2 * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
4 * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
6 * Thanks to Essential Communication for providing us with hardware
7 * and very comprehensive documentation without which I would not have
8 * been able to write this driver. A special thank you to John Gibbon
9 * for sorting out the legal issues, with the NDA, allowing the code to
10 * be released under the GPL.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
18 * stupid bugs in my code.
20 * Softnet support and various other patches from Val Henson of
23 * PCI DMA mapping code partly based on work by Francois Romieu.
28 #define RX_DMA_SKBUFF 1
29 #define PKT_COPY_THRESHOLD 512
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/errno.h>
34 #include <linux/ioport.h>
35 #include <linux/pci.h>
36 #include <linux/kernel.h>
37 #include <linux/netdevice.h>
38 #include <linux/hippidevice.h>
39 #include <linux/skbuff.h>
40 #include <linux/init.h>
41 #include <linux/delay.h>
45 #include <asm/system.h>
46 #include <asm/cache.h>
47 #include <asm/byteorder.h>
50 #include <asm/uaccess.h>
52 #define rr_if_busy(dev) netif_queue_stopped(dev)
53 #define rr_if_running(dev) netif_running(dev)
57 #define RUN_AT(x) (jiffies + (x))
60 MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
61 MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
62 MODULE_LICENSE("GPL");
64 static char version[] __devinitdata = "rrunner.c: v0.50 11/11/2002 Jes Sorensen (jes@wildopensource.com)\n";
67 * Implementation notes:
69 * The DMA engine only allows for DMA within physical 64KB chunks of
70 * memory. The current approach of the driver (and stack) is to use
71 * linear blocks of memory for the skbuffs. However, as the data block
72 * is always the first part of the skb and skbs are 2^n aligned so we
73 * are guarantted to get the whole block within one 64KB align 64KB
76 * On the long term, relying on being able to allocate 64KB linear
77 * chunks of memory is not feasible and the skb handling code and the
78 * stack will need to know about I/O vectors or something similar.
81 static int __devinit rr_init_one(struct pci_dev *pdev,
82 const struct pci_device_id *ent)
84 struct net_device *dev;
85 static int version_disp;
87 struct rr_private *rrpriv;
92 dev = alloc_hippi_dev(sizeof(struct rr_private));
96 ret = pci_enable_device(pdev);
102 rrpriv = netdev_priv(dev);
104 SET_NETDEV_DEV(dev, &pdev->dev);
106 if (pci_request_regions(pdev, "rrunner")) {
111 pci_set_drvdata(pdev, dev);
113 rrpriv->pci_dev = pdev;
115 spin_lock_init(&rrpriv->lock);
117 dev->irq = pdev->irq;
118 dev->open = &rr_open;
119 dev->hard_start_xmit = &rr_start_xmit;
120 dev->stop = &rr_close;
121 dev->do_ioctl = &rr_ioctl;
123 dev->base_addr = pci_resource_start(pdev, 0);
125 /* display version info if adapter is found */
127 /* set display flag to TRUE so that */
128 /* we only display this string ONCE */
133 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
134 if (pci_latency <= 0x58){
136 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency);
139 pci_set_master(pdev);
141 printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI "
142 "at 0x%08lx, irq %i, PCI latency %i\n", dev->name,
143 dev->base_addr, dev->irq, pci_latency);
146 * Remap the regs into kernel space.
149 rrpriv->regs = ioremap(dev->base_addr, 0x1000);
152 printk(KERN_ERR "%s: Unable to map I/O register, "
153 "RoadRunner will be disabled.\n", dev->name);
158 tmpptr = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
159 rrpriv->tx_ring = tmpptr;
160 rrpriv->tx_ring_dma = ring_dma;
167 tmpptr = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
168 rrpriv->rx_ring = tmpptr;
169 rrpriv->rx_ring_dma = ring_dma;
176 tmpptr = pci_alloc_consistent(pdev, EVT_RING_SIZE, &ring_dma);
177 rrpriv->evt_ring = tmpptr;
178 rrpriv->evt_ring_dma = ring_dma;
186 * Don't access any register before this point!
189 writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP,
190 &rrpriv->regs->HostCtrl);
193 * Need to add a case for little-endian 64-bit hosts here.
200 ret = register_netdev(dev);
207 pci_free_consistent(pdev, RX_TOTAL_SIZE, rrpriv->rx_ring,
208 rrpriv->rx_ring_dma);
210 pci_free_consistent(pdev, TX_TOTAL_SIZE, rrpriv->tx_ring,
211 rrpriv->tx_ring_dma);
213 iounmap(rrpriv->regs);
215 pci_release_regions(pdev);
216 pci_set_drvdata(pdev, NULL);
224 static void __devexit rr_remove_one (struct pci_dev *pdev)
226 struct net_device *dev = pci_get_drvdata(pdev);
229 struct rr_private *rr = netdev_priv(dev);
231 if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)){
232 printk(KERN_ERR "%s: trying to unload running NIC\n",
234 writel(HALT_NIC, &rr->regs->HostCtrl);
237 pci_free_consistent(pdev, EVT_RING_SIZE, rr->evt_ring,
239 pci_free_consistent(pdev, RX_TOTAL_SIZE, rr->rx_ring,
241 pci_free_consistent(pdev, TX_TOTAL_SIZE, rr->tx_ring,
243 unregister_netdev(dev);
246 pci_release_regions(pdev);
247 pci_disable_device(pdev);
248 pci_set_drvdata(pdev, NULL);
254 * Commands are considered to be slow, thus there is no reason to
257 static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd)
259 struct rr_regs __iomem *regs;
264 * This is temporary - it will go away in the final version.
265 * We probably also want to make this function inline.
267 if (readl(®s->HostCtrl) & NIC_HALTED){
268 printk("issuing command for halted NIC, code 0x%x, "
269 "HostCtrl %08x\n", cmd->code, readl(®s->HostCtrl));
270 if (readl(®s->Mode) & FATAL_ERR)
271 printk("error codes Fail1 %02x, Fail2 %02x\n",
272 readl(®s->Fail1), readl(®s->Fail2));
275 idx = rrpriv->info->cmd_ctrl.pi;
277 writel(*(u32*)(cmd), ®s->CmdRing[idx]);
280 idx = (idx - 1) % CMD_RING_ENTRIES;
281 rrpriv->info->cmd_ctrl.pi = idx;
284 if (readl(®s->Mode) & FATAL_ERR)
285 printk("error code %02x\n", readl(®s->Fail1));
290 * Reset the board in a sensible manner. The NIC is already halted
291 * when we get here and a spin-lock is held.
293 static int rr_reset(struct net_device *dev)
295 struct rr_private *rrpriv;
296 struct rr_regs __iomem *regs;
297 struct eeprom *hw = NULL;
301 rrpriv = netdev_priv(dev);
304 rr_load_firmware(dev);
306 writel(0x01000000, ®s->TX_state);
307 writel(0xff800000, ®s->RX_state);
308 writel(0, ®s->AssistState);
309 writel(CLEAR_INTA, ®s->LocalCtrl);
310 writel(0x01, ®s->BrkPt);
311 writel(0, ®s->Timer);
312 writel(0, ®s->TimerRef);
313 writel(RESET_DMA, ®s->DmaReadState);
314 writel(RESET_DMA, ®s->DmaWriteState);
315 writel(0, ®s->DmaWriteHostHi);
316 writel(0, ®s->DmaWriteHostLo);
317 writel(0, ®s->DmaReadHostHi);
318 writel(0, ®s->DmaReadHostLo);
319 writel(0, ®s->DmaReadLen);
320 writel(0, ®s->DmaWriteLen);
321 writel(0, ®s->DmaWriteLcl);
322 writel(0, ®s->DmaWriteIPchecksum);
323 writel(0, ®s->DmaReadLcl);
324 writel(0, ®s->DmaReadIPchecksum);
325 writel(0, ®s->PciState);
326 #if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
327 writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, ®s->Mode);
328 #elif (BITS_PER_LONG == 64)
329 writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, ®s->Mode);
331 writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, ®s->Mode);
336 * Don't worry, this is just black magic.
338 writel(0xdf000, ®s->RxBase);
339 writel(0xdf000, ®s->RxPrd);
340 writel(0xdf000, ®s->RxCon);
341 writel(0xce000, ®s->TxBase);
342 writel(0xce000, ®s->TxPrd);
343 writel(0xce000, ®s->TxCon);
344 writel(0, ®s->RxIndPro);
345 writel(0, ®s->RxIndCon);
346 writel(0, ®s->RxIndRef);
347 writel(0, ®s->TxIndPro);
348 writel(0, ®s->TxIndCon);
349 writel(0, ®s->TxIndRef);
350 writel(0xcc000, ®s->pad10[0]);
351 writel(0, ®s->DrCmndPro);
352 writel(0, ®s->DrCmndCon);
353 writel(0, ®s->DwCmndPro);
354 writel(0, ®s->DwCmndCon);
355 writel(0, ®s->DwCmndRef);
356 writel(0, ®s->DrDataPro);
357 writel(0, ®s->DrDataCon);
358 writel(0, ®s->DrDataRef);
359 writel(0, ®s->DwDataPro);
360 writel(0, ®s->DwDataCon);
361 writel(0, ®s->DwDataRef);
364 writel(0xffffffff, ®s->MbEvent);
365 writel(0, ®s->Event);
367 writel(0, ®s->TxPi);
368 writel(0, ®s->IpRxPi);
370 writel(0, ®s->EvtCon);
371 writel(0, ®s->EvtPrd);
373 rrpriv->info->evt_ctrl.pi = 0;
375 for (i = 0; i < CMD_RING_ENTRIES; i++)
376 writel(0, ®s->CmdRing[i]);
379 * Why 32 ? is this not cache line size dependent?
381 writel(RBURST_64|WBURST_64, ®s->PciState);
384 start_pc = rr_read_eeprom_word(rrpriv, &hw->rncd_info.FwStart);
387 printk("%s: Executing firmware at address 0x%06x\n",
388 dev->name, start_pc);
391 writel(start_pc + 0x800, ®s->Pc);
395 writel(start_pc, ®s->Pc);
403 * Read a string from the EEPROM.
405 static unsigned int rr_read_eeprom(struct rr_private *rrpriv,
406 unsigned long offset,
408 unsigned long length)
410 struct rr_regs __iomem *regs = rrpriv->regs;
411 u32 misc, io, host, i;
413 io = readl(®s->ExtIo);
414 writel(0, ®s->ExtIo);
415 misc = readl(®s->LocalCtrl);
416 writel(0, ®s->LocalCtrl);
417 host = readl(®s->HostCtrl);
418 writel(host | HALT_NIC, ®s->HostCtrl);
421 for (i = 0; i < length; i++){
422 writel((EEPROM_BASE + ((offset+i) << 3)), ®s->WinBase);
424 buf[i] = (readl(®s->WinData) >> 24) & 0xff;
428 writel(host, ®s->HostCtrl);
429 writel(misc, ®s->LocalCtrl);
430 writel(io, ®s->ExtIo);
437 * Shortcut to read one word (4 bytes) out of the EEPROM and convert
438 * it to our CPU byte-order.
440 static u32 rr_read_eeprom_word(struct rr_private *rrpriv,
445 if ((rr_read_eeprom(rrpriv, (unsigned long)offset,
446 (char *)&word, 4) == 4))
447 return be32_to_cpu(word);
453 * Write a string to the EEPROM.
455 * This is only called when the firmware is not running.
457 static unsigned int write_eeprom(struct rr_private *rrpriv,
458 unsigned long offset,
460 unsigned long length)
462 struct rr_regs __iomem *regs = rrpriv->regs;
463 u32 misc, io, data, i, j, ready, error = 0;
465 io = readl(®s->ExtIo);
466 writel(0, ®s->ExtIo);
467 misc = readl(®s->LocalCtrl);
468 writel(ENABLE_EEPROM_WRITE, ®s->LocalCtrl);
471 for (i = 0; i < length; i++){
472 writel((EEPROM_BASE + ((offset+i) << 3)), ®s->WinBase);
476 * Only try to write the data if it is not the same
479 if ((readl(®s->WinData) & 0xff000000) != data){
480 writel(data, ®s->WinData);
486 if ((readl(®s->WinData) & 0xff000000) ==
491 printk("data mismatch: %08x, "
492 "WinData %08x\n", data,
493 readl(®s->WinData));
501 writel(misc, ®s->LocalCtrl);
502 writel(io, ®s->ExtIo);
509 static int __devinit rr_init(struct net_device *dev)
511 struct rr_private *rrpriv;
512 struct rr_regs __iomem *regs;
513 struct eeprom *hw = NULL;
515 DECLARE_MAC_BUF(mac);
517 rrpriv = netdev_priv(dev);
520 rev = readl(®s->FwRev);
521 rrpriv->fw_rev = rev;
522 if (rev > 0x00020024)
523 printk(" Firmware revision: %i.%i.%i\n", (rev >> 16),
524 ((rev >> 8) & 0xff), (rev & 0xff));
525 else if (rev >= 0x00020000) {
526 printk(" Firmware revision: %i.%i.%i (2.0.37 or "
527 "later is recommended)\n", (rev >> 16),
528 ((rev >> 8) & 0xff), (rev & 0xff));
530 printk(" Firmware revision too old: %i.%i.%i, please "
531 "upgrade to 2.0.37 or later.\n",
532 (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff));
536 printk(" Maximum receive rings %i\n", readl(®s->MaxRxRng));
540 * Read the hardware address from the eeprom. The HW address
541 * is not really necessary for HIPPI but awfully convenient.
542 * The pointer arithmetic to put it in dev_addr is ugly, but
543 * Donald Becker does it this way for the GigE version of this
544 * card and it's shorter and more portable than any
545 * other method I've seen. -VAL
548 *(u16 *)(dev->dev_addr) =
549 htons(rr_read_eeprom_word(rrpriv, &hw->manf.BoardULA));
550 *(u32 *)(dev->dev_addr+2) =
551 htonl(rr_read_eeprom_word(rrpriv, &hw->manf.BoardULA[4]));
553 printk(" MAC: %s\n", print_mac(mac, dev->dev_addr));
555 sram_size = rr_read_eeprom_word(rrpriv, (void *)8);
556 printk(" SRAM size 0x%06x\n", sram_size);
562 static int rr_init1(struct net_device *dev)
564 struct rr_private *rrpriv;
565 struct rr_regs __iomem *regs;
566 unsigned long myjif, flags;
572 rrpriv = netdev_priv(dev);
575 spin_lock_irqsave(&rrpriv->lock, flags);
577 hostctrl = readl(®s->HostCtrl);
578 writel(hostctrl | HALT_NIC | RR_CLEAR_INT, ®s->HostCtrl);
581 if (hostctrl & PARITY_ERR){
582 printk("%s: Parity error halting NIC - this is serious!\n",
584 spin_unlock_irqrestore(&rrpriv->lock, flags);
589 set_rxaddr(regs, rrpriv->rx_ctrl_dma);
590 set_infoaddr(regs, rrpriv->info_dma);
592 rrpriv->info->evt_ctrl.entry_size = sizeof(struct event);
593 rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES;
594 rrpriv->info->evt_ctrl.mode = 0;
595 rrpriv->info->evt_ctrl.pi = 0;
596 set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma);
598 rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd);
599 rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES;
600 rrpriv->info->cmd_ctrl.mode = 0;
601 rrpriv->info->cmd_ctrl.pi = 15;
603 for (i = 0; i < CMD_RING_ENTRIES; i++) {
604 writel(0, ®s->CmdRing[i]);
607 for (i = 0; i < TX_RING_ENTRIES; i++) {
608 rrpriv->tx_ring[i].size = 0;
609 set_rraddr(&rrpriv->tx_ring[i].addr, 0);
610 rrpriv->tx_skbuff[i] = NULL;
612 rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc);
613 rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES;
614 rrpriv->info->tx_ctrl.mode = 0;
615 rrpriv->info->tx_ctrl.pi = 0;
616 set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma);
619 * Set dirty_tx before we start receiving interrupts, otherwise
620 * the interrupt handler might think it is supposed to process
621 * tx ints before we are up and running, which may cause a null
622 * pointer access in the int handler.
626 rrpriv->dirty_rx = rrpriv->dirty_tx = 0;
631 writel(0x5000, ®s->ConRetry);
632 writel(0x100, ®s->ConRetryTmr);
633 writel(0x500000, ®s->ConTmout);
634 writel(0x60, ®s->IntrTmr);
635 writel(0x500000, ®s->TxDataMvTimeout);
636 writel(0x200000, ®s->RxDataMvTimeout);
637 writel(0x80, ®s->WriteDmaThresh);
638 writel(0x80, ®s->ReadDmaThresh);
640 rrpriv->fw_running = 0;
643 hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR);
644 writel(hostctrl, ®s->HostCtrl);
647 spin_unlock_irqrestore(&rrpriv->lock, flags);
649 for (i = 0; i < RX_RING_ENTRIES; i++) {
653 rrpriv->rx_ring[i].mode = 0;
654 skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC);
656 printk(KERN_WARNING "%s: Unable to allocate memory "
657 "for receive ring - halting NIC\n", dev->name);
661 rrpriv->rx_skbuff[i] = skb;
662 addr = pci_map_single(rrpriv->pci_dev, skb->data,
663 dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
665 * Sanity test to see if we conflict with the DMA
666 * limitations of the Roadrunner.
668 if ((((unsigned long)skb->data) & 0xfff) > ~65320)
669 printk("skb alloc error\n");
671 set_rraddr(&rrpriv->rx_ring[i].addr, addr);
672 rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN;
675 rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc);
676 rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES;
677 rrpriv->rx_ctrl[4].mode = 8;
678 rrpriv->rx_ctrl[4].pi = 0;
680 set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma);
685 * Now start the FirmWare.
687 cmd.code = C_START_FW;
691 rr_issue_cmd(rrpriv, &cmd);
694 * Give the FirmWare time to chew on the `get running' command.
696 myjif = jiffies + 5 * HZ;
697 while (time_before(jiffies, myjif) && !rrpriv->fw_running)
700 netif_start_queue(dev);
706 * We might have gotten here because we are out of memory,
707 * make sure we release everything we allocated before failing
709 for (i = 0; i < RX_RING_ENTRIES; i++) {
710 struct sk_buff *skb = rrpriv->rx_skbuff[i];
713 pci_unmap_single(rrpriv->pci_dev,
714 rrpriv->rx_ring[i].addr.addrlo,
715 dev->mtu + HIPPI_HLEN,
717 rrpriv->rx_ring[i].size = 0;
718 set_rraddr(&rrpriv->rx_ring[i].addr, 0);
720 rrpriv->rx_skbuff[i] = NULL;
728 * All events are considered to be slow (RX/TX ints do not generate
729 * events) and are handled here, outside the main interrupt handler,
730 * to reduce the size of the handler.
732 static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx)
734 struct rr_private *rrpriv;
735 struct rr_regs __iomem *regs;
738 rrpriv = netdev_priv(dev);
741 while (prodidx != eidx){
742 switch (rrpriv->evt_ring[eidx].code){
744 tmp = readl(®s->FwRev);
745 printk(KERN_INFO "%s: Firmware revision %i.%i.%i "
746 "up and running\n", dev->name,
747 (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff));
748 rrpriv->fw_running = 1;
749 writel(RX_RING_ENTRIES - 1, ®s->IpRxPi);
753 printk(KERN_INFO "%s: Optical link ON\n", dev->name);
756 printk(KERN_INFO "%s: Optical link OFF\n", dev->name);
759 printk(KERN_WARNING "%s: RX data not moving\n",
763 printk(KERN_INFO "%s: The watchdog is here to see "
767 printk(KERN_ERR "%s: HIPPI Internal NIC error\n",
769 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
774 printk(KERN_ERR "%s: Host software error\n",
776 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
784 printk(KERN_WARNING "%s: Connection rejected\n",
786 dev->stats.tx_aborted_errors++;
789 printk(KERN_WARNING "%s: Connection timeout\n",
793 printk(KERN_WARNING "%s: HIPPI disconnect error\n",
795 dev->stats.tx_aborted_errors++;
798 printk(KERN_ERR "%s: HIPPI Internal Parity error\n",
800 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
805 printk(KERN_WARNING "%s: Transmitter idle\n",
809 printk(KERN_WARNING "%s: Link lost during transmit\n",
811 dev->stats.tx_aborted_errors++;
812 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
817 printk(KERN_ERR "%s: Invalid send ring block\n",
819 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
824 printk(KERN_ERR "%s: Invalid send buffer address\n",
826 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
831 printk(KERN_ERR "%s: Invalid descriptor address\n",
833 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
841 printk(KERN_INFO "%s: Receive ring full\n", dev->name);
845 printk(KERN_WARNING "%s: Receive parity error\n",
849 printk(KERN_WARNING "%s: Receive LLRC error\n",
853 printk(KERN_WARNING "%s: Receive packet length "
854 "error\n", dev->name);
857 printk(KERN_WARNING "%s: Data checksum error\n",
861 printk(KERN_WARNING "%s: Unexpected short burst "
862 "error\n", dev->name);
865 printk(KERN_WARNING "%s: Recv. state transition"
866 " error\n", dev->name);
869 printk(KERN_WARNING "%s: Unexpected data error\n",
873 printk(KERN_WARNING "%s: Link lost error\n",
877 printk(KERN_WARNING "%s: Framming Error\n",
881 printk(KERN_WARNING "%s: Flag sync. lost during"
882 "packet\n", dev->name);
885 printk(KERN_ERR "%s: Invalid receive buffer "
886 "address\n", dev->name);
887 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
892 printk(KERN_ERR "%s: Invalid receive descriptor "
893 "address\n", dev->name);
894 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
899 printk(KERN_ERR "%s: Invalid ring block\n",
901 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
906 /* Label packet to be dropped.
907 * Actual dropping occurs in rx
910 * The index of packet we get to drop is
911 * the index of the packet following
912 * the bad packet. -kbf
915 u16 index = rrpriv->evt_ring[eidx].index;
916 index = (index + (RX_RING_ENTRIES - 1)) %
918 rrpriv->rx_ring[index].mode |=
919 (PACKET_BAD | PACKET_END);
923 printk(KERN_WARNING "%s: Unhandled event 0x%02x\n",
924 dev->name, rrpriv->evt_ring[eidx].code);
926 eidx = (eidx + 1) % EVT_RING_ENTRIES;
929 rrpriv->info->evt_ctrl.pi = eidx;
935 static void rx_int(struct net_device *dev, u32 rxlimit, u32 index)
937 struct rr_private *rrpriv = netdev_priv(dev);
938 struct rr_regs __iomem *regs = rrpriv->regs;
941 struct rx_desc *desc;
944 desc = &(rrpriv->rx_ring[index]);
945 pkt_len = desc->size;
947 printk("index %i, rxlimit %i\n", index, rxlimit);
948 printk("len %x, mode %x\n", pkt_len, desc->mode);
950 if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){
951 dev->stats.rx_dropped++;
956 struct sk_buff *skb, *rx_skb;
958 rx_skb = rrpriv->rx_skbuff[index];
960 if (pkt_len < PKT_COPY_THRESHOLD) {
961 skb = alloc_skb(pkt_len, GFP_ATOMIC);
963 printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len);
964 dev->stats.rx_dropped++;
967 pci_dma_sync_single_for_cpu(rrpriv->pci_dev,
972 memcpy(skb_put(skb, pkt_len),
973 rx_skb->data, pkt_len);
975 pci_dma_sync_single_for_device(rrpriv->pci_dev,
981 struct sk_buff *newskb;
983 newskb = alloc_skb(dev->mtu + HIPPI_HLEN,
988 pci_unmap_single(rrpriv->pci_dev,
989 desc->addr.addrlo, dev->mtu +
990 HIPPI_HLEN, PCI_DMA_FROMDEVICE);
992 skb_put(skb, pkt_len);
993 rrpriv->rx_skbuff[index] = newskb;
994 addr = pci_map_single(rrpriv->pci_dev,
996 dev->mtu + HIPPI_HLEN,
998 set_rraddr(&desc->addr, addr);
1000 printk("%s: Out of memory, deferring "
1001 "packet\n", dev->name);
1002 dev->stats.rx_dropped++;
1006 skb->protocol = hippi_type_trans(skb, dev);
1008 netif_rx(skb); /* send it up */
1010 dev->last_rx = jiffies;
1011 dev->stats.rx_packets++;
1012 dev->stats.rx_bytes += pkt_len;
1016 desc->size = dev->mtu + HIPPI_HLEN;
1018 if ((index & 7) == 7)
1019 writel(index, ®s->IpRxPi);
1021 index = (index + 1) % RX_RING_ENTRIES;
1022 } while(index != rxlimit);
1024 rrpriv->cur_rx = index;
1029 static irqreturn_t rr_interrupt(int irq, void *dev_id)
1031 struct rr_private *rrpriv;
1032 struct rr_regs __iomem *regs;
1033 struct net_device *dev = (struct net_device *)dev_id;
1034 u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon;
1036 rrpriv = netdev_priv(dev);
1037 regs = rrpriv->regs;
1039 if (!(readl(®s->HostCtrl) & RR_INT))
1042 spin_lock(&rrpriv->lock);
1044 prodidx = readl(®s->EvtPrd);
1045 txcsmr = (prodidx >> 8) & 0xff;
1046 rxlimit = (prodidx >> 16) & 0xff;
1050 printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name,
1051 prodidx, rrpriv->info->evt_ctrl.pi);
1054 * Order here is important. We must handle events
1055 * before doing anything else in order to catch
1056 * such things as LLRC errors, etc -kbf
1059 eidx = rrpriv->info->evt_ctrl.pi;
1060 if (prodidx != eidx)
1061 eidx = rr_handle_event(dev, prodidx, eidx);
1063 rxindex = rrpriv->cur_rx;
1064 if (rxindex != rxlimit)
1065 rx_int(dev, rxlimit, rxindex);
1067 txcon = rrpriv->dirty_tx;
1068 if (txcsmr != txcon) {
1070 /* Due to occational firmware TX producer/consumer out
1071 * of sync. error need to check entry in ring -kbf
1073 if(rrpriv->tx_skbuff[txcon]){
1074 struct tx_desc *desc;
1075 struct sk_buff *skb;
1077 desc = &(rrpriv->tx_ring[txcon]);
1078 skb = rrpriv->tx_skbuff[txcon];
1080 dev->stats.tx_packets++;
1081 dev->stats.tx_bytes += skb->len;
1083 pci_unmap_single(rrpriv->pci_dev,
1084 desc->addr.addrlo, skb->len,
1086 dev_kfree_skb_irq(skb);
1088 rrpriv->tx_skbuff[txcon] = NULL;
1090 set_rraddr(&rrpriv->tx_ring[txcon].addr, 0);
1093 txcon = (txcon + 1) % TX_RING_ENTRIES;
1094 } while (txcsmr != txcon);
1097 rrpriv->dirty_tx = txcon;
1098 if (rrpriv->tx_full && rr_if_busy(dev) &&
1099 (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES)
1100 != rrpriv->dirty_tx)){
1101 rrpriv->tx_full = 0;
1102 netif_wake_queue(dev);
1106 eidx |= ((txcsmr << 8) | (rxlimit << 16));
1107 writel(eidx, ®s->EvtCon);
1110 spin_unlock(&rrpriv->lock);
1114 static inline void rr_raz_tx(struct rr_private *rrpriv,
1115 struct net_device *dev)
1119 for (i = 0; i < TX_RING_ENTRIES; i++) {
1120 struct sk_buff *skb = rrpriv->tx_skbuff[i];
1123 struct tx_desc *desc = &(rrpriv->tx_ring[i]);
1125 pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1126 skb->len, PCI_DMA_TODEVICE);
1128 set_rraddr(&desc->addr, 0);
1130 rrpriv->tx_skbuff[i] = NULL;
1136 static inline void rr_raz_rx(struct rr_private *rrpriv,
1137 struct net_device *dev)
1141 for (i = 0; i < RX_RING_ENTRIES; i++) {
1142 struct sk_buff *skb = rrpriv->rx_skbuff[i];
1145 struct rx_desc *desc = &(rrpriv->rx_ring[i]);
1147 pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1148 dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
1150 set_rraddr(&desc->addr, 0);
1152 rrpriv->rx_skbuff[i] = NULL;
1157 static void rr_timer(unsigned long data)
1159 struct net_device *dev = (struct net_device *)data;
1160 struct rr_private *rrpriv = netdev_priv(dev);
1161 struct rr_regs __iomem *regs = rrpriv->regs;
1162 unsigned long flags;
1164 if (readl(®s->HostCtrl) & NIC_HALTED){
1165 printk("%s: Restarting nic\n", dev->name);
1166 memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
1167 memset(rrpriv->info, 0, sizeof(struct rr_info));
1170 rr_raz_tx(rrpriv, dev);
1171 rr_raz_rx(rrpriv, dev);
1173 if (rr_init1(dev)) {
1174 spin_lock_irqsave(&rrpriv->lock, flags);
1175 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1177 spin_unlock_irqrestore(&rrpriv->lock, flags);
1180 rrpriv->timer.expires = RUN_AT(5*HZ);
1181 add_timer(&rrpriv->timer);
1185 static int rr_open(struct net_device *dev)
1187 struct rr_private *rrpriv = netdev_priv(dev);
1188 struct pci_dev *pdev = rrpriv->pci_dev;
1189 struct rr_regs __iomem *regs;
1191 unsigned long flags;
1192 dma_addr_t dma_addr;
1194 regs = rrpriv->regs;
1196 if (rrpriv->fw_rev < 0x00020000) {
1197 printk(KERN_WARNING "%s: trying to configure device with "
1198 "obsolete firmware\n", dev->name);
1203 rrpriv->rx_ctrl = pci_alloc_consistent(pdev,
1204 256 * sizeof(struct ring_ctrl),
1206 if (!rrpriv->rx_ctrl) {
1210 rrpriv->rx_ctrl_dma = dma_addr;
1211 memset(rrpriv->rx_ctrl, 0, 256*sizeof(struct ring_ctrl));
1213 rrpriv->info = pci_alloc_consistent(pdev, sizeof(struct rr_info),
1215 if (!rrpriv->info) {
1219 rrpriv->info_dma = dma_addr;
1220 memset(rrpriv->info, 0, sizeof(struct rr_info));
1223 spin_lock_irqsave(&rrpriv->lock, flags);
1224 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, ®s->HostCtrl);
1225 readl(®s->HostCtrl);
1226 spin_unlock_irqrestore(&rrpriv->lock, flags);
1228 if (request_irq(dev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) {
1229 printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1230 dev->name, dev->irq);
1235 if ((ecode = rr_init1(dev)))
1238 /* Set the timer to switch to check for link beat and perhaps switch
1239 to an alternate media type. */
1240 init_timer(&rrpriv->timer);
1241 rrpriv->timer.expires = RUN_AT(5*HZ); /* 5 sec. watchdog */
1242 rrpriv->timer.data = (unsigned long)dev;
1243 rrpriv->timer.function = &rr_timer; /* timer handler */
1244 add_timer(&rrpriv->timer);
1246 netif_start_queue(dev);
1251 spin_lock_irqsave(&rrpriv->lock, flags);
1252 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, ®s->HostCtrl);
1253 spin_unlock_irqrestore(&rrpriv->lock, flags);
1256 pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
1258 rrpriv->info = NULL;
1260 if (rrpriv->rx_ctrl) {
1261 pci_free_consistent(pdev, sizeof(struct ring_ctrl),
1262 rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1263 rrpriv->rx_ctrl = NULL;
1266 netif_stop_queue(dev);
1272 static void rr_dump(struct net_device *dev)
1274 struct rr_private *rrpriv;
1275 struct rr_regs __iomem *regs;
1280 rrpriv = netdev_priv(dev);
1281 regs = rrpriv->regs;
1283 printk("%s: dumping NIC TX rings\n", dev->name);
1285 printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
1286 readl(®s->RxPrd), readl(®s->TxPrd),
1287 readl(®s->EvtPrd), readl(®s->TxPi),
1288 rrpriv->info->tx_ctrl.pi);
1290 printk("Error code 0x%x\n", readl(®s->Fail1));
1292 index = (((readl(®s->EvtPrd) >> 8) & 0xff ) - 1) % EVT_RING_ENTRIES;
1293 cons = rrpriv->dirty_tx;
1294 printk("TX ring index %i, TX consumer %i\n",
1297 if (rrpriv->tx_skbuff[index]){
1298 len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len);
1299 printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size);
1300 for (i = 0; i < len; i++){
1303 printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]);
1308 if (rrpriv->tx_skbuff[cons]){
1309 len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len);
1310 printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len);
1311 printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %08lx, truesize 0x%x\n",
1312 rrpriv->tx_ring[cons].mode,
1313 rrpriv->tx_ring[cons].size,
1314 (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo,
1315 (unsigned long)rrpriv->tx_skbuff[cons]->data,
1316 (unsigned int)rrpriv->tx_skbuff[cons]->truesize);
1317 for (i = 0; i < len; i++){
1320 printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size);
1325 printk("dumping TX ring info:\n");
1326 for (i = 0; i < TX_RING_ENTRIES; i++)
1327 printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
1328 rrpriv->tx_ring[i].mode,
1329 rrpriv->tx_ring[i].size,
1330 (unsigned long long) rrpriv->tx_ring[i].addr.addrlo);
1335 static int rr_close(struct net_device *dev)
1337 struct rr_private *rrpriv;
1338 struct rr_regs __iomem *regs;
1339 unsigned long flags;
1343 netif_stop_queue(dev);
1345 rrpriv = netdev_priv(dev);
1346 regs = rrpriv->regs;
1349 * Lock to make sure we are not cleaning up while another CPU
1350 * is handling interrupts.
1352 spin_lock_irqsave(&rrpriv->lock, flags);
1354 tmp = readl(®s->HostCtrl);
1355 if (tmp & NIC_HALTED){
1356 printk("%s: NIC already halted\n", dev->name);
1359 tmp |= HALT_NIC | RR_CLEAR_INT;
1360 writel(tmp, ®s->HostCtrl);
1361 readl(®s->HostCtrl);
1364 rrpriv->fw_running = 0;
1366 del_timer_sync(&rrpriv->timer);
1368 writel(0, ®s->TxPi);
1369 writel(0, ®s->IpRxPi);
1371 writel(0, ®s->EvtCon);
1372 writel(0, ®s->EvtPrd);
1374 for (i = 0; i < CMD_RING_ENTRIES; i++)
1375 writel(0, ®s->CmdRing[i]);
1377 rrpriv->info->tx_ctrl.entries = 0;
1378 rrpriv->info->cmd_ctrl.pi = 0;
1379 rrpriv->info->evt_ctrl.pi = 0;
1380 rrpriv->rx_ctrl[4].entries = 0;
1382 rr_raz_tx(rrpriv, dev);
1383 rr_raz_rx(rrpriv, dev);
1385 pci_free_consistent(rrpriv->pci_dev, 256 * sizeof(struct ring_ctrl),
1386 rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1387 rrpriv->rx_ctrl = NULL;
1389 pci_free_consistent(rrpriv->pci_dev, sizeof(struct rr_info),
1390 rrpriv->info, rrpriv->info_dma);
1391 rrpriv->info = NULL;
1393 free_irq(dev->irq, dev);
1394 spin_unlock_irqrestore(&rrpriv->lock, flags);
1400 static int rr_start_xmit(struct sk_buff *skb, struct net_device *dev)
1402 struct rr_private *rrpriv = netdev_priv(dev);
1403 struct rr_regs __iomem *regs = rrpriv->regs;
1404 struct hippi_cb *hcb = (struct hippi_cb *) skb->cb;
1405 struct ring_ctrl *txctrl;
1406 unsigned long flags;
1407 u32 index, len = skb->len;
1409 struct sk_buff *new_skb;
1411 if (readl(®s->Mode) & FATAL_ERR)
1412 printk("error codes Fail1 %02x, Fail2 %02x\n",
1413 readl(®s->Fail1), readl(®s->Fail2));
1416 * We probably need to deal with tbusy here to prevent overruns.
1419 if (skb_headroom(skb) < 8){
1420 printk("incoming skb too small - reallocating\n");
1421 if (!(new_skb = dev_alloc_skb(len + 8))) {
1423 netif_wake_queue(dev);
1426 skb_reserve(new_skb, 8);
1427 skb_put(new_skb, len);
1428 skb_copy_from_linear_data(skb, new_skb->data, len);
1433 ifield = (u32 *)skb_push(skb, 8);
1436 ifield[1] = hcb->ifield;
1439 * We don't need the lock before we are actually going to start
1440 * fiddling with the control blocks.
1442 spin_lock_irqsave(&rrpriv->lock, flags);
1444 txctrl = &rrpriv->info->tx_ctrl;
1448 rrpriv->tx_skbuff[index] = skb;
1449 set_rraddr(&rrpriv->tx_ring[index].addr, pci_map_single(
1450 rrpriv->pci_dev, skb->data, len + 8, PCI_DMA_TODEVICE));
1451 rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */
1452 rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END;
1453 txctrl->pi = (index + 1) % TX_RING_ENTRIES;
1455 writel(txctrl->pi, ®s->TxPi);
1457 if (txctrl->pi == rrpriv->dirty_tx){
1458 rrpriv->tx_full = 1;
1459 netif_stop_queue(dev);
1462 spin_unlock_irqrestore(&rrpriv->lock, flags);
1464 dev->trans_start = jiffies;
1470 * Read the firmware out of the EEPROM and put it into the SRAM
1471 * (or from user space - later)
1473 * This operation requires the NIC to be halted and is performed with
1474 * interrupts disabled and with the spinlock hold.
1476 static int rr_load_firmware(struct net_device *dev)
1478 struct rr_private *rrpriv;
1479 struct rr_regs __iomem *regs;
1480 unsigned long eptr, segptr;
1482 u32 localctrl, sptr, len, tmp;
1483 u32 p2len, p2size, nr_seg, revision, io, sram_size;
1484 struct eeprom *hw = NULL;
1486 rrpriv = netdev_priv(dev);
1487 regs = rrpriv->regs;
1489 if (dev->flags & IFF_UP)
1492 if (!(readl(®s->HostCtrl) & NIC_HALTED)){
1493 printk("%s: Trying to load firmware to a running NIC.\n",
1498 localctrl = readl(®s->LocalCtrl);
1499 writel(0, ®s->LocalCtrl);
1501 writel(0, ®s->EvtPrd);
1502 writel(0, ®s->RxPrd);
1503 writel(0, ®s->TxPrd);
1506 * First wipe the entire SRAM, otherwise we might run into all
1507 * kinds of trouble ... sigh, this took almost all afternoon
1510 io = readl(®s->ExtIo);
1511 writel(0, ®s->ExtIo);
1512 sram_size = rr_read_eeprom_word(rrpriv, (void *)8);
1514 for (i = 200; i < sram_size / 4; i++){
1515 writel(i * 4, ®s->WinBase);
1517 writel(0, ®s->WinData);
1520 writel(io, ®s->ExtIo);
1523 eptr = (unsigned long)rr_read_eeprom_word(rrpriv,
1524 &hw->rncd_info.AddrRunCodeSegs);
1525 eptr = ((eptr & 0x1fffff) >> 3);
1527 p2len = rr_read_eeprom_word(rrpriv, (void *)(0x83*4));
1528 p2len = (p2len << 2);
1529 p2size = rr_read_eeprom_word(rrpriv, (void *)(0x84*4));
1530 p2size = ((p2size & 0x1fffff) >> 3);
1532 if ((eptr < p2size) || (eptr > (p2size + p2len))){
1533 printk("%s: eptr is invalid\n", dev->name);
1537 revision = rr_read_eeprom_word(rrpriv, &hw->manf.HeaderFmt);
1540 printk("%s: invalid firmware format (%i)\n",
1541 dev->name, revision);
1545 nr_seg = rr_read_eeprom_word(rrpriv, (void *)eptr);
1548 printk("%s: nr_seg %i\n", dev->name, nr_seg);
1551 for (i = 0; i < nr_seg; i++){
1552 sptr = rr_read_eeprom_word(rrpriv, (void *)eptr);
1554 len = rr_read_eeprom_word(rrpriv, (void *)eptr);
1556 segptr = (unsigned long)rr_read_eeprom_word(rrpriv, (void *)eptr);
1557 segptr = ((segptr & 0x1fffff) >> 3);
1560 printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
1561 dev->name, i, sptr, len, segptr);
1563 for (j = 0; j < len; j++){
1564 tmp = rr_read_eeprom_word(rrpriv, (void *)segptr);
1565 writel(sptr, ®s->WinBase);
1567 writel(tmp, ®s->WinData);
1575 writel(localctrl, ®s->LocalCtrl);
1581 static int rr_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1583 struct rr_private *rrpriv;
1584 unsigned char *image, *oldimage;
1585 unsigned long flags;
1587 int error = -EOPNOTSUPP;
1589 rrpriv = netdev_priv(dev);
1593 if (!capable(CAP_SYS_RAWIO)){
1597 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1599 printk(KERN_ERR "%s: Unable to allocate memory "
1600 "for EEPROM image\n", dev->name);
1605 if (rrpriv->fw_running){
1606 printk("%s: Firmware already running\n", dev->name);
1611 spin_lock_irqsave(&rrpriv->lock, flags);
1612 i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1613 spin_unlock_irqrestore(&rrpriv->lock, flags);
1614 if (i != EEPROM_BYTES){
1615 printk(KERN_ERR "%s: Error reading EEPROM\n",
1620 error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES);
1628 if (!capable(CAP_SYS_RAWIO)){
1632 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1633 oldimage = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1634 if (!image || !oldimage) {
1635 printk(KERN_ERR "%s: Unable to allocate memory "
1636 "for EEPROM image\n", dev->name);
1641 error = copy_from_user(image, rq->ifr_data, EEPROM_BYTES);
1647 if (rrpriv->fw_running){
1648 printk("%s: Firmware already running\n", dev->name);
1653 printk("%s: Updating EEPROM firmware\n", dev->name);
1655 spin_lock_irqsave(&rrpriv->lock, flags);
1656 error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1658 printk(KERN_ERR "%s: Error writing EEPROM\n",
1661 i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES);
1662 spin_unlock_irqrestore(&rrpriv->lock, flags);
1664 if (i != EEPROM_BYTES)
1665 printk(KERN_ERR "%s: Error reading back EEPROM "
1666 "image\n", dev->name);
1668 error = memcmp(image, oldimage, EEPROM_BYTES);
1670 printk(KERN_ERR "%s: Error verifying EEPROM image\n",
1680 return put_user(0x52523032, (int __user *)rq->ifr_data);
1686 static struct pci_device_id rr_pci_tbl[] = {
1687 { PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER,
1688 PCI_ANY_ID, PCI_ANY_ID, },
1691 MODULE_DEVICE_TABLE(pci, rr_pci_tbl);
1693 static struct pci_driver rr_driver = {
1695 .id_table = rr_pci_tbl,
1696 .probe = rr_init_one,
1697 .remove = __devexit_p(rr_remove_one),
1700 static int __init rr_init_module(void)
1702 return pci_register_driver(&rr_driver);
1705 static void __exit rr_cleanup_module(void)
1707 pci_unregister_driver(&rr_driver);
1710 module_init(rr_init_module);
1711 module_exit(rr_cleanup_module);
1715 * compile-command: "gcc -D__KERNEL__ -I../../include -Wall -Wstrict-prototypes -O2 -pipe -fomit-frame-pointer -fno-strength-reduce -m486 -malign-loops=2 -malign-jumps=2 -malign-functions=2 -DMODULE -DMODVERSIONS -include ../../include/linux/modversions.h -c rrunner.c"