LISTEN))) {
1883 __u32 elapsed = tcp_time_stamp - tp->rcv_tstamp;
1884 if (tp->keepalive_time > elapsed)
1885 elapsed = tp->keepalive_time - elapsed;
1888 inet_csk_reset_keepalive_timer(sk, elapsed);
1893 if (val < 1 || val > MAX_TCP_KEEPINTVL)
1896 tp->keepalive_intvl = val * HZ;
1899 if (val < 1 || val > MAX_TCP_KEEPCNT)
1902 tp->keepalive_probes = val;
1905 if (val < 1 || val > MAX_TCP_SYNCNT)
1908 icsk->icsk_syn_retries = val;
1914 else if (val > sysctl_tcp_fin_timeout / HZ)
1917 tp->linger2 = val * HZ;
1920 case TCP_DEFER_ACCEPT:
1921 icsk->icsk_accept_queue.rskq_defer_accept = 0;
1923 /* Translate value in seconds to number of
1925 while (icsk->icsk_accept_queue.rskq_defer_accept < 32 &&
1926 val > ((TCP_TIMEOUT_INIT / HZ) <<
1927 icsk->icsk_accept_queue.rskq_defer_accept))
1928 icsk->icsk_accept_queue.rskq_defer_accept++;
1929 icsk->icsk_accept_queue.rskq_defer_accept++;
1933 case TCP_WINDOW_CLAMP:
1935 if (sk->sk_state != TCP_CLOSE) {
1939 tp->window_clamp = 0;
1941 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
1942 SOCK_MIN_RCVBUF / 2 : val;
1947 icsk->icsk_ack.pingpong = 1;
1949 icsk->icsk_ack.pingpong = 0;
1950 if ((1 << sk->sk_state) &
1951 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
1952 inet_csk_ack_scheduled(sk)) {
1953 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1954 tcp_cleanup_rbuf(sk, 1);
1956 icsk->icsk_ack.pingpong = 1;
1961 #ifdef CONFIG_TCP_MD5SIG
1963 /* Read the IP->Key mappings from userspace */
1964 err = tp->af_specific->md5_parse(sk, optval, optlen);
1977 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
1980 struct inet_connection_sock *icsk = inet_csk(sk);
1982 if (level != SOL_TCP)
1983 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
1985 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
1988 #ifdef CONFIG_COMPAT
1989 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
1990 char __user *optval, int optlen)
1992 if (level != SOL_TCP)
1993 return inet_csk_compat_setsockopt(sk, level, optname,
1995 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
1998 EXPORT_SYMBOL(compat_tcp_setsockopt);
2001 /* Return information about state of tcp endpoint in API format. */
2002 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2004 struct tcp_sock *tp = tcp_sk(sk);
2005 const struct inet_connection_sock *icsk = inet_csk(sk);
2006 u32 now = tcp_time_stamp;
2008 memset(info, 0, sizeof(*info));
2010 info->tcpi_state = sk->sk_state;
2011 info->tcpi_ca_state = icsk->icsk_ca_state;
2012 info->tcpi_retransmits = icsk->icsk_retransmits;
2013 info->tcpi_probes = icsk->icsk_probes_out;
2014 info->tcpi_backoff = icsk->icsk_backoff;
2016 if (tp->rx_opt.tstamp_ok)
2017 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2018 if (tcp_is_sack(tp))
2019 info->tcpi_options |= TCPI_OPT_SACK;
2020 if (tp->rx_opt.wscale_ok) {
2021 info->tcpi_options |= TCPI_OPT_WSCALE;
2022 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2023 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2026 if (tp->ecn_flags&TCP_ECN_OK)
2027 info->tcpi_options |= TCPI_OPT_ECN;
2029 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2030 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2031 info->tcpi_snd_mss = tp->mss_cache;
2032 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2034 if (sk->sk_state == TCP_LISTEN) {
2035 info->tcpi_unacked = sk->sk_ack_backlog;
2036 info->tcpi_sacked = sk->sk_max_ack_backlog;
2038 info->tcpi_unacked = tp->packets_out;
2039 info->tcpi_sacked = tp->sacked_out;
2041 info->tcpi_lost = tp->lost_out;
2042 info->tcpi_retrans = tp->retrans_out;
2043 info->tcpi_fackets = tp->fackets_out;
2045 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2046 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2047 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2049 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2050 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2051 info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2052 info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2053 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2054 info->tcpi_snd_cwnd = tp->snd_cwnd;
2055 info->tcpi_advmss = tp->advmss;
2056 info->tcpi_reordering = tp->reordering;
2058 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2059 info->tcpi_rcv_space = tp->rcvq_space.space;
2061 info->tcpi_total_retrans = tp->total_retrans;
2064 EXPORT_SYMBOL_GPL(tcp_get_info);
2066 static int do_tcp_getsockopt(struct sock *sk, int level,
2067 int optname, char __user *optval, int __user *optlen)
2069 struct inet_connection_sock *icsk = inet_csk(sk);
2070 struct tcp_sock *tp = tcp_sk(sk);
2073 if (get_user(len, optlen))
2076 len = min_t(unsigned int, len, sizeof(int));
2083 val = tp->mss_cache;
2084 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2085 val = tp->rx_opt.user_mss;
2088 val = !!(tp->nonagle&TCP_NAGLE_OFF);
2091 val = !!(tp->nonagle&TCP_NAGLE_CORK);
2094 val = (tp->keepalive_time ? : sysctl_tcp_keepalive_time) / HZ;
2097 val = (tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl) / HZ;
2100 val = tp->keepalive_probes ? : sysctl_tcp_keepalive_probes;
2103 val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2108 val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2110 case TCP_DEFER_ACCEPT:
2111 val = !icsk->icsk_accept_queue.rskq_defer_accept ? 0 :
2112 ((TCP_TIMEOUT_INIT / HZ) << (icsk->icsk_accept_queue.rskq_defer_accept - 1));
2114 case TCP_WINDOW_CLAMP:
2115 val = tp->window_clamp;
2118 struct tcp_info info;
2120 if (get_user(len, optlen))
2123 tcp_get_info(sk, &info);
2125 len = min_t(unsigned int, len, sizeof(info));
2126 if (put_user(len, optlen))
2128 if (copy_to_user(optval, &info, len))
2133 val = !icsk->icsk_ack.pingpong;
2136 case TCP_CONGESTION:
2137 if (get_user(len, optlen))
2139 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2140 if (put_user(len, optlen))
2142 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2146 return -ENOPROTOOPT;
2149 if (put_user(len, optlen))
2151 if (copy_to_user(optval, &val, len))
2156 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2159 struct inet_connection_sock *icsk = inet_csk(sk);
2161 if (level != SOL_TCP)
2162 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2164 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2167 #ifdef CONFIG_COMPAT
2168 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2169 char __user *optval, int __user *optlen)
2171 if (level != SOL_TCP)
2172 return inet_csk_compat_getsockopt(sk, level, optname,
2174 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2177 EXPORT_SYMBOL(compat_tcp_getsockopt);
2180 struct sk_buff *tcp_tso_segment(struct sk_buff *skb, int features)
2182 struct sk_buff *segs = ERR_PTR(-EINVAL);
2187 unsigned int oldlen;
2190 if (!pskb_may_pull(skb, sizeof(*th)))
2194 thlen = th->doff * 4;
2195 if (thlen < sizeof(*th))
2198 if (!pskb_may_pull(skb, thlen))
2201 oldlen = (u16)~skb->len;
2202 __skb_pull(skb, thlen);
2204 if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2205 /* Packet is from an untrusted source, reset gso_segs. */
2206 int type = skb_shinfo(skb)->gso_type;
2215 !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
2218 mss = skb_shinfo(skb)->gso_size;
2219 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2225 segs = skb_segment(skb, features);
2229 len = skb_shinfo(skb)->gso_size;
2230 delta = htonl(oldlen + (thlen + len));
2234 seq = ntohl(th->seq);
2237 th->fin = th->psh = 0;
2239 th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2240 (__force u32)delta));
2241 if (skb->ip_summed != CHECKSUM_PARTIAL)
2243 csum_fold(csum_partial(skb_transport_header(skb),
2250 th->seq = htonl(seq);
2252 } while (skb->next);
2254 delta = htonl(oldlen + (skb->tail - skb->transport_header) +
2256 th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2257 (__force u32)delta));
2258 if (skb->ip_summed != CHECKSUM_PARTIAL)
2259 th->check = csum_fold(csum_partial(skb_transport_header(skb),
2265 EXPORT_SYMBOL(tcp_tso_segment);
2267 #ifdef CONFIG_TCP_MD5SIG
2268 static unsigned long tcp_md5sig_users;
2269 static struct tcp_md5sig_pool **tcp_md5sig_pool;
2270 static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
2272 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool **pool)
2275 for_each_possible_cpu(cpu) {
2276 struct tcp_md5sig_pool *p = *per_cpu_ptr(pool, cpu);
2278 if (p->md5_desc.tfm)
2279 crypto_free_hash(p->md5_desc.tfm);
2287 void tcp_free_md5sig_pool(void)
2289 struct tcp_md5sig_pool **pool = NULL;
2291 spin_lock_bh(&tcp_md5sig_pool_lock);
2292 if (--tcp_md5sig_users == 0) {
2293 pool = tcp_md5sig_pool;
2294 tcp_md5sig_pool = NULL;
2296 spin_unlock_bh(&tcp_md5sig_pool_lock);
2298 __tcp_free_md5sig_pool(pool);
2301 EXPORT_SYMBOL(tcp_free_md5sig_pool);
2303 static struct tcp_md5sig_pool **__tcp_alloc_md5sig_pool(void)
2306 struct tcp_md5sig_pool **pool;
2308 pool = alloc_percpu(struct tcp_md5sig_pool *);
2312 for_each_possible_cpu(cpu) {
2313 struct tcp_md5sig_pool *p;
2314 struct crypto_hash *hash;
2316 p = kzalloc(sizeof(*p), GFP_KERNEL);
2319 *per_cpu_ptr(pool, cpu) = p;
2321 hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2322 if (!hash || IS_ERR(hash))
2325 p->md5_desc.tfm = hash;
2329 __tcp_free_md5sig_pool(pool);
2333 struct tcp_md5sig_pool **tcp_alloc_md5sig_pool(void)
2335 struct tcp_md5sig_pool **pool;
2339 spin_lock_bh(&tcp_md5sig_pool_lock);
2340 pool = tcp_md5sig_pool;
2341 if (tcp_md5sig_users++ == 0) {
2343 spin_unlock_bh(&tcp_md5sig_pool_lock);
2346 spin_unlock_bh(&tcp_md5sig_pool_lock);
2350 spin_unlock_bh(&tcp_md5sig_pool_lock);
2353 /* we cannot hold spinlock here because this may sleep. */
2354 struct tcp_md5sig_pool **p = __tcp_alloc_md5sig_pool();
2355 spin_lock_bh(&tcp_md5sig_pool_lock);
2358 spin_unlock_bh(&tcp_md5sig_pool_lock);
2361 pool = tcp_md5sig_pool;
2363 /* oops, it has already been assigned. */
2364 spin_unlock_bh(&tcp_md5sig_pool_lock);
2365 __tcp_free_md5sig_pool(p);
2367 tcp_md5sig_pool = pool = p;
2368 spin_unlock_bh(&tcp_md5sig_pool_lock);
2374 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2376 struct tcp_md5sig_pool *__tcp_get_md5sig_pool(int cpu)
2378 struct tcp_md5sig_pool **p;
2379 spin_lock_bh(&tcp_md5sig_pool_lock);
2380 p = tcp_md5sig_pool;
2383 spin_unlock_bh(&tcp_md5sig_pool_lock);
2384 return (p ? *per_cpu_ptr(p, cpu) : NULL);
2387 EXPORT_SYMBOL(__tcp_get_md5sig_pool);
2389 void __tcp_put_md5sig_pool(void)
2391 tcp_free_md5sig_pool();
2394 EXPORT_SYMBOL(__tcp_put_md5sig_pool);
2397 void tcp_done(struct sock *sk)
2399 if(sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
2400 TCP_INC_STATS_BH(TCP_MIB_ATTEMPTFAILS);
2402 tcp_set_state(sk, TCP_CLOSE);
2403 tcp_clear_xmit_timers(sk);
2405 sk->sk_shutdown = SHUTDOWN_MASK;
2407 if (!sock_flag(sk, SOCK_DEAD))
2408 sk->sk_state_change(sk);
2410 inet_csk_destroy_sock(sk);
2412 EXPORT_SYMBOL_GPL(tcp_done);
2414 extern void __skb_cb_too_small_for_tcp(int, int);
2415 extern struct tcp_congestion_ops tcp_reno;
2417 static __initdata unsigned long thash_entries;
2418 static int __init set_thash_entries(char *str)
2422 thash_entries = simple_strtoul(str, &str, 0);
2425 __setup("thash_entries=", set_thash_entries);
2427 void __init tcp_init(void)
2429 struct sk_buff *skb = NULL;
2430 unsigned long limit;
2431 int order, i, max_share;
2433 if (sizeof(struct tcp_skb_cb) > sizeof(skb->cb))
2434 __skb_cb_too_small_for_tcp(sizeof(struct tcp_skb_cb),
2437 tcp_hashinfo.bind_bucket_cachep =
2438 kmem_cache_create("tcp_bind_bucket",
2439 sizeof(struct inet_bind_bucket), 0,
2440 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2442 /* Size and allocate the main established and bind bucket
2445 * The methodology is similar to that of the buffer cache.
2447 tcp_hashinfo.ehash =
2448 alloc_large_system_hash("TCP established",
2449 sizeof(struct inet_ehash_bucket),
2451 (num_physpages >= 128 * 1024) ?
2454 &tcp_hashinfo.ehash_size,
2457 tcp_hashinfo.ehash_size = 1 << tcp_hashinfo.ehash_size;
2458 for (i = 0; i < tcp_hashinfo.ehash_size; i++) {
2459 rwlock_init(&tcp_hashinfo.ehash[i].lock);
2460 INIT_HLIST_HEAD(&tcp_hashinfo.ehash[i].chain);
2461 INIT_HLIST_HEAD(&tcp_hashinfo.ehash[i].twchain);
2464 tcp_hashinfo.bhash =
2465 alloc_large_system_hash("TCP bind",
2466 sizeof(struct inet_bind_hashbucket),
2467 tcp_hashinfo.ehash_size,
2468 (num_physpages >= 128 * 1024) ?
2471 &tcp_hashinfo.bhash_size,
2474 tcp_hashinfo.bhash_size = 1 << tcp_hashinfo.bhash_size;
2475 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
2476 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
2477 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
2480 /* Try to be a bit smarter and adjust defaults depending
2481 * on available memory.
2483 for (order = 0; ((1 << order) << PAGE_SHIFT) <
2484 (tcp_hashinfo.bhash_size * sizeof(struct inet_bind_hashbucket));
2488 tcp_death_row.sysctl_max_tw_buckets = 180000;
2489 sysctl_tcp_max_orphans = 4096 << (order - 4);
2490 sysctl_max_syn_backlog = 1024;
2491 } else if (order < 3) {
2492 tcp_death_row.sysctl_max_tw_buckets >>= (3 - order);
2493 sysctl_tcp_max_orphans >>= (3 - order);
2494 sysctl_max_syn_backlog = 128;
2497 /* Set the pressure threshold to be a fraction of global memory that
2498 * is up to 1/2 at 256 MB, decreasing toward zero with the amount of
2499 * memory, with a floor of 128 pages.
2501 limit = min(nr_all_pages, 1UL<<(28-PAGE_SHIFT)) >> (20-PAGE_SHIFT);
2502 limit = (limit * (nr_all_pages >> (20-PAGE_SHIFT))) >> (PAGE_SHIFT-11);
2503 limit = max(limit, 128UL);
2504 sysctl_tcp_mem[0] = limit / 4 * 3;
2505 sysctl_tcp_mem[1] = limit;
2506 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;
2508 /* Set per-socket limits to no more than 1/128 the pressure threshold */
2509 limit = ((unsigned long)sysctl_tcp_mem[1]) << (PAGE_SHIFT - 7);
2510 max_share = min(4UL*1024*1024, limit);
2512 sysctl_tcp_wmem[0] = SK_STREAM_MEM_QUANTUM;
2513 sysctl_tcp_wmem[1] = 16*1024;
2514 sysctl_tcp_wmem[2] = max(64*1024, max_share);
2516 sysctl_tcp_rmem[0] = SK_STREAM_MEM_QUANTUM;
2517 sysctl_tcp_rmem[1] = 87380;
2518 sysctl_tcp_rmem[2] = max(87380, max_share);
2520 printk(KERN_INFO "TCP: Hash tables configured "
2521 "(established %d bind %d)\n",
2522 tcp_hashinfo.ehash_size, tcp_hashinfo.bhash_size);
2524 tcp_register_congestion_control(&tcp_reno);
2527 EXPORT_SYMBOL(tcp_close);
2528 EXPORT_SYMBOL(tcp_disconnect);
2529 EXPORT_SYMBOL(tcp_getsockopt);
2530 EXPORT_SYMBOL(tcp_ioctl);
2531 EXPORT_SYMBOL(tcp_poll);
2532 EXPORT_SYMBOL(tcp_read_sock);
2533 EXPORT_SYMBOL(tcp_recvmsg);
2534 EXPORT_SYMBOL(tcp_sendmsg);
2535 EXPORT_SYMBOL(tcp_sendpage);
2536 EXPORT_SYMBOL(tcp_setsockopt);
2537 EXPORT_SYMBOL(tcp_shutdown);
2538 EXPORT_SYMBOL(tcp_statistics);