Merge branch 'i2c-for-linus' of git://jdelvare.pck.nerim.net/jdelvare-2.6
[linux-2.6] / drivers / net / cxgb3 / cxgb3_offload.c
1 /*
2  * Copyright (c) 2006-2008 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32
33 #include <linux/list.h>
34 #include <net/neighbour.h>
35 #include <linux/notifier.h>
36 #include <asm/atomic.h>
37 #include <linux/proc_fs.h>
38 #include <linux/if_vlan.h>
39 #include <net/netevent.h>
40 #include <linux/highmem.h>
41 #include <linux/vmalloc.h>
42
43 #include "common.h"
44 #include "regs.h"
45 #include "cxgb3_ioctl.h"
46 #include "cxgb3_ctl_defs.h"
47 #include "cxgb3_defs.h"
48 #include "l2t.h"
49 #include "firmware_exports.h"
50 #include "cxgb3_offload.h"
51
52 static LIST_HEAD(client_list);
53 static LIST_HEAD(ofld_dev_list);
54 static DEFINE_MUTEX(cxgb3_db_lock);
55
56 static DEFINE_RWLOCK(adapter_list_lock);
57 static LIST_HEAD(adapter_list);
58
59 static const unsigned int MAX_ATIDS = 64 * 1024;
60 static const unsigned int ATID_BASE = 0x10000;
61
62 static inline int offload_activated(struct t3cdev *tdev)
63 {
64         const struct adapter *adapter = tdev2adap(tdev);
65
66         return (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map));
67 }
68
69 /**
70  *      cxgb3_register_client - register an offload client
71  *      @client: the client
72  *
73  *      Add the client to the client list,
74  *      and call backs the client for each activated offload device
75  */
76 void cxgb3_register_client(struct cxgb3_client *client)
77 {
78         struct t3cdev *tdev;
79
80         mutex_lock(&cxgb3_db_lock);
81         list_add_tail(&client->client_list, &client_list);
82
83         if (client->add) {
84                 list_for_each_entry(tdev, &ofld_dev_list, ofld_dev_list) {
85                         if (offload_activated(tdev))
86                                 client->add(tdev);
87                 }
88         }
89         mutex_unlock(&cxgb3_db_lock);
90 }
91
92 EXPORT_SYMBOL(cxgb3_register_client);
93
94 /**
95  *      cxgb3_unregister_client - unregister an offload client
96  *      @client: the client
97  *
98  *      Remove the client to the client list,
99  *      and call backs the client for each activated offload device.
100  */
101 void cxgb3_unregister_client(struct cxgb3_client *client)
102 {
103         struct t3cdev *tdev;
104
105         mutex_lock(&cxgb3_db_lock);
106         list_del(&client->client_list);
107
108         if (client->remove) {
109                 list_for_each_entry(tdev, &ofld_dev_list, ofld_dev_list) {
110                         if (offload_activated(tdev))
111                                 client->remove(tdev);
112                 }
113         }
114         mutex_unlock(&cxgb3_db_lock);
115 }
116
117 EXPORT_SYMBOL(cxgb3_unregister_client);
118
119 /**
120  *      cxgb3_add_clients - activate registered clients for an offload device
121  *      @tdev: the offload device
122  *
123  *      Call backs all registered clients once a offload device is activated
124  */
125 void cxgb3_add_clients(struct t3cdev *tdev)
126 {
127         struct cxgb3_client *client;
128
129         mutex_lock(&cxgb3_db_lock);
130         list_for_each_entry(client, &client_list, client_list) {
131                 if (client->add)
132                         client->add(tdev);
133         }
134         mutex_unlock(&cxgb3_db_lock);
135 }
136
137 /**
138  *      cxgb3_remove_clients - deactivates registered clients
139  *                             for an offload device
140  *      @tdev: the offload device
141  *
142  *      Call backs all registered clients once a offload device is deactivated
143  */
144 void cxgb3_remove_clients(struct t3cdev *tdev)
145 {
146         struct cxgb3_client *client;
147
148         mutex_lock(&cxgb3_db_lock);
149         list_for_each_entry(client, &client_list, client_list) {
150                 if (client->remove)
151                         client->remove(tdev);
152         }
153         mutex_unlock(&cxgb3_db_lock);
154 }
155
156 static struct net_device *get_iff_from_mac(struct adapter *adapter,
157                                            const unsigned char *mac,
158                                            unsigned int vlan)
159 {
160         int i;
161
162         for_each_port(adapter, i) {
163                 struct vlan_group *grp;
164                 struct net_device *dev = adapter->port[i];
165                 const struct port_info *p = netdev_priv(dev);
166
167                 if (!memcmp(dev->dev_addr, mac, ETH_ALEN)) {
168                         if (vlan && vlan != VLAN_VID_MASK) {
169                                 grp = p->vlan_grp;
170                                 dev = NULL;
171                                 if (grp)
172                                         dev = vlan_group_get_device(grp, vlan);
173                         } else
174                                 while (dev->master)
175                                         dev = dev->master;
176                         return dev;
177                 }
178         }
179         return NULL;
180 }
181
182 static int cxgb_ulp_iscsi_ctl(struct adapter *adapter, unsigned int req,
183                               void *data)
184 {
185         int i;
186         int ret = 0;
187         unsigned int val = 0;
188         struct ulp_iscsi_info *uiip = data;
189
190         switch (req) {
191         case ULP_ISCSI_GET_PARAMS:
192                 uiip->pdev = adapter->pdev;
193                 uiip->llimit = t3_read_reg(adapter, A_ULPRX_ISCSI_LLIMIT);
194                 uiip->ulimit = t3_read_reg(adapter, A_ULPRX_ISCSI_ULIMIT);
195                 uiip->tagmask = t3_read_reg(adapter, A_ULPRX_ISCSI_TAGMASK);
196
197                 val = t3_read_reg(adapter, A_ULPRX_ISCSI_PSZ);
198                 for (i = 0; i < 4; i++, val >>= 8)
199                         uiip->pgsz_factor[i] = val & 0xFF;
200
201                 val = t3_read_reg(adapter, A_TP_PARA_REG7);
202                 uiip->max_txsz =
203                 uiip->max_rxsz = min((val >> S_PMMAXXFERLEN0)&M_PMMAXXFERLEN0,
204                                      (val >> S_PMMAXXFERLEN1)&M_PMMAXXFERLEN1);
205                 /*
206                  * On tx, the iscsi pdu has to be <= tx page size and has to
207                  * fit into the Tx PM FIFO.
208                  */
209                 val = min(adapter->params.tp.tx_pg_size,
210                           t3_read_reg(adapter, A_PM1_TX_CFG) >> 17);
211                 uiip->max_txsz = min(val, uiip->max_txsz);
212
213                 /* set MaxRxData to 16224 */
214                 val = t3_read_reg(adapter, A_TP_PARA_REG2);
215                 if ((val >> S_MAXRXDATA) != 0x3f60) {
216                         val &= (M_RXCOALESCESIZE << S_RXCOALESCESIZE);
217                         val |= V_MAXRXDATA(0x3f60);
218                         printk(KERN_INFO
219                                 "%s, iscsi set MaxRxData to 16224 (0x%x).\n",
220                                 adapter->name, val);
221                         t3_write_reg(adapter, A_TP_PARA_REG2, val);
222                 }
223
224                 /*
225                  * on rx, the iscsi pdu has to be < rx page size and the
226                  * the max rx data length programmed in TP
227                  */
228                 val = min(adapter->params.tp.rx_pg_size,
229                           ((t3_read_reg(adapter, A_TP_PARA_REG2)) >>
230                                 S_MAXRXDATA) & M_MAXRXDATA);
231                 uiip->max_rxsz = min(val, uiip->max_rxsz);
232                 break;
233         case ULP_ISCSI_SET_PARAMS:
234                 t3_write_reg(adapter, A_ULPRX_ISCSI_TAGMASK, uiip->tagmask);
235                 /* program the ddp page sizes */
236                 for (i = 0; i < 4; i++)
237                         val |= (uiip->pgsz_factor[i] & 0xF) << (8 * i);
238                 if (val && (val != t3_read_reg(adapter, A_ULPRX_ISCSI_PSZ))) {
239                         printk(KERN_INFO
240                                 "%s, setting iscsi pgsz 0x%x, %u,%u,%u,%u.\n",
241                                 adapter->name, val, uiip->pgsz_factor[0],
242                                 uiip->pgsz_factor[1], uiip->pgsz_factor[2],
243                                 uiip->pgsz_factor[3]);
244                         t3_write_reg(adapter, A_ULPRX_ISCSI_PSZ, val);
245                 }
246                 break;
247         default:
248                 ret = -EOPNOTSUPP;
249         }
250         return ret;
251 }
252
253 /* Response queue used for RDMA events. */
254 #define ASYNC_NOTIF_RSPQ 0
255
256 static int cxgb_rdma_ctl(struct adapter *adapter, unsigned int req, void *data)
257 {
258         int ret = 0;
259
260         switch (req) {
261         case RDMA_GET_PARAMS: {
262                 struct rdma_info *rdma = data;
263                 struct pci_dev *pdev = adapter->pdev;
264
265                 rdma->udbell_physbase = pci_resource_start(pdev, 2);
266                 rdma->udbell_len = pci_resource_len(pdev, 2);
267                 rdma->tpt_base =
268                         t3_read_reg(adapter, A_ULPTX_TPT_LLIMIT);
269                 rdma->tpt_top = t3_read_reg(adapter, A_ULPTX_TPT_ULIMIT);
270                 rdma->pbl_base =
271                         t3_read_reg(adapter, A_ULPTX_PBL_LLIMIT);
272                 rdma->pbl_top = t3_read_reg(adapter, A_ULPTX_PBL_ULIMIT);
273                 rdma->rqt_base = t3_read_reg(adapter, A_ULPRX_RQ_LLIMIT);
274                 rdma->rqt_top = t3_read_reg(adapter, A_ULPRX_RQ_ULIMIT);
275                 rdma->kdb_addr = adapter->regs + A_SG_KDOORBELL;
276                 rdma->pdev = pdev;
277                 break;
278         }
279         case RDMA_CQ_OP:{
280                 unsigned long flags;
281                 struct rdma_cq_op *rdma = data;
282
283                 /* may be called in any context */
284                 spin_lock_irqsave(&adapter->sge.reg_lock, flags);
285                 ret = t3_sge_cqcntxt_op(adapter, rdma->id, rdma->op,
286                                         rdma->credits);
287                 spin_unlock_irqrestore(&adapter->sge.reg_lock, flags);
288                 break;
289         }
290         case RDMA_GET_MEM:{
291                 struct ch_mem_range *t = data;
292                 struct mc7 *mem;
293
294                 if ((t->addr & 7) || (t->len & 7))
295                         return -EINVAL;
296                 if (t->mem_id == MEM_CM)
297                         mem = &adapter->cm;
298                 else if (t->mem_id == MEM_PMRX)
299                         mem = &adapter->pmrx;
300                 else if (t->mem_id == MEM_PMTX)
301                         mem = &adapter->pmtx;
302                 else
303                         return -EINVAL;
304
305                 ret =
306                         t3_mc7_bd_read(mem, t->addr / 8, t->len / 8,
307                                         (u64 *) t->buf);
308                 if (ret)
309                         return ret;
310                 break;
311         }
312         case RDMA_CQ_SETUP:{
313                 struct rdma_cq_setup *rdma = data;
314
315                 spin_lock_irq(&adapter->sge.reg_lock);
316                 ret =
317                         t3_sge_init_cqcntxt(adapter, rdma->id,
318                                         rdma->base_addr, rdma->size,
319                                         ASYNC_NOTIF_RSPQ,
320                                         rdma->ovfl_mode, rdma->credits,
321                                         rdma->credit_thres);
322                 spin_unlock_irq(&adapter->sge.reg_lock);
323                 break;
324         }
325         case RDMA_CQ_DISABLE:
326                 spin_lock_irq(&adapter->sge.reg_lock);
327                 ret = t3_sge_disable_cqcntxt(adapter, *(unsigned int *)data);
328                 spin_unlock_irq(&adapter->sge.reg_lock);
329                 break;
330         case RDMA_CTRL_QP_SETUP:{
331                 struct rdma_ctrlqp_setup *rdma = data;
332
333                 spin_lock_irq(&adapter->sge.reg_lock);
334                 ret = t3_sge_init_ecntxt(adapter, FW_RI_SGEEC_START, 0,
335                                                 SGE_CNTXT_RDMA,
336                                                 ASYNC_NOTIF_RSPQ,
337                                                 rdma->base_addr, rdma->size,
338                                                 FW_RI_TID_START, 1, 0);
339                 spin_unlock_irq(&adapter->sge.reg_lock);
340                 break;
341         }
342         case RDMA_GET_MIB: {
343                 spin_lock(&adapter->stats_lock);
344                 t3_tp_get_mib_stats(adapter, (struct tp_mib_stats *)data);
345                 spin_unlock(&adapter->stats_lock);
346                 break;
347         }
348         default:
349                 ret = -EOPNOTSUPP;
350         }
351         return ret;
352 }
353
354 static int cxgb_offload_ctl(struct t3cdev *tdev, unsigned int req, void *data)
355 {
356         struct adapter *adapter = tdev2adap(tdev);
357         struct tid_range *tid;
358         struct mtutab *mtup;
359         struct iff_mac *iffmacp;
360         struct ddp_params *ddpp;
361         struct adap_ports *ports;
362         struct ofld_page_info *rx_page_info;
363         struct tp_params *tp = &adapter->params.tp;
364         int i;
365
366         switch (req) {
367         case GET_MAX_OUTSTANDING_WR:
368                 *(unsigned int *)data = FW_WR_NUM;
369                 break;
370         case GET_WR_LEN:
371                 *(unsigned int *)data = WR_FLITS;
372                 break;
373         case GET_TX_MAX_CHUNK:
374                 *(unsigned int *)data = 1 << 20;        /* 1MB */
375                 break;
376         case GET_TID_RANGE:
377                 tid = data;
378                 tid->num = t3_mc5_size(&adapter->mc5) -
379                     adapter->params.mc5.nroutes -
380                     adapter->params.mc5.nfilters - adapter->params.mc5.nservers;
381                 tid->base = 0;
382                 break;
383         case GET_STID_RANGE:
384                 tid = data;
385                 tid->num = adapter->params.mc5.nservers;
386                 tid->base = t3_mc5_size(&adapter->mc5) - tid->num -
387                     adapter->params.mc5.nfilters - adapter->params.mc5.nroutes;
388                 break;
389         case GET_L2T_CAPACITY:
390                 *(unsigned int *)data = 2048;
391                 break;
392         case GET_MTUS:
393                 mtup = data;
394                 mtup->size = NMTUS;
395                 mtup->mtus = adapter->params.mtus;
396                 break;
397         case GET_IFF_FROM_MAC:
398                 iffmacp = data;
399                 iffmacp->dev = get_iff_from_mac(adapter, iffmacp->mac_addr,
400                                                 iffmacp->vlan_tag &
401                                                 VLAN_VID_MASK);
402                 break;
403         case GET_DDP_PARAMS:
404                 ddpp = data;
405                 ddpp->llimit = t3_read_reg(adapter, A_ULPRX_TDDP_LLIMIT);
406                 ddpp->ulimit = t3_read_reg(adapter, A_ULPRX_TDDP_ULIMIT);
407                 ddpp->tag_mask = t3_read_reg(adapter, A_ULPRX_TDDP_TAGMASK);
408                 break;
409         case GET_PORTS:
410                 ports = data;
411                 ports->nports = adapter->params.nports;
412                 for_each_port(adapter, i)
413                         ports->lldevs[i] = adapter->port[i];
414                 break;
415         case ULP_ISCSI_GET_PARAMS:
416         case ULP_ISCSI_SET_PARAMS:
417                 if (!offload_running(adapter))
418                         return -EAGAIN;
419                 return cxgb_ulp_iscsi_ctl(adapter, req, data);
420         case RDMA_GET_PARAMS:
421         case RDMA_CQ_OP:
422         case RDMA_CQ_SETUP:
423         case RDMA_CQ_DISABLE:
424         case RDMA_CTRL_QP_SETUP:
425         case RDMA_GET_MEM:
426         case RDMA_GET_MIB:
427                 if (!offload_running(adapter))
428                         return -EAGAIN;
429                 return cxgb_rdma_ctl(adapter, req, data);
430         case GET_RX_PAGE_INFO:
431                 rx_page_info = data;
432                 rx_page_info->page_size = tp->rx_pg_size;
433                 rx_page_info->num = tp->rx_num_pgs;
434                 break;
435         case GET_ISCSI_IPV4ADDR: {
436                 struct iscsi_ipv4addr *p = data;
437                 struct port_info *pi = netdev_priv(p->dev);
438                 p->ipv4addr = pi->iscsi_ipv4addr;
439                 break;
440         }
441         case GET_EMBEDDED_INFO: {
442                 struct ch_embedded_info *e = data;
443
444                 spin_lock(&adapter->stats_lock);
445                 t3_get_fw_version(adapter, &e->fw_vers);
446                 t3_get_tp_version(adapter, &e->tp_vers);
447                 spin_unlock(&adapter->stats_lock);
448                 break;
449         }
450         default:
451                 return -EOPNOTSUPP;
452         }
453         return 0;
454 }
455
456 /*
457  * Dummy handler for Rx offload packets in case we get an offload packet before
458  * proper processing is setup.  This complains and drops the packet as it isn't
459  * normal to get offload packets at this stage.
460  */
461 static int rx_offload_blackhole(struct t3cdev *dev, struct sk_buff **skbs,
462                                 int n)
463 {
464         while (n--)
465                 dev_kfree_skb_any(skbs[n]);
466         return 0;
467 }
468
469 static void dummy_neigh_update(struct t3cdev *dev, struct neighbour *neigh)
470 {
471 }
472
473 void cxgb3_set_dummy_ops(struct t3cdev *dev)
474 {
475         dev->recv = rx_offload_blackhole;
476         dev->neigh_update = dummy_neigh_update;
477 }
478
479 /*
480  * Free an active-open TID.
481  */
482 void *cxgb3_free_atid(struct t3cdev *tdev, int atid)
483 {
484         struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
485         union active_open_entry *p = atid2entry(t, atid);
486         void *ctx = p->t3c_tid.ctx;
487
488         spin_lock_bh(&t->atid_lock);
489         p->next = t->afree;
490         t->afree = p;
491         t->atids_in_use--;
492         spin_unlock_bh(&t->atid_lock);
493
494         return ctx;
495 }
496
497 EXPORT_SYMBOL(cxgb3_free_atid);
498
499 /*
500  * Free a server TID and return it to the free pool.
501  */
502 void cxgb3_free_stid(struct t3cdev *tdev, int stid)
503 {
504         struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
505         union listen_entry *p = stid2entry(t, stid);
506
507         spin_lock_bh(&t->stid_lock);
508         p->next = t->sfree;
509         t->sfree = p;
510         t->stids_in_use--;
511         spin_unlock_bh(&t->stid_lock);
512 }
513
514 EXPORT_SYMBOL(cxgb3_free_stid);
515
516 void cxgb3_insert_tid(struct t3cdev *tdev, struct cxgb3_client *client,
517                       void *ctx, unsigned int tid)
518 {
519         struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
520
521         t->tid_tab[tid].client = client;
522         t->tid_tab[tid].ctx = ctx;
523         atomic_inc(&t->tids_in_use);
524 }
525
526 EXPORT_SYMBOL(cxgb3_insert_tid);
527
528 /*
529  * Populate a TID_RELEASE WR.  The skb must be already propely sized.
530  */
531 static inline void mk_tid_release(struct sk_buff *skb, unsigned int tid)
532 {
533         struct cpl_tid_release *req;
534
535         skb->priority = CPL_PRIORITY_SETUP;
536         req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
537         req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
538         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
539 }
540
541 static void t3_process_tid_release_list(struct work_struct *work)
542 {
543         struct t3c_data *td = container_of(work, struct t3c_data,
544                                            tid_release_task);
545         struct sk_buff *skb;
546         struct t3cdev *tdev = td->dev;
547
548
549         spin_lock_bh(&td->tid_release_lock);
550         while (td->tid_release_list) {
551                 struct t3c_tid_entry *p = td->tid_release_list;
552
553                 td->tid_release_list = (struct t3c_tid_entry *)p->ctx;
554                 spin_unlock_bh(&td->tid_release_lock);
555
556                 skb = alloc_skb(sizeof(struct cpl_tid_release),
557                                 GFP_KERNEL | __GFP_NOFAIL);
558                 mk_tid_release(skb, p - td->tid_maps.tid_tab);
559                 cxgb3_ofld_send(tdev, skb);
560                 p->ctx = NULL;
561                 spin_lock_bh(&td->tid_release_lock);
562         }
563         spin_unlock_bh(&td->tid_release_lock);
564 }
565
566 /* use ctx as a next pointer in the tid release list */
567 void cxgb3_queue_tid_release(struct t3cdev *tdev, unsigned int tid)
568 {
569         struct t3c_data *td = T3C_DATA(tdev);
570         struct t3c_tid_entry *p = &td->tid_maps.tid_tab[tid];
571
572         spin_lock_bh(&td->tid_release_lock);
573         p->ctx = (void *)td->tid_release_list;
574         p->client = NULL;
575         td->tid_release_list = p;
576         if (!p->ctx)
577                 schedule_work(&td->tid_release_task);
578         spin_unlock_bh(&td->tid_release_lock);
579 }
580
581 EXPORT_SYMBOL(cxgb3_queue_tid_release);
582
583 /*
584  * Remove a tid from the TID table.  A client may defer processing its last
585  * CPL message if it is locked at the time it arrives, and while the message
586  * sits in the client's backlog the TID may be reused for another connection.
587  * To handle this we atomically switch the TID association if it still points
588  * to the original client context.
589  */
590 void cxgb3_remove_tid(struct t3cdev *tdev, void *ctx, unsigned int tid)
591 {
592         struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
593
594         BUG_ON(tid >= t->ntids);
595         if (tdev->type == T3A)
596                 (void)cmpxchg(&t->tid_tab[tid].ctx, ctx, NULL);
597         else {
598                 struct sk_buff *skb;
599
600                 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
601                 if (likely(skb)) {
602                         mk_tid_release(skb, tid);
603                         cxgb3_ofld_send(tdev, skb);
604                         t->tid_tab[tid].ctx = NULL;
605                 } else
606                         cxgb3_queue_tid_release(tdev, tid);
607         }
608         atomic_dec(&t->tids_in_use);
609 }
610
611 EXPORT_SYMBOL(cxgb3_remove_tid);
612
613 int cxgb3_alloc_atid(struct t3cdev *tdev, struct cxgb3_client *client,
614                      void *ctx)
615 {
616         int atid = -1;
617         struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
618
619         spin_lock_bh(&t->atid_lock);
620         if (t->afree &&
621             t->atids_in_use + atomic_read(&t->tids_in_use) + MC5_MIN_TIDS <=
622             t->ntids) {
623                 union active_open_entry *p = t->afree;
624
625                 atid = (p - t->atid_tab) + t->atid_base;
626                 t->afree = p->next;
627                 p->t3c_tid.ctx = ctx;
628                 p->t3c_tid.client = client;
629                 t->atids_in_use++;
630         }
631         spin_unlock_bh(&t->atid_lock);
632         return atid;
633 }
634
635 EXPORT_SYMBOL(cxgb3_alloc_atid);
636
637 int cxgb3_alloc_stid(struct t3cdev *tdev, struct cxgb3_client *client,
638                      void *ctx)
639 {
640         int stid = -1;
641         struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
642
643         spin_lock_bh(&t->stid_lock);
644         if (t->sfree) {
645                 union listen_entry *p = t->sfree;
646
647                 stid = (p - t->stid_tab) + t->stid_base;
648                 t->sfree = p->next;
649                 p->t3c_tid.ctx = ctx;
650                 p->t3c_tid.client = client;
651                 t->stids_in_use++;
652         }
653         spin_unlock_bh(&t->stid_lock);
654         return stid;
655 }
656
657 EXPORT_SYMBOL(cxgb3_alloc_stid);
658
659 /* Get the t3cdev associated with a net_device */
660 struct t3cdev *dev2t3cdev(struct net_device *dev)
661 {
662         const struct port_info *pi = netdev_priv(dev);
663
664         return (struct t3cdev *)pi->adapter;
665 }
666
667 EXPORT_SYMBOL(dev2t3cdev);
668
669 static int do_smt_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
670 {
671         struct cpl_smt_write_rpl *rpl = cplhdr(skb);
672
673         if (rpl->status != CPL_ERR_NONE)
674                 printk(KERN_ERR
675                        "Unexpected SMT_WRITE_RPL status %u for entry %u\n",
676                        rpl->status, GET_TID(rpl));
677
678         return CPL_RET_BUF_DONE;
679 }
680
681 static int do_l2t_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
682 {
683         struct cpl_l2t_write_rpl *rpl = cplhdr(skb);
684
685         if (rpl->status != CPL_ERR_NONE)
686                 printk(KERN_ERR
687                        "Unexpected L2T_WRITE_RPL status %u for entry %u\n",
688                        rpl->status, GET_TID(rpl));
689
690         return CPL_RET_BUF_DONE;
691 }
692
693 static int do_rte_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
694 {
695         struct cpl_rte_write_rpl *rpl = cplhdr(skb);
696
697         if (rpl->status != CPL_ERR_NONE)
698                 printk(KERN_ERR
699                        "Unexpected RTE_WRITE_RPL status %u for entry %u\n",
700                        rpl->status, GET_TID(rpl));
701
702         return CPL_RET_BUF_DONE;
703 }
704
705 static int do_act_open_rpl(struct t3cdev *dev, struct sk_buff *skb)
706 {
707         struct cpl_act_open_rpl *rpl = cplhdr(skb);
708         unsigned int atid = G_TID(ntohl(rpl->atid));
709         struct t3c_tid_entry *t3c_tid;
710
711         t3c_tid = lookup_atid(&(T3C_DATA(dev))->tid_maps, atid);
712         if (t3c_tid && t3c_tid->ctx && t3c_tid->client &&
713             t3c_tid->client->handlers &&
714             t3c_tid->client->handlers[CPL_ACT_OPEN_RPL]) {
715                 return t3c_tid->client->handlers[CPL_ACT_OPEN_RPL] (dev, skb,
716                                                                     t3c_tid->
717                                                                     ctx);
718         } else {
719                 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
720                        dev->name, CPL_ACT_OPEN_RPL);
721                 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
722         }
723 }
724
725 static int do_stid_rpl(struct t3cdev *dev, struct sk_buff *skb)
726 {
727         union opcode_tid *p = cplhdr(skb);
728         unsigned int stid = G_TID(ntohl(p->opcode_tid));
729         struct t3c_tid_entry *t3c_tid;
730
731         t3c_tid = lookup_stid(&(T3C_DATA(dev))->tid_maps, stid);
732         if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
733             t3c_tid->client->handlers[p->opcode]) {
734                 return t3c_tid->client->handlers[p->opcode] (dev, skb,
735                                                              t3c_tid->ctx);
736         } else {
737                 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
738                        dev->name, p->opcode);
739                 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
740         }
741 }
742
743 static int do_hwtid_rpl(struct t3cdev *dev, struct sk_buff *skb)
744 {
745         union opcode_tid *p = cplhdr(skb);
746         unsigned int hwtid = G_TID(ntohl(p->opcode_tid));
747         struct t3c_tid_entry *t3c_tid;
748
749         t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
750         if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
751             t3c_tid->client->handlers[p->opcode]) {
752                 return t3c_tid->client->handlers[p->opcode]
753                     (dev, skb, t3c_tid->ctx);
754         } else {
755                 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
756                        dev->name, p->opcode);
757                 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
758         }
759 }
760
761 static int do_cr(struct t3cdev *dev, struct sk_buff *skb)
762 {
763         struct cpl_pass_accept_req *req = cplhdr(skb);
764         unsigned int stid = G_PASS_OPEN_TID(ntohl(req->tos_tid));
765         struct tid_info *t = &(T3C_DATA(dev))->tid_maps;
766         struct t3c_tid_entry *t3c_tid;
767         unsigned int tid = GET_TID(req);
768
769         if (unlikely(tid >= t->ntids)) {
770                 printk("%s: passive open TID %u too large\n",
771                        dev->name, tid);
772                 t3_fatal_err(tdev2adap(dev));
773                 return CPL_RET_BUF_DONE;
774         }
775
776         t3c_tid = lookup_stid(t, stid);
777         if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
778             t3c_tid->client->handlers[CPL_PASS_ACCEPT_REQ]) {
779                 return t3c_tid->client->handlers[CPL_PASS_ACCEPT_REQ]
780                     (dev, skb, t3c_tid->ctx);
781         } else {
782                 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
783                        dev->name, CPL_PASS_ACCEPT_REQ);
784                 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
785         }
786 }
787
788 /*
789  * Returns an sk_buff for a reply CPL message of size len.  If the input
790  * sk_buff has no other users it is trimmed and reused, otherwise a new buffer
791  * is allocated.  The input skb must be of size at least len.  Note that this
792  * operation does not destroy the original skb data even if it decides to reuse
793  * the buffer.
794  */
795 static struct sk_buff *cxgb3_get_cpl_reply_skb(struct sk_buff *skb, size_t len,
796                                                gfp_t gfp)
797 {
798         if (likely(!skb_cloned(skb))) {
799                 BUG_ON(skb->len < len);
800                 __skb_trim(skb, len);
801                 skb_get(skb);
802         } else {
803                 skb = alloc_skb(len, gfp);
804                 if (skb)
805                         __skb_put(skb, len);
806         }
807         return skb;
808 }
809
810 static int do_abort_req_rss(struct t3cdev *dev, struct sk_buff *skb)
811 {
812         union opcode_tid *p = cplhdr(skb);
813         unsigned int hwtid = G_TID(ntohl(p->opcode_tid));
814         struct t3c_tid_entry *t3c_tid;
815
816         t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
817         if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
818             t3c_tid->client->handlers[p->opcode]) {
819                 return t3c_tid->client->handlers[p->opcode]
820                     (dev, skb, t3c_tid->ctx);
821         } else {
822                 struct cpl_abort_req_rss *req = cplhdr(skb);
823                 struct cpl_abort_rpl *rpl;
824                 struct sk_buff *reply_skb;
825                 unsigned int tid = GET_TID(req);
826                 u8 cmd = req->status;
827
828                 if (req->status == CPL_ERR_RTX_NEG_ADVICE ||
829                     req->status == CPL_ERR_PERSIST_NEG_ADVICE)
830                         goto out;
831
832                 reply_skb = cxgb3_get_cpl_reply_skb(skb,
833                                                     sizeof(struct
834                                                            cpl_abort_rpl),
835                                                     GFP_ATOMIC);
836
837                 if (!reply_skb) {
838                         printk("do_abort_req_rss: couldn't get skb!\n");
839                         goto out;
840                 }
841                 reply_skb->priority = CPL_PRIORITY_DATA;
842                 __skb_put(reply_skb, sizeof(struct cpl_abort_rpl));
843                 rpl = cplhdr(reply_skb);
844                 rpl->wr.wr_hi =
845                     htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_RPL));
846                 rpl->wr.wr_lo = htonl(V_WR_TID(tid));
847                 OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_ABORT_RPL, tid));
848                 rpl->cmd = cmd;
849                 cxgb3_ofld_send(dev, reply_skb);
850 out:
851                 return CPL_RET_BUF_DONE;
852         }
853 }
854
855 static int do_act_establish(struct t3cdev *dev, struct sk_buff *skb)
856 {
857         struct cpl_act_establish *req = cplhdr(skb);
858         unsigned int atid = G_PASS_OPEN_TID(ntohl(req->tos_tid));
859         struct tid_info *t = &(T3C_DATA(dev))->tid_maps;
860         struct t3c_tid_entry *t3c_tid;
861         unsigned int tid = GET_TID(req);
862
863         if (unlikely(tid >= t->ntids)) {
864                 printk("%s: active establish TID %u too large\n",
865                        dev->name, tid);
866                 t3_fatal_err(tdev2adap(dev));
867                 return CPL_RET_BUF_DONE;
868         }
869
870         t3c_tid = lookup_atid(t, atid);
871         if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
872             t3c_tid->client->handlers[CPL_ACT_ESTABLISH]) {
873                 return t3c_tid->client->handlers[CPL_ACT_ESTABLISH]
874                     (dev, skb, t3c_tid->ctx);
875         } else {
876                 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
877                        dev->name, CPL_ACT_ESTABLISH);
878                 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
879         }
880 }
881
882 static int do_trace(struct t3cdev *dev, struct sk_buff *skb)
883 {
884         struct cpl_trace_pkt *p = cplhdr(skb);
885
886         skb->protocol = htons(0xffff);
887         skb->dev = dev->lldev;
888         skb_pull(skb, sizeof(*p));
889         skb_reset_mac_header(skb);
890         netif_receive_skb(skb);
891         return 0;
892 }
893
894 /*
895  * That skb would better have come from process_responses() where we abuse
896  * ->priority and ->csum to carry our data.  NB: if we get to per-arch
897  * ->csum, the things might get really interesting here.
898  */
899
900 static inline u32 get_hwtid(struct sk_buff *skb)
901 {
902         return ntohl((__force __be32)skb->priority) >> 8 & 0xfffff;
903 }
904
905 static inline u32 get_opcode(struct sk_buff *skb)
906 {
907         return G_OPCODE(ntohl((__force __be32)skb->csum));
908 }
909
910 static int do_term(struct t3cdev *dev, struct sk_buff *skb)
911 {
912         unsigned int hwtid = get_hwtid(skb);
913         unsigned int opcode = get_opcode(skb);
914         struct t3c_tid_entry *t3c_tid;
915
916         t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
917         if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
918             t3c_tid->client->handlers[opcode]) {
919                 return t3c_tid->client->handlers[opcode] (dev, skb,
920                                                           t3c_tid->ctx);
921         } else {
922                 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
923                        dev->name, opcode);
924                 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
925         }
926 }
927
928 static int nb_callback(struct notifier_block *self, unsigned long event,
929                        void *ctx)
930 {
931         switch (event) {
932         case (NETEVENT_NEIGH_UPDATE):{
933                 cxgb_neigh_update((struct neighbour *)ctx);
934                 break;
935         }
936         case (NETEVENT_PMTU_UPDATE):
937                 break;
938         case (NETEVENT_REDIRECT):{
939                 struct netevent_redirect *nr = ctx;
940                 cxgb_redirect(nr->old, nr->new);
941                 cxgb_neigh_update(nr->new->neighbour);
942                 break;
943         }
944         default:
945                 break;
946         }
947         return 0;
948 }
949
950 static struct notifier_block nb = {
951         .notifier_call = nb_callback
952 };
953
954 /*
955  * Process a received packet with an unknown/unexpected CPL opcode.
956  */
957 static int do_bad_cpl(struct t3cdev *dev, struct sk_buff *skb)
958 {
959         printk(KERN_ERR "%s: received bad CPL command 0x%x\n", dev->name,
960                *skb->data);
961         return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
962 }
963
964 /*
965  * Handlers for each CPL opcode
966  */
967 static cpl_handler_func cpl_handlers[NUM_CPL_CMDS];
968
969 /*
970  * Add a new handler to the CPL dispatch table.  A NULL handler may be supplied
971  * to unregister an existing handler.
972  */
973 void t3_register_cpl_handler(unsigned int opcode, cpl_handler_func h)
974 {
975         if (opcode < NUM_CPL_CMDS)
976                 cpl_handlers[opcode] = h ? h : do_bad_cpl;
977         else
978                 printk(KERN_ERR "T3C: handler registration for "
979                        "opcode %x failed\n", opcode);
980 }
981
982 EXPORT_SYMBOL(t3_register_cpl_handler);
983
984 /*
985  * T3CDEV's receive method.
986  */
987 int process_rx(struct t3cdev *dev, struct sk_buff **skbs, int n)
988 {
989         while (n--) {
990                 struct sk_buff *skb = *skbs++;
991                 unsigned int opcode = get_opcode(skb);
992                 int ret = cpl_handlers[opcode] (dev, skb);
993
994 #if VALIDATE_TID
995                 if (ret & CPL_RET_UNKNOWN_TID) {
996                         union opcode_tid *p = cplhdr(skb);
997
998                         printk(KERN_ERR "%s: CPL message (opcode %u) had "
999                                "unknown TID %u\n", dev->name, opcode,
1000                                G_TID(ntohl(p->opcode_tid)));
1001                 }
1002 #endif
1003                 if (ret & CPL_RET_BUF_DONE)
1004                         kfree_skb(skb);
1005         }
1006         return 0;
1007 }
1008
1009 /*
1010  * Sends an sk_buff to a T3C driver after dealing with any active network taps.
1011  */
1012 int cxgb3_ofld_send(struct t3cdev *dev, struct sk_buff *skb)
1013 {
1014         int r;
1015
1016         local_bh_disable();
1017         r = dev->send(dev, skb);
1018         local_bh_enable();
1019         return r;
1020 }
1021
1022 EXPORT_SYMBOL(cxgb3_ofld_send);
1023
1024 static int is_offloading(struct net_device *dev)
1025 {
1026         struct adapter *adapter;
1027         int i;
1028
1029         read_lock_bh(&adapter_list_lock);
1030         list_for_each_entry(adapter, &adapter_list, adapter_list) {
1031                 for_each_port(adapter, i) {
1032                         if (dev == adapter->port[i]) {
1033                                 read_unlock_bh(&adapter_list_lock);
1034                                 return 1;
1035                         }
1036                 }
1037         }
1038         read_unlock_bh(&adapter_list_lock);
1039         return 0;
1040 }
1041
1042 void cxgb_neigh_update(struct neighbour *neigh)
1043 {
1044         struct net_device *dev = neigh->dev;
1045
1046         if (dev && (is_offloading(dev))) {
1047                 struct t3cdev *tdev = dev2t3cdev(dev);
1048
1049                 BUG_ON(!tdev);
1050                 t3_l2t_update(tdev, neigh);
1051         }
1052 }
1053
1054 static void set_l2t_ix(struct t3cdev *tdev, u32 tid, struct l2t_entry *e)
1055 {
1056         struct sk_buff *skb;
1057         struct cpl_set_tcb_field *req;
1058
1059         skb = alloc_skb(sizeof(*req), GFP_ATOMIC);
1060         if (!skb) {
1061                 printk(KERN_ERR "%s: cannot allocate skb!\n", __func__);
1062                 return;
1063         }
1064         skb->priority = CPL_PRIORITY_CONTROL;
1065         req = (struct cpl_set_tcb_field *)skb_put(skb, sizeof(*req));
1066         req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1067         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, tid));
1068         req->reply = 0;
1069         req->cpu_idx = 0;
1070         req->word = htons(W_TCB_L2T_IX);
1071         req->mask = cpu_to_be64(V_TCB_L2T_IX(M_TCB_L2T_IX));
1072         req->val = cpu_to_be64(V_TCB_L2T_IX(e->idx));
1073         tdev->send(tdev, skb);
1074 }
1075
1076 void cxgb_redirect(struct dst_entry *old, struct dst_entry *new)
1077 {
1078         struct net_device *olddev, *newdev;
1079         struct tid_info *ti;
1080         struct t3cdev *tdev;
1081         u32 tid;
1082         int update_tcb;
1083         struct l2t_entry *e;
1084         struct t3c_tid_entry *te;
1085
1086         olddev = old->neighbour->dev;
1087         newdev = new->neighbour->dev;
1088         if (!is_offloading(olddev))
1089                 return;
1090         if (!is_offloading(newdev)) {
1091                 printk(KERN_WARNING "%s: Redirect to non-offload "
1092                        "device ignored.\n", __func__);
1093                 return;
1094         }
1095         tdev = dev2t3cdev(olddev);
1096         BUG_ON(!tdev);
1097         if (tdev != dev2t3cdev(newdev)) {
1098                 printk(KERN_WARNING "%s: Redirect to different "
1099                        "offload device ignored.\n", __func__);
1100                 return;
1101         }
1102
1103         /* Add new L2T entry */
1104         e = t3_l2t_get(tdev, new->neighbour, newdev);
1105         if (!e) {
1106                 printk(KERN_ERR "%s: couldn't allocate new l2t entry!\n",
1107                        __func__);
1108                 return;
1109         }
1110
1111         /* Walk tid table and notify clients of dst change. */
1112         ti = &(T3C_DATA(tdev))->tid_maps;
1113         for (tid = 0; tid < ti->ntids; tid++) {
1114                 te = lookup_tid(ti, tid);
1115                 BUG_ON(!te);
1116                 if (te && te->ctx && te->client && te->client->redirect) {
1117                         update_tcb = te->client->redirect(te->ctx, old, new, e);
1118                         if (update_tcb) {
1119                                 l2t_hold(L2DATA(tdev), e);
1120                                 set_l2t_ix(tdev, tid, e);
1121                         }
1122                 }
1123         }
1124         l2t_release(L2DATA(tdev), e);
1125 }
1126
1127 /*
1128  * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1129  * The allocated memory is cleared.
1130  */
1131 void *cxgb_alloc_mem(unsigned long size)
1132 {
1133         void *p = kmalloc(size, GFP_KERNEL);
1134
1135         if (!p)
1136                 p = vmalloc(size);
1137         if (p)
1138                 memset(p, 0, size);
1139         return p;
1140 }
1141
1142 /*
1143  * Free memory allocated through t3_alloc_mem().
1144  */
1145 void cxgb_free_mem(void *addr)
1146 {
1147         if (is_vmalloc_addr(addr))
1148                 vfree(addr);
1149         else
1150                 kfree(addr);
1151 }
1152
1153 /*
1154  * Allocate and initialize the TID tables.  Returns 0 on success.
1155  */
1156 static int init_tid_tabs(struct tid_info *t, unsigned int ntids,
1157                          unsigned int natids, unsigned int nstids,
1158                          unsigned int atid_base, unsigned int stid_base)
1159 {
1160         unsigned long size = ntids * sizeof(*t->tid_tab) +
1161             natids * sizeof(*t->atid_tab) + nstids * sizeof(*t->stid_tab);
1162
1163         t->tid_tab = cxgb_alloc_mem(size);
1164         if (!t->tid_tab)
1165                 return -ENOMEM;
1166
1167         t->stid_tab = (union listen_entry *)&t->tid_tab[ntids];
1168         t->atid_tab = (union active_open_entry *)&t->stid_tab[nstids];
1169         t->ntids = ntids;
1170         t->nstids = nstids;
1171         t->stid_base = stid_base;
1172         t->sfree = NULL;
1173         t->natids = natids;
1174         t->atid_base = atid_base;
1175         t->afree = NULL;
1176         t->stids_in_use = t->atids_in_use = 0;
1177         atomic_set(&t->tids_in_use, 0);
1178         spin_lock_init(&t->stid_lock);
1179         spin_lock_init(&t->atid_lock);
1180
1181         /*
1182          * Setup the free lists for stid_tab and atid_tab.
1183          */
1184         if (nstids) {
1185                 while (--nstids)
1186                         t->stid_tab[nstids - 1].next = &t->stid_tab[nstids];
1187                 t->sfree = t->stid_tab;
1188         }
1189         if (natids) {
1190                 while (--natids)
1191                         t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1192                 t->afree = t->atid_tab;
1193         }
1194         return 0;
1195 }
1196
1197 static void free_tid_maps(struct tid_info *t)
1198 {
1199         cxgb_free_mem(t->tid_tab);
1200 }
1201
1202 static inline void add_adapter(struct adapter *adap)
1203 {
1204         write_lock_bh(&adapter_list_lock);
1205         list_add_tail(&adap->adapter_list, &adapter_list);
1206         write_unlock_bh(&adapter_list_lock);
1207 }
1208
1209 static inline void remove_adapter(struct adapter *adap)
1210 {
1211         write_lock_bh(&adapter_list_lock);
1212         list_del(&adap->adapter_list);
1213         write_unlock_bh(&adapter_list_lock);
1214 }
1215
1216 int cxgb3_offload_activate(struct adapter *adapter)
1217 {
1218         struct t3cdev *dev = &adapter->tdev;
1219         int natids, err;
1220         struct t3c_data *t;
1221         struct tid_range stid_range, tid_range;
1222         struct mtutab mtutab;
1223         unsigned int l2t_capacity;
1224
1225         t = kcalloc(1, sizeof(*t), GFP_KERNEL);
1226         if (!t)
1227                 return -ENOMEM;
1228
1229         err = -EOPNOTSUPP;
1230         if (dev->ctl(dev, GET_TX_MAX_CHUNK, &t->tx_max_chunk) < 0 ||
1231             dev->ctl(dev, GET_MAX_OUTSTANDING_WR, &t->max_wrs) < 0 ||
1232             dev->ctl(dev, GET_L2T_CAPACITY, &l2t_capacity) < 0 ||
1233             dev->ctl(dev, GET_MTUS, &mtutab) < 0 ||
1234             dev->ctl(dev, GET_TID_RANGE, &tid_range) < 0 ||
1235             dev->ctl(dev, GET_STID_RANGE, &stid_range) < 0)
1236                 goto out_free;
1237
1238         err = -ENOMEM;
1239         L2DATA(dev) = t3_init_l2t(l2t_capacity);
1240         if (!L2DATA(dev))
1241                 goto out_free;
1242
1243         natids = min(tid_range.num / 2, MAX_ATIDS);
1244         err = init_tid_tabs(&t->tid_maps, tid_range.num, natids,
1245                             stid_range.num, ATID_BASE, stid_range.base);
1246         if (err)
1247                 goto out_free_l2t;
1248
1249         t->mtus = mtutab.mtus;
1250         t->nmtus = mtutab.size;
1251
1252         INIT_WORK(&t->tid_release_task, t3_process_tid_release_list);
1253         spin_lock_init(&t->tid_release_lock);
1254         INIT_LIST_HEAD(&t->list_node);
1255         t->dev = dev;
1256
1257         T3C_DATA(dev) = t;
1258         dev->recv = process_rx;
1259         dev->neigh_update = t3_l2t_update;
1260
1261         /* Register netevent handler once */
1262         if (list_empty(&adapter_list))
1263                 register_netevent_notifier(&nb);
1264
1265         add_adapter(adapter);
1266         return 0;
1267
1268 out_free_l2t:
1269         t3_free_l2t(L2DATA(dev));
1270         L2DATA(dev) = NULL;
1271 out_free:
1272         kfree(t);
1273         return err;
1274 }
1275
1276 void cxgb3_offload_deactivate(struct adapter *adapter)
1277 {
1278         struct t3cdev *tdev = &adapter->tdev;
1279         struct t3c_data *t = T3C_DATA(tdev);
1280
1281         remove_adapter(adapter);
1282         if (list_empty(&adapter_list))
1283                 unregister_netevent_notifier(&nb);
1284
1285         free_tid_maps(&t->tid_maps);
1286         T3C_DATA(tdev) = NULL;
1287         t3_free_l2t(L2DATA(tdev));
1288         L2DATA(tdev) = NULL;
1289         kfree(t);
1290 }
1291
1292 static inline void register_tdev(struct t3cdev *tdev)
1293 {
1294         static int unit;
1295
1296         mutex_lock(&cxgb3_db_lock);
1297         snprintf(tdev->name, sizeof(tdev->name), "ofld_dev%d", unit++);
1298         list_add_tail(&tdev->ofld_dev_list, &ofld_dev_list);
1299         mutex_unlock(&cxgb3_db_lock);
1300 }
1301
1302 static inline void unregister_tdev(struct t3cdev *tdev)
1303 {
1304         mutex_lock(&cxgb3_db_lock);
1305         list_del(&tdev->ofld_dev_list);
1306         mutex_unlock(&cxgb3_db_lock);
1307 }
1308
1309 static inline int adap2type(struct adapter *adapter)
1310 {
1311         int type = 0;
1312
1313         switch (adapter->params.rev) {
1314         case T3_REV_A:
1315                 type = T3A;
1316                 break;
1317         case T3_REV_B:
1318         case T3_REV_B2:
1319                 type = T3B;
1320                 break;
1321         case T3_REV_C:
1322                 type = T3C;
1323                 break;
1324         }
1325         return type;
1326 }
1327
1328 void __devinit cxgb3_adapter_ofld(struct adapter *adapter)
1329 {
1330         struct t3cdev *tdev = &adapter->tdev;
1331
1332         INIT_LIST_HEAD(&tdev->ofld_dev_list);
1333
1334         cxgb3_set_dummy_ops(tdev);
1335         tdev->send = t3_offload_tx;
1336         tdev->ctl = cxgb_offload_ctl;
1337         tdev->type = adap2type(adapter);
1338
1339         register_tdev(tdev);
1340 }
1341
1342 void __devexit cxgb3_adapter_unofld(struct adapter *adapter)
1343 {
1344         struct t3cdev *tdev = &adapter->tdev;
1345
1346         tdev->recv = NULL;
1347         tdev->neigh_update = NULL;
1348
1349         unregister_tdev(tdev);
1350 }
1351
1352 void __init cxgb3_offload_init(void)
1353 {
1354         int i;
1355
1356         for (i = 0; i < NUM_CPL_CMDS; ++i)
1357                 cpl_handlers[i] = do_bad_cpl;
1358
1359         t3_register_cpl_handler(CPL_SMT_WRITE_RPL, do_smt_write_rpl);
1360         t3_register_cpl_handler(CPL_L2T_WRITE_RPL, do_l2t_write_rpl);
1361         t3_register_cpl_handler(CPL_RTE_WRITE_RPL, do_rte_write_rpl);
1362         t3_register_cpl_handler(CPL_PASS_OPEN_RPL, do_stid_rpl);
1363         t3_register_cpl_handler(CPL_CLOSE_LISTSRV_RPL, do_stid_rpl);
1364         t3_register_cpl_handler(CPL_PASS_ACCEPT_REQ, do_cr);
1365         t3_register_cpl_handler(CPL_PASS_ESTABLISH, do_hwtid_rpl);
1366         t3_register_cpl_handler(CPL_ABORT_RPL_RSS, do_hwtid_rpl);
1367         t3_register_cpl_handler(CPL_ABORT_RPL, do_hwtid_rpl);
1368         t3_register_cpl_handler(CPL_RX_URG_NOTIFY, do_hwtid_rpl);
1369         t3_register_cpl_handler(CPL_RX_DATA, do_hwtid_rpl);
1370         t3_register_cpl_handler(CPL_TX_DATA_ACK, do_hwtid_rpl);
1371         t3_register_cpl_handler(CPL_TX_DMA_ACK, do_hwtid_rpl);
1372         t3_register_cpl_handler(CPL_ACT_OPEN_RPL, do_act_open_rpl);
1373         t3_register_cpl_handler(CPL_PEER_CLOSE, do_hwtid_rpl);
1374         t3_register_cpl_handler(CPL_CLOSE_CON_RPL, do_hwtid_rpl);
1375         t3_register_cpl_handler(CPL_ABORT_REQ_RSS, do_abort_req_rss);
1376         t3_register_cpl_handler(CPL_ACT_ESTABLISH, do_act_establish);
1377         t3_register_cpl_handler(CPL_SET_TCB_RPL, do_hwtid_rpl);
1378         t3_register_cpl_handler(CPL_GET_TCB_RPL, do_hwtid_rpl);
1379         t3_register_cpl_handler(CPL_RDMA_TERMINATE, do_term);
1380         t3_register_cpl_handler(CPL_RDMA_EC_STATUS, do_hwtid_rpl);
1381         t3_register_cpl_handler(CPL_TRACE_PKT, do_trace);
1382         t3_register_cpl_handler(CPL_RX_DATA_DDP, do_hwtid_rpl);
1383         t3_register_cpl_handler(CPL_RX_DDP_COMPLETE, do_hwtid_rpl);
1384         t3_register_cpl_handler(CPL_ISCSI_HDR, do_hwtid_rpl);
1385 }