2 * QLogic qlge NIC HBA Driver
3 * Copyright (c) 2003-2008 QLogic Corporation
4 * See LICENSE.qlge for copyright and licensing details.
5 * Author: Linux qlge network device driver by
6 * Ron Mercer <ron.mercer@qlogic.com>
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/types.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/pagemap.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/dmapool.h>
19 #include <linux/mempool.h>
20 #include <linux/spinlock.h>
21 #include <linux/kthread.h>
22 #include <linux/interrupt.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
27 #include <linux/ipv6.h>
29 #include <linux/tcp.h>
30 #include <linux/udp.h>
31 #include <linux/if_arp.h>
32 #include <linux/if_ether.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/skbuff.h>
37 #include <linux/rtnetlink.h>
38 #include <linux/if_vlan.h>
39 #include <linux/delay.h>
41 #include <linux/vmalloc.h>
42 #include <net/ip6_checksum.h>
46 char qlge_driver_name[] = DRV_NAME;
47 const char qlge_driver_version[] = DRV_VERSION;
49 MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
50 MODULE_DESCRIPTION(DRV_STRING " ");
51 MODULE_LICENSE("GPL");
52 MODULE_VERSION(DRV_VERSION);
54 static const u32 default_msg =
55 NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
56 /* NETIF_MSG_TIMER | */
61 /* NETIF_MSG_TX_QUEUED | */
62 /* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
63 /* NETIF_MSG_PKTDATA | */
64 NETIF_MSG_HW | NETIF_MSG_WOL | 0;
66 static int debug = 0x00007fff; /* defaults above */
67 module_param(debug, int, 0);
68 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
73 static int irq_type = MSIX_IRQ;
74 module_param(irq_type, int, MSIX_IRQ);
75 MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
77 static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
78 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
79 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
80 /* required last entry */
84 MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
86 /* This hardware semaphore causes exclusive access to
87 * resources shared between the NIC driver, MPI firmware,
88 * FCOE firmware and the FC driver.
90 static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
96 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
99 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
102 sem_bits = SEM_SET << SEM_ICB_SHIFT;
104 case SEM_MAC_ADDR_MASK:
105 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
108 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
111 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
113 case SEM_RT_IDX_MASK:
114 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
116 case SEM_PROC_REG_MASK:
117 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
120 QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
124 ql_write32(qdev, SEM, sem_bits | sem_mask);
125 return !(ql_read32(qdev, SEM) & sem_bits);
128 int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
130 unsigned int wait_count = 30;
132 if (!ql_sem_trylock(qdev, sem_mask))
135 } while (--wait_count);
139 void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
141 ql_write32(qdev, SEM, sem_mask);
142 ql_read32(qdev, SEM); /* flush */
145 /* This function waits for a specific bit to come ready
146 * in a given register. It is used mostly by the initialize
147 * process, but is also used in kernel thread API such as
148 * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
150 int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
153 int count = UDELAY_COUNT;
156 temp = ql_read32(qdev, reg);
158 /* check for errors */
159 if (temp & err_bit) {
160 QPRINTK(qdev, PROBE, ALERT,
161 "register 0x%.08x access error, value = 0x%.08x!.\n",
164 } else if (temp & bit)
166 udelay(UDELAY_DELAY);
169 QPRINTK(qdev, PROBE, ALERT,
170 "Timed out waiting for reg %x to come ready.\n", reg);
174 /* The CFG register is used to download TX and RX control blocks
175 * to the chip. This function waits for an operation to complete.
177 static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
179 int count = UDELAY_COUNT;
183 temp = ql_read32(qdev, CFG);
188 udelay(UDELAY_DELAY);
195 /* Used to issue init control blocks to hw. Maps control block,
196 * sets address, triggers download, waits for completion.
198 int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
208 (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
211 map = pci_map_single(qdev->pdev, ptr, size, direction);
212 if (pci_dma_mapping_error(qdev->pdev, map)) {
213 QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
217 status = ql_wait_cfg(qdev, bit);
219 QPRINTK(qdev, IFUP, ERR,
220 "Timed out waiting for CFG to come ready.\n");
224 status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
227 ql_write32(qdev, ICB_L, (u32) map);
228 ql_write32(qdev, ICB_H, (u32) (map >> 32));
229 ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
231 mask = CFG_Q_MASK | (bit << 16);
232 value = bit | (q_id << CFG_Q_SHIFT);
233 ql_write32(qdev, CFG, (mask | value));
236 * Wait for the bit to clear after signaling hw.
238 status = ql_wait_cfg(qdev, bit);
240 pci_unmap_single(qdev->pdev, map, size, direction);
244 /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
245 int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
252 case MAC_ADDR_TYPE_MULTI_MAC:
253 case MAC_ADDR_TYPE_CAM_MAC:
256 ql_wait_reg_rdy(qdev,
257 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
260 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
261 (index << MAC_ADDR_IDX_SHIFT) | /* index */
262 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
264 ql_wait_reg_rdy(qdev,
265 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
268 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
270 ql_wait_reg_rdy(qdev,
271 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
274 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
275 (index << MAC_ADDR_IDX_SHIFT) | /* index */
276 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
278 ql_wait_reg_rdy(qdev,
279 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
282 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
283 if (type == MAC_ADDR_TYPE_CAM_MAC) {
285 ql_wait_reg_rdy(qdev,
286 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
289 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
290 (index << MAC_ADDR_IDX_SHIFT) | /* index */
291 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
293 ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
297 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
301 case MAC_ADDR_TYPE_VLAN:
302 case MAC_ADDR_TYPE_MULTI_FLTR:
304 QPRINTK(qdev, IFUP, CRIT,
305 "Address type %d not yet supported.\n", type);
312 /* Set up a MAC, multicast or VLAN address for the
313 * inbound frame matching.
315 static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
322 case MAC_ADDR_TYPE_MULTI_MAC:
323 case MAC_ADDR_TYPE_CAM_MAC:
326 u32 upper = (addr[0] << 8) | addr[1];
328 (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
331 QPRINTK(qdev, IFUP, DEBUG,
332 "Adding %s address %pM"
333 " at index %d in the CAM.\n",
335 MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
336 "UNICAST"), addr, index);
339 ql_wait_reg_rdy(qdev,
340 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
343 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
344 (index << MAC_ADDR_IDX_SHIFT) | /* index */
346 ql_write32(qdev, MAC_ADDR_DATA, lower);
348 ql_wait_reg_rdy(qdev,
349 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
352 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
353 (index << MAC_ADDR_IDX_SHIFT) | /* index */
355 ql_write32(qdev, MAC_ADDR_DATA, upper);
357 ql_wait_reg_rdy(qdev,
358 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
361 ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
362 (index << MAC_ADDR_IDX_SHIFT) | /* index */
364 /* This field should also include the queue id
365 and possibly the function id. Right now we hardcode
366 the route field to NIC core.
368 if (type == MAC_ADDR_TYPE_CAM_MAC) {
369 cam_output = (CAM_OUT_ROUTE_NIC |
371 func << CAM_OUT_FUNC_SHIFT) |
373 rss_ring_first_cq_id <<
374 CAM_OUT_CQ_ID_SHIFT));
376 cam_output |= CAM_OUT_RV;
377 /* route to NIC core */
378 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
382 case MAC_ADDR_TYPE_VLAN:
384 u32 enable_bit = *((u32 *) &addr[0]);
385 /* For VLAN, the addr actually holds a bit that
386 * either enables or disables the vlan id we are
387 * addressing. It's either MAC_ADDR_E on or off.
388 * That's bit-27 we're talking about.
390 QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
391 (enable_bit ? "Adding" : "Removing"),
392 index, (enable_bit ? "to" : "from"));
395 ql_wait_reg_rdy(qdev,
396 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
399 ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
400 (index << MAC_ADDR_IDX_SHIFT) | /* index */
402 enable_bit); /* enable/disable */
405 case MAC_ADDR_TYPE_MULTI_FLTR:
407 QPRINTK(qdev, IFUP, CRIT,
408 "Address type %d not yet supported.\n", type);
415 /* Get a specific frame routing value from the CAM.
416 * Used for debug and reg dump.
418 int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
422 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
426 ql_write32(qdev, RT_IDX,
427 RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
428 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
431 *value = ql_read32(qdev, RT_DATA);
436 /* The NIC function for this chip has 16 routing indexes. Each one can be used
437 * to route different frame types to various inbound queues. We send broadcast/
438 * multicast/error frames to the default queue for slow handling,
439 * and CAM hit/RSS frames to the fast handling queues.
441 static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
444 int status = -EINVAL; /* Return error if no mask match. */
447 QPRINTK(qdev, IFUP, DEBUG,
448 "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
449 (enable ? "Adding" : "Removing"),
450 ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
451 ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
453 RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
454 ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
455 ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
456 ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
457 ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
458 ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
459 ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
460 ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
461 ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
462 ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
463 ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
464 ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
465 ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
466 ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
467 (enable ? "to" : "from"));
472 value = RT_IDX_DST_CAM_Q | /* dest */
473 RT_IDX_TYPE_NICQ | /* type */
474 (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
477 case RT_IDX_VALID: /* Promiscuous Mode frames. */
479 value = RT_IDX_DST_DFLT_Q | /* dest */
480 RT_IDX_TYPE_NICQ | /* type */
481 (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
484 case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
486 value = RT_IDX_DST_DFLT_Q | /* dest */
487 RT_IDX_TYPE_NICQ | /* type */
488 (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
491 case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
493 value = RT_IDX_DST_DFLT_Q | /* dest */
494 RT_IDX_TYPE_NICQ | /* type */
495 (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
498 case RT_IDX_MCAST: /* Pass up All Multicast frames. */
500 value = RT_IDX_DST_CAM_Q | /* dest */
501 RT_IDX_TYPE_NICQ | /* type */
502 (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
505 case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
507 value = RT_IDX_DST_CAM_Q | /* dest */
508 RT_IDX_TYPE_NICQ | /* type */
509 (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
512 case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
514 value = RT_IDX_DST_RSS | /* dest */
515 RT_IDX_TYPE_NICQ | /* type */
516 (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
519 case 0: /* Clear the E-bit on an entry. */
521 value = RT_IDX_DST_DFLT_Q | /* dest */
522 RT_IDX_TYPE_NICQ | /* type */
523 (index << RT_IDX_IDX_SHIFT);/* index */
527 QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
534 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
537 value |= (enable ? RT_IDX_E : 0);
538 ql_write32(qdev, RT_IDX, value);
539 ql_write32(qdev, RT_DATA, enable ? mask : 0);
545 static void ql_enable_interrupts(struct ql_adapter *qdev)
547 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
550 static void ql_disable_interrupts(struct ql_adapter *qdev)
552 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
555 /* If we're running with multiple MSI-X vectors then we enable on the fly.
556 * Otherwise, we may have multiple outstanding workers and don't want to
557 * enable until the last one finishes. In this case, the irq_cnt gets
558 * incremented everytime we queue a worker and decremented everytime
559 * a worker finishes. Once it hits zero we enable the interrupt.
561 u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
564 unsigned long hw_flags = 0;
565 struct intr_context *ctx = qdev->intr_context + intr;
567 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
568 /* Always enable if we're MSIX multi interrupts and
569 * it's not the default (zeroeth) interrupt.
571 ql_write32(qdev, INTR_EN,
573 var = ql_read32(qdev, STS);
577 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
578 if (atomic_dec_and_test(&ctx->irq_cnt)) {
579 ql_write32(qdev, INTR_EN,
581 var = ql_read32(qdev, STS);
583 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
587 static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
590 struct intr_context *ctx;
592 /* HW disables for us if we're MSIX multi interrupts and
593 * it's not the default (zeroeth) interrupt.
595 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
598 ctx = qdev->intr_context + intr;
599 spin_lock(&qdev->hw_lock);
600 if (!atomic_read(&ctx->irq_cnt)) {
601 ql_write32(qdev, INTR_EN,
603 var = ql_read32(qdev, STS);
605 atomic_inc(&ctx->irq_cnt);
606 spin_unlock(&qdev->hw_lock);
610 static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
613 for (i = 0; i < qdev->intr_count; i++) {
614 /* The enable call does a atomic_dec_and_test
615 * and enables only if the result is zero.
616 * So we precharge it here.
618 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
620 atomic_set(&qdev->intr_context[i].irq_cnt, 1);
621 ql_enable_completion_interrupt(qdev, i);
626 static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
630 __le16 *flash = (__le16 *)&qdev->flash;
632 status = strncmp((char *)&qdev->flash, str, 4);
634 QPRINTK(qdev, IFUP, ERR, "Invalid flash signature.\n");
638 for (i = 0; i < size; i++)
639 csum += le16_to_cpu(*flash++);
642 QPRINTK(qdev, IFUP, ERR,
643 "Invalid flash checksum, csum = 0x%.04x.\n", csum);
648 static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
651 /* wait for reg to come ready */
652 status = ql_wait_reg_rdy(qdev,
653 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
656 /* set up for reg read */
657 ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
658 /* wait for reg to come ready */
659 status = ql_wait_reg_rdy(qdev,
660 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
663 /* This data is stored on flash as an array of
664 * __le32. Since ql_read32() returns cpu endian
665 * we need to swap it back.
667 *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
672 static int ql_get_8000_flash_params(struct ql_adapter *qdev)
676 __le32 *p = (__le32 *)&qdev->flash;
679 /* Get flash offset for function and adjust
683 offset = FUNC0_FLASH_OFFSET / sizeof(u32);
685 offset = FUNC1_FLASH_OFFSET / sizeof(u32);
687 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
690 size = sizeof(struct flash_params_8000) / sizeof(u32);
691 for (i = 0; i < size; i++, p++) {
692 status = ql_read_flash_word(qdev, i+offset, p);
694 QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
699 status = ql_validate_flash(qdev,
700 sizeof(struct flash_params_8000) / sizeof(u16),
703 QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
708 if (!is_valid_ether_addr(qdev->flash.flash_params_8000.mac_addr)) {
709 QPRINTK(qdev, IFUP, ERR, "Invalid MAC address.\n");
714 memcpy(qdev->ndev->dev_addr,
715 qdev->flash.flash_params_8000.mac_addr,
716 qdev->ndev->addr_len);
719 ql_sem_unlock(qdev, SEM_FLASH_MASK);
723 static int ql_get_8012_flash_params(struct ql_adapter *qdev)
727 __le32 *p = (__le32 *)&qdev->flash;
729 u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
731 /* Second function's parameters follow the first
737 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
740 for (i = 0; i < size; i++, p++) {
741 status = ql_read_flash_word(qdev, i+offset, p);
743 QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
749 status = ql_validate_flash(qdev,
750 sizeof(struct flash_params_8012) / sizeof(u16),
753 QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
758 if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
763 memcpy(qdev->ndev->dev_addr,
764 qdev->flash.flash_params_8012.mac_addr,
765 qdev->ndev->addr_len);
768 ql_sem_unlock(qdev, SEM_FLASH_MASK);
772 /* xgmac register are located behind the xgmac_addr and xgmac_data
773 * register pair. Each read/write requires us to wait for the ready
774 * bit before reading/writing the data.
776 static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
779 /* wait for reg to come ready */
780 status = ql_wait_reg_rdy(qdev,
781 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
784 /* write the data to the data reg */
785 ql_write32(qdev, XGMAC_DATA, data);
786 /* trigger the write */
787 ql_write32(qdev, XGMAC_ADDR, reg);
791 /* xgmac register are located behind the xgmac_addr and xgmac_data
792 * register pair. Each read/write requires us to wait for the ready
793 * bit before reading/writing the data.
795 int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
798 /* wait for reg to come ready */
799 status = ql_wait_reg_rdy(qdev,
800 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
803 /* set up for reg read */
804 ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
805 /* wait for reg to come ready */
806 status = ql_wait_reg_rdy(qdev,
807 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
811 *data = ql_read32(qdev, XGMAC_DATA);
816 /* This is used for reading the 64-bit statistics regs. */
817 int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
823 status = ql_read_xgmac_reg(qdev, reg, &lo);
827 status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
831 *data = (u64) lo | ((u64) hi << 32);
837 static int ql_8000_port_initialize(struct ql_adapter *qdev)
841 * Get MPI firmware version for driver banner
844 status = ql_mb_about_fw(qdev);
847 status = ql_mb_get_fw_state(qdev);
850 /* Wake up a worker to get/set the TX/RX frame sizes. */
851 queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
856 /* Take the MAC Core out of reset.
857 * Enable statistics counting.
858 * Take the transmitter/receiver out of reset.
859 * This functionality may be done in the MPI firmware at a
862 static int ql_8012_port_initialize(struct ql_adapter *qdev)
867 if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
868 /* Another function has the semaphore, so
869 * wait for the port init bit to come ready.
871 QPRINTK(qdev, LINK, INFO,
872 "Another function has the semaphore, so wait for the port init bit to come ready.\n");
873 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
875 QPRINTK(qdev, LINK, CRIT,
876 "Port initialize timed out.\n");
881 QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
882 /* Set the core reset. */
883 status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
886 data |= GLOBAL_CFG_RESET;
887 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
891 /* Clear the core reset and turn on jumbo for receiver. */
892 data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
893 data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
894 data |= GLOBAL_CFG_TX_STAT_EN;
895 data |= GLOBAL_CFG_RX_STAT_EN;
896 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
900 /* Enable transmitter, and clear it's reset. */
901 status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
904 data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
905 data |= TX_CFG_EN; /* Enable the transmitter. */
906 status = ql_write_xgmac_reg(qdev, TX_CFG, data);
910 /* Enable receiver and clear it's reset. */
911 status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
914 data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
915 data |= RX_CFG_EN; /* Enable the receiver. */
916 status = ql_write_xgmac_reg(qdev, RX_CFG, data);
922 ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
926 ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
930 /* Signal to the world that the port is enabled. */
931 ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
933 ql_sem_unlock(qdev, qdev->xg_sem_mask);
937 /* Get the next large buffer. */
938 static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
940 struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
941 rx_ring->lbq_curr_idx++;
942 if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
943 rx_ring->lbq_curr_idx = 0;
944 rx_ring->lbq_free_cnt++;
948 /* Get the next small buffer. */
949 static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
951 struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
952 rx_ring->sbq_curr_idx++;
953 if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
954 rx_ring->sbq_curr_idx = 0;
955 rx_ring->sbq_free_cnt++;
959 /* Update an rx ring index. */
960 static void ql_update_cq(struct rx_ring *rx_ring)
962 rx_ring->cnsmr_idx++;
963 rx_ring->curr_entry++;
964 if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
965 rx_ring->cnsmr_idx = 0;
966 rx_ring->curr_entry = rx_ring->cq_base;
970 static void ql_write_cq_idx(struct rx_ring *rx_ring)
972 ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
975 /* Process (refill) a large buffer queue. */
976 static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
978 u32 clean_idx = rx_ring->lbq_clean_idx;
979 u32 start_idx = clean_idx;
980 struct bq_desc *lbq_desc;
984 while (rx_ring->lbq_free_cnt > 16) {
985 for (i = 0; i < 16; i++) {
986 QPRINTK(qdev, RX_STATUS, DEBUG,
987 "lbq: try cleaning clean_idx = %d.\n",
989 lbq_desc = &rx_ring->lbq[clean_idx];
990 if (lbq_desc->p.lbq_page == NULL) {
991 QPRINTK(qdev, RX_STATUS, DEBUG,
992 "lbq: getting new page for index %d.\n",
994 lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
995 if (lbq_desc->p.lbq_page == NULL) {
996 rx_ring->lbq_clean_idx = clean_idx;
997 QPRINTK(qdev, RX_STATUS, ERR,
998 "Couldn't get a page.\n");
1001 map = pci_map_page(qdev->pdev,
1002 lbq_desc->p.lbq_page,
1004 PCI_DMA_FROMDEVICE);
1005 if (pci_dma_mapping_error(qdev->pdev, map)) {
1006 rx_ring->lbq_clean_idx = clean_idx;
1007 put_page(lbq_desc->p.lbq_page);
1008 lbq_desc->p.lbq_page = NULL;
1009 QPRINTK(qdev, RX_STATUS, ERR,
1010 "PCI mapping failed.\n");
1013 pci_unmap_addr_set(lbq_desc, mapaddr, map);
1014 pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
1015 *lbq_desc->addr = cpu_to_le64(map);
1018 if (clean_idx == rx_ring->lbq_len)
1022 rx_ring->lbq_clean_idx = clean_idx;
1023 rx_ring->lbq_prod_idx += 16;
1024 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1025 rx_ring->lbq_prod_idx = 0;
1026 rx_ring->lbq_free_cnt -= 16;
1029 if (start_idx != clean_idx) {
1030 QPRINTK(qdev, RX_STATUS, DEBUG,
1031 "lbq: updating prod idx = %d.\n",
1032 rx_ring->lbq_prod_idx);
1033 ql_write_db_reg(rx_ring->lbq_prod_idx,
1034 rx_ring->lbq_prod_idx_db_reg);
1038 /* Process (refill) a small buffer queue. */
1039 static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1041 u32 clean_idx = rx_ring->sbq_clean_idx;
1042 u32 start_idx = clean_idx;
1043 struct bq_desc *sbq_desc;
1047 while (rx_ring->sbq_free_cnt > 16) {
1048 for (i = 0; i < 16; i++) {
1049 sbq_desc = &rx_ring->sbq[clean_idx];
1050 QPRINTK(qdev, RX_STATUS, DEBUG,
1051 "sbq: try cleaning clean_idx = %d.\n",
1053 if (sbq_desc->p.skb == NULL) {
1054 QPRINTK(qdev, RX_STATUS, DEBUG,
1055 "sbq: getting new skb for index %d.\n",
1058 netdev_alloc_skb(qdev->ndev,
1059 rx_ring->sbq_buf_size);
1060 if (sbq_desc->p.skb == NULL) {
1061 QPRINTK(qdev, PROBE, ERR,
1062 "Couldn't get an skb.\n");
1063 rx_ring->sbq_clean_idx = clean_idx;
1066 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1067 map = pci_map_single(qdev->pdev,
1068 sbq_desc->p.skb->data,
1069 rx_ring->sbq_buf_size /
1070 2, PCI_DMA_FROMDEVICE);
1071 if (pci_dma_mapping_error(qdev->pdev, map)) {
1072 QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
1073 rx_ring->sbq_clean_idx = clean_idx;
1074 dev_kfree_skb_any(sbq_desc->p.skb);
1075 sbq_desc->p.skb = NULL;
1078 pci_unmap_addr_set(sbq_desc, mapaddr, map);
1079 pci_unmap_len_set(sbq_desc, maplen,
1080 rx_ring->sbq_buf_size / 2);
1081 *sbq_desc->addr = cpu_to_le64(map);
1085 if (clean_idx == rx_ring->sbq_len)
1088 rx_ring->sbq_clean_idx = clean_idx;
1089 rx_ring->sbq_prod_idx += 16;
1090 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1091 rx_ring->sbq_prod_idx = 0;
1092 rx_ring->sbq_free_cnt -= 16;
1095 if (start_idx != clean_idx) {
1096 QPRINTK(qdev, RX_STATUS, DEBUG,
1097 "sbq: updating prod idx = %d.\n",
1098 rx_ring->sbq_prod_idx);
1099 ql_write_db_reg(rx_ring->sbq_prod_idx,
1100 rx_ring->sbq_prod_idx_db_reg);
1104 static void ql_update_buffer_queues(struct ql_adapter *qdev,
1105 struct rx_ring *rx_ring)
1107 ql_update_sbq(qdev, rx_ring);
1108 ql_update_lbq(qdev, rx_ring);
1111 /* Unmaps tx buffers. Can be called from send() if a pci mapping
1112 * fails at some stage, or from the interrupt when a tx completes.
1114 static void ql_unmap_send(struct ql_adapter *qdev,
1115 struct tx_ring_desc *tx_ring_desc, int mapped)
1118 for (i = 0; i < mapped; i++) {
1119 if (i == 0 || (i == 7 && mapped > 7)) {
1121 * Unmap the skb->data area, or the
1122 * external sglist (AKA the Outbound
1123 * Address List (OAL)).
1124 * If its the zeroeth element, then it's
1125 * the skb->data area. If it's the 7th
1126 * element and there is more than 6 frags,
1130 QPRINTK(qdev, TX_DONE, DEBUG,
1131 "unmapping OAL area.\n");
1133 pci_unmap_single(qdev->pdev,
1134 pci_unmap_addr(&tx_ring_desc->map[i],
1136 pci_unmap_len(&tx_ring_desc->map[i],
1140 QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
1142 pci_unmap_page(qdev->pdev,
1143 pci_unmap_addr(&tx_ring_desc->map[i],
1145 pci_unmap_len(&tx_ring_desc->map[i],
1146 maplen), PCI_DMA_TODEVICE);
1152 /* Map the buffers for this transmit. This will return
1153 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1155 static int ql_map_send(struct ql_adapter *qdev,
1156 struct ob_mac_iocb_req *mac_iocb_ptr,
1157 struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1159 int len = skb_headlen(skb);
1161 int frag_idx, err, map_idx = 0;
1162 struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1163 int frag_cnt = skb_shinfo(skb)->nr_frags;
1166 QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
1169 * Map the skb buffer first.
1171 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1173 err = pci_dma_mapping_error(qdev->pdev, map);
1175 QPRINTK(qdev, TX_QUEUED, ERR,
1176 "PCI mapping failed with error: %d\n", err);
1178 return NETDEV_TX_BUSY;
1181 tbd->len = cpu_to_le32(len);
1182 tbd->addr = cpu_to_le64(map);
1183 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1184 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1188 * This loop fills the remainder of the 8 address descriptors
1189 * in the IOCB. If there are more than 7 fragments, then the
1190 * eighth address desc will point to an external list (OAL).
1191 * When this happens, the remainder of the frags will be stored
1194 for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1195 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1197 if (frag_idx == 6 && frag_cnt > 7) {
1198 /* Let's tack on an sglist.
1199 * Our control block will now
1201 * iocb->seg[0] = skb->data
1202 * iocb->seg[1] = frag[0]
1203 * iocb->seg[2] = frag[1]
1204 * iocb->seg[3] = frag[2]
1205 * iocb->seg[4] = frag[3]
1206 * iocb->seg[5] = frag[4]
1207 * iocb->seg[6] = frag[5]
1208 * iocb->seg[7] = ptr to OAL (external sglist)
1209 * oal->seg[0] = frag[6]
1210 * oal->seg[1] = frag[7]
1211 * oal->seg[2] = frag[8]
1212 * oal->seg[3] = frag[9]
1213 * oal->seg[4] = frag[10]
1216 /* Tack on the OAL in the eighth segment of IOCB. */
1217 map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1220 err = pci_dma_mapping_error(qdev->pdev, map);
1222 QPRINTK(qdev, TX_QUEUED, ERR,
1223 "PCI mapping outbound address list with error: %d\n",
1228 tbd->addr = cpu_to_le64(map);
1230 * The length is the number of fragments
1231 * that remain to be mapped times the length
1232 * of our sglist (OAL).
1235 cpu_to_le32((sizeof(struct tx_buf_desc) *
1236 (frag_cnt - frag_idx)) | TX_DESC_C);
1237 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1239 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1240 sizeof(struct oal));
1241 tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1246 pci_map_page(qdev->pdev, frag->page,
1247 frag->page_offset, frag->size,
1250 err = pci_dma_mapping_error(qdev->pdev, map);
1252 QPRINTK(qdev, TX_QUEUED, ERR,
1253 "PCI mapping frags failed with error: %d.\n",
1258 tbd->addr = cpu_to_le64(map);
1259 tbd->len = cpu_to_le32(frag->size);
1260 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1261 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1265 /* Save the number of segments we've mapped. */
1266 tx_ring_desc->map_cnt = map_idx;
1267 /* Terminate the last segment. */
1268 tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1269 return NETDEV_TX_OK;
1273 * If the first frag mapping failed, then i will be zero.
1274 * This causes the unmap of the skb->data area. Otherwise
1275 * we pass in the number of frags that mapped successfully
1276 * so they can be umapped.
1278 ql_unmap_send(qdev, tx_ring_desc, map_idx);
1279 return NETDEV_TX_BUSY;
1282 static void ql_realign_skb(struct sk_buff *skb, int len)
1284 void *temp_addr = skb->data;
1286 /* Undo the skb_reserve(skb,32) we did before
1287 * giving to hardware, and realign data on
1288 * a 2-byte boundary.
1290 skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1291 skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1292 skb_copy_to_linear_data(skb, temp_addr,
1297 * This function builds an skb for the given inbound
1298 * completion. It will be rewritten for readability in the near
1299 * future, but for not it works well.
1301 static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1302 struct rx_ring *rx_ring,
1303 struct ib_mac_iocb_rsp *ib_mac_rsp)
1305 struct bq_desc *lbq_desc;
1306 struct bq_desc *sbq_desc;
1307 struct sk_buff *skb = NULL;
1308 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1309 u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1312 * Handle the header buffer if present.
1314 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1315 ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1316 QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
1318 * Headers fit nicely into a small buffer.
1320 sbq_desc = ql_get_curr_sbuf(rx_ring);
1321 pci_unmap_single(qdev->pdev,
1322 pci_unmap_addr(sbq_desc, mapaddr),
1323 pci_unmap_len(sbq_desc, maplen),
1324 PCI_DMA_FROMDEVICE);
1325 skb = sbq_desc->p.skb;
1326 ql_realign_skb(skb, hdr_len);
1327 skb_put(skb, hdr_len);
1328 sbq_desc->p.skb = NULL;
1332 * Handle the data buffer(s).
1334 if (unlikely(!length)) { /* Is there data too? */
1335 QPRINTK(qdev, RX_STATUS, DEBUG,
1336 "No Data buffer in this packet.\n");
1340 if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1341 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1342 QPRINTK(qdev, RX_STATUS, DEBUG,
1343 "Headers in small, data of %d bytes in small, combine them.\n", length);
1345 * Data is less than small buffer size so it's
1346 * stuffed in a small buffer.
1347 * For this case we append the data
1348 * from the "data" small buffer to the "header" small
1351 sbq_desc = ql_get_curr_sbuf(rx_ring);
1352 pci_dma_sync_single_for_cpu(qdev->pdev,
1354 (sbq_desc, mapaddr),
1357 PCI_DMA_FROMDEVICE);
1358 memcpy(skb_put(skb, length),
1359 sbq_desc->p.skb->data, length);
1360 pci_dma_sync_single_for_device(qdev->pdev,
1367 PCI_DMA_FROMDEVICE);
1369 QPRINTK(qdev, RX_STATUS, DEBUG,
1370 "%d bytes in a single small buffer.\n", length);
1371 sbq_desc = ql_get_curr_sbuf(rx_ring);
1372 skb = sbq_desc->p.skb;
1373 ql_realign_skb(skb, length);
1374 skb_put(skb, length);
1375 pci_unmap_single(qdev->pdev,
1376 pci_unmap_addr(sbq_desc,
1378 pci_unmap_len(sbq_desc,
1380 PCI_DMA_FROMDEVICE);
1381 sbq_desc->p.skb = NULL;
1383 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1384 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1385 QPRINTK(qdev, RX_STATUS, DEBUG,
1386 "Header in small, %d bytes in large. Chain large to small!\n", length);
1388 * The data is in a single large buffer. We
1389 * chain it to the header buffer's skb and let
1392 lbq_desc = ql_get_curr_lbuf(rx_ring);
1393 pci_unmap_page(qdev->pdev,
1394 pci_unmap_addr(lbq_desc,
1396 pci_unmap_len(lbq_desc, maplen),
1397 PCI_DMA_FROMDEVICE);
1398 QPRINTK(qdev, RX_STATUS, DEBUG,
1399 "Chaining page to skb.\n");
1400 skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1403 skb->data_len += length;
1404 skb->truesize += length;
1405 lbq_desc->p.lbq_page = NULL;
1408 * The headers and data are in a single large buffer. We
1409 * copy it to a new skb and let it go. This can happen with
1410 * jumbo mtu on a non-TCP/UDP frame.
1412 lbq_desc = ql_get_curr_lbuf(rx_ring);
1413 skb = netdev_alloc_skb(qdev->ndev, length);
1415 QPRINTK(qdev, PROBE, DEBUG,
1416 "No skb available, drop the packet.\n");
1419 pci_unmap_page(qdev->pdev,
1420 pci_unmap_addr(lbq_desc,
1422 pci_unmap_len(lbq_desc, maplen),
1423 PCI_DMA_FROMDEVICE);
1424 skb_reserve(skb, NET_IP_ALIGN);
1425 QPRINTK(qdev, RX_STATUS, DEBUG,
1426 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
1427 skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1430 skb->data_len += length;
1431 skb->truesize += length;
1433 lbq_desc->p.lbq_page = NULL;
1434 __pskb_pull_tail(skb,
1435 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1436 VLAN_ETH_HLEN : ETH_HLEN);
1440 * The data is in a chain of large buffers
1441 * pointed to by a small buffer. We loop
1442 * thru and chain them to the our small header
1444 * frags: There are 18 max frags and our small
1445 * buffer will hold 32 of them. The thing is,
1446 * we'll use 3 max for our 9000 byte jumbo
1447 * frames. If the MTU goes up we could
1448 * eventually be in trouble.
1450 int size, offset, i = 0;
1451 __le64 *bq, bq_array[8];
1452 sbq_desc = ql_get_curr_sbuf(rx_ring);
1453 pci_unmap_single(qdev->pdev,
1454 pci_unmap_addr(sbq_desc, mapaddr),
1455 pci_unmap_len(sbq_desc, maplen),
1456 PCI_DMA_FROMDEVICE);
1457 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1459 * This is an non TCP/UDP IP frame, so
1460 * the headers aren't split into a small
1461 * buffer. We have to use the small buffer
1462 * that contains our sg list as our skb to
1463 * send upstairs. Copy the sg list here to
1464 * a local buffer and use it to find the
1467 QPRINTK(qdev, RX_STATUS, DEBUG,
1468 "%d bytes of headers & data in chain of large.\n", length);
1469 skb = sbq_desc->p.skb;
1471 memcpy(bq, skb->data, sizeof(bq_array));
1472 sbq_desc->p.skb = NULL;
1473 skb_reserve(skb, NET_IP_ALIGN);
1475 QPRINTK(qdev, RX_STATUS, DEBUG,
1476 "Headers in small, %d bytes of data in chain of large.\n", length);
1477 bq = (__le64 *)sbq_desc->p.skb->data;
1479 while (length > 0) {
1480 lbq_desc = ql_get_curr_lbuf(rx_ring);
1481 pci_unmap_page(qdev->pdev,
1482 pci_unmap_addr(lbq_desc,
1484 pci_unmap_len(lbq_desc,
1486 PCI_DMA_FROMDEVICE);
1487 size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
1490 QPRINTK(qdev, RX_STATUS, DEBUG,
1491 "Adding page %d to skb for %d bytes.\n",
1493 skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
1496 skb->data_len += size;
1497 skb->truesize += size;
1499 lbq_desc->p.lbq_page = NULL;
1503 __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1504 VLAN_ETH_HLEN : ETH_HLEN);
1509 /* Process an inbound completion from an rx ring. */
1510 static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
1511 struct rx_ring *rx_ring,
1512 struct ib_mac_iocb_rsp *ib_mac_rsp)
1514 struct net_device *ndev = qdev->ndev;
1515 struct sk_buff *skb = NULL;
1516 u16 vlan_id = (le16_to_cpu(ib_mac_rsp->vlan_id) &
1517 IB_MAC_IOCB_RSP_VLAN_MASK)
1519 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1521 skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1522 if (unlikely(!skb)) {
1523 QPRINTK(qdev, RX_STATUS, DEBUG,
1524 "No skb available, drop packet.\n");
1528 prefetch(skb->data);
1530 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1531 QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
1532 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1533 IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
1534 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1535 IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
1536 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1537 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1539 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
1540 QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
1543 skb->protocol = eth_type_trans(skb, ndev);
1544 skb->ip_summed = CHECKSUM_NONE;
1546 /* If rx checksum is on, and there are no
1547 * csum or frame errors.
1549 if (qdev->rx_csum &&
1550 !(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) &&
1551 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1553 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1554 QPRINTK(qdev, RX_STATUS, DEBUG,
1555 "TCP checksum done!\n");
1556 skb->ip_summed = CHECKSUM_UNNECESSARY;
1557 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1558 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1559 /* Unfragmented ipv4 UDP frame. */
1560 struct iphdr *iph = (struct iphdr *) skb->data;
1561 if (!(iph->frag_off &
1562 cpu_to_be16(IP_MF|IP_OFFSET))) {
1563 skb->ip_summed = CHECKSUM_UNNECESSARY;
1564 QPRINTK(qdev, RX_STATUS, DEBUG,
1565 "TCP checksum done!\n");
1570 qdev->stats.rx_packets++;
1571 qdev->stats.rx_bytes += skb->len;
1572 skb_record_rx_queue(skb,
1573 rx_ring->cq_id - qdev->rss_ring_first_cq_id);
1574 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
1576 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
1578 vlan_gro_receive(&rx_ring->napi, qdev->vlgrp,
1581 napi_gro_receive(&rx_ring->napi, skb);
1584 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
1586 vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
1588 netif_receive_skb(skb);
1592 /* Process an outbound completion from an rx ring. */
1593 static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
1594 struct ob_mac_iocb_rsp *mac_rsp)
1596 struct tx_ring *tx_ring;
1597 struct tx_ring_desc *tx_ring_desc;
1599 QL_DUMP_OB_MAC_RSP(mac_rsp);
1600 tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
1601 tx_ring_desc = &tx_ring->q[mac_rsp->tid];
1602 ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
1603 qdev->stats.tx_bytes += tx_ring_desc->map_cnt;
1604 qdev->stats.tx_packets++;
1605 dev_kfree_skb(tx_ring_desc->skb);
1606 tx_ring_desc->skb = NULL;
1608 if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
1611 OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
1612 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
1613 QPRINTK(qdev, TX_DONE, WARNING,
1614 "Total descriptor length did not match transfer length.\n");
1616 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
1617 QPRINTK(qdev, TX_DONE, WARNING,
1618 "Frame too short to be legal, not sent.\n");
1620 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
1621 QPRINTK(qdev, TX_DONE, WARNING,
1622 "Frame too long, but sent anyway.\n");
1624 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
1625 QPRINTK(qdev, TX_DONE, WARNING,
1626 "PCI backplane error. Frame not sent.\n");
1629 atomic_inc(&tx_ring->tx_count);
1632 /* Fire up a handler to reset the MPI processor. */
1633 void ql_queue_fw_error(struct ql_adapter *qdev)
1635 netif_carrier_off(qdev->ndev);
1636 queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
1639 void ql_queue_asic_error(struct ql_adapter *qdev)
1641 netif_carrier_off(qdev->ndev);
1642 ql_disable_interrupts(qdev);
1643 /* Clear adapter up bit to signal the recovery
1644 * process that it shouldn't kill the reset worker
1647 clear_bit(QL_ADAPTER_UP, &qdev->flags);
1648 queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
1651 static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
1652 struct ib_ae_iocb_rsp *ib_ae_rsp)
1654 switch (ib_ae_rsp->event) {
1655 case MGMT_ERR_EVENT:
1656 QPRINTK(qdev, RX_ERR, ERR,
1657 "Management Processor Fatal Error.\n");
1658 ql_queue_fw_error(qdev);
1661 case CAM_LOOKUP_ERR_EVENT:
1662 QPRINTK(qdev, LINK, ERR,
1663 "Multiple CAM hits lookup occurred.\n");
1664 QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
1665 ql_queue_asic_error(qdev);
1668 case SOFT_ECC_ERROR_EVENT:
1669 QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
1670 ql_queue_asic_error(qdev);
1673 case PCI_ERR_ANON_BUF_RD:
1674 QPRINTK(qdev, RX_ERR, ERR,
1675 "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
1677 ql_queue_asic_error(qdev);
1681 QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
1683 ql_queue_asic_error(qdev);
1688 static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
1690 struct ql_adapter *qdev = rx_ring->qdev;
1691 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1692 struct ob_mac_iocb_rsp *net_rsp = NULL;
1695 struct tx_ring *tx_ring;
1696 /* While there are entries in the completion queue. */
1697 while (prod != rx_ring->cnsmr_idx) {
1699 QPRINTK(qdev, RX_STATUS, DEBUG,
1700 "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1701 prod, rx_ring->cnsmr_idx);
1703 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
1705 switch (net_rsp->opcode) {
1707 case OPCODE_OB_MAC_TSO_IOCB:
1708 case OPCODE_OB_MAC_IOCB:
1709 ql_process_mac_tx_intr(qdev, net_rsp);
1712 QPRINTK(qdev, RX_STATUS, DEBUG,
1713 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1717 ql_update_cq(rx_ring);
1718 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1720 ql_write_cq_idx(rx_ring);
1721 tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
1722 if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id) &&
1724 if (atomic_read(&tx_ring->queue_stopped) &&
1725 (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
1727 * The queue got stopped because the tx_ring was full.
1728 * Wake it up, because it's now at least 25% empty.
1730 netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
1736 static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
1738 struct ql_adapter *qdev = rx_ring->qdev;
1739 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1740 struct ql_net_rsp_iocb *net_rsp;
1743 /* While there are entries in the completion queue. */
1744 while (prod != rx_ring->cnsmr_idx) {
1746 QPRINTK(qdev, RX_STATUS, DEBUG,
1747 "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1748 prod, rx_ring->cnsmr_idx);
1750 net_rsp = rx_ring->curr_entry;
1752 switch (net_rsp->opcode) {
1753 case OPCODE_IB_MAC_IOCB:
1754 ql_process_mac_rx_intr(qdev, rx_ring,
1755 (struct ib_mac_iocb_rsp *)
1759 case OPCODE_IB_AE_IOCB:
1760 ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
1765 QPRINTK(qdev, RX_STATUS, DEBUG,
1766 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1771 ql_update_cq(rx_ring);
1772 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1773 if (count == budget)
1776 ql_update_buffer_queues(qdev, rx_ring);
1777 ql_write_cq_idx(rx_ring);
1781 static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
1783 struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
1784 struct ql_adapter *qdev = rx_ring->qdev;
1785 int work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
1787 QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
1790 if (work_done < budget) {
1791 napi_complete(napi);
1792 ql_enable_completion_interrupt(qdev, rx_ring->irq);
1797 static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
1799 struct ql_adapter *qdev = netdev_priv(ndev);
1803 QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
1804 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
1805 NIC_RCV_CFG_VLAN_MATCH_AND_NON);
1807 QPRINTK(qdev, IFUP, DEBUG,
1808 "Turning off VLAN in NIC_RCV_CFG.\n");
1809 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
1813 static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
1815 struct ql_adapter *qdev = netdev_priv(ndev);
1816 u32 enable_bit = MAC_ADDR_E;
1819 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
1822 spin_lock(&qdev->hw_lock);
1823 if (ql_set_mac_addr_reg
1824 (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1825 QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
1827 spin_unlock(&qdev->hw_lock);
1828 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
1831 static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
1833 struct ql_adapter *qdev = netdev_priv(ndev);
1837 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
1841 spin_lock(&qdev->hw_lock);
1842 if (ql_set_mac_addr_reg
1843 (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1844 QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
1846 spin_unlock(&qdev->hw_lock);
1847 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
1851 /* Worker thread to process a given rx_ring that is dedicated
1852 * to outbound completions.
1854 static void ql_tx_clean(struct work_struct *work)
1856 struct rx_ring *rx_ring =
1857 container_of(work, struct rx_ring, rx_work.work);
1858 ql_clean_outbound_rx_ring(rx_ring);
1859 ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1863 /* Worker thread to process a given rx_ring that is dedicated
1864 * to inbound completions.
1866 static void ql_rx_clean(struct work_struct *work)
1868 struct rx_ring *rx_ring =
1869 container_of(work, struct rx_ring, rx_work.work);
1870 ql_clean_inbound_rx_ring(rx_ring, 64);
1871 ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1874 /* MSI-X Multiple Vector Interrupt Handler for outbound completions. */
1875 static irqreturn_t qlge_msix_tx_isr(int irq, void *dev_id)
1877 struct rx_ring *rx_ring = dev_id;
1878 queue_delayed_work_on(rx_ring->cpu, rx_ring->qdev->q_workqueue,
1879 &rx_ring->rx_work, 0);
1883 /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
1884 static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
1886 struct rx_ring *rx_ring = dev_id;
1887 napi_schedule(&rx_ring->napi);
1891 /* This handles a fatal error, MPI activity, and the default
1892 * rx_ring in an MSI-X multiple vector environment.
1893 * In MSI/Legacy environment it also process the rest of
1896 static irqreturn_t qlge_isr(int irq, void *dev_id)
1898 struct rx_ring *rx_ring = dev_id;
1899 struct ql_adapter *qdev = rx_ring->qdev;
1900 struct intr_context *intr_context = &qdev->intr_context[0];
1905 spin_lock(&qdev->hw_lock);
1906 if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
1907 QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
1908 spin_unlock(&qdev->hw_lock);
1911 spin_unlock(&qdev->hw_lock);
1913 var = ql_disable_completion_interrupt(qdev, intr_context->intr);
1916 * Check for fatal error.
1919 ql_queue_asic_error(qdev);
1920 QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
1921 var = ql_read32(qdev, ERR_STS);
1922 QPRINTK(qdev, INTR, ERR,
1923 "Resetting chip. Error Status Register = 0x%x\n", var);
1928 * Check MPI processor activity.
1932 * We've got an async event or mailbox completion.
1933 * Handle it and clear the source of the interrupt.
1935 QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
1936 ql_disable_completion_interrupt(qdev, intr_context->intr);
1937 queue_delayed_work_on(smp_processor_id(), qdev->workqueue,
1938 &qdev->mpi_work, 0);
1943 * Check the default queue and wake handler if active.
1945 rx_ring = &qdev->rx_ring[0];
1946 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) {
1947 QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[0].\n");
1948 ql_disable_completion_interrupt(qdev, intr_context->intr);
1949 queue_delayed_work_on(smp_processor_id(), qdev->q_workqueue,
1950 &rx_ring->rx_work, 0);
1954 if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
1956 * Start the DPC for each active queue.
1958 for (i = 1; i < qdev->rx_ring_count; i++) {
1959 rx_ring = &qdev->rx_ring[i];
1960 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
1961 rx_ring->cnsmr_idx) {
1962 QPRINTK(qdev, INTR, INFO,
1963 "Waking handler for rx_ring[%d].\n", i);
1964 ql_disable_completion_interrupt(qdev,
1967 if (i < qdev->rss_ring_first_cq_id)
1968 queue_delayed_work_on(rx_ring->cpu,
1973 napi_schedule(&rx_ring->napi);
1978 ql_enable_completion_interrupt(qdev, intr_context->intr);
1979 return work_done ? IRQ_HANDLED : IRQ_NONE;
1982 static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
1985 if (skb_is_gso(skb)) {
1987 if (skb_header_cloned(skb)) {
1988 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1993 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
1994 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
1995 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
1996 mac_iocb_ptr->total_hdrs_len =
1997 cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
1998 mac_iocb_ptr->net_trans_offset =
1999 cpu_to_le16(skb_network_offset(skb) |
2000 skb_transport_offset(skb)
2001 << OB_MAC_TRANSPORT_HDR_SHIFT);
2002 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
2003 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
2004 if (likely(skb->protocol == htons(ETH_P_IP))) {
2005 struct iphdr *iph = ip_hdr(skb);
2007 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2008 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2012 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2013 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2014 tcp_hdr(skb)->check =
2015 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2016 &ipv6_hdr(skb)->daddr,
2024 static void ql_hw_csum_setup(struct sk_buff *skb,
2025 struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2028 struct iphdr *iph = ip_hdr(skb);
2030 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2031 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2032 mac_iocb_ptr->net_trans_offset =
2033 cpu_to_le16(skb_network_offset(skb) |
2034 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2036 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2037 len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2038 if (likely(iph->protocol == IPPROTO_TCP)) {
2039 check = &(tcp_hdr(skb)->check);
2040 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2041 mac_iocb_ptr->total_hdrs_len =
2042 cpu_to_le16(skb_transport_offset(skb) +
2043 (tcp_hdr(skb)->doff << 2));
2045 check = &(udp_hdr(skb)->check);
2046 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2047 mac_iocb_ptr->total_hdrs_len =
2048 cpu_to_le16(skb_transport_offset(skb) +
2049 sizeof(struct udphdr));
2051 *check = ~csum_tcpudp_magic(iph->saddr,
2052 iph->daddr, len, iph->protocol, 0);
2055 static int qlge_send(struct sk_buff *skb, struct net_device *ndev)
2057 struct tx_ring_desc *tx_ring_desc;
2058 struct ob_mac_iocb_req *mac_iocb_ptr;
2059 struct ql_adapter *qdev = netdev_priv(ndev);
2061 struct tx_ring *tx_ring;
2062 u32 tx_ring_idx = (u32) skb->queue_mapping;
2064 tx_ring = &qdev->tx_ring[tx_ring_idx];
2066 if (skb_padto(skb, ETH_ZLEN))
2067 return NETDEV_TX_OK;
2069 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2070 QPRINTK(qdev, TX_QUEUED, INFO,
2071 "%s: shutting down tx queue %d du to lack of resources.\n",
2072 __func__, tx_ring_idx);
2073 netif_stop_subqueue(ndev, tx_ring->wq_id);
2074 atomic_inc(&tx_ring->queue_stopped);
2075 return NETDEV_TX_BUSY;
2077 tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2078 mac_iocb_ptr = tx_ring_desc->queue_entry;
2079 memset((void *)mac_iocb_ptr, 0, sizeof(mac_iocb_ptr));
2081 mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2082 mac_iocb_ptr->tid = tx_ring_desc->index;
2083 /* We use the upper 32-bits to store the tx queue for this IO.
2084 * When we get the completion we can use it to establish the context.
2086 mac_iocb_ptr->txq_idx = tx_ring_idx;
2087 tx_ring_desc->skb = skb;
2089 mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2091 if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
2092 QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
2093 vlan_tx_tag_get(skb));
2094 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
2095 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
2097 tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2099 dev_kfree_skb_any(skb);
2100 return NETDEV_TX_OK;
2101 } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2102 ql_hw_csum_setup(skb,
2103 (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2105 if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2107 QPRINTK(qdev, TX_QUEUED, ERR,
2108 "Could not map the segments.\n");
2109 return NETDEV_TX_BUSY;
2111 QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2112 tx_ring->prod_idx++;
2113 if (tx_ring->prod_idx == tx_ring->wq_len)
2114 tx_ring->prod_idx = 0;
2117 ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
2118 QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
2119 tx_ring->prod_idx, skb->len);
2121 atomic_dec(&tx_ring->tx_count);
2122 return NETDEV_TX_OK;
2125 static void ql_free_shadow_space(struct ql_adapter *qdev)
2127 if (qdev->rx_ring_shadow_reg_area) {
2128 pci_free_consistent(qdev->pdev,
2130 qdev->rx_ring_shadow_reg_area,
2131 qdev->rx_ring_shadow_reg_dma);
2132 qdev->rx_ring_shadow_reg_area = NULL;
2134 if (qdev->tx_ring_shadow_reg_area) {
2135 pci_free_consistent(qdev->pdev,
2137 qdev->tx_ring_shadow_reg_area,
2138 qdev->tx_ring_shadow_reg_dma);
2139 qdev->tx_ring_shadow_reg_area = NULL;
2143 static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2145 qdev->rx_ring_shadow_reg_area =
2146 pci_alloc_consistent(qdev->pdev,
2147 PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
2148 if (qdev->rx_ring_shadow_reg_area == NULL) {
2149 QPRINTK(qdev, IFUP, ERR,
2150 "Allocation of RX shadow space failed.\n");
2153 memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
2154 qdev->tx_ring_shadow_reg_area =
2155 pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
2156 &qdev->tx_ring_shadow_reg_dma);
2157 if (qdev->tx_ring_shadow_reg_area == NULL) {
2158 QPRINTK(qdev, IFUP, ERR,
2159 "Allocation of TX shadow space failed.\n");
2160 goto err_wqp_sh_area;
2162 memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
2166 pci_free_consistent(qdev->pdev,
2168 qdev->rx_ring_shadow_reg_area,
2169 qdev->rx_ring_shadow_reg_dma);
2173 static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2175 struct tx_ring_desc *tx_ring_desc;
2177 struct ob_mac_iocb_req *mac_iocb_ptr;
2179 mac_iocb_ptr = tx_ring->wq_base;
2180 tx_ring_desc = tx_ring->q;
2181 for (i = 0; i < tx_ring->wq_len; i++) {
2182 tx_ring_desc->index = i;
2183 tx_ring_desc->skb = NULL;
2184 tx_ring_desc->queue_entry = mac_iocb_ptr;
2188 atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2189 atomic_set(&tx_ring->queue_stopped, 0);
2192 static void ql_free_tx_resources(struct ql_adapter *qdev,
2193 struct tx_ring *tx_ring)
2195 if (tx_ring->wq_base) {
2196 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2197 tx_ring->wq_base, tx_ring->wq_base_dma);
2198 tx_ring->wq_base = NULL;
2204 static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2205 struct tx_ring *tx_ring)
2208 pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2209 &tx_ring->wq_base_dma);
2211 if ((tx_ring->wq_base == NULL)
2212 || tx_ring->wq_base_dma & (tx_ring->wq_size - 1)) {
2213 QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
2217 kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2218 if (tx_ring->q == NULL)
2223 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2224 tx_ring->wq_base, tx_ring->wq_base_dma);
2228 static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2231 struct bq_desc *lbq_desc;
2233 for (i = 0; i < rx_ring->lbq_len; i++) {
2234 lbq_desc = &rx_ring->lbq[i];
2235 if (lbq_desc->p.lbq_page) {
2236 pci_unmap_page(qdev->pdev,
2237 pci_unmap_addr(lbq_desc, mapaddr),
2238 pci_unmap_len(lbq_desc, maplen),
2239 PCI_DMA_FROMDEVICE);
2241 put_page(lbq_desc->p.lbq_page);
2242 lbq_desc->p.lbq_page = NULL;
2247 static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2250 struct bq_desc *sbq_desc;
2252 for (i = 0; i < rx_ring->sbq_len; i++) {
2253 sbq_desc = &rx_ring->sbq[i];
2254 if (sbq_desc == NULL) {
2255 QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
2258 if (sbq_desc->p.skb) {
2259 pci_unmap_single(qdev->pdev,
2260 pci_unmap_addr(sbq_desc, mapaddr),
2261 pci_unmap_len(sbq_desc, maplen),
2262 PCI_DMA_FROMDEVICE);
2263 dev_kfree_skb(sbq_desc->p.skb);
2264 sbq_desc->p.skb = NULL;
2269 /* Free all large and small rx buffers associated
2270 * with the completion queues for this device.
2272 static void ql_free_rx_buffers(struct ql_adapter *qdev)
2275 struct rx_ring *rx_ring;
2277 for (i = 0; i < qdev->rx_ring_count; i++) {
2278 rx_ring = &qdev->rx_ring[i];
2280 ql_free_lbq_buffers(qdev, rx_ring);
2282 ql_free_sbq_buffers(qdev, rx_ring);
2286 static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2288 struct rx_ring *rx_ring;
2291 for (i = 0; i < qdev->rx_ring_count; i++) {
2292 rx_ring = &qdev->rx_ring[i];
2293 if (rx_ring->type != TX_Q)
2294 ql_update_buffer_queues(qdev, rx_ring);
2298 static void ql_init_lbq_ring(struct ql_adapter *qdev,
2299 struct rx_ring *rx_ring)
2302 struct bq_desc *lbq_desc;
2303 __le64 *bq = rx_ring->lbq_base;
2305 memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2306 for (i = 0; i < rx_ring->lbq_len; i++) {
2307 lbq_desc = &rx_ring->lbq[i];
2308 memset(lbq_desc, 0, sizeof(*lbq_desc));
2309 lbq_desc->index = i;
2310 lbq_desc->addr = bq;
2315 static void ql_init_sbq_ring(struct ql_adapter *qdev,
2316 struct rx_ring *rx_ring)
2319 struct bq_desc *sbq_desc;
2320 __le64 *bq = rx_ring->sbq_base;
2322 memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
2323 for (i = 0; i < rx_ring->sbq_len; i++) {
2324 sbq_desc = &rx_ring->sbq[i];
2325 memset(sbq_desc, 0, sizeof(*sbq_desc));
2326 sbq_desc->index = i;
2327 sbq_desc->addr = bq;
2332 static void ql_free_rx_resources(struct ql_adapter *qdev,
2333 struct rx_ring *rx_ring)
2335 /* Free the small buffer queue. */
2336 if (rx_ring->sbq_base) {
2337 pci_free_consistent(qdev->pdev,
2339 rx_ring->sbq_base, rx_ring->sbq_base_dma);
2340 rx_ring->sbq_base = NULL;
2343 /* Free the small buffer queue control blocks. */
2344 kfree(rx_ring->sbq);
2345 rx_ring->sbq = NULL;
2347 /* Free the large buffer queue. */
2348 if (rx_ring->lbq_base) {
2349 pci_free_consistent(qdev->pdev,
2351 rx_ring->lbq_base, rx_ring->lbq_base_dma);
2352 rx_ring->lbq_base = NULL;
2355 /* Free the large buffer queue control blocks. */
2356 kfree(rx_ring->lbq);
2357 rx_ring->lbq = NULL;
2359 /* Free the rx queue. */
2360 if (rx_ring->cq_base) {
2361 pci_free_consistent(qdev->pdev,
2363 rx_ring->cq_base, rx_ring->cq_base_dma);
2364 rx_ring->cq_base = NULL;
2368 /* Allocate queues and buffers for this completions queue based
2369 * on the values in the parameter structure. */
2370 static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2371 struct rx_ring *rx_ring)
2375 * Allocate the completion queue for this rx_ring.
2378 pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2379 &rx_ring->cq_base_dma);
2381 if (rx_ring->cq_base == NULL) {
2382 QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
2386 if (rx_ring->sbq_len) {
2388 * Allocate small buffer queue.
2391 pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2392 &rx_ring->sbq_base_dma);
2394 if (rx_ring->sbq_base == NULL) {
2395 QPRINTK(qdev, IFUP, ERR,
2396 "Small buffer queue allocation failed.\n");
2401 * Allocate small buffer queue control blocks.
2404 kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
2406 if (rx_ring->sbq == NULL) {
2407 QPRINTK(qdev, IFUP, ERR,
2408 "Small buffer queue control block allocation failed.\n");
2412 ql_init_sbq_ring(qdev, rx_ring);
2415 if (rx_ring->lbq_len) {
2417 * Allocate large buffer queue.
2420 pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
2421 &rx_ring->lbq_base_dma);
2423 if (rx_ring->lbq_base == NULL) {
2424 QPRINTK(qdev, IFUP, ERR,
2425 "Large buffer queue allocation failed.\n");
2429 * Allocate large buffer queue control blocks.
2432 kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
2434 if (rx_ring->lbq == NULL) {
2435 QPRINTK(qdev, IFUP, ERR,
2436 "Large buffer queue control block allocation failed.\n");
2440 ql_init_lbq_ring(qdev, rx_ring);
2446 ql_free_rx_resources(qdev, rx_ring);
2450 static void ql_tx_ring_clean(struct ql_adapter *qdev)
2452 struct tx_ring *tx_ring;
2453 struct tx_ring_desc *tx_ring_desc;
2457 * Loop through all queues and free
2460 for (j = 0; j < qdev->tx_ring_count; j++) {
2461 tx_ring = &qdev->tx_ring[j];
2462 for (i = 0; i < tx_ring->wq_len; i++) {
2463 tx_ring_desc = &tx_ring->q[i];
2464 if (tx_ring_desc && tx_ring_desc->skb) {
2465 QPRINTK(qdev, IFDOWN, ERR,
2466 "Freeing lost SKB %p, from queue %d, index %d.\n",
2467 tx_ring_desc->skb, j,
2468 tx_ring_desc->index);
2469 ql_unmap_send(qdev, tx_ring_desc,
2470 tx_ring_desc->map_cnt);
2471 dev_kfree_skb(tx_ring_desc->skb);
2472 tx_ring_desc->skb = NULL;
2478 static void ql_free_mem_resources(struct ql_adapter *qdev)
2482 for (i = 0; i < qdev->tx_ring_count; i++)
2483 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
2484 for (i = 0; i < qdev->rx_ring_count; i++)
2485 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
2486 ql_free_shadow_space(qdev);
2489 static int ql_alloc_mem_resources(struct ql_adapter *qdev)
2493 /* Allocate space for our shadow registers and such. */
2494 if (ql_alloc_shadow_space(qdev))
2497 for (i = 0; i < qdev->rx_ring_count; i++) {
2498 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
2499 QPRINTK(qdev, IFUP, ERR,
2500 "RX resource allocation failed.\n");
2504 /* Allocate tx queue resources */
2505 for (i = 0; i < qdev->tx_ring_count; i++) {
2506 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
2507 QPRINTK(qdev, IFUP, ERR,
2508 "TX resource allocation failed.\n");
2515 ql_free_mem_resources(qdev);
2519 /* Set up the rx ring control block and pass it to the chip.
2520 * The control block is defined as
2521 * "Completion Queue Initialization Control Block", or cqicb.
2523 static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2525 struct cqicb *cqicb = &rx_ring->cqicb;
2526 void *shadow_reg = qdev->rx_ring_shadow_reg_area +
2527 (rx_ring->cq_id * sizeof(u64) * 4);
2528 u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
2529 (rx_ring->cq_id * sizeof(u64) * 4);
2530 void __iomem *doorbell_area =
2531 qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
2536 /* Set up the shadow registers for this ring. */
2537 rx_ring->prod_idx_sh_reg = shadow_reg;
2538 rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
2539 shadow_reg += sizeof(u64);
2540 shadow_reg_dma += sizeof(u64);
2541 rx_ring->lbq_base_indirect = shadow_reg;
2542 rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
2543 shadow_reg += sizeof(u64);
2544 shadow_reg_dma += sizeof(u64);
2545 rx_ring->sbq_base_indirect = shadow_reg;
2546 rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
2548 /* PCI doorbell mem area + 0x00 for consumer index register */
2549 rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
2550 rx_ring->cnsmr_idx = 0;
2551 rx_ring->curr_entry = rx_ring->cq_base;
2553 /* PCI doorbell mem area + 0x04 for valid register */
2554 rx_ring->valid_db_reg = doorbell_area + 0x04;
2556 /* PCI doorbell mem area + 0x18 for large buffer consumer */
2557 rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
2559 /* PCI doorbell mem area + 0x1c */
2560 rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
2562 memset((void *)cqicb, 0, sizeof(struct cqicb));
2563 cqicb->msix_vect = rx_ring->irq;
2565 bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
2566 cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
2568 cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
2570 cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
2573 * Set up the control block load flags.
2575 cqicb->flags = FLAGS_LC | /* Load queue base address */
2576 FLAGS_LV | /* Load MSI-X vector */
2577 FLAGS_LI; /* Load irq delay values */
2578 if (rx_ring->lbq_len) {
2579 cqicb->flags |= FLAGS_LL; /* Load lbq values */
2580 tmp = (u64)rx_ring->lbq_base_dma;;
2581 *((__le64 *) rx_ring->lbq_base_indirect) = cpu_to_le64(tmp);
2583 cpu_to_le64(rx_ring->lbq_base_indirect_dma);
2584 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
2585 (u16) rx_ring->lbq_buf_size;
2586 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
2587 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
2588 (u16) rx_ring->lbq_len;
2589 cqicb->lbq_len = cpu_to_le16(bq_len);
2590 rx_ring->lbq_prod_idx = 0;
2591 rx_ring->lbq_curr_idx = 0;
2592 rx_ring->lbq_clean_idx = 0;
2593 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
2595 if (rx_ring->sbq_len) {
2596 cqicb->flags |= FLAGS_LS; /* Load sbq values */
2597 tmp = (u64)rx_ring->sbq_base_dma;;
2598 *((__le64 *) rx_ring->sbq_base_indirect) = cpu_to_le64(tmp);
2600 cpu_to_le64(rx_ring->sbq_base_indirect_dma);
2601 cqicb->sbq_buf_size =
2602 cpu_to_le16((u16)(rx_ring->sbq_buf_size/2));
2603 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
2604 (u16) rx_ring->sbq_len;
2605 cqicb->sbq_len = cpu_to_le16(bq_len);
2606 rx_ring->sbq_prod_idx = 0;
2607 rx_ring->sbq_curr_idx = 0;
2608 rx_ring->sbq_clean_idx = 0;
2609 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
2611 switch (rx_ring->type) {
2613 /* If there's only one interrupt, then we use
2614 * worker threads to process the outbound
2615 * completion handling rx_rings. We do this so
2616 * they can be run on multiple CPUs. There is
2617 * room to play with this more where we would only
2618 * run in a worker if there are more than x number
2619 * of outbound completions on the queue and more
2620 * than one queue active. Some threshold that
2621 * would indicate a benefit in spite of the cost
2622 * of a context switch.
2623 * If there's more than one interrupt, then the
2624 * outbound completions are processed in the ISR.
2626 if (!test_bit(QL_MSIX_ENABLED, &qdev->flags))
2627 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2629 /* With all debug warnings on we see a WARN_ON message
2630 * when we free the skb in the interrupt context.
2632 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2634 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
2635 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
2638 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_rx_clean);
2639 cqicb->irq_delay = 0;
2640 cqicb->pkt_delay = 0;
2643 /* Inbound completion handling rx_rings run in
2644 * separate NAPI contexts.
2646 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
2648 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
2649 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
2652 QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
2655 QPRINTK(qdev, IFUP, DEBUG, "Initializing rx work queue.\n");
2656 err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
2657 CFG_LCQ, rx_ring->cq_id);
2659 QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
2665 static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2667 struct wqicb *wqicb = (struct wqicb *)tx_ring;
2668 void __iomem *doorbell_area =
2669 qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
2670 void *shadow_reg = qdev->tx_ring_shadow_reg_area +
2671 (tx_ring->wq_id * sizeof(u64));
2672 u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
2673 (tx_ring->wq_id * sizeof(u64));
2677 * Assign doorbell registers for this tx_ring.
2679 /* TX PCI doorbell mem area for tx producer index */
2680 tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
2681 tx_ring->prod_idx = 0;
2682 /* TX PCI doorbell mem area + 0x04 */
2683 tx_ring->valid_db_reg = doorbell_area + 0x04;
2686 * Assign shadow registers for this tx_ring.
2688 tx_ring->cnsmr_idx_sh_reg = shadow_reg;
2689 tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
2691 wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
2692 wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
2693 Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
2694 wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
2696 wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
2698 wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
2700 ql_init_tx_ring(qdev, tx_ring);
2702 err = ql_write_cfg(qdev, wqicb, sizeof(wqicb), CFG_LRQ,
2703 (u16) tx_ring->wq_id);
2705 QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
2708 QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded WQICB.\n");
2712 static void ql_disable_msix(struct ql_adapter *qdev)
2714 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2715 pci_disable_msix(qdev->pdev);
2716 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
2717 kfree(qdev->msi_x_entry);
2718 qdev->msi_x_entry = NULL;
2719 } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
2720 pci_disable_msi(qdev->pdev);
2721 clear_bit(QL_MSI_ENABLED, &qdev->flags);
2725 static void ql_enable_msix(struct ql_adapter *qdev)
2729 qdev->intr_count = 1;
2730 /* Get the MSIX vectors. */
2731 if (irq_type == MSIX_IRQ) {
2732 /* Try to alloc space for the msix struct,
2733 * if it fails then go to MSI/legacy.
2735 qdev->msi_x_entry = kcalloc(qdev->rx_ring_count,
2736 sizeof(struct msix_entry),
2738 if (!qdev->msi_x_entry) {
2743 for (i = 0; i < qdev->rx_ring_count; i++)
2744 qdev->msi_x_entry[i].entry = i;
2746 if (!pci_enable_msix
2747 (qdev->pdev, qdev->msi_x_entry, qdev->rx_ring_count)) {
2748 set_bit(QL_MSIX_ENABLED, &qdev->flags);
2749 qdev->intr_count = qdev->rx_ring_count;
2750 QPRINTK(qdev, IFUP, DEBUG,
2751 "MSI-X Enabled, got %d vectors.\n",
2755 kfree(qdev->msi_x_entry);
2756 qdev->msi_x_entry = NULL;
2757 QPRINTK(qdev, IFUP, WARNING,
2758 "MSI-X Enable failed, trying MSI.\n");
2763 if (irq_type == MSI_IRQ) {
2764 if (!pci_enable_msi(qdev->pdev)) {
2765 set_bit(QL_MSI_ENABLED, &qdev->flags);
2766 QPRINTK(qdev, IFUP, INFO,
2767 "Running with MSI interrupts.\n");
2772 QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
2776 * Here we build the intr_context structures based on
2777 * our rx_ring count and intr vector count.
2778 * The intr_context structure is used to hook each vector
2779 * to possibly different handlers.
2781 static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
2784 struct intr_context *intr_context = &qdev->intr_context[0];
2786 ql_enable_msix(qdev);
2788 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
2789 /* Each rx_ring has it's
2790 * own intr_context since we have separate
2791 * vectors for each queue.
2792 * This only true when MSI-X is enabled.
2794 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2795 qdev->rx_ring[i].irq = i;
2796 intr_context->intr = i;
2797 intr_context->qdev = qdev;
2799 * We set up each vectors enable/disable/read bits so
2800 * there's no bit/mask calculations in the critical path.
2802 intr_context->intr_en_mask =
2803 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2804 INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
2806 intr_context->intr_dis_mask =
2807 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2808 INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
2810 intr_context->intr_read_mask =
2811 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2812 INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
2817 * Default queue handles bcast/mcast plus
2818 * async events. Needs buffers.
2820 intr_context->handler = qlge_isr;
2821 sprintf(intr_context->name, "%s-default-queue",
2823 } else if (i < qdev->rss_ring_first_cq_id) {
2825 * Outbound queue is for outbound completions only.
2827 intr_context->handler = qlge_msix_tx_isr;
2828 sprintf(intr_context->name, "%s-tx-%d",
2829 qdev->ndev->name, i);
2832 * Inbound queues handle unicast frames only.
2834 intr_context->handler = qlge_msix_rx_isr;
2835 sprintf(intr_context->name, "%s-rx-%d",
2836 qdev->ndev->name, i);
2841 * All rx_rings use the same intr_context since
2842 * there is only one vector.
2844 intr_context->intr = 0;
2845 intr_context->qdev = qdev;
2847 * We set up each vectors enable/disable/read bits so
2848 * there's no bit/mask calculations in the critical path.
2850 intr_context->intr_en_mask =
2851 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
2852 intr_context->intr_dis_mask =
2853 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2854 INTR_EN_TYPE_DISABLE;
2855 intr_context->intr_read_mask =
2856 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
2858 * Single interrupt means one handler for all rings.
2860 intr_context->handler = qlge_isr;
2861 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
2862 for (i = 0; i < qdev->rx_ring_count; i++)
2863 qdev->rx_ring[i].irq = 0;
2867 static void ql_free_irq(struct ql_adapter *qdev)
2870 struct intr_context *intr_context = &qdev->intr_context[0];
2872 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2873 if (intr_context->hooked) {
2874 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2875 free_irq(qdev->msi_x_entry[i].vector,
2877 QPRINTK(qdev, IFDOWN, DEBUG,
2878 "freeing msix interrupt %d.\n", i);
2880 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
2881 QPRINTK(qdev, IFDOWN, DEBUG,
2882 "freeing msi interrupt %d.\n", i);
2886 ql_disable_msix(qdev);
2889 static int ql_request_irq(struct ql_adapter *qdev)
2893 struct pci_dev *pdev = qdev->pdev;
2894 struct intr_context *intr_context = &qdev->intr_context[0];
2896 ql_resolve_queues_to_irqs(qdev);
2898 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2899 atomic_set(&intr_context->irq_cnt, 0);
2900 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2901 status = request_irq(qdev->msi_x_entry[i].vector,
2902 intr_context->handler,
2907 QPRINTK(qdev, IFUP, ERR,
2908 "Failed request for MSIX interrupt %d.\n",
2912 QPRINTK(qdev, IFUP, DEBUG,
2913 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2915 qdev->rx_ring[i].type ==
2916 DEFAULT_Q ? "DEFAULT_Q" : "",
2917 qdev->rx_ring[i].type ==
2919 qdev->rx_ring[i].type ==
2920 RX_Q ? "RX_Q" : "", intr_context->name);
2923 QPRINTK(qdev, IFUP, DEBUG,
2924 "trying msi or legacy interrupts.\n");
2925 QPRINTK(qdev, IFUP, DEBUG,
2926 "%s: irq = %d.\n", __func__, pdev->irq);
2927 QPRINTK(qdev, IFUP, DEBUG,
2928 "%s: context->name = %s.\n", __func__,
2929 intr_context->name);
2930 QPRINTK(qdev, IFUP, DEBUG,
2931 "%s: dev_id = 0x%p.\n", __func__,
2934 request_irq(pdev->irq, qlge_isr,
2935 test_bit(QL_MSI_ENABLED,
2937 flags) ? 0 : IRQF_SHARED,
2938 intr_context->name, &qdev->rx_ring[0]);
2942 QPRINTK(qdev, IFUP, ERR,
2943 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2945 qdev->rx_ring[0].type ==
2946 DEFAULT_Q ? "DEFAULT_Q" : "",
2947 qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
2948 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
2949 intr_context->name);
2951 intr_context->hooked = 1;
2955 QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
2960 static int ql_start_rss(struct ql_adapter *qdev)
2962 struct ricb *ricb = &qdev->ricb;
2965 u8 *hash_id = (u8 *) ricb->hash_cq_id;
2967 memset((void *)ricb, 0, sizeof(ricb));
2969 ricb->base_cq = qdev->rss_ring_first_cq_id | RSS_L4K;
2971 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
2973 ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1);
2976 * Fill out the Indirection Table.
2978 for (i = 0; i < 256; i++)
2979 hash_id[i] = i & (qdev->rss_ring_count - 1);
2982 * Random values for the IPv6 and IPv4 Hash Keys.
2984 get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40);
2985 get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16);
2987 QPRINTK(qdev, IFUP, DEBUG, "Initializing RSS.\n");
2989 status = ql_write_cfg(qdev, ricb, sizeof(ricb), CFG_LR, 0);
2991 QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
2994 QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded RICB.\n");
2998 /* Initialize the frame-to-queue routing. */
2999 static int ql_route_initialize(struct ql_adapter *qdev)
3004 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3008 /* Clear all the entries in the routing table. */
3009 for (i = 0; i < 16; i++) {
3010 status = ql_set_routing_reg(qdev, i, 0, 0);
3012 QPRINTK(qdev, IFUP, ERR,
3013 "Failed to init routing register for CAM packets.\n");
3018 status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
3020 QPRINTK(qdev, IFUP, ERR,
3021 "Failed to init routing register for error packets.\n");
3024 status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
3026 QPRINTK(qdev, IFUP, ERR,
3027 "Failed to init routing register for broadcast packets.\n");
3030 /* If we have more than one inbound queue, then turn on RSS in the
3033 if (qdev->rss_ring_count > 1) {
3034 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
3035 RT_IDX_RSS_MATCH, 1);
3037 QPRINTK(qdev, IFUP, ERR,
3038 "Failed to init routing register for MATCH RSS packets.\n");
3043 status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
3046 QPRINTK(qdev, IFUP, ERR,
3047 "Failed to init routing register for CAM packets.\n");
3049 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3053 int ql_cam_route_initialize(struct ql_adapter *qdev)
3057 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
3060 status = ql_set_mac_addr_reg(qdev, (u8 *) qdev->ndev->perm_addr,
3061 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
3062 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
3064 QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
3068 status = ql_route_initialize(qdev);
3070 QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
3075 static int ql_adapter_initialize(struct ql_adapter *qdev)
3082 * Set up the System register to halt on errors.
3084 value = SYS_EFE | SYS_FAE;
3086 ql_write32(qdev, SYS, mask | value);
3088 /* Set the default queue, and VLAN behavior. */
3089 value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
3090 mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
3091 ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3093 /* Set the MPI interrupt to enabled. */
3094 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3096 /* Enable the function, set pagesize, enable error checking. */
3097 value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
3098 FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
3100 /* Set/clear header splitting. */
3101 mask = FSC_VM_PAGESIZE_MASK |
3102 FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3103 ql_write32(qdev, FSC, mask | value);
3105 ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
3106 min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
3108 /* Start up the rx queues. */
3109 for (i = 0; i < qdev->rx_ring_count; i++) {
3110 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3112 QPRINTK(qdev, IFUP, ERR,
3113 "Failed to start rx ring[%d].\n", i);
3118 /* If there is more than one inbound completion queue
3119 * then download a RICB to configure RSS.
3121 if (qdev->rss_ring_count > 1) {
3122 status = ql_start_rss(qdev);
3124 QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
3129 /* Start up the tx queues. */
3130 for (i = 0; i < qdev->tx_ring_count; i++) {
3131 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3133 QPRINTK(qdev, IFUP, ERR,
3134 "Failed to start tx ring[%d].\n", i);
3139 /* Initialize the port and set the max framesize. */
3140 status = qdev->nic_ops->port_initialize(qdev);
3142 QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
3146 /* Set up the MAC address and frame routing filter. */
3147 status = ql_cam_route_initialize(qdev);
3149 QPRINTK(qdev, IFUP, ERR,
3150 "Failed to init CAM/Routing tables.\n");
3154 /* Start NAPI for the RSS queues. */
3155 for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++) {
3156 QPRINTK(qdev, IFUP, DEBUG, "Enabling NAPI for rx_ring[%d].\n",
3158 napi_enable(&qdev->rx_ring[i].napi);
3164 /* Issue soft reset to chip. */
3165 static int ql_adapter_reset(struct ql_adapter *qdev)
3169 unsigned long end_jiffies = jiffies +
3170 max((unsigned long)1, usecs_to_jiffies(30));
3172 ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3175 value = ql_read32(qdev, RST_FO);
3176 if ((value & RST_FO_FR) == 0)
3179 } while (time_before(jiffies, end_jiffies));
3181 if (value & RST_FO_FR) {
3182 QPRINTK(qdev, IFDOWN, ERR,
3183 "ETIMEOUT!!! errored out of resetting the chip!\n");
3184 status = -ETIMEDOUT;
3190 static void ql_display_dev_info(struct net_device *ndev)
3192 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3194 QPRINTK(qdev, PROBE, INFO,
3195 "Function #%d, NIC Roll %d, NIC Rev = %d, "
3196 "XG Roll = %d, XG Rev = %d.\n",
3198 qdev->chip_rev_id & 0x0000000f,
3199 qdev->chip_rev_id >> 4 & 0x0000000f,
3200 qdev->chip_rev_id >> 8 & 0x0000000f,
3201 qdev->chip_rev_id >> 12 & 0x0000000f);
3202 QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
3205 static int ql_adapter_down(struct ql_adapter *qdev)
3208 struct rx_ring *rx_ring;
3210 netif_carrier_off(qdev->ndev);
3212 /* Don't kill the reset worker thread if we
3213 * are in the process of recovery.
3215 if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3216 cancel_delayed_work_sync(&qdev->asic_reset_work);
3217 cancel_delayed_work_sync(&qdev->mpi_reset_work);
3218 cancel_delayed_work_sync(&qdev->mpi_work);
3219 cancel_delayed_work_sync(&qdev->mpi_idc_work);
3220 cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
3222 /* The default queue at index 0 is always processed in
3225 cancel_delayed_work_sync(&qdev->rx_ring[0].rx_work);
3227 /* The rest of the rx_rings are processed in
3228 * a workqueue only if it's a single interrupt
3229 * environment (MSI/Legacy).
3231 for (i = 1; i < qdev->rx_ring_count; i++) {
3232 rx_ring = &qdev->rx_ring[i];
3233 /* Only the RSS rings use NAPI on multi irq
3234 * environment. Outbound completion processing
3235 * is done in interrupt context.
3237 if (i >= qdev->rss_ring_first_cq_id) {
3238 napi_disable(&rx_ring->napi);
3240 cancel_delayed_work_sync(&rx_ring->rx_work);
3244 clear_bit(QL_ADAPTER_UP, &qdev->flags);
3246 ql_disable_interrupts(qdev);
3248 ql_tx_ring_clean(qdev);
3250 /* Call netif_napi_del() from common point.
3252 for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++)
3253 netif_napi_del(&qdev->rx_ring[i].napi);
3255 ql_free_rx_buffers(qdev);
3257 spin_lock(&qdev->hw_lock);
3258 status = ql_adapter_reset(qdev);
3260 QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
3262 spin_unlock(&qdev->hw_lock);
3266 static int ql_adapter_up(struct ql_adapter *qdev)
3270 err = ql_adapter_initialize(qdev);
3272 QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
3273 spin_unlock(&qdev->hw_lock);
3276 set_bit(QL_ADAPTER_UP, &qdev->flags);
3277 ql_alloc_rx_buffers(qdev);
3278 if ((ql_read32(qdev, STS) & qdev->port_init))
3279 netif_carrier_on(qdev->ndev);
3280 ql_enable_interrupts(qdev);
3281 ql_enable_all_completion_interrupts(qdev);
3282 netif_tx_start_all_queues(qdev->ndev);
3286 ql_adapter_reset(qdev);
3290 static void ql_release_adapter_resources(struct ql_adapter *qdev)
3292 ql_free_mem_resources(qdev);
3296 static int ql_get_adapter_resources(struct ql_adapter *qdev)
3300 if (ql_alloc_mem_resources(qdev)) {
3301 QPRINTK(qdev, IFUP, ERR, "Unable to allocate memory.\n");
3304 status = ql_request_irq(qdev);
3309 ql_free_mem_resources(qdev);
3313 static int qlge_close(struct net_device *ndev)
3315 struct ql_adapter *qdev = netdev_priv(ndev);
3318 * Wait for device to recover from a reset.
3319 * (Rarely happens, but possible.)
3321 while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
3323 ql_adapter_down(qdev);
3324 ql_release_adapter_resources(qdev);
3328 static int ql_configure_rings(struct ql_adapter *qdev)
3331 struct rx_ring *rx_ring;
3332 struct tx_ring *tx_ring;
3333 int cpu_cnt = num_online_cpus();
3336 * For each processor present we allocate one
3337 * rx_ring for outbound completions, and one
3338 * rx_ring for inbound completions. Plus there is
3339 * always the one default queue. For the CPU
3340 * counts we end up with the following rx_rings:
3342 * one default queue +
3343 * (CPU count * outbound completion rx_ring) +
3344 * (CPU count * inbound (RSS) completion rx_ring)
3345 * To keep it simple we limit the total number of
3346 * queues to < 32, so we truncate CPU to 8.
3347 * This limitation can be removed when requested.
3350 if (cpu_cnt > MAX_CPUS)
3354 * rx_ring[0] is always the default queue.
3356 /* Allocate outbound completion ring for each CPU. */
3357 qdev->tx_ring_count = cpu_cnt;
3358 /* Allocate inbound completion (RSS) ring for each CPU. */
3359 qdev->rss_ring_count = cpu_cnt;
3360 /* cq_id for the first inbound ring handler. */
3361 qdev->rss_ring_first_cq_id = cpu_cnt + 1;
3363 * qdev->rx_ring_count:
3364 * Total number of rx_rings. This includes the one
3365 * default queue, a number of outbound completion
3366 * handler rx_rings, and the number of inbound
3367 * completion handler rx_rings.
3369 qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count + 1;
3370 netif_set_gso_max_size(qdev->ndev, 65536);
3372 for (i = 0; i < qdev->tx_ring_count; i++) {
3373 tx_ring = &qdev->tx_ring[i];
3374 memset((void *)tx_ring, 0, sizeof(tx_ring));
3375 tx_ring->qdev = qdev;
3377 tx_ring->wq_len = qdev->tx_ring_size;
3379 tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
3382 * The completion queue ID for the tx rings start
3383 * immediately after the default Q ID, which is zero.
3385 tx_ring->cq_id = i + 1;
3388 for (i = 0; i < qdev->rx_ring_count; i++) {
3389 rx_ring = &qdev->rx_ring[i];
3390 memset((void *)rx_ring, 0, sizeof(rx_ring));
3391 rx_ring->qdev = qdev;
3393 rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
3394 if (i == 0) { /* Default queue at index 0. */
3396 * Default queue handles bcast/mcast plus
3397 * async events. Needs buffers.
3399 rx_ring->cq_len = qdev->rx_ring_size;
3401 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3402 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3404 rx_ring->lbq_len * sizeof(__le64);
3405 rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3406 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3408 rx_ring->sbq_len * sizeof(__le64);
3409 rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3410 rx_ring->type = DEFAULT_Q;
3411 } else if (i < qdev->rss_ring_first_cq_id) {
3413 * Outbound queue handles outbound completions only.
3415 /* outbound cq is same size as tx_ring it services. */
3416 rx_ring->cq_len = qdev->tx_ring_size;
3418 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3419 rx_ring->lbq_len = 0;
3420 rx_ring->lbq_size = 0;
3421 rx_ring->lbq_buf_size = 0;
3422 rx_ring->sbq_len = 0;
3423 rx_ring->sbq_size = 0;
3424 rx_ring->sbq_buf_size = 0;
3425 rx_ring->type = TX_Q;
3426 } else { /* Inbound completions (RSS) queues */
3428 * Inbound queues handle unicast frames only.
3430 rx_ring->cq_len = qdev->rx_ring_size;
3432 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3433 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3435 rx_ring->lbq_len * sizeof(__le64);
3436 rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3437 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3439 rx_ring->sbq_len * sizeof(__le64);
3440 rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3441 rx_ring->type = RX_Q;
3447 static int qlge_open(struct net_device *ndev)
3450 struct ql_adapter *qdev = netdev_priv(ndev);
3452 err = ql_configure_rings(qdev);
3456 err = ql_get_adapter_resources(qdev);
3460 err = ql_adapter_up(qdev);
3467 ql_release_adapter_resources(qdev);
3471 static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
3473 struct ql_adapter *qdev = netdev_priv(ndev);
3475 if (ndev->mtu == 1500 && new_mtu == 9000) {
3476 QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
3477 queue_delayed_work(qdev->workqueue,
3478 &qdev->mpi_port_cfg_work, 0);
3479 } else if (ndev->mtu == 9000 && new_mtu == 1500) {
3480 QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
3481 } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
3482 (ndev->mtu == 9000 && new_mtu == 9000)) {
3486 ndev->mtu = new_mtu;
3490 static struct net_device_stats *qlge_get_stats(struct net_device
3493 struct ql_adapter *qdev = netdev_priv(ndev);
3494 return &qdev->stats;
3497 static void qlge_set_multicast_list(struct net_device *ndev)
3499 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3500 struct dev_mc_list *mc_ptr;
3503 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3506 spin_lock(&qdev->hw_lock);
3508 * Set or clear promiscuous mode if a
3509 * transition is taking place.
3511 if (ndev->flags & IFF_PROMISC) {
3512 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3513 if (ql_set_routing_reg
3514 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
3515 QPRINTK(qdev, HW, ERR,
3516 "Failed to set promiscous mode.\n");
3518 set_bit(QL_PROMISCUOUS, &qdev->flags);
3522 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3523 if (ql_set_routing_reg
3524 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
3525 QPRINTK(qdev, HW, ERR,
3526 "Failed to clear promiscous mode.\n");
3528 clear_bit(QL_PROMISCUOUS, &qdev->flags);
3534 * Set or clear all multicast mode if a
3535 * transition is taking place.
3537 if ((ndev->flags & IFF_ALLMULTI) ||
3538 (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
3539 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
3540 if (ql_set_routing_reg
3541 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
3542 QPRINTK(qdev, HW, ERR,
3543 "Failed to set all-multi mode.\n");
3545 set_bit(QL_ALLMULTI, &qdev->flags);
3549 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
3550 if (ql_set_routing_reg
3551 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
3552 QPRINTK(qdev, HW, ERR,
3553 "Failed to clear all-multi mode.\n");
3555 clear_bit(QL_ALLMULTI, &qdev->flags);
3560 if (ndev->mc_count) {
3561 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
3564 for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
3565 i++, mc_ptr = mc_ptr->next)
3566 if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
3567 MAC_ADDR_TYPE_MULTI_MAC, i)) {
3568 QPRINTK(qdev, HW, ERR,
3569 "Failed to loadmulticast address.\n");
3570 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
3573 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
3574 if (ql_set_routing_reg
3575 (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
3576 QPRINTK(qdev, HW, ERR,
3577 "Failed to set multicast match mode.\n");
3579 set_bit(QL_ALLMULTI, &qdev->flags);
3583 spin_unlock(&qdev->hw_lock);
3584 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3587 static int qlge_set_mac_address(struct net_device *ndev, void *p)
3589 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3590 struct sockaddr *addr = p;
3593 if (netif_running(ndev))
3596 if (!is_valid_ether_addr(addr->sa_data))
3597 return -EADDRNOTAVAIL;
3598 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3600 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
3603 spin_lock(&qdev->hw_lock);
3604 status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
3605 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
3606 spin_unlock(&qdev->hw_lock);
3608 QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
3609 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
3613 static void qlge_tx_timeout(struct net_device *ndev)
3615 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3616 ql_queue_asic_error(qdev);
3619 static void ql_asic_reset_work(struct work_struct *work)
3621 struct ql_adapter *qdev =
3622 container_of(work, struct ql_adapter, asic_reset_work.work);
3625 status = ql_adapter_down(qdev);
3629 status = ql_adapter_up(qdev);
3635 QPRINTK(qdev, IFUP, ALERT,
3636 "Driver up/down cycle failed, closing device\n");
3638 set_bit(QL_ADAPTER_UP, &qdev->flags);
3639 dev_close(qdev->ndev);
3643 static struct nic_operations qla8012_nic_ops = {
3644 .get_flash = ql_get_8012_flash_params,
3645 .port_initialize = ql_8012_port_initialize,
3648 static struct nic_operations qla8000_nic_ops = {
3649 .get_flash = ql_get_8000_flash_params,
3650 .port_initialize = ql_8000_port_initialize,
3654 static void ql_get_board_info(struct ql_adapter *qdev)
3657 (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
3659 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
3660 qdev->port_link_up = STS_PL1;
3661 qdev->port_init = STS_PI1;
3662 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
3663 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
3665 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
3666 qdev->port_link_up = STS_PL0;
3667 qdev->port_init = STS_PI0;
3668 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
3669 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
3671 qdev->chip_rev_id = ql_read32(qdev, REV_ID);
3672 qdev->device_id = qdev->pdev->device;
3673 if (qdev->device_id == QLGE_DEVICE_ID_8012)
3674 qdev->nic_ops = &qla8012_nic_ops;
3675 else if (qdev->device_id == QLGE_DEVICE_ID_8000)
3676 qdev->nic_ops = &qla8000_nic_ops;
3679 static void ql_release_all(struct pci_dev *pdev)
3681 struct net_device *ndev = pci_get_drvdata(pdev);
3682 struct ql_adapter *qdev = netdev_priv(ndev);
3684 if (qdev->workqueue) {
3685 destroy_workqueue(qdev->workqueue);
3686 qdev->workqueue = NULL;
3688 if (qdev->q_workqueue) {
3689 destroy_workqueue(qdev->q_workqueue);
3690 qdev->q_workqueue = NULL;
3693 iounmap(qdev->reg_base);
3694 if (qdev->doorbell_area)
3695 iounmap(qdev->doorbell_area);
3696 pci_release_regions(pdev);
3697 pci_set_drvdata(pdev, NULL);
3700 static int __devinit ql_init_device(struct pci_dev *pdev,
3701 struct net_device *ndev, int cards_found)
3703 struct ql_adapter *qdev = netdev_priv(ndev);
3707 memset((void *)qdev, 0, sizeof(qdev));
3708 err = pci_enable_device(pdev);
3710 dev_err(&pdev->dev, "PCI device enable failed.\n");
3714 pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
3716 dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
3720 pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
3721 val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
3722 val16 |= (PCI_EXP_DEVCTL_CERE |
3723 PCI_EXP_DEVCTL_NFERE |
3724 PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
3725 pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
3728 err = pci_request_regions(pdev, DRV_NAME);
3730 dev_err(&pdev->dev, "PCI region request failed.\n");
3734 pci_set_master(pdev);
3735 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3736 set_bit(QL_DMA64, &qdev->flags);
3737 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3739 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3741 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3745 dev_err(&pdev->dev, "No usable DMA configuration.\n");
3749 pci_set_drvdata(pdev, ndev);
3751 ioremap_nocache(pci_resource_start(pdev, 1),
3752 pci_resource_len(pdev, 1));
3753 if (!qdev->reg_base) {
3754 dev_err(&pdev->dev, "Register mapping failed.\n");
3759 qdev->doorbell_area_size = pci_resource_len(pdev, 3);
3760 qdev->doorbell_area =
3761 ioremap_nocache(pci_resource_start(pdev, 3),
3762 pci_resource_len(pdev, 3));
3763 if (!qdev->doorbell_area) {
3764 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
3771 ql_get_board_info(qdev);
3772 qdev->msg_enable = netif_msg_init(debug, default_msg);
3773 spin_lock_init(&qdev->hw_lock);
3774 spin_lock_init(&qdev->stats_lock);
3776 /* make sure the EEPROM is good */
3777 err = qdev->nic_ops->get_flash(qdev);
3779 dev_err(&pdev->dev, "Invalid FLASH.\n");
3783 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3785 /* Set up the default ring sizes. */
3786 qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
3787 qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
3789 /* Set up the coalescing parameters. */
3790 qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
3791 qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
3792 qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3793 qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3796 * Set up the operating parameters.
3800 qdev->q_workqueue = create_workqueue(ndev->name);
3801 qdev->workqueue = create_singlethread_workqueue(ndev->name);
3802 INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
3803 INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
3804 INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
3805 INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
3806 INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
3807 mutex_init(&qdev->mpi_mutex);
3808 init_completion(&qdev->ide_completion);
3811 dev_info(&pdev->dev, "%s\n", DRV_STRING);
3812 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
3813 DRV_NAME, DRV_VERSION);
3817 ql_release_all(pdev);
3818 pci_disable_device(pdev);
3823 static const struct net_device_ops qlge_netdev_ops = {
3824 .ndo_open = qlge_open,
3825 .ndo_stop = qlge_close,
3826 .ndo_start_xmit = qlge_send,
3827 .ndo_change_mtu = qlge_change_mtu,
3828 .ndo_get_stats = qlge_get_stats,
3829 .ndo_set_multicast_list = qlge_set_multicast_list,
3830 .ndo_set_mac_address = qlge_set_mac_address,
3831 .ndo_validate_addr = eth_validate_addr,
3832 .ndo_tx_timeout = qlge_tx_timeout,
3833 .ndo_vlan_rx_register = ql_vlan_rx_register,
3834 .ndo_vlan_rx_add_vid = ql_vlan_rx_add_vid,
3835 .ndo_vlan_rx_kill_vid = ql_vlan_rx_kill_vid,
3838 static int __devinit qlge_probe(struct pci_dev *pdev,
3839 const struct pci_device_id *pci_entry)
3841 struct net_device *ndev = NULL;
3842 struct ql_adapter *qdev = NULL;
3843 static int cards_found = 0;
3846 ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
3847 min(MAX_CPUS, (int)num_online_cpus()));
3851 err = ql_init_device(pdev, ndev, cards_found);
3857 qdev = netdev_priv(ndev);
3858 SET_NETDEV_DEV(ndev, &pdev->dev);
3865 | NETIF_F_HW_VLAN_TX
3866 | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
3867 ndev->features |= NETIF_F_GRO;
3869 if (test_bit(QL_DMA64, &qdev->flags))
3870 ndev->features |= NETIF_F_HIGHDMA;
3873 * Set up net_device structure.
3875 ndev->tx_queue_len = qdev->tx_ring_size;
3876 ndev->irq = pdev->irq;
3878 ndev->netdev_ops = &qlge_netdev_ops;
3879 SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
3880 ndev->watchdog_timeo = 10 * HZ;
3882 err = register_netdev(ndev);
3884 dev_err(&pdev->dev, "net device registration failed.\n");
3885 ql_release_all(pdev);
3886 pci_disable_device(pdev);
3889 netif_carrier_off(ndev);
3890 ql_display_dev_info(ndev);
3895 static void __devexit qlge_remove(struct pci_dev *pdev)
3897 struct net_device *ndev = pci_get_drvdata(pdev);
3898 unregister_netdev(ndev);
3899 ql_release_all(pdev);
3900 pci_disable_device(pdev);
3905 * This callback is called by the PCI subsystem whenever
3906 * a PCI bus error is detected.
3908 static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
3909 enum pci_channel_state state)
3911 struct net_device *ndev = pci_get_drvdata(pdev);
3912 struct ql_adapter *qdev = netdev_priv(ndev);
3914 if (netif_running(ndev))
3915 ql_adapter_down(qdev);
3917 pci_disable_device(pdev);
3919 /* Request a slot reset. */
3920 return PCI_ERS_RESULT_NEED_RESET;
3924 * This callback is called after the PCI buss has been reset.
3925 * Basically, this tries to restart the card from scratch.
3926 * This is a shortened version of the device probe/discovery code,
3927 * it resembles the first-half of the () routine.
3929 static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
3931 struct net_device *ndev = pci_get_drvdata(pdev);
3932 struct ql_adapter *qdev = netdev_priv(ndev);
3934 if (pci_enable_device(pdev)) {
3935 QPRINTK(qdev, IFUP, ERR,
3936 "Cannot re-enable PCI device after reset.\n");
3937 return PCI_ERS_RESULT_DISCONNECT;
3940 pci_set_master(pdev);
3942 netif_carrier_off(ndev);
3943 ql_adapter_reset(qdev);
3945 /* Make sure the EEPROM is good */
3946 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3948 if (!is_valid_ether_addr(ndev->perm_addr)) {
3949 QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
3950 return PCI_ERS_RESULT_DISCONNECT;
3953 return PCI_ERS_RESULT_RECOVERED;
3956 static void qlge_io_resume(struct pci_dev *pdev)
3958 struct net_device *ndev = pci_get_drvdata(pdev);
3959 struct ql_adapter *qdev = netdev_priv(ndev);
3961 pci_set_master(pdev);
3963 if (netif_running(ndev)) {
3964 if (ql_adapter_up(qdev)) {
3965 QPRINTK(qdev, IFUP, ERR,
3966 "Device initialization failed after reset.\n");
3971 netif_device_attach(ndev);
3974 static struct pci_error_handlers qlge_err_handler = {
3975 .error_detected = qlge_io_error_detected,
3976 .slot_reset = qlge_io_slot_reset,
3977 .resume = qlge_io_resume,
3980 static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
3982 struct net_device *ndev = pci_get_drvdata(pdev);
3983 struct ql_adapter *qdev = netdev_priv(ndev);
3986 netif_device_detach(ndev);
3988 if (netif_running(ndev)) {
3989 err = ql_adapter_down(qdev);
3994 err = pci_save_state(pdev);
3998 pci_disable_device(pdev);
4000 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4006 static int qlge_resume(struct pci_dev *pdev)
4008 struct net_device *ndev = pci_get_drvdata(pdev);
4009 struct ql_adapter *qdev = netdev_priv(ndev);
4012 pci_set_power_state(pdev, PCI_D0);
4013 pci_restore_state(pdev);
4014 err = pci_enable_device(pdev);
4016 QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
4019 pci_set_master(pdev);
4021 pci_enable_wake(pdev, PCI_D3hot, 0);
4022 pci_enable_wake(pdev, PCI_D3cold, 0);
4024 if (netif_running(ndev)) {
4025 err = ql_adapter_up(qdev);
4030 netif_device_attach(ndev);
4034 #endif /* CONFIG_PM */
4036 static void qlge_shutdown(struct pci_dev *pdev)
4038 qlge_suspend(pdev, PMSG_SUSPEND);
4041 static struct pci_driver qlge_driver = {
4043 .id_table = qlge_pci_tbl,
4044 .probe = qlge_probe,
4045 .remove = __devexit_p(qlge_remove),
4047 .suspend = qlge_suspend,
4048 .resume = qlge_resume,
4050 .shutdown = qlge_shutdown,
4051 .err_handler = &qlge_err_handler
4054 static int __init qlge_init_module(void)
4056 return pci_register_driver(&qlge_driver);
4059 static void __exit qlge_exit(void)
4061 pci_unregister_driver(&qlge_driver);
4064 module_init(qlge_init_module);
4065 module_exit(qlge_exit);