fbdev: SuperH Mobile LCDC Driver
[linux-2.6] / kernel / audit_tree.c
1 #include "audit.h"
2 #include <linux/inotify.h>
3 #include <linux/namei.h>
4 #include <linux/mount.h>
5
6 struct audit_tree;
7 struct audit_chunk;
8
9 struct audit_tree {
10         atomic_t count;
11         int goner;
12         struct audit_chunk *root;
13         struct list_head chunks;
14         struct list_head rules;
15         struct list_head list;
16         struct list_head same_root;
17         struct rcu_head head;
18         char pathname[];
19 };
20
21 struct audit_chunk {
22         struct list_head hash;
23         struct inotify_watch watch;
24         struct list_head trees;         /* with root here */
25         int dead;
26         int count;
27         struct rcu_head head;
28         struct node {
29                 struct list_head list;
30                 struct audit_tree *owner;
31                 unsigned index;         /* index; upper bit indicates 'will prune' */
32         } owners[];
33 };
34
35 static LIST_HEAD(tree_list);
36 static LIST_HEAD(prune_list);
37
38 /*
39  * One struct chunk is attached to each inode of interest.
40  * We replace struct chunk on tagging/untagging.
41  * Rules have pointer to struct audit_tree.
42  * Rules have struct list_head rlist forming a list of rules over
43  * the same tree.
44  * References to struct chunk are collected at audit_inode{,_child}()
45  * time and used in AUDIT_TREE rule matching.
46  * These references are dropped at the same time we are calling
47  * audit_free_names(), etc.
48  *
49  * Cyclic lists galore:
50  * tree.chunks anchors chunk.owners[].list                      hash_lock
51  * tree.rules anchors rule.rlist                                audit_filter_mutex
52  * chunk.trees anchors tree.same_root                           hash_lock
53  * chunk.hash is a hash with middle bits of watch.inode as
54  * a hash function.                                             RCU, hash_lock
55  *
56  * tree is refcounted; one reference for "some rules on rules_list refer to
57  * it", one for each chunk with pointer to it.
58  *
59  * chunk is refcounted by embedded inotify_watch.
60  *
61  * node.index allows to get from node.list to containing chunk.
62  * MSB of that sucker is stolen to mark taggings that we might have to
63  * revert - several operations have very unpleasant cleanup logics and
64  * that makes a difference.  Some.
65  */
66
67 static struct inotify_handle *rtree_ih;
68
69 static struct audit_tree *alloc_tree(const char *s)
70 {
71         struct audit_tree *tree;
72
73         tree = kmalloc(sizeof(struct audit_tree) + strlen(s) + 1, GFP_KERNEL);
74         if (tree) {
75                 atomic_set(&tree->count, 1);
76                 tree->goner = 0;
77                 INIT_LIST_HEAD(&tree->chunks);
78                 INIT_LIST_HEAD(&tree->rules);
79                 INIT_LIST_HEAD(&tree->list);
80                 INIT_LIST_HEAD(&tree->same_root);
81                 tree->root = NULL;
82                 strcpy(tree->pathname, s);
83         }
84         return tree;
85 }
86
87 static inline void get_tree(struct audit_tree *tree)
88 {
89         atomic_inc(&tree->count);
90 }
91
92 static void __put_tree(struct rcu_head *rcu)
93 {
94         struct audit_tree *tree = container_of(rcu, struct audit_tree, head);
95         kfree(tree);
96 }
97
98 static inline void put_tree(struct audit_tree *tree)
99 {
100         if (atomic_dec_and_test(&tree->count))
101                 call_rcu(&tree->head, __put_tree);
102 }
103
104 /* to avoid bringing the entire thing in audit.h */
105 const char *audit_tree_path(struct audit_tree *tree)
106 {
107         return tree->pathname;
108 }
109
110 static struct audit_chunk *alloc_chunk(int count)
111 {
112         struct audit_chunk *chunk;
113         size_t size;
114         int i;
115
116         size = offsetof(struct audit_chunk, owners) + count * sizeof(struct node);
117         chunk = kzalloc(size, GFP_KERNEL);
118         if (!chunk)
119                 return NULL;
120
121         INIT_LIST_HEAD(&chunk->hash);
122         INIT_LIST_HEAD(&chunk->trees);
123         chunk->count = count;
124         for (i = 0; i < count; i++) {
125                 INIT_LIST_HEAD(&chunk->owners[i].list);
126                 chunk->owners[i].index = i;
127         }
128         inotify_init_watch(&chunk->watch);
129         return chunk;
130 }
131
132 static void __free_chunk(struct rcu_head *rcu)
133 {
134         struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head);
135         int i;
136
137         for (i = 0; i < chunk->count; i++) {
138                 if (chunk->owners[i].owner)
139                         put_tree(chunk->owners[i].owner);
140         }
141         kfree(chunk);
142 }
143
144 static inline void free_chunk(struct audit_chunk *chunk)
145 {
146         call_rcu(&chunk->head, __free_chunk);
147 }
148
149 void audit_put_chunk(struct audit_chunk *chunk)
150 {
151         put_inotify_watch(&chunk->watch);
152 }
153
154 enum {HASH_SIZE = 128};
155 static struct list_head chunk_hash_heads[HASH_SIZE];
156 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock);
157
158 static inline struct list_head *chunk_hash(const struct inode *inode)
159 {
160         unsigned long n = (unsigned long)inode / L1_CACHE_BYTES;
161         return chunk_hash_heads + n % HASH_SIZE;
162 }
163
164 /* hash_lock is held by caller */
165 static void insert_hash(struct audit_chunk *chunk)
166 {
167         struct list_head *list = chunk_hash(chunk->watch.inode);
168         list_add_rcu(&chunk->hash, list);
169 }
170
171 /* called under rcu_read_lock */
172 struct audit_chunk *audit_tree_lookup(const struct inode *inode)
173 {
174         struct list_head *list = chunk_hash(inode);
175         struct audit_chunk *p;
176
177         list_for_each_entry_rcu(p, list, hash) {
178                 if (p->watch.inode == inode) {
179                         get_inotify_watch(&p->watch);
180                         return p;
181                 }
182         }
183         return NULL;
184 }
185
186 int audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree)
187 {
188         int n;
189         for (n = 0; n < chunk->count; n++)
190                 if (chunk->owners[n].owner == tree)
191                         return 1;
192         return 0;
193 }
194
195 /* tagging and untagging inodes with trees */
196
197 static void untag_chunk(struct audit_chunk *chunk, struct node *p)
198 {
199         struct audit_chunk *new;
200         struct audit_tree *owner;
201         int size = chunk->count - 1;
202         int i, j;
203
204         mutex_lock(&chunk->watch.inode->inotify_mutex);
205         if (chunk->dead) {
206                 mutex_unlock(&chunk->watch.inode->inotify_mutex);
207                 return;
208         }
209
210         owner = p->owner;
211
212         if (!size) {
213                 chunk->dead = 1;
214                 spin_lock(&hash_lock);
215                 list_del_init(&chunk->trees);
216                 if (owner->root == chunk)
217                         owner->root = NULL;
218                 list_del_init(&p->list);
219                 list_del_rcu(&chunk->hash);
220                 spin_unlock(&hash_lock);
221                 inotify_evict_watch(&chunk->watch);
222                 mutex_unlock(&chunk->watch.inode->inotify_mutex);
223                 put_inotify_watch(&chunk->watch);
224                 return;
225         }
226
227         new = alloc_chunk(size);
228         if (!new)
229                 goto Fallback;
230         if (inotify_clone_watch(&chunk->watch, &new->watch) < 0) {
231                 free_chunk(new);
232                 goto Fallback;
233         }
234
235         chunk->dead = 1;
236         spin_lock(&hash_lock);
237         list_replace_init(&chunk->trees, &new->trees);
238         if (owner->root == chunk) {
239                 list_del_init(&owner->same_root);
240                 owner->root = NULL;
241         }
242
243         for (i = j = 0; i < size; i++, j++) {
244                 struct audit_tree *s;
245                 if (&chunk->owners[j] == p) {
246                         list_del_init(&p->list);
247                         i--;
248                         continue;
249                 }
250                 s = chunk->owners[j].owner;
251                 new->owners[i].owner = s;
252                 new->owners[i].index = chunk->owners[j].index - j + i;
253                 if (!s) /* result of earlier fallback */
254                         continue;
255                 get_tree(s);
256                 list_replace_init(&chunk->owners[i].list, &new->owners[j].list);
257         }
258
259         list_replace_rcu(&chunk->hash, &new->hash);
260         list_for_each_entry(owner, &new->trees, same_root)
261                 owner->root = new;
262         spin_unlock(&hash_lock);
263         inotify_evict_watch(&chunk->watch);
264         mutex_unlock(&chunk->watch.inode->inotify_mutex);
265         put_inotify_watch(&chunk->watch);
266         return;
267
268 Fallback:
269         // do the best we can
270         spin_lock(&hash_lock);
271         if (owner->root == chunk) {
272                 list_del_init(&owner->same_root);
273                 owner->root = NULL;
274         }
275         list_del_init(&p->list);
276         p->owner = NULL;
277         put_tree(owner);
278         spin_unlock(&hash_lock);
279         mutex_unlock(&chunk->watch.inode->inotify_mutex);
280 }
281
282 static int create_chunk(struct inode *inode, struct audit_tree *tree)
283 {
284         struct audit_chunk *chunk = alloc_chunk(1);
285         if (!chunk)
286                 return -ENOMEM;
287
288         if (inotify_add_watch(rtree_ih, &chunk->watch, inode, IN_IGNORED | IN_DELETE_SELF) < 0) {
289                 free_chunk(chunk);
290                 return -ENOSPC;
291         }
292
293         mutex_lock(&inode->inotify_mutex);
294         spin_lock(&hash_lock);
295         if (tree->goner) {
296                 spin_unlock(&hash_lock);
297                 chunk->dead = 1;
298                 inotify_evict_watch(&chunk->watch);
299                 mutex_unlock(&inode->inotify_mutex);
300                 put_inotify_watch(&chunk->watch);
301                 return 0;
302         }
303         chunk->owners[0].index = (1U << 31);
304         chunk->owners[0].owner = tree;
305         get_tree(tree);
306         list_add(&chunk->owners[0].list, &tree->chunks);
307         if (!tree->root) {
308                 tree->root = chunk;
309                 list_add(&tree->same_root, &chunk->trees);
310         }
311         insert_hash(chunk);
312         spin_unlock(&hash_lock);
313         mutex_unlock(&inode->inotify_mutex);
314         return 0;
315 }
316
317 /* the first tagged inode becomes root of tree */
318 static int tag_chunk(struct inode *inode, struct audit_tree *tree)
319 {
320         struct inotify_watch *watch;
321         struct audit_tree *owner;
322         struct audit_chunk *chunk, *old;
323         struct node *p;
324         int n;
325
326         if (inotify_find_watch(rtree_ih, inode, &watch) < 0)
327                 return create_chunk(inode, tree);
328
329         old = container_of(watch, struct audit_chunk, watch);
330
331         /* are we already there? */
332         spin_lock(&hash_lock);
333         for (n = 0; n < old->count; n++) {
334                 if (old->owners[n].owner == tree) {
335                         spin_unlock(&hash_lock);
336                         put_inotify_watch(watch);
337                         return 0;
338                 }
339         }
340         spin_unlock(&hash_lock);
341
342         chunk = alloc_chunk(old->count + 1);
343         if (!chunk)
344                 return -ENOMEM;
345
346         mutex_lock(&inode->inotify_mutex);
347         if (inotify_clone_watch(&old->watch, &chunk->watch) < 0) {
348                 mutex_unlock(&inode->inotify_mutex);
349                 free_chunk(chunk);
350                 return -ENOSPC;
351         }
352         spin_lock(&hash_lock);
353         if (tree->goner) {
354                 spin_unlock(&hash_lock);
355                 chunk->dead = 1;
356                 inotify_evict_watch(&chunk->watch);
357                 mutex_unlock(&inode->inotify_mutex);
358                 put_inotify_watch(&chunk->watch);
359                 return 0;
360         }
361         list_replace_init(&old->trees, &chunk->trees);
362         for (n = 0, p = chunk->owners; n < old->count; n++, p++) {
363                 struct audit_tree *s = old->owners[n].owner;
364                 p->owner = s;
365                 p->index = old->owners[n].index;
366                 if (!s) /* result of fallback in untag */
367                         continue;
368                 get_tree(s);
369                 list_replace_init(&old->owners[n].list, &p->list);
370         }
371         p->index = (chunk->count - 1) | (1U<<31);
372         p->owner = tree;
373         get_tree(tree);
374         list_add(&p->list, &tree->chunks);
375         list_replace_rcu(&old->hash, &chunk->hash);
376         list_for_each_entry(owner, &chunk->trees, same_root)
377                 owner->root = chunk;
378         old->dead = 1;
379         if (!tree->root) {
380                 tree->root = chunk;
381                 list_add(&tree->same_root, &chunk->trees);
382         }
383         spin_unlock(&hash_lock);
384         inotify_evict_watch(&old->watch);
385         mutex_unlock(&inode->inotify_mutex);
386         put_inotify_watch(&old->watch);
387         return 0;
388 }
389
390 static struct audit_chunk *find_chunk(struct node *p)
391 {
392         int index = p->index & ~(1U<<31);
393         p -= index;
394         return container_of(p, struct audit_chunk, owners[0]);
395 }
396
397 static void kill_rules(struct audit_tree *tree)
398 {
399         struct audit_krule *rule, *next;
400         struct audit_entry *entry;
401         struct audit_buffer *ab;
402
403         list_for_each_entry_safe(rule, next, &tree->rules, rlist) {
404                 entry = container_of(rule, struct audit_entry, rule);
405
406                 list_del_init(&rule->rlist);
407                 if (rule->tree) {
408                         /* not a half-baked one */
409                         ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
410                         audit_log_format(ab, "op=remove rule dir=");
411                         audit_log_untrustedstring(ab, rule->tree->pathname);
412                         if (rule->filterkey) {
413                                 audit_log_format(ab, " key=");
414                                 audit_log_untrustedstring(ab, rule->filterkey);
415                         } else
416                                 audit_log_format(ab, " key=(null)");
417                         audit_log_format(ab, " list=%d res=1", rule->listnr);
418                         audit_log_end(ab);
419                         rule->tree = NULL;
420                         list_del_rcu(&entry->list);
421                         call_rcu(&entry->rcu, audit_free_rule_rcu);
422                 }
423         }
424 }
425
426 /*
427  * finish killing struct audit_tree
428  */
429 static void prune_one(struct audit_tree *victim)
430 {
431         spin_lock(&hash_lock);
432         while (!list_empty(&victim->chunks)) {
433                 struct node *p;
434                 struct audit_chunk *chunk;
435
436                 p = list_entry(victim->chunks.next, struct node, list);
437                 chunk = find_chunk(p);
438                 get_inotify_watch(&chunk->watch);
439                 spin_unlock(&hash_lock);
440
441                 untag_chunk(chunk, p);
442
443                 put_inotify_watch(&chunk->watch);
444                 spin_lock(&hash_lock);
445         }
446         spin_unlock(&hash_lock);
447         put_tree(victim);
448 }
449
450 /* trim the uncommitted chunks from tree */
451
452 static void trim_marked(struct audit_tree *tree)
453 {
454         struct list_head *p, *q;
455         spin_lock(&hash_lock);
456         if (tree->goner) {
457                 spin_unlock(&hash_lock);
458                 return;
459         }
460         /* reorder */
461         for (p = tree->chunks.next; p != &tree->chunks; p = q) {
462                 struct node *node = list_entry(p, struct node, list);
463                 q = p->next;
464                 if (node->index & (1U<<31)) {
465                         list_del_init(p);
466                         list_add(p, &tree->chunks);
467                 }
468         }
469
470         while (!list_empty(&tree->chunks)) {
471                 struct node *node;
472                 struct audit_chunk *chunk;
473
474                 node = list_entry(tree->chunks.next, struct node, list);
475
476                 /* have we run out of marked? */
477                 if (!(node->index & (1U<<31)))
478                         break;
479
480                 chunk = find_chunk(node);
481                 get_inotify_watch(&chunk->watch);
482                 spin_unlock(&hash_lock);
483
484                 untag_chunk(chunk, node);
485
486                 put_inotify_watch(&chunk->watch);
487                 spin_lock(&hash_lock);
488         }
489         if (!tree->root && !tree->goner) {
490                 tree->goner = 1;
491                 spin_unlock(&hash_lock);
492                 mutex_lock(&audit_filter_mutex);
493                 kill_rules(tree);
494                 list_del_init(&tree->list);
495                 mutex_unlock(&audit_filter_mutex);
496                 prune_one(tree);
497         } else {
498                 spin_unlock(&hash_lock);
499         }
500 }
501
502 /* called with audit_filter_mutex */
503 int audit_remove_tree_rule(struct audit_krule *rule)
504 {
505         struct audit_tree *tree;
506         tree = rule->tree;
507         if (tree) {
508                 spin_lock(&hash_lock);
509                 list_del_init(&rule->rlist);
510                 if (list_empty(&tree->rules) && !tree->goner) {
511                         tree->root = NULL;
512                         list_del_init(&tree->same_root);
513                         tree->goner = 1;
514                         list_move(&tree->list, &prune_list);
515                         rule->tree = NULL;
516                         spin_unlock(&hash_lock);
517                         audit_schedule_prune();
518                         return 1;
519                 }
520                 rule->tree = NULL;
521                 spin_unlock(&hash_lock);
522                 return 1;
523         }
524         return 0;
525 }
526
527 void audit_trim_trees(void)
528 {
529         struct list_head cursor;
530
531         mutex_lock(&audit_filter_mutex);
532         list_add(&cursor, &tree_list);
533         while (cursor.next != &tree_list) {
534                 struct audit_tree *tree;
535                 struct nameidata nd;
536                 struct vfsmount *root_mnt;
537                 struct node *node;
538                 struct list_head list;
539                 int err;
540
541                 tree = container_of(cursor.next, struct audit_tree, list);
542                 get_tree(tree);
543                 list_del(&cursor);
544                 list_add(&cursor, &tree->list);
545                 mutex_unlock(&audit_filter_mutex);
546
547                 err = path_lookup(tree->pathname, 0, &nd);
548                 if (err)
549                         goto skip_it;
550
551                 root_mnt = collect_mounts(nd.path.mnt, nd.path.dentry);
552                 path_put(&nd.path);
553                 if (!root_mnt)
554                         goto skip_it;
555
556                 list_add_tail(&list, &root_mnt->mnt_list);
557                 spin_lock(&hash_lock);
558                 list_for_each_entry(node, &tree->chunks, list) {
559                         struct audit_chunk *chunk = find_chunk(node);
560                         struct inode *inode = chunk->watch.inode;
561                         struct vfsmount *mnt;
562                         node->index |= 1U<<31;
563                         list_for_each_entry(mnt, &list, mnt_list) {
564                                 if (mnt->mnt_root->d_inode == inode) {
565                                         node->index &= ~(1U<<31);
566                                         break;
567                                 }
568                         }
569                 }
570                 spin_unlock(&hash_lock);
571                 trim_marked(tree);
572                 put_tree(tree);
573                 list_del_init(&list);
574                 drop_collected_mounts(root_mnt);
575 skip_it:
576                 mutex_lock(&audit_filter_mutex);
577         }
578         list_del(&cursor);
579         mutex_unlock(&audit_filter_mutex);
580 }
581
582 static int is_under(struct vfsmount *mnt, struct dentry *dentry,
583                     struct nameidata *nd)
584 {
585         if (mnt != nd->path.mnt) {
586                 for (;;) {
587                         if (mnt->mnt_parent == mnt)
588                                 return 0;
589                         if (mnt->mnt_parent == nd->path.mnt)
590                                         break;
591                         mnt = mnt->mnt_parent;
592                 }
593                 dentry = mnt->mnt_mountpoint;
594         }
595         return is_subdir(dentry, nd->path.dentry);
596 }
597
598 int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op)
599 {
600
601         if (pathname[0] != '/' ||
602             rule->listnr != AUDIT_FILTER_EXIT ||
603             op & ~AUDIT_EQUAL ||
604             rule->inode_f || rule->watch || rule->tree)
605                 return -EINVAL;
606         rule->tree = alloc_tree(pathname);
607         if (!rule->tree)
608                 return -ENOMEM;
609         return 0;
610 }
611
612 void audit_put_tree(struct audit_tree *tree)
613 {
614         put_tree(tree);
615 }
616
617 /* called with audit_filter_mutex */
618 int audit_add_tree_rule(struct audit_krule *rule)
619 {
620         struct audit_tree *seed = rule->tree, *tree;
621         struct nameidata nd;
622         struct vfsmount *mnt, *p;
623         struct list_head list;
624         int err;
625
626         list_for_each_entry(tree, &tree_list, list) {
627                 if (!strcmp(seed->pathname, tree->pathname)) {
628                         put_tree(seed);
629                         rule->tree = tree;
630                         list_add(&rule->rlist, &tree->rules);
631                         return 0;
632                 }
633         }
634         tree = seed;
635         list_add(&tree->list, &tree_list);
636         list_add(&rule->rlist, &tree->rules);
637         /* do not set rule->tree yet */
638         mutex_unlock(&audit_filter_mutex);
639
640         err = path_lookup(tree->pathname, 0, &nd);
641         if (err)
642                 goto Err;
643         mnt = collect_mounts(nd.path.mnt, nd.path.dentry);
644         path_put(&nd.path);
645         if (!mnt) {
646                 err = -ENOMEM;
647                 goto Err;
648         }
649         list_add_tail(&list, &mnt->mnt_list);
650
651         get_tree(tree);
652         list_for_each_entry(p, &list, mnt_list) {
653                 err = tag_chunk(p->mnt_root->d_inode, tree);
654                 if (err)
655                         break;
656         }
657
658         list_del(&list);
659         drop_collected_mounts(mnt);
660
661         if (!err) {
662                 struct node *node;
663                 spin_lock(&hash_lock);
664                 list_for_each_entry(node, &tree->chunks, list)
665                         node->index &= ~(1U<<31);
666                 spin_unlock(&hash_lock);
667         } else {
668                 trim_marked(tree);
669                 goto Err;
670         }
671
672         mutex_lock(&audit_filter_mutex);
673         if (list_empty(&rule->rlist)) {
674                 put_tree(tree);
675                 return -ENOENT;
676         }
677         rule->tree = tree;
678         put_tree(tree);
679
680         return 0;
681 Err:
682         mutex_lock(&audit_filter_mutex);
683         list_del_init(&tree->list);
684         list_del_init(&tree->rules);
685         put_tree(tree);
686         return err;
687 }
688
689 int audit_tag_tree(char *old, char *new)
690 {
691         struct list_head cursor, barrier;
692         int failed = 0;
693         struct nameidata nd;
694         struct vfsmount *tagged;
695         struct list_head list;
696         struct vfsmount *mnt;
697         struct dentry *dentry;
698         int err;
699
700         err = path_lookup(new, 0, &nd);
701         if (err)
702                 return err;
703         tagged = collect_mounts(nd.path.mnt, nd.path.dentry);
704         path_put(&nd.path);
705         if (!tagged)
706                 return -ENOMEM;
707
708         err = path_lookup(old, 0, &nd);
709         if (err) {
710                 drop_collected_mounts(tagged);
711                 return err;
712         }
713         mnt = mntget(nd.path.mnt);
714         dentry = dget(nd.path.dentry);
715         path_put(&nd.path);
716
717         if (dentry == tagged->mnt_root && dentry == mnt->mnt_root)
718                 follow_up(&mnt, &dentry);
719
720         list_add_tail(&list, &tagged->mnt_list);
721
722         mutex_lock(&audit_filter_mutex);
723         list_add(&barrier, &tree_list);
724         list_add(&cursor, &barrier);
725
726         while (cursor.next != &tree_list) {
727                 struct audit_tree *tree;
728                 struct vfsmount *p;
729
730                 tree = container_of(cursor.next, struct audit_tree, list);
731                 get_tree(tree);
732                 list_del(&cursor);
733                 list_add(&cursor, &tree->list);
734                 mutex_unlock(&audit_filter_mutex);
735
736                 err = path_lookup(tree->pathname, 0, &nd);
737                 if (err) {
738                         put_tree(tree);
739                         mutex_lock(&audit_filter_mutex);
740                         continue;
741                 }
742
743                 spin_lock(&vfsmount_lock);
744                 if (!is_under(mnt, dentry, &nd)) {
745                         spin_unlock(&vfsmount_lock);
746                         path_put(&nd.path);
747                         put_tree(tree);
748                         mutex_lock(&audit_filter_mutex);
749                         continue;
750                 }
751                 spin_unlock(&vfsmount_lock);
752                 path_put(&nd.path);
753
754                 list_for_each_entry(p, &list, mnt_list) {
755                         failed = tag_chunk(p->mnt_root->d_inode, tree);
756                         if (failed)
757                                 break;
758                 }
759
760                 if (failed) {
761                         put_tree(tree);
762                         mutex_lock(&audit_filter_mutex);
763                         break;
764                 }
765
766                 mutex_lock(&audit_filter_mutex);
767                 spin_lock(&hash_lock);
768                 if (!tree->goner) {
769                         list_del(&tree->list);
770                         list_add(&tree->list, &tree_list);
771                 }
772                 spin_unlock(&hash_lock);
773                 put_tree(tree);
774         }
775
776         while (barrier.prev != &tree_list) {
777                 struct audit_tree *tree;
778
779                 tree = container_of(barrier.prev, struct audit_tree, list);
780                 get_tree(tree);
781                 list_del(&tree->list);
782                 list_add(&tree->list, &barrier);
783                 mutex_unlock(&audit_filter_mutex);
784
785                 if (!failed) {
786                         struct node *node;
787                         spin_lock(&hash_lock);
788                         list_for_each_entry(node, &tree->chunks, list)
789                                 node->index &= ~(1U<<31);
790                         spin_unlock(&hash_lock);
791                 } else {
792                         trim_marked(tree);
793                 }
794
795                 put_tree(tree);
796                 mutex_lock(&audit_filter_mutex);
797         }
798         list_del(&barrier);
799         list_del(&cursor);
800         list_del(&list);
801         mutex_unlock(&audit_filter_mutex);
802         dput(dentry);
803         mntput(mnt);
804         drop_collected_mounts(tagged);
805         return failed;
806 }
807
808 /*
809  * That gets run when evict_chunk() ends up needing to kill audit_tree.
810  * Runs from a separate thread, with audit_cmd_mutex held.
811  */
812 void audit_prune_trees(void)
813 {
814         mutex_lock(&audit_filter_mutex);
815
816         while (!list_empty(&prune_list)) {
817                 struct audit_tree *victim;
818
819                 victim = list_entry(prune_list.next, struct audit_tree, list);
820                 list_del_init(&victim->list);
821
822                 mutex_unlock(&audit_filter_mutex);
823
824                 prune_one(victim);
825
826                 mutex_lock(&audit_filter_mutex);
827         }
828
829         mutex_unlock(&audit_filter_mutex);
830 }
831
832 /*
833  *  Here comes the stuff asynchronous to auditctl operations
834  */
835
836 /* inode->inotify_mutex is locked */
837 static void evict_chunk(struct audit_chunk *chunk)
838 {
839         struct audit_tree *owner;
840         int n;
841
842         if (chunk->dead)
843                 return;
844
845         chunk->dead = 1;
846         mutex_lock(&audit_filter_mutex);
847         spin_lock(&hash_lock);
848         while (!list_empty(&chunk->trees)) {
849                 owner = list_entry(chunk->trees.next,
850                                    struct audit_tree, same_root);
851                 owner->goner = 1;
852                 owner->root = NULL;
853                 list_del_init(&owner->same_root);
854                 spin_unlock(&hash_lock);
855                 kill_rules(owner);
856                 list_move(&owner->list, &prune_list);
857                 audit_schedule_prune();
858                 spin_lock(&hash_lock);
859         }
860         list_del_rcu(&chunk->hash);
861         for (n = 0; n < chunk->count; n++)
862                 list_del_init(&chunk->owners[n].list);
863         spin_unlock(&hash_lock);
864         mutex_unlock(&audit_filter_mutex);
865 }
866
867 static void handle_event(struct inotify_watch *watch, u32 wd, u32 mask,
868                          u32 cookie, const char *dname, struct inode *inode)
869 {
870         struct audit_chunk *chunk = container_of(watch, struct audit_chunk, watch);
871
872         if (mask & IN_IGNORED) {
873                 evict_chunk(chunk);
874                 put_inotify_watch(watch);
875         }
876 }
877
878 static void destroy_watch(struct inotify_watch *watch)
879 {
880         struct audit_chunk *chunk = container_of(watch, struct audit_chunk, watch);
881         free_chunk(chunk);
882 }
883
884 static const struct inotify_operations rtree_inotify_ops = {
885         .handle_event   = handle_event,
886         .destroy_watch  = destroy_watch,
887 };
888
889 static int __init audit_tree_init(void)
890 {
891         int i;
892
893         rtree_ih = inotify_init(&rtree_inotify_ops);
894         if (IS_ERR(rtree_ih))
895                 audit_panic("cannot initialize inotify handle for rectree watches");
896
897         for (i = 0; i < HASH_SIZE; i++)
898                 INIT_LIST_HEAD(&chunk_hash_heads[i]);
899
900         return 0;
901 }
902 __initcall(audit_tree_init);