Merge commit 'v2.6.26-rc8' into x86/xen
[linux-2.6] / drivers / net / cassini.c
1 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
2  *
3  * Copyright (C) 2004 Sun Microsystems Inc.
4  * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation; either version 2 of the
9  * License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
19  * 02111-1307, USA.
20  *
21  * This driver uses the sungem driver (c) David Miller
22  * (davem@redhat.com) as its basis.
23  *
24  * The cassini chip has a number of features that distinguish it from
25  * the gem chip:
26  *  4 transmit descriptor rings that are used for either QoS (VLAN) or
27  *      load balancing (non-VLAN mode)
28  *  batching of multiple packets
29  *  multiple CPU dispatching
30  *  page-based RX descriptor engine with separate completion rings
31  *  Gigabit support (GMII and PCS interface)
32  *  MIF link up/down detection works
33  *
34  * RX is handled by page sized buffers that are attached as fragments to
35  * the skb. here's what's done:
36  *  -- driver allocates pages at a time and keeps reference counts
37  *     on them.
38  *  -- the upper protocol layers assume that the header is in the skb
39  *     itself. as a result, cassini will copy a small amount (64 bytes)
40  *     to make them happy.
41  *  -- driver appends the rest of the data pages as frags to skbuffs
42  *     and increments the reference count
43  *  -- on page reclamation, the driver swaps the page with a spare page.
44  *     if that page is still in use, it frees its reference to that page,
45  *     and allocates a new page for use. otherwise, it just recycles the
46  *     the page.
47  *
48  * NOTE: cassini can parse the header. however, it's not worth it
49  *       as long as the network stack requires a header copy.
50  *
51  * TX has 4 queues. currently these queues are used in a round-robin
52  * fashion for load balancing. They can also be used for QoS. for that
53  * to work, however, QoS information needs to be exposed down to the driver
54  * level so that subqueues get targetted to particular transmit rings.
55  * alternatively, the queues can be configured via use of the all-purpose
56  * ioctl.
57  *
58  * RX DATA: the rx completion ring has all the info, but the rx desc
59  * ring has all of the data. RX can conceivably come in under multiple
60  * interrupts, but the INT# assignment needs to be set up properly by
61  * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
62  * that. also, the two descriptor rings are designed to distinguish between
63  * encrypted and non-encrypted packets, but we use them for buffering
64  * instead.
65  *
66  * by default, the selective clear mask is set up to process rx packets.
67  */
68
69
70 #include <linux/module.h>
71 #include <linux/kernel.h>
72 #include <linux/types.h>
73 #include <linux/compiler.h>
74 #include <linux/slab.h>
75 #include <linux/delay.h>
76 #include <linux/init.h>
77 #include <linux/ioport.h>
78 #include <linux/pci.h>
79 #include <linux/mm.h>
80 #include <linux/highmem.h>
81 #include <linux/list.h>
82 #include <linux/dma-mapping.h>
83
84 #include <linux/netdevice.h>
85 #include <linux/etherdevice.h>
86 #include <linux/skbuff.h>
87 #include <linux/ethtool.h>
88 #include <linux/crc32.h>
89 #include <linux/random.h>
90 #include <linux/mii.h>
91 #include <linux/ip.h>
92 #include <linux/tcp.h>
93 #include <linux/mutex.h>
94
95 #include <net/checksum.h>
96
97 #include <asm/atomic.h>
98 #include <asm/system.h>
99 #include <asm/io.h>
100 #include <asm/byteorder.h>
101 #include <asm/uaccess.h>
102
103 #define cas_page_map(x)      kmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
104 #define cas_page_unmap(x)    kunmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
105 #define CAS_NCPUS            num_online_cpus()
106
107 #if defined(CONFIG_CASSINI_NAPI) && defined(HAVE_NETDEV_POLL)
108 #define USE_NAPI
109 #define cas_skb_release(x)  netif_receive_skb(x)
110 #else
111 #define cas_skb_release(x)  netif_rx(x)
112 #endif
113
114 /* select which firmware to use */
115 #define USE_HP_WORKAROUND
116 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
117 #define CAS_HP_ALT_FIRMWARE   cas_prog_null /* alternate firmware */
118
119 #include "cassini.h"
120
121 #define USE_TX_COMPWB      /* use completion writeback registers */
122 #define USE_CSMA_CD_PROTO  /* standard CSMA/CD */
123 #define USE_RX_BLANK       /* hw interrupt mitigation */
124 #undef USE_ENTROPY_DEV     /* don't test for entropy device */
125
126 /* NOTE: these aren't useable unless PCI interrupts can be assigned.
127  * also, we need to make cp->lock finer-grained.
128  */
129 #undef  USE_PCI_INTB
130 #undef  USE_PCI_INTC
131 #undef  USE_PCI_INTD
132 #undef  USE_QOS
133
134 #undef  USE_VPD_DEBUG       /* debug vpd information if defined */
135
136 /* rx processing options */
137 #define USE_PAGE_ORDER      /* specify to allocate large rx pages */
138 #define RX_DONT_BATCH  0    /* if 1, don't batch flows */
139 #define RX_COPY_ALWAYS 0    /* if 0, use frags */
140 #define RX_COPY_MIN    64   /* copy a little to make upper layers happy */
141 #undef  RX_COUNT_BUFFERS    /* define to calculate RX buffer stats */
142
143 #define DRV_MODULE_NAME         "cassini"
144 #define PFX DRV_MODULE_NAME     ": "
145 #define DRV_MODULE_VERSION      "1.6"
146 #define DRV_MODULE_RELDATE      "21 May 2008"
147
148 #define CAS_DEF_MSG_ENABLE        \
149         (NETIF_MSG_DRV          | \
150          NETIF_MSG_PROBE        | \
151          NETIF_MSG_LINK         | \
152          NETIF_MSG_TIMER        | \
153          NETIF_MSG_IFDOWN       | \
154          NETIF_MSG_IFUP         | \
155          NETIF_MSG_RX_ERR       | \
156          NETIF_MSG_TX_ERR)
157
158 /* length of time before we decide the hardware is borked,
159  * and dev->tx_timeout() should be called to fix the problem
160  */
161 #define CAS_TX_TIMEOUT                  (HZ)
162 #define CAS_LINK_TIMEOUT                (22*HZ/10)
163 #define CAS_LINK_FAST_TIMEOUT           (1)
164
165 /* timeout values for state changing. these specify the number
166  * of 10us delays to be used before giving up.
167  */
168 #define STOP_TRIES_PHY 1000
169 #define STOP_TRIES     5000
170
171 /* specify a minimum frame size to deal with some fifo issues
172  * max mtu == 2 * page size - ethernet header - 64 - swivel =
173  *            2 * page_size - 0x50
174  */
175 #define CAS_MIN_FRAME                   97
176 #define CAS_1000MB_MIN_FRAME            255
177 #define CAS_MIN_MTU                     60
178 #define CAS_MAX_MTU                     min(((cp->page_size << 1) - 0x50), 9000)
179
180 #if 1
181 /*
182  * Eliminate these and use separate atomic counters for each, to
183  * avoid a race condition.
184  */
185 #else
186 #define CAS_RESET_MTU                   1
187 #define CAS_RESET_ALL                   2
188 #define CAS_RESET_SPARE                 3
189 #endif
190
191 static char version[] __devinitdata =
192         DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
193
194 static int cassini_debug = -1;  /* -1 == use CAS_DEF_MSG_ENABLE as value */
195 static int link_mode;
196
197 MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
198 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
199 MODULE_LICENSE("GPL");
200 module_param(cassini_debug, int, 0);
201 MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
202 module_param(link_mode, int, 0);
203 MODULE_PARM_DESC(link_mode, "default link mode");
204
205 /*
206  * Work around for a PCS bug in which the link goes down due to the chip
207  * being confused and never showing a link status of "up."
208  */
209 #define DEFAULT_LINKDOWN_TIMEOUT 5
210 /*
211  * Value in seconds, for user input.
212  */
213 static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
214 module_param(linkdown_timeout, int, 0);
215 MODULE_PARM_DESC(linkdown_timeout,
216 "min reset interval in sec. for PCS linkdown issue; disabled if not positive");
217
218 /*
219  * value in 'ticks' (units used by jiffies). Set when we init the
220  * module because 'HZ' in actually a function call on some flavors of
221  * Linux.  This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
222  */
223 static int link_transition_timeout;
224
225
226
227 static u16 link_modes[] __devinitdata = {
228         BMCR_ANENABLE,                   /* 0 : autoneg */
229         0,                               /* 1 : 10bt half duplex */
230         BMCR_SPEED100,                   /* 2 : 100bt half duplex */
231         BMCR_FULLDPLX,                   /* 3 : 10bt full duplex */
232         BMCR_SPEED100|BMCR_FULLDPLX,     /* 4 : 100bt full duplex */
233         CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
234 };
235
236 static struct pci_device_id cas_pci_tbl[] __devinitdata = {
237         { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
238           PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
239         { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
240           PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
241         { 0, }
242 };
243
244 MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
245
246 static void cas_set_link_modes(struct cas *cp);
247
248 static inline void cas_lock_tx(struct cas *cp)
249 {
250         int i;
251
252         for (i = 0; i < N_TX_RINGS; i++)
253                 spin_lock(&cp->tx_lock[i]);
254 }
255
256 static inline void cas_lock_all(struct cas *cp)
257 {
258         spin_lock_irq(&cp->lock);
259         cas_lock_tx(cp);
260 }
261
262 /* WTZ: QA was finding deadlock problems with the previous
263  * versions after long test runs with multiple cards per machine.
264  * See if replacing cas_lock_all with safer versions helps. The
265  * symptoms QA is reporting match those we'd expect if interrupts
266  * aren't being properly restored, and we fixed a previous deadlock
267  * with similar symptoms by using save/restore versions in other
268  * places.
269  */
270 #define cas_lock_all_save(cp, flags) \
271 do { \
272         struct cas *xxxcp = (cp); \
273         spin_lock_irqsave(&xxxcp->lock, flags); \
274         cas_lock_tx(xxxcp); \
275 } while (0)
276
277 static inline void cas_unlock_tx(struct cas *cp)
278 {
279         int i;
280
281         for (i = N_TX_RINGS; i > 0; i--)
282                 spin_unlock(&cp->tx_lock[i - 1]);
283 }
284
285 static inline void cas_unlock_all(struct cas *cp)
286 {
287         cas_unlock_tx(cp);
288         spin_unlock_irq(&cp->lock);
289 }
290
291 #define cas_unlock_all_restore(cp, flags) \
292 do { \
293         struct cas *xxxcp = (cp); \
294         cas_unlock_tx(xxxcp); \
295         spin_unlock_irqrestore(&xxxcp->lock, flags); \
296 } while (0)
297
298 static void cas_disable_irq(struct cas *cp, const int ring)
299 {
300         /* Make sure we won't get any more interrupts */
301         if (ring == 0) {
302                 writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
303                 return;
304         }
305
306         /* disable completion interrupts and selectively mask */
307         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
308                 switch (ring) {
309 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
310 #ifdef USE_PCI_INTB
311                 case 1:
312 #endif
313 #ifdef USE_PCI_INTC
314                 case 2:
315 #endif
316 #ifdef USE_PCI_INTD
317                 case 3:
318 #endif
319                         writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN,
320                                cp->regs + REG_PLUS_INTRN_MASK(ring));
321                         break;
322 #endif
323                 default:
324                         writel(INTRN_MASK_CLEAR_ALL, cp->regs +
325                                REG_PLUS_INTRN_MASK(ring));
326                         break;
327                 }
328         }
329 }
330
331 static inline void cas_mask_intr(struct cas *cp)
332 {
333         int i;
334
335         for (i = 0; i < N_RX_COMP_RINGS; i++)
336                 cas_disable_irq(cp, i);
337 }
338
339 static void cas_enable_irq(struct cas *cp, const int ring)
340 {
341         if (ring == 0) { /* all but TX_DONE */
342                 writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
343                 return;
344         }
345
346         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
347                 switch (ring) {
348 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
349 #ifdef USE_PCI_INTB
350                 case 1:
351 #endif
352 #ifdef USE_PCI_INTC
353                 case 2:
354 #endif
355 #ifdef USE_PCI_INTD
356                 case 3:
357 #endif
358                         writel(INTRN_MASK_RX_EN, cp->regs +
359                                REG_PLUS_INTRN_MASK(ring));
360                         break;
361 #endif
362                 default:
363                         break;
364                 }
365         }
366 }
367
368 static inline void cas_unmask_intr(struct cas *cp)
369 {
370         int i;
371
372         for (i = 0; i < N_RX_COMP_RINGS; i++)
373                 cas_enable_irq(cp, i);
374 }
375
376 static inline void cas_entropy_gather(struct cas *cp)
377 {
378 #ifdef USE_ENTROPY_DEV
379         if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
380                 return;
381
382         batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
383                             readl(cp->regs + REG_ENTROPY_IV),
384                             sizeof(uint64_t)*8);
385 #endif
386 }
387
388 static inline void cas_entropy_reset(struct cas *cp)
389 {
390 #ifdef USE_ENTROPY_DEV
391         if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
392                 return;
393
394         writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT,
395                cp->regs + REG_BIM_LOCAL_DEV_EN);
396         writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
397         writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
398
399         /* if we read back 0x0, we don't have an entropy device */
400         if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
401                 cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
402 #endif
403 }
404
405 /* access to the phy. the following assumes that we've initialized the MIF to
406  * be in frame rather than bit-bang mode
407  */
408 static u16 cas_phy_read(struct cas *cp, int reg)
409 {
410         u32 cmd;
411         int limit = STOP_TRIES_PHY;
412
413         cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
414         cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
415         cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
416         cmd |= MIF_FRAME_TURN_AROUND_MSB;
417         writel(cmd, cp->regs + REG_MIF_FRAME);
418
419         /* poll for completion */
420         while (limit-- > 0) {
421                 udelay(10);
422                 cmd = readl(cp->regs + REG_MIF_FRAME);
423                 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
424                         return (cmd & MIF_FRAME_DATA_MASK);
425         }
426         return 0xFFFF; /* -1 */
427 }
428
429 static int cas_phy_write(struct cas *cp, int reg, u16 val)
430 {
431         int limit = STOP_TRIES_PHY;
432         u32 cmd;
433
434         cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
435         cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
436         cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
437         cmd |= MIF_FRAME_TURN_AROUND_MSB;
438         cmd |= val & MIF_FRAME_DATA_MASK;
439         writel(cmd, cp->regs + REG_MIF_FRAME);
440
441         /* poll for completion */
442         while (limit-- > 0) {
443                 udelay(10);
444                 cmd = readl(cp->regs + REG_MIF_FRAME);
445                 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
446                         return 0;
447         }
448         return -1;
449 }
450
451 static void cas_phy_powerup(struct cas *cp)
452 {
453         u16 ctl = cas_phy_read(cp, MII_BMCR);
454
455         if ((ctl & BMCR_PDOWN) == 0)
456                 return;
457         ctl &= ~BMCR_PDOWN;
458         cas_phy_write(cp, MII_BMCR, ctl);
459 }
460
461 static void cas_phy_powerdown(struct cas *cp)
462 {
463         u16 ctl = cas_phy_read(cp, MII_BMCR);
464
465         if (ctl & BMCR_PDOWN)
466                 return;
467         ctl |= BMCR_PDOWN;
468         cas_phy_write(cp, MII_BMCR, ctl);
469 }
470
471 /* cp->lock held. note: the last put_page will free the buffer */
472 static int cas_page_free(struct cas *cp, cas_page_t *page)
473 {
474         pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size,
475                        PCI_DMA_FROMDEVICE);
476         __free_pages(page->buffer, cp->page_order);
477         kfree(page);
478         return 0;
479 }
480
481 #ifdef RX_COUNT_BUFFERS
482 #define RX_USED_ADD(x, y)       ((x)->used += (y))
483 #define RX_USED_SET(x, y)       ((x)->used  = (y))
484 #else
485 #define RX_USED_ADD(x, y)
486 #define RX_USED_SET(x, y)
487 #endif
488
489 /* local page allocation routines for the receive buffers. jumbo pages
490  * require at least 8K contiguous and 8K aligned buffers.
491  */
492 static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
493 {
494         cas_page_t *page;
495
496         page = kmalloc(sizeof(cas_page_t), flags);
497         if (!page)
498                 return NULL;
499
500         INIT_LIST_HEAD(&page->list);
501         RX_USED_SET(page, 0);
502         page->buffer = alloc_pages(flags, cp->page_order);
503         if (!page->buffer)
504                 goto page_err;
505         page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0,
506                                       cp->page_size, PCI_DMA_FROMDEVICE);
507         return page;
508
509 page_err:
510         kfree(page);
511         return NULL;
512 }
513
514 /* initialize spare pool of rx buffers, but allocate during the open */
515 static void cas_spare_init(struct cas *cp)
516 {
517         spin_lock(&cp->rx_inuse_lock);
518         INIT_LIST_HEAD(&cp->rx_inuse_list);
519         spin_unlock(&cp->rx_inuse_lock);
520
521         spin_lock(&cp->rx_spare_lock);
522         INIT_LIST_HEAD(&cp->rx_spare_list);
523         cp->rx_spares_needed = RX_SPARE_COUNT;
524         spin_unlock(&cp->rx_spare_lock);
525 }
526
527 /* used on close. free all the spare buffers. */
528 static void cas_spare_free(struct cas *cp)
529 {
530         struct list_head list, *elem, *tmp;
531
532         /* free spare buffers */
533         INIT_LIST_HEAD(&list);
534         spin_lock(&cp->rx_spare_lock);
535         list_splice_init(&cp->rx_spare_list, &list);
536         spin_unlock(&cp->rx_spare_lock);
537         list_for_each_safe(elem, tmp, &list) {
538                 cas_page_free(cp, list_entry(elem, cas_page_t, list));
539         }
540
541         INIT_LIST_HEAD(&list);
542 #if 1
543         /*
544          * Looks like Adrian had protected this with a different
545          * lock than used everywhere else to manipulate this list.
546          */
547         spin_lock(&cp->rx_inuse_lock);
548         list_splice_init(&cp->rx_inuse_list, &list);
549         spin_unlock(&cp->rx_inuse_lock);
550 #else
551         spin_lock(&cp->rx_spare_lock);
552         list_splice_init(&cp->rx_inuse_list, &list);
553         spin_unlock(&cp->rx_spare_lock);
554 #endif
555         list_for_each_safe(elem, tmp, &list) {
556                 cas_page_free(cp, list_entry(elem, cas_page_t, list));
557         }
558 }
559
560 /* replenish spares if needed */
561 static void cas_spare_recover(struct cas *cp, const gfp_t flags)
562 {
563         struct list_head list, *elem, *tmp;
564         int needed, i;
565
566         /* check inuse list. if we don't need any more free buffers,
567          * just free it
568          */
569
570         /* make a local copy of the list */
571         INIT_LIST_HEAD(&list);
572         spin_lock(&cp->rx_inuse_lock);
573         list_splice_init(&cp->rx_inuse_list, &list);
574         spin_unlock(&cp->rx_inuse_lock);
575
576         list_for_each_safe(elem, tmp, &list) {
577                 cas_page_t *page = list_entry(elem, cas_page_t, list);
578
579                 if (page_count(page->buffer) > 1)
580                         continue;
581
582                 list_del(elem);
583                 spin_lock(&cp->rx_spare_lock);
584                 if (cp->rx_spares_needed > 0) {
585                         list_add(elem, &cp->rx_spare_list);
586                         cp->rx_spares_needed--;
587                         spin_unlock(&cp->rx_spare_lock);
588                 } else {
589                         spin_unlock(&cp->rx_spare_lock);
590                         cas_page_free(cp, page);
591                 }
592         }
593
594         /* put any inuse buffers back on the list */
595         if (!list_empty(&list)) {
596                 spin_lock(&cp->rx_inuse_lock);
597                 list_splice(&list, &cp->rx_inuse_list);
598                 spin_unlock(&cp->rx_inuse_lock);
599         }
600
601         spin_lock(&cp->rx_spare_lock);
602         needed = cp->rx_spares_needed;
603         spin_unlock(&cp->rx_spare_lock);
604         if (!needed)
605                 return;
606
607         /* we still need spares, so try to allocate some */
608         INIT_LIST_HEAD(&list);
609         i = 0;
610         while (i < needed) {
611                 cas_page_t *spare = cas_page_alloc(cp, flags);
612                 if (!spare)
613                         break;
614                 list_add(&spare->list, &list);
615                 i++;
616         }
617
618         spin_lock(&cp->rx_spare_lock);
619         list_splice(&list, &cp->rx_spare_list);
620         cp->rx_spares_needed -= i;
621         spin_unlock(&cp->rx_spare_lock);
622 }
623
624 /* pull a page from the list. */
625 static cas_page_t *cas_page_dequeue(struct cas *cp)
626 {
627         struct list_head *entry;
628         int recover;
629
630         spin_lock(&cp->rx_spare_lock);
631         if (list_empty(&cp->rx_spare_list)) {
632                 /* try to do a quick recovery */
633                 spin_unlock(&cp->rx_spare_lock);
634                 cas_spare_recover(cp, GFP_ATOMIC);
635                 spin_lock(&cp->rx_spare_lock);
636                 if (list_empty(&cp->rx_spare_list)) {
637                         if (netif_msg_rx_err(cp))
638                                 printk(KERN_ERR "%s: no spare buffers "
639                                        "available.\n", cp->dev->name);
640                         spin_unlock(&cp->rx_spare_lock);
641                         return NULL;
642                 }
643         }
644
645         entry = cp->rx_spare_list.next;
646         list_del(entry);
647         recover = ++cp->rx_spares_needed;
648         spin_unlock(&cp->rx_spare_lock);
649
650         /* trigger the timer to do the recovery */
651         if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
652 #if 1
653                 atomic_inc(&cp->reset_task_pending);
654                 atomic_inc(&cp->reset_task_pending_spare);
655                 schedule_work(&cp->reset_task);
656 #else
657                 atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
658                 schedule_work(&cp->reset_task);
659 #endif
660         }
661         return list_entry(entry, cas_page_t, list);
662 }
663
664
665 static void cas_mif_poll(struct cas *cp, const int enable)
666 {
667         u32 cfg;
668
669         cfg  = readl(cp->regs + REG_MIF_CFG);
670         cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
671
672         if (cp->phy_type & CAS_PHY_MII_MDIO1)
673                 cfg |= MIF_CFG_PHY_SELECT;
674
675         /* poll and interrupt on link status change. */
676         if (enable) {
677                 cfg |= MIF_CFG_POLL_EN;
678                 cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
679                 cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
680         }
681         writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF,
682                cp->regs + REG_MIF_MASK);
683         writel(cfg, cp->regs + REG_MIF_CFG);
684 }
685
686 /* Must be invoked under cp->lock */
687 static void cas_begin_auto_negotiation(struct cas *cp, struct ethtool_cmd *ep)
688 {
689         u16 ctl;
690 #if 1
691         int lcntl;
692         int changed = 0;
693         int oldstate = cp->lstate;
694         int link_was_not_down = !(oldstate == link_down);
695 #endif
696         /* Setup link parameters */
697         if (!ep)
698                 goto start_aneg;
699         lcntl = cp->link_cntl;
700         if (ep->autoneg == AUTONEG_ENABLE)
701                 cp->link_cntl = BMCR_ANENABLE;
702         else {
703                 cp->link_cntl = 0;
704                 if (ep->speed == SPEED_100)
705                         cp->link_cntl |= BMCR_SPEED100;
706                 else if (ep->speed == SPEED_1000)
707                         cp->link_cntl |= CAS_BMCR_SPEED1000;
708                 if (ep->duplex == DUPLEX_FULL)
709                         cp->link_cntl |= BMCR_FULLDPLX;
710         }
711 #if 1
712         changed = (lcntl != cp->link_cntl);
713 #endif
714 start_aneg:
715         if (cp->lstate == link_up) {
716                 printk(KERN_INFO "%s: PCS link down.\n",
717                        cp->dev->name);
718         } else {
719                 if (changed) {
720                         printk(KERN_INFO "%s: link configuration changed\n",
721                                cp->dev->name);
722                 }
723         }
724         cp->lstate = link_down;
725         cp->link_transition = LINK_TRANSITION_LINK_DOWN;
726         if (!cp->hw_running)
727                 return;
728 #if 1
729         /*
730          * WTZ: If the old state was link_up, we turn off the carrier
731          * to replicate everything we do elsewhere on a link-down
732          * event when we were already in a link-up state..
733          */
734         if (oldstate == link_up)
735                 netif_carrier_off(cp->dev);
736         if (changed  && link_was_not_down) {
737                 /*
738                  * WTZ: This branch will simply schedule a full reset after
739                  * we explicitly changed link modes in an ioctl. See if this
740                  * fixes the link-problems we were having for forced mode.
741                  */
742                 atomic_inc(&cp->reset_task_pending);
743                 atomic_inc(&cp->reset_task_pending_all);
744                 schedule_work(&cp->reset_task);
745                 cp->timer_ticks = 0;
746                 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
747                 return;
748         }
749 #endif
750         if (cp->phy_type & CAS_PHY_SERDES) {
751                 u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
752
753                 if (cp->link_cntl & BMCR_ANENABLE) {
754                         val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
755                         cp->lstate = link_aneg;
756                 } else {
757                         if (cp->link_cntl & BMCR_FULLDPLX)
758                                 val |= PCS_MII_CTRL_DUPLEX;
759                         val &= ~PCS_MII_AUTONEG_EN;
760                         cp->lstate = link_force_ok;
761                 }
762                 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
763                 writel(val, cp->regs + REG_PCS_MII_CTRL);
764
765         } else {
766                 cas_mif_poll(cp, 0);
767                 ctl = cas_phy_read(cp, MII_BMCR);
768                 ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 |
769                          CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
770                 ctl |= cp->link_cntl;
771                 if (ctl & BMCR_ANENABLE) {
772                         ctl |= BMCR_ANRESTART;
773                         cp->lstate = link_aneg;
774                 } else {
775                         cp->lstate = link_force_ok;
776                 }
777                 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
778                 cas_phy_write(cp, MII_BMCR, ctl);
779                 cas_mif_poll(cp, 1);
780         }
781
782         cp->timer_ticks = 0;
783         mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
784 }
785
786 /* Must be invoked under cp->lock. */
787 static int cas_reset_mii_phy(struct cas *cp)
788 {
789         int limit = STOP_TRIES_PHY;
790         u16 val;
791
792         cas_phy_write(cp, MII_BMCR, BMCR_RESET);
793         udelay(100);
794         while (limit--) {
795                 val = cas_phy_read(cp, MII_BMCR);
796                 if ((val & BMCR_RESET) == 0)
797                         break;
798                 udelay(10);
799         }
800         return (limit <= 0);
801 }
802
803 static void cas_saturn_firmware_load(struct cas *cp)
804 {
805         cas_saturn_patch_t *patch = cas_saturn_patch;
806
807         cas_phy_powerdown(cp);
808
809         /* expanded memory access mode */
810         cas_phy_write(cp, DP83065_MII_MEM, 0x0);
811
812         /* pointer configuration for new firmware */
813         cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
814         cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
815         cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
816         cas_phy_write(cp, DP83065_MII_REGD, 0x82);
817         cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
818         cas_phy_write(cp, DP83065_MII_REGD, 0x0);
819         cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
820         cas_phy_write(cp, DP83065_MII_REGD, 0x39);
821
822         /* download new firmware */
823         cas_phy_write(cp, DP83065_MII_MEM, 0x1);
824         cas_phy_write(cp, DP83065_MII_REGE, patch->addr);
825         while (patch->addr) {
826                 cas_phy_write(cp, DP83065_MII_REGD, patch->val);
827                 patch++;
828         }
829
830         /* enable firmware */
831         cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
832         cas_phy_write(cp, DP83065_MII_REGD, 0x1);
833 }
834
835
836 /* phy initialization */
837 static void cas_phy_init(struct cas *cp)
838 {
839         u16 val;
840
841         /* if we're in MII/GMII mode, set up phy */
842         if (CAS_PHY_MII(cp->phy_type)) {
843                 writel(PCS_DATAPATH_MODE_MII,
844                        cp->regs + REG_PCS_DATAPATH_MODE);
845
846                 cas_mif_poll(cp, 0);
847                 cas_reset_mii_phy(cp); /* take out of isolate mode */
848
849                 if (PHY_LUCENT_B0 == cp->phy_id) {
850                         /* workaround link up/down issue with lucent */
851                         cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
852                         cas_phy_write(cp, MII_BMCR, 0x00f1);
853                         cas_phy_write(cp, LUCENT_MII_REG, 0x0);
854
855                 } else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
856                         /* workarounds for broadcom phy */
857                         cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
858                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
859                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
860                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
861                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
862                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
863                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
864                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
865                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
866                         cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
867                         cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
868
869                 } else if (PHY_BROADCOM_5411 == cp->phy_id) {
870                         val = cas_phy_read(cp, BROADCOM_MII_REG4);
871                         val = cas_phy_read(cp, BROADCOM_MII_REG4);
872                         if (val & 0x0080) {
873                                 /* link workaround */
874                                 cas_phy_write(cp, BROADCOM_MII_REG4,
875                                               val & ~0x0080);
876                         }
877
878                 } else if (cp->cas_flags & CAS_FLAG_SATURN) {
879                         writel((cp->phy_type & CAS_PHY_MII_MDIO0) ?
880                                SATURN_PCFG_FSI : 0x0,
881                                cp->regs + REG_SATURN_PCFG);
882
883                         /* load firmware to address 10Mbps auto-negotiation
884                          * issue. NOTE: this will need to be changed if the
885                          * default firmware gets fixed.
886                          */
887                         if (PHY_NS_DP83065 == cp->phy_id) {
888                                 cas_saturn_firmware_load(cp);
889                         }
890                         cas_phy_powerup(cp);
891                 }
892
893                 /* advertise capabilities */
894                 val = cas_phy_read(cp, MII_BMCR);
895                 val &= ~BMCR_ANENABLE;
896                 cas_phy_write(cp, MII_BMCR, val);
897                 udelay(10);
898
899                 cas_phy_write(cp, MII_ADVERTISE,
900                               cas_phy_read(cp, MII_ADVERTISE) |
901                               (ADVERTISE_10HALF | ADVERTISE_10FULL |
902                                ADVERTISE_100HALF | ADVERTISE_100FULL |
903                                CAS_ADVERTISE_PAUSE |
904                                CAS_ADVERTISE_ASYM_PAUSE));
905
906                 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
907                         /* make sure that we don't advertise half
908                          * duplex to avoid a chip issue
909                          */
910                         val  = cas_phy_read(cp, CAS_MII_1000_CTRL);
911                         val &= ~CAS_ADVERTISE_1000HALF;
912                         val |= CAS_ADVERTISE_1000FULL;
913                         cas_phy_write(cp, CAS_MII_1000_CTRL, val);
914                 }
915
916         } else {
917                 /* reset pcs for serdes */
918                 u32 val;
919                 int limit;
920
921                 writel(PCS_DATAPATH_MODE_SERDES,
922                        cp->regs + REG_PCS_DATAPATH_MODE);
923
924                 /* enable serdes pins on saturn */
925                 if (cp->cas_flags & CAS_FLAG_SATURN)
926                         writel(0, cp->regs + REG_SATURN_PCFG);
927
928                 /* Reset PCS unit. */
929                 val = readl(cp->regs + REG_PCS_MII_CTRL);
930                 val |= PCS_MII_RESET;
931                 writel(val, cp->regs + REG_PCS_MII_CTRL);
932
933                 limit = STOP_TRIES;
934                 while (limit-- > 0) {
935                         udelay(10);
936                         if ((readl(cp->regs + REG_PCS_MII_CTRL) &
937                              PCS_MII_RESET) == 0)
938                                 break;
939                 }
940                 if (limit <= 0)
941                         printk(KERN_WARNING "%s: PCS reset bit would not "
942                                "clear [%08x].\n", cp->dev->name,
943                                readl(cp->regs + REG_PCS_STATE_MACHINE));
944
945                 /* Make sure PCS is disabled while changing advertisement
946                  * configuration.
947                  */
948                 writel(0x0, cp->regs + REG_PCS_CFG);
949
950                 /* Advertise all capabilities except half-duplex. */
951                 val  = readl(cp->regs + REG_PCS_MII_ADVERT);
952                 val &= ~PCS_MII_ADVERT_HD;
953                 val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE |
954                         PCS_MII_ADVERT_ASYM_PAUSE);
955                 writel(val, cp->regs + REG_PCS_MII_ADVERT);
956
957                 /* enable PCS */
958                 writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);
959
960                 /* pcs workaround: enable sync detect */
961                 writel(PCS_SERDES_CTRL_SYNCD_EN,
962                        cp->regs + REG_PCS_SERDES_CTRL);
963         }
964 }
965
966
967 static int cas_pcs_link_check(struct cas *cp)
968 {
969         u32 stat, state_machine;
970         int retval = 0;
971
972         /* The link status bit latches on zero, so you must
973          * read it twice in such a case to see a transition
974          * to the link being up.
975          */
976         stat = readl(cp->regs + REG_PCS_MII_STATUS);
977         if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
978                 stat = readl(cp->regs + REG_PCS_MII_STATUS);
979
980         /* The remote-fault indication is only valid
981          * when autoneg has completed.
982          */
983         if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
984                      PCS_MII_STATUS_REMOTE_FAULT)) ==
985             (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT)) {
986                 if (netif_msg_link(cp))
987                         printk(KERN_INFO "%s: PCS RemoteFault\n",
988                                cp->dev->name);
989         }
990
991         /* work around link detection issue by querying the PCS state
992          * machine directly.
993          */
994         state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
995         if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
996                 stat &= ~PCS_MII_STATUS_LINK_STATUS;
997         } else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
998                 stat |= PCS_MII_STATUS_LINK_STATUS;
999         }
1000
1001         if (stat & PCS_MII_STATUS_LINK_STATUS) {
1002                 if (cp->lstate != link_up) {
1003                         if (cp->opened) {
1004                                 cp->lstate = link_up;
1005                                 cp->link_transition = LINK_TRANSITION_LINK_UP;
1006
1007                                 cas_set_link_modes(cp);
1008                                 netif_carrier_on(cp->dev);
1009                         }
1010                 }
1011         } else if (cp->lstate == link_up) {
1012                 cp->lstate = link_down;
1013                 if (link_transition_timeout != 0 &&
1014                     cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1015                     !cp->link_transition_jiffies_valid) {
1016                         /*
1017                          * force a reset, as a workaround for the
1018                          * link-failure problem. May want to move this to a
1019                          * point a bit earlier in the sequence. If we had
1020                          * generated a reset a short time ago, we'll wait for
1021                          * the link timer to check the status until a
1022                          * timer expires (link_transistion_jiffies_valid is
1023                          * true when the timer is running.)  Instead of using
1024                          * a system timer, we just do a check whenever the
1025                          * link timer is running - this clears the flag after
1026                          * a suitable delay.
1027                          */
1028                         retval = 1;
1029                         cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1030                         cp->link_transition_jiffies = jiffies;
1031                         cp->link_transition_jiffies_valid = 1;
1032                 } else {
1033                         cp->link_transition = LINK_TRANSITION_ON_FAILURE;
1034                 }
1035                 netif_carrier_off(cp->dev);
1036                 if (cp->opened && netif_msg_link(cp)) {
1037                         printk(KERN_INFO "%s: PCS link down.\n",
1038                                cp->dev->name);
1039                 }
1040
1041                 /* Cassini only: if you force a mode, there can be
1042                  * sync problems on link down. to fix that, the following
1043                  * things need to be checked:
1044                  * 1) read serialink state register
1045                  * 2) read pcs status register to verify link down.
1046                  * 3) if link down and serial link == 0x03, then you need
1047                  *    to global reset the chip.
1048                  */
1049                 if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
1050                         /* should check to see if we're in a forced mode */
1051                         stat = readl(cp->regs + REG_PCS_SERDES_STATE);
1052                         if (stat == 0x03)
1053                                 return 1;
1054                 }
1055         } else if (cp->lstate == link_down) {
1056                 if (link_transition_timeout != 0 &&
1057                     cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1058                     !cp->link_transition_jiffies_valid) {
1059                         /* force a reset, as a workaround for the
1060                          * link-failure problem.  May want to move
1061                          * this to a point a bit earlier in the
1062                          * sequence.
1063                          */
1064                         retval = 1;
1065                         cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1066                         cp->link_transition_jiffies = jiffies;
1067                         cp->link_transition_jiffies_valid = 1;
1068                 } else {
1069                         cp->link_transition = LINK_TRANSITION_STILL_FAILED;
1070                 }
1071         }
1072
1073         return retval;
1074 }
1075
1076 static int cas_pcs_interrupt(struct net_device *dev,
1077                              struct cas *cp, u32 status)
1078 {
1079         u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
1080
1081         if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0)
1082                 return 0;
1083         return cas_pcs_link_check(cp);
1084 }
1085
1086 static int cas_txmac_interrupt(struct net_device *dev,
1087                                struct cas *cp, u32 status)
1088 {
1089         u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
1090
1091         if (!txmac_stat)
1092                 return 0;
1093
1094         if (netif_msg_intr(cp))
1095                 printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
1096                         cp->dev->name, txmac_stat);
1097
1098         /* Defer timer expiration is quite normal,
1099          * don't even log the event.
1100          */
1101         if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
1102             !(txmac_stat & ~MAC_TX_DEFER_TIMER))
1103                 return 0;
1104
1105         spin_lock(&cp->stat_lock[0]);
1106         if (txmac_stat & MAC_TX_UNDERRUN) {
1107                 printk(KERN_ERR "%s: TX MAC xmit underrun.\n",
1108                        dev->name);
1109                 cp->net_stats[0].tx_fifo_errors++;
1110         }
1111
1112         if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
1113                 printk(KERN_ERR "%s: TX MAC max packet size error.\n",
1114                        dev->name);
1115                 cp->net_stats[0].tx_errors++;
1116         }
1117
1118         /* The rest are all cases of one of the 16-bit TX
1119          * counters expiring.
1120          */
1121         if (txmac_stat & MAC_TX_COLL_NORMAL)
1122                 cp->net_stats[0].collisions += 0x10000;
1123
1124         if (txmac_stat & MAC_TX_COLL_EXCESS) {
1125                 cp->net_stats[0].tx_aborted_errors += 0x10000;
1126                 cp->net_stats[0].collisions += 0x10000;
1127         }
1128
1129         if (txmac_stat & MAC_TX_COLL_LATE) {
1130                 cp->net_stats[0].tx_aborted_errors += 0x10000;
1131                 cp->net_stats[0].collisions += 0x10000;
1132         }
1133         spin_unlock(&cp->stat_lock[0]);
1134
1135         /* We do not keep track of MAC_TX_COLL_FIRST and
1136          * MAC_TX_PEAK_ATTEMPTS events.
1137          */
1138         return 0;
1139 }
1140
1141 static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware)
1142 {
1143         cas_hp_inst_t *inst;
1144         u32 val;
1145         int i;
1146
1147         i = 0;
1148         while ((inst = firmware) && inst->note) {
1149                 writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
1150
1151                 val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
1152                 val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
1153                 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
1154
1155                 val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
1156                 val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
1157                 val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
1158                 val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
1159                 val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
1160                 val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
1161                 val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
1162                 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);
1163
1164                 val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
1165                 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
1166                 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
1167                 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
1168                 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
1169                 ++firmware;
1170                 ++i;
1171         }
1172 }
1173
1174 static void cas_init_rx_dma(struct cas *cp)
1175 {
1176         u64 desc_dma = cp->block_dvma;
1177         u32 val;
1178         int i, size;
1179
1180         /* rx free descriptors */
1181         val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL);
1182         val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
1183         val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
1184         if ((N_RX_DESC_RINGS > 1) &&
1185             (cp->cas_flags & CAS_FLAG_REG_PLUS))  /* do desc 2 */
1186                 val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
1187         writel(val, cp->regs + REG_RX_CFG);
1188
1189         val = (unsigned long) cp->init_rxds[0] -
1190                 (unsigned long) cp->init_block;
1191         writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
1192         writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
1193         writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
1194
1195         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1196                 /* rx desc 2 is for IPSEC packets. however,
1197                  * we don't it that for that purpose.
1198                  */
1199                 val = (unsigned long) cp->init_rxds[1] -
1200                         (unsigned long) cp->init_block;
1201                 writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
1202                 writel((desc_dma + val) & 0xffffffff, cp->regs +
1203                        REG_PLUS_RX_DB1_LOW);
1204                 writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs +
1205                        REG_PLUS_RX_KICK1);
1206         }
1207
1208         /* rx completion registers */
1209         val = (unsigned long) cp->init_rxcs[0] -
1210                 (unsigned long) cp->init_block;
1211         writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
1212         writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
1213
1214         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1215                 /* rx comp 2-4 */
1216                 for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
1217                         val = (unsigned long) cp->init_rxcs[i] -
1218                                 (unsigned long) cp->init_block;
1219                         writel((desc_dma + val) >> 32, cp->regs +
1220                                REG_PLUS_RX_CBN_HI(i));
1221                         writel((desc_dma + val) & 0xffffffff, cp->regs +
1222                                REG_PLUS_RX_CBN_LOW(i));
1223                 }
1224         }
1225
1226         /* read selective clear regs to prevent spurious interrupts
1227          * on reset because complete == kick.
1228          * selective clear set up to prevent interrupts on resets
1229          */
1230         readl(cp->regs + REG_INTR_STATUS_ALIAS);
1231         writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
1232         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1233                 for (i = 1; i < N_RX_COMP_RINGS; i++)
1234                         readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i));
1235
1236                 /* 2 is different from 3 and 4 */
1237                 if (N_RX_COMP_RINGS > 1)
1238                         writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1,
1239                                cp->regs + REG_PLUS_ALIASN_CLEAR(1));
1240
1241                 for (i = 2; i < N_RX_COMP_RINGS; i++)
1242                         writel(INTR_RX_DONE_ALT,
1243                                cp->regs + REG_PLUS_ALIASN_CLEAR(i));
1244         }
1245
1246         /* set up pause thresholds */
1247         val  = CAS_BASE(RX_PAUSE_THRESH_OFF,
1248                         cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
1249         val |= CAS_BASE(RX_PAUSE_THRESH_ON,
1250                         cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
1251         writel(val, cp->regs + REG_RX_PAUSE_THRESH);
1252
1253         /* zero out dma reassembly buffers */
1254         for (i = 0; i < 64; i++) {
1255                 writel(i, cp->regs + REG_RX_TABLE_ADDR);
1256                 writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
1257                 writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
1258                 writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
1259         }
1260
1261         /* make sure address register is 0 for normal operation */
1262         writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
1263         writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
1264
1265         /* interrupt mitigation */
1266 #ifdef USE_RX_BLANK
1267         val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
1268         val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
1269         writel(val, cp->regs + REG_RX_BLANK);
1270 #else
1271         writel(0x0, cp->regs + REG_RX_BLANK);
1272 #endif
1273
1274         /* interrupt generation as a function of low water marks for
1275          * free desc and completion entries. these are used to trigger
1276          * housekeeping for rx descs. we don't use the free interrupt
1277          * as it's not very useful
1278          */
1279         /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1280         val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
1281         writel(val, cp->regs + REG_RX_AE_THRESH);
1282         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1283                 val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
1284                 writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
1285         }
1286
1287         /* Random early detect registers. useful for congestion avoidance.
1288          * this should be tunable.
1289          */
1290         writel(0x0, cp->regs + REG_RX_RED);
1291
1292         /* receive page sizes. default == 2K (0x800) */
1293         val = 0;
1294         if (cp->page_size == 0x1000)
1295                 val = 0x1;
1296         else if (cp->page_size == 0x2000)
1297                 val = 0x2;
1298         else if (cp->page_size == 0x4000)
1299                 val = 0x3;
1300
1301         /* round mtu + offset. constrain to page size. */
1302         size = cp->dev->mtu + 64;
1303         if (size > cp->page_size)
1304                 size = cp->page_size;
1305
1306         if (size <= 0x400)
1307                 i = 0x0;
1308         else if (size <= 0x800)
1309                 i = 0x1;
1310         else if (size <= 0x1000)
1311                 i = 0x2;
1312         else
1313                 i = 0x3;
1314
1315         cp->mtu_stride = 1 << (i + 10);
1316         val  = CAS_BASE(RX_PAGE_SIZE, val);
1317         val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i);
1318         val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
1319         val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
1320         writel(val, cp->regs + REG_RX_PAGE_SIZE);
1321
1322         /* enable the header parser if desired */
1323         if (CAS_HP_FIRMWARE == cas_prog_null)
1324                 return;
1325
1326         val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
1327         val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
1328         val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
1329         writel(val, cp->regs + REG_HP_CFG);
1330 }
1331
1332 static inline void cas_rxc_init(struct cas_rx_comp *rxc)
1333 {
1334         memset(rxc, 0, sizeof(*rxc));
1335         rxc->word4 = cpu_to_le64(RX_COMP4_ZERO);
1336 }
1337
1338 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1339  * flipping is protected by the fact that the chip will not
1340  * hand back the same page index while it's being processed.
1341  */
1342 static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
1343 {
1344         cas_page_t *page = cp->rx_pages[1][index];
1345         cas_page_t *new;
1346
1347         if (page_count(page->buffer) == 1)
1348                 return page;
1349
1350         new = cas_page_dequeue(cp);
1351         if (new) {
1352                 spin_lock(&cp->rx_inuse_lock);
1353                 list_add(&page->list, &cp->rx_inuse_list);
1354                 spin_unlock(&cp->rx_inuse_lock);
1355         }
1356         return new;
1357 }
1358
1359 /* this needs to be changed if we actually use the ENC RX DESC ring */
1360 static cas_page_t *cas_page_swap(struct cas *cp, const int ring,
1361                                  const int index)
1362 {
1363         cas_page_t **page0 = cp->rx_pages[0];
1364         cas_page_t **page1 = cp->rx_pages[1];
1365
1366         /* swap if buffer is in use */
1367         if (page_count(page0[index]->buffer) > 1) {
1368                 cas_page_t *new = cas_page_spare(cp, index);
1369                 if (new) {
1370                         page1[index] = page0[index];
1371                         page0[index] = new;
1372                 }
1373         }
1374         RX_USED_SET(page0[index], 0);
1375         return page0[index];
1376 }
1377
1378 static void cas_clean_rxds(struct cas *cp)
1379 {
1380         /* only clean ring 0 as ring 1 is used for spare buffers */
1381         struct cas_rx_desc *rxd = cp->init_rxds[0];
1382         int i, size;
1383
1384         /* release all rx flows */
1385         for (i = 0; i < N_RX_FLOWS; i++) {
1386                 struct sk_buff *skb;
1387                 while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
1388                         cas_skb_release(skb);
1389                 }
1390         }
1391
1392         /* initialize descriptors */
1393         size = RX_DESC_RINGN_SIZE(0);
1394         for (i = 0; i < size; i++) {
1395                 cas_page_t *page = cas_page_swap(cp, 0, i);
1396                 rxd[i].buffer = cpu_to_le64(page->dma_addr);
1397                 rxd[i].index  = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) |
1398                                             CAS_BASE(RX_INDEX_RING, 0));
1399         }
1400
1401         cp->rx_old[0]  = RX_DESC_RINGN_SIZE(0) - 4;
1402         cp->rx_last[0] = 0;
1403         cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
1404 }
1405
1406 static void cas_clean_rxcs(struct cas *cp)
1407 {
1408         int i, j;
1409
1410         /* take ownership of rx comp descriptors */
1411         memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
1412         memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
1413         for (i = 0; i < N_RX_COMP_RINGS; i++) {
1414                 struct cas_rx_comp *rxc = cp->init_rxcs[i];
1415                 for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
1416                         cas_rxc_init(rxc + j);
1417                 }
1418         }
1419 }
1420
1421 #if 0
1422 /* When we get a RX fifo overflow, the RX unit is probably hung
1423  * so we do the following.
1424  *
1425  * If any part of the reset goes wrong, we return 1 and that causes the
1426  * whole chip to be reset.
1427  */
1428 static int cas_rxmac_reset(struct cas *cp)
1429 {
1430         struct net_device *dev = cp->dev;
1431         int limit;
1432         u32 val;
1433
1434         /* First, reset MAC RX. */
1435         writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1436         for (limit = 0; limit < STOP_TRIES; limit++) {
1437                 if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
1438                         break;
1439                 udelay(10);
1440         }
1441         if (limit == STOP_TRIES) {
1442                 printk(KERN_ERR "%s: RX MAC will not disable, resetting whole "
1443                        "chip.\n", dev->name);
1444                 return 1;
1445         }
1446
1447         /* Second, disable RX DMA. */
1448         writel(0, cp->regs + REG_RX_CFG);
1449         for (limit = 0; limit < STOP_TRIES; limit++) {
1450                 if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
1451                         break;
1452                 udelay(10);
1453         }
1454         if (limit == STOP_TRIES) {
1455                 printk(KERN_ERR "%s: RX DMA will not disable, resetting whole "
1456                        "chip.\n", dev->name);
1457                 return 1;
1458         }
1459
1460         mdelay(5);
1461
1462         /* Execute RX reset command. */
1463         writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
1464         for (limit = 0; limit < STOP_TRIES; limit++) {
1465                 if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
1466                         break;
1467                 udelay(10);
1468         }
1469         if (limit == STOP_TRIES) {
1470                 printk(KERN_ERR "%s: RX reset command will not execute, "
1471                        "resetting whole chip.\n", dev->name);
1472                 return 1;
1473         }
1474
1475         /* reset driver rx state */
1476         cas_clean_rxds(cp);
1477         cas_clean_rxcs(cp);
1478
1479         /* Now, reprogram the rest of RX unit. */
1480         cas_init_rx_dma(cp);
1481
1482         /* re-enable */
1483         val = readl(cp->regs + REG_RX_CFG);
1484         writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
1485         writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
1486         val = readl(cp->regs + REG_MAC_RX_CFG);
1487         writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1488         return 0;
1489 }
1490 #endif
1491
1492 static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
1493                                u32 status)
1494 {
1495         u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
1496
1497         if (!stat)
1498                 return 0;
1499
1500         if (netif_msg_intr(cp))
1501                 printk(KERN_DEBUG "%s: rxmac interrupt, stat: 0x%x\n",
1502                         cp->dev->name, stat);
1503
1504         /* these are all rollovers */
1505         spin_lock(&cp->stat_lock[0]);
1506         if (stat & MAC_RX_ALIGN_ERR)
1507                 cp->net_stats[0].rx_frame_errors += 0x10000;
1508
1509         if (stat & MAC_RX_CRC_ERR)
1510                 cp->net_stats[0].rx_crc_errors += 0x10000;
1511
1512         if (stat & MAC_RX_LEN_ERR)
1513                 cp->net_stats[0].rx_length_errors += 0x10000;
1514
1515         if (stat & MAC_RX_OVERFLOW) {
1516                 cp->net_stats[0].rx_over_errors++;
1517                 cp->net_stats[0].rx_fifo_errors++;
1518         }
1519
1520         /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1521          * events.
1522          */
1523         spin_unlock(&cp->stat_lock[0]);
1524         return 0;
1525 }
1526
1527 static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
1528                              u32 status)
1529 {
1530         u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
1531
1532         if (!stat)
1533                 return 0;
1534
1535         if (netif_msg_intr(cp))
1536                 printk(KERN_DEBUG "%s: mac interrupt, stat: 0x%x\n",
1537                         cp->dev->name, stat);
1538
1539         /* This interrupt is just for pause frame and pause
1540          * tracking.  It is useful for diagnostics and debug
1541          * but probably by default we will mask these events.
1542          */
1543         if (stat & MAC_CTRL_PAUSE_STATE)
1544                 cp->pause_entered++;
1545
1546         if (stat & MAC_CTRL_PAUSE_RECEIVED)
1547                 cp->pause_last_time_recvd = (stat >> 16);
1548
1549         return 0;
1550 }
1551
1552
1553 /* Must be invoked under cp->lock. */
1554 static inline int cas_mdio_link_not_up(struct cas *cp)
1555 {
1556         u16 val;
1557
1558         switch (cp->lstate) {
1559         case link_force_ret:
1560                 if (netif_msg_link(cp))
1561                         printk(KERN_INFO "%s: Autoneg failed again, keeping"
1562                                 " forced mode\n", cp->dev->name);
1563                 cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
1564                 cp->timer_ticks = 5;
1565                 cp->lstate = link_force_ok;
1566                 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1567                 break;
1568
1569         case link_aneg:
1570                 val = cas_phy_read(cp, MII_BMCR);
1571
1572                 /* Try forced modes. we try things in the following order:
1573                  * 1000 full -> 100 full/half -> 10 half
1574                  */
1575                 val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
1576                 val |= BMCR_FULLDPLX;
1577                 val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
1578                         CAS_BMCR_SPEED1000 : BMCR_SPEED100;
1579                 cas_phy_write(cp, MII_BMCR, val);
1580                 cp->timer_ticks = 5;
1581                 cp->lstate = link_force_try;
1582                 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1583                 break;
1584
1585         case link_force_try:
1586                 /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1587                 val = cas_phy_read(cp, MII_BMCR);
1588                 cp->timer_ticks = 5;
1589                 if (val & CAS_BMCR_SPEED1000) { /* gigabit */
1590                         val &= ~CAS_BMCR_SPEED1000;
1591                         val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
1592                         cas_phy_write(cp, MII_BMCR, val);
1593                         break;
1594                 }
1595
1596                 if (val & BMCR_SPEED100) {
1597                         if (val & BMCR_FULLDPLX) /* fd failed */
1598                                 val &= ~BMCR_FULLDPLX;
1599                         else { /* 100Mbps failed */
1600                                 val &= ~BMCR_SPEED100;
1601                         }
1602                         cas_phy_write(cp, MII_BMCR, val);
1603                         break;
1604                 }
1605         default:
1606                 break;
1607         }
1608         return 0;
1609 }
1610
1611
1612 /* must be invoked with cp->lock held */
1613 static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
1614 {
1615         int restart;
1616
1617         if (bmsr & BMSR_LSTATUS) {
1618                 /* Ok, here we got a link. If we had it due to a forced
1619                  * fallback, and we were configured for autoneg, we
1620                  * retry a short autoneg pass. If you know your hub is
1621                  * broken, use ethtool ;)
1622                  */
1623                 if ((cp->lstate == link_force_try) &&
1624                     (cp->link_cntl & BMCR_ANENABLE)) {
1625                         cp->lstate = link_force_ret;
1626                         cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1627                         cas_mif_poll(cp, 0);
1628                         cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
1629                         cp->timer_ticks = 5;
1630                         if (cp->opened && netif_msg_link(cp))
1631                                 printk(KERN_INFO "%s: Got link after fallback, retrying"
1632                                        " autoneg once...\n", cp->dev->name);
1633                         cas_phy_write(cp, MII_BMCR,
1634                                       cp->link_fcntl | BMCR_ANENABLE |
1635                                       BMCR_ANRESTART);
1636                         cas_mif_poll(cp, 1);
1637
1638                 } else if (cp->lstate != link_up) {
1639                         cp->lstate = link_up;
1640                         cp->link_transition = LINK_TRANSITION_LINK_UP;
1641
1642                         if (cp->opened) {
1643                                 cas_set_link_modes(cp);
1644                                 netif_carrier_on(cp->dev);
1645                         }
1646                 }
1647                 return 0;
1648         }
1649
1650         /* link not up. if the link was previously up, we restart the
1651          * whole process
1652          */
1653         restart = 0;
1654         if (cp->lstate == link_up) {
1655                 cp->lstate = link_down;
1656                 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
1657
1658                 netif_carrier_off(cp->dev);
1659                 if (cp->opened && netif_msg_link(cp))
1660                         printk(KERN_INFO "%s: Link down\n",
1661                                cp->dev->name);
1662                 restart = 1;
1663
1664         } else if (++cp->timer_ticks > 10)
1665                 cas_mdio_link_not_up(cp);
1666
1667         return restart;
1668 }
1669
1670 static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
1671                              u32 status)
1672 {
1673         u32 stat = readl(cp->regs + REG_MIF_STATUS);
1674         u16 bmsr;
1675
1676         /* check for a link change */
1677         if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
1678                 return 0;
1679
1680         bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
1681         return cas_mii_link_check(cp, bmsr);
1682 }
1683
1684 static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
1685                              u32 status)
1686 {
1687         u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
1688
1689         if (!stat)
1690                 return 0;
1691
1692         printk(KERN_ERR "%s: PCI error [%04x:%04x] ", dev->name, stat,
1693                readl(cp->regs + REG_BIM_DIAG));
1694
1695         /* cassini+ has this reserved */
1696         if ((stat & PCI_ERR_BADACK) &&
1697             ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
1698                 printk("<No ACK64# during ABS64 cycle> ");
1699
1700         if (stat & PCI_ERR_DTRTO)
1701                 printk("<Delayed transaction timeout> ");
1702         if (stat & PCI_ERR_OTHER)
1703                 printk("<other> ");
1704         if (stat & PCI_ERR_BIM_DMA_WRITE)
1705                 printk("<BIM DMA 0 write req> ");
1706         if (stat & PCI_ERR_BIM_DMA_READ)
1707                 printk("<BIM DMA 0 read req> ");
1708         printk("\n");
1709
1710         if (stat & PCI_ERR_OTHER) {
1711                 u16 cfg;
1712
1713                 /* Interrogate PCI config space for the
1714                  * true cause.
1715                  */
1716                 pci_read_config_word(cp->pdev, PCI_STATUS, &cfg);
1717                 printk(KERN_ERR "%s: Read PCI cfg space status [%04x]\n",
1718                        dev->name, cfg);
1719                 if (cfg & PCI_STATUS_PARITY)
1720                         printk(KERN_ERR "%s: PCI parity error detected.\n",
1721                                dev->name);
1722                 if (cfg & PCI_STATUS_SIG_TARGET_ABORT)
1723                         printk(KERN_ERR "%s: PCI target abort.\n",
1724                                dev->name);
1725                 if (cfg & PCI_STATUS_REC_TARGET_ABORT)
1726                         printk(KERN_ERR "%s: PCI master acks target abort.\n",
1727                                dev->name);
1728                 if (cfg & PCI_STATUS_REC_MASTER_ABORT)
1729                         printk(KERN_ERR "%s: PCI master abort.\n", dev->name);
1730                 if (cfg & PCI_STATUS_SIG_SYSTEM_ERROR)
1731                         printk(KERN_ERR "%s: PCI system error SERR#.\n",
1732                                dev->name);
1733                 if (cfg & PCI_STATUS_DETECTED_PARITY)
1734                         printk(KERN_ERR "%s: PCI parity error.\n",
1735                                dev->name);
1736
1737                 /* Write the error bits back to clear them. */
1738                 cfg &= (PCI_STATUS_PARITY |
1739                         PCI_STATUS_SIG_TARGET_ABORT |
1740                         PCI_STATUS_REC_TARGET_ABORT |
1741                         PCI_STATUS_REC_MASTER_ABORT |
1742                         PCI_STATUS_SIG_SYSTEM_ERROR |
1743                         PCI_STATUS_DETECTED_PARITY);
1744                 pci_write_config_word(cp->pdev, PCI_STATUS, cfg);
1745         }
1746
1747         /* For all PCI errors, we should reset the chip. */
1748         return 1;
1749 }
1750
1751 /* All non-normal interrupt conditions get serviced here.
1752  * Returns non-zero if we should just exit the interrupt
1753  * handler right now (ie. if we reset the card which invalidates
1754  * all of the other original irq status bits).
1755  */
1756 static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
1757                             u32 status)
1758 {
1759         if (status & INTR_RX_TAG_ERROR) {
1760                 /* corrupt RX tag framing */
1761                 if (netif_msg_rx_err(cp))
1762                         printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
1763                                 cp->dev->name);
1764                 spin_lock(&cp->stat_lock[0]);
1765                 cp->net_stats[0].rx_errors++;
1766                 spin_unlock(&cp->stat_lock[0]);
1767                 goto do_reset;
1768         }
1769
1770         if (status & INTR_RX_LEN_MISMATCH) {
1771                 /* length mismatch. */
1772                 if (netif_msg_rx_err(cp))
1773                         printk(KERN_DEBUG "%s: length mismatch for rx frame\n",
1774                                 cp->dev->name);
1775                 spin_lock(&cp->stat_lock[0]);
1776                 cp->net_stats[0].rx_errors++;
1777                 spin_unlock(&cp->stat_lock[0]);
1778                 goto do_reset;
1779         }
1780
1781         if (status & INTR_PCS_STATUS) {
1782                 if (cas_pcs_interrupt(dev, cp, status))
1783                         goto do_reset;
1784         }
1785
1786         if (status & INTR_TX_MAC_STATUS) {
1787                 if (cas_txmac_interrupt(dev, cp, status))
1788                         goto do_reset;
1789         }
1790
1791         if (status & INTR_RX_MAC_STATUS) {
1792                 if (cas_rxmac_interrupt(dev, cp, status))
1793                         goto do_reset;
1794         }
1795
1796         if (status & INTR_MAC_CTRL_STATUS) {
1797                 if (cas_mac_interrupt(dev, cp, status))
1798                         goto do_reset;
1799         }
1800
1801         if (status & INTR_MIF_STATUS) {
1802                 if (cas_mif_interrupt(dev, cp, status))
1803                         goto do_reset;
1804         }
1805
1806         if (status & INTR_PCI_ERROR_STATUS) {
1807                 if (cas_pci_interrupt(dev, cp, status))
1808                         goto do_reset;
1809         }
1810         return 0;
1811
1812 do_reset:
1813 #if 1
1814         atomic_inc(&cp->reset_task_pending);
1815         atomic_inc(&cp->reset_task_pending_all);
1816         printk(KERN_ERR "%s:reset called in cas_abnormal_irq [0x%x]\n",
1817                dev->name, status);
1818         schedule_work(&cp->reset_task);
1819 #else
1820         atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
1821         printk(KERN_ERR "reset called in cas_abnormal_irq\n");
1822         schedule_work(&cp->reset_task);
1823 #endif
1824         return 1;
1825 }
1826
1827 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1828  *       determining whether to do a netif_stop/wakeup
1829  */
1830 #define CAS_TABORT(x)      (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1831 #define CAS_ROUND_PAGE(x)  (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1832 static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
1833                                   const int len)
1834 {
1835         unsigned long off = addr + len;
1836
1837         if (CAS_TABORT(cp) == 1)
1838                 return 0;
1839         if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
1840                 return 0;
1841         return TX_TARGET_ABORT_LEN;
1842 }
1843
1844 static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
1845 {
1846         struct cas_tx_desc *txds;
1847         struct sk_buff **skbs;
1848         struct net_device *dev = cp->dev;
1849         int entry, count;
1850
1851         spin_lock(&cp->tx_lock[ring]);
1852         txds = cp->init_txds[ring];
1853         skbs = cp->tx_skbs[ring];
1854         entry = cp->tx_old[ring];
1855
1856         count = TX_BUFF_COUNT(ring, entry, limit);
1857         while (entry != limit) {
1858                 struct sk_buff *skb = skbs[entry];
1859                 dma_addr_t daddr;
1860                 u32 dlen;
1861                 int frag;
1862
1863                 if (!skb) {
1864                         /* this should never occur */
1865                         entry = TX_DESC_NEXT(ring, entry);
1866                         continue;
1867                 }
1868
1869                 /* however, we might get only a partial skb release. */
1870                 count -= skb_shinfo(skb)->nr_frags +
1871                         + cp->tx_tiny_use[ring][entry].nbufs + 1;
1872                 if (count < 0)
1873                         break;
1874
1875                 if (netif_msg_tx_done(cp))
1876                         printk(KERN_DEBUG "%s: tx[%d] done, slot %d\n",
1877                                cp->dev->name, ring, entry);
1878
1879                 skbs[entry] = NULL;
1880                 cp->tx_tiny_use[ring][entry].nbufs = 0;
1881
1882                 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1883                         struct cas_tx_desc *txd = txds + entry;
1884
1885                         daddr = le64_to_cpu(txd->buffer);
1886                         dlen = CAS_VAL(TX_DESC_BUFLEN,
1887                                        le64_to_cpu(txd->control));
1888                         pci_unmap_page(cp->pdev, daddr, dlen,
1889                                        PCI_DMA_TODEVICE);
1890                         entry = TX_DESC_NEXT(ring, entry);
1891
1892                         /* tiny buffer may follow */
1893                         if (cp->tx_tiny_use[ring][entry].used) {
1894                                 cp->tx_tiny_use[ring][entry].used = 0;
1895                                 entry = TX_DESC_NEXT(ring, entry);
1896                         }
1897                 }
1898
1899                 spin_lock(&cp->stat_lock[ring]);
1900                 cp->net_stats[ring].tx_packets++;
1901                 cp->net_stats[ring].tx_bytes += skb->len;
1902                 spin_unlock(&cp->stat_lock[ring]);
1903                 dev_kfree_skb_irq(skb);
1904         }
1905         cp->tx_old[ring] = entry;
1906
1907         /* this is wrong for multiple tx rings. the net device needs
1908          * multiple queues for this to do the right thing.  we wait
1909          * for 2*packets to be available when using tiny buffers
1910          */
1911         if (netif_queue_stopped(dev) &&
1912             (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
1913                 netif_wake_queue(dev);
1914         spin_unlock(&cp->tx_lock[ring]);
1915 }
1916
1917 static void cas_tx(struct net_device *dev, struct cas *cp,
1918                    u32 status)
1919 {
1920         int limit, ring;
1921 #ifdef USE_TX_COMPWB
1922         u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
1923 #endif
1924         if (netif_msg_intr(cp))
1925                 printk(KERN_DEBUG "%s: tx interrupt, status: 0x%x, %llx\n",
1926                         cp->dev->name, status, (unsigned long long)compwb);
1927         /* process all the rings */
1928         for (ring = 0; ring < N_TX_RINGS; ring++) {
1929 #ifdef USE_TX_COMPWB
1930                 /* use the completion writeback registers */
1931                 limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
1932                         CAS_VAL(TX_COMPWB_LSB, compwb);
1933                 compwb = TX_COMPWB_NEXT(compwb);
1934 #else
1935                 limit = readl(cp->regs + REG_TX_COMPN(ring));
1936 #endif
1937                 if (cp->tx_old[ring] != limit)
1938                         cas_tx_ringN(cp, ring, limit);
1939         }
1940 }
1941
1942
1943 static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc,
1944                               int entry, const u64 *words,
1945                               struct sk_buff **skbref)
1946 {
1947         int dlen, hlen, len, i, alloclen;
1948         int off, swivel = RX_SWIVEL_OFF_VAL;
1949         struct cas_page *page;
1950         struct sk_buff *skb;
1951         void *addr, *crcaddr;
1952         __sum16 csum;
1953         char *p;
1954
1955         hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
1956         dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
1957         len  = hlen + dlen;
1958
1959         if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT))
1960                 alloclen = len;
1961         else
1962                 alloclen = max(hlen, RX_COPY_MIN);
1963
1964         skb = dev_alloc_skb(alloclen + swivel + cp->crc_size);
1965         if (skb == NULL)
1966                 return -1;
1967
1968         *skbref = skb;
1969         skb_reserve(skb, swivel);
1970
1971         p = skb->data;
1972         addr = crcaddr = NULL;
1973         if (hlen) { /* always copy header pages */
1974                 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
1975                 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
1976                 off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 +
1977                         swivel;
1978
1979                 i = hlen;
1980                 if (!dlen) /* attach FCS */
1981                         i += cp->crc_size;
1982                 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
1983                                     PCI_DMA_FROMDEVICE);
1984                 addr = cas_page_map(page->buffer);
1985                 memcpy(p, addr + off, i);
1986                 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
1987                                     PCI_DMA_FROMDEVICE);
1988                 cas_page_unmap(addr);
1989                 RX_USED_ADD(page, 0x100);
1990                 p += hlen;
1991                 swivel = 0;
1992         }
1993
1994
1995         if (alloclen < (hlen + dlen)) {
1996                 skb_frag_t *frag = skb_shinfo(skb)->frags;
1997
1998                 /* normal or jumbo packets. we use frags */
1999                 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2000                 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2001                 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2002
2003                 hlen = min(cp->page_size - off, dlen);
2004                 if (hlen < 0) {
2005                         if (netif_msg_rx_err(cp)) {
2006                                 printk(KERN_DEBUG "%s: rx page overflow: "
2007                                        "%d\n", cp->dev->name, hlen);
2008                         }
2009                         dev_kfree_skb_irq(skb);
2010                         return -1;
2011                 }
2012                 i = hlen;
2013                 if (i == dlen)  /* attach FCS */
2014                         i += cp->crc_size;
2015                 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2016                                     PCI_DMA_FROMDEVICE);
2017
2018                 /* make sure we always copy a header */
2019                 swivel = 0;
2020                 if (p == (char *) skb->data) { /* not split */
2021                         addr = cas_page_map(page->buffer);
2022                         memcpy(p, addr + off, RX_COPY_MIN);
2023                         pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2024                                         PCI_DMA_FROMDEVICE);
2025                         cas_page_unmap(addr);
2026                         off += RX_COPY_MIN;
2027                         swivel = RX_COPY_MIN;
2028                         RX_USED_ADD(page, cp->mtu_stride);
2029                 } else {
2030                         RX_USED_ADD(page, hlen);
2031                 }
2032                 skb_put(skb, alloclen);
2033
2034                 skb_shinfo(skb)->nr_frags++;
2035                 skb->data_len += hlen - swivel;
2036                 skb->truesize += hlen - swivel;
2037                 skb->len      += hlen - swivel;
2038
2039                 get_page(page->buffer);
2040                 frag->page = page->buffer;
2041                 frag->page_offset = off;
2042                 frag->size = hlen - swivel;
2043
2044                 /* any more data? */
2045                 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2046                         hlen = dlen;
2047                         off = 0;
2048
2049                         i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2050                         page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2051                         pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2052                                             hlen + cp->crc_size,
2053                                             PCI_DMA_FROMDEVICE);
2054                         pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2055                                             hlen + cp->crc_size,
2056                                             PCI_DMA_FROMDEVICE);
2057
2058                         skb_shinfo(skb)->nr_frags++;
2059                         skb->data_len += hlen;
2060                         skb->len      += hlen;
2061                         frag++;
2062
2063                         get_page(page->buffer);
2064                         frag->page = page->buffer;
2065                         frag->page_offset = 0;
2066                         frag->size = hlen;
2067                         RX_USED_ADD(page, hlen + cp->crc_size);
2068                 }
2069
2070                 if (cp->crc_size) {
2071                         addr = cas_page_map(page->buffer);
2072                         crcaddr  = addr + off + hlen;
2073                 }
2074
2075         } else {
2076                 /* copying packet */
2077                 if (!dlen)
2078                         goto end_copy_pkt;
2079
2080                 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2081                 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2082                 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2083                 hlen = min(cp->page_size - off, dlen);
2084                 if (hlen < 0) {
2085                         if (netif_msg_rx_err(cp)) {
2086                                 printk(KERN_DEBUG "%s: rx page overflow: "
2087                                        "%d\n", cp->dev->name, hlen);
2088                         }
2089                         dev_kfree_skb_irq(skb);
2090                         return -1;
2091                 }
2092                 i = hlen;
2093                 if (i == dlen) /* attach FCS */
2094                         i += cp->crc_size;
2095                 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2096                                     PCI_DMA_FROMDEVICE);
2097                 addr = cas_page_map(page->buffer);
2098                 memcpy(p, addr + off, i);
2099                 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2100                                     PCI_DMA_FROMDEVICE);
2101                 cas_page_unmap(addr);
2102                 if (p == (char *) skb->data) /* not split */
2103                         RX_USED_ADD(page, cp->mtu_stride);
2104                 else
2105                         RX_USED_ADD(page, i);
2106
2107                 /* any more data? */
2108                 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2109                         p += hlen;
2110                         i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2111                         page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2112                         pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2113                                             dlen + cp->crc_size,
2114                                             PCI_DMA_FROMDEVICE);
2115                         addr = cas_page_map(page->buffer);
2116                         memcpy(p, addr, dlen + cp->crc_size);
2117                         pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2118                                             dlen + cp->crc_size,
2119                                             PCI_DMA_FROMDEVICE);
2120                         cas_page_unmap(addr);
2121                         RX_USED_ADD(page, dlen + cp->crc_size);
2122                 }
2123 end_copy_pkt:
2124                 if (cp->crc_size) {
2125                         addr    = NULL;
2126                         crcaddr = skb->data + alloclen;
2127                 }
2128                 skb_put(skb, alloclen);
2129         }
2130
2131         csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3]));
2132         if (cp->crc_size) {
2133                 /* checksum includes FCS. strip it out. */
2134                 csum = csum_fold(csum_partial(crcaddr, cp->crc_size,
2135                                               csum_unfold(csum)));
2136                 if (addr)
2137                         cas_page_unmap(addr);
2138         }
2139         skb->protocol = eth_type_trans(skb, cp->dev);
2140         if (skb->protocol == htons(ETH_P_IP)) {
2141                 skb->csum = csum_unfold(~csum);
2142                 skb->ip_summed = CHECKSUM_COMPLETE;
2143         } else
2144                 skb->ip_summed = CHECKSUM_NONE;
2145         return len;
2146 }
2147
2148
2149 /* we can handle up to 64 rx flows at a time. we do the same thing
2150  * as nonreassm except that we batch up the buffers.
2151  * NOTE: we currently just treat each flow as a bunch of packets that
2152  *       we pass up. a better way would be to coalesce the packets
2153  *       into a jumbo packet. to do that, we need to do the following:
2154  *       1) the first packet will have a clean split between header and
2155  *          data. save both.
2156  *       2) each time the next flow packet comes in, extend the
2157  *          data length and merge the checksums.
2158  *       3) on flow release, fix up the header.
2159  *       4) make sure the higher layer doesn't care.
2160  * because packets get coalesced, we shouldn't run into fragment count
2161  * issues.
2162  */
2163 static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
2164                                    struct sk_buff *skb)
2165 {
2166         int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
2167         struct sk_buff_head *flow = &cp->rx_flows[flowid];
2168
2169         /* this is protected at a higher layer, so no need to
2170          * do any additional locking here. stick the buffer
2171          * at the end.
2172          */
2173         __skb_insert(skb, flow->prev, (struct sk_buff *) flow, flow);
2174         if (words[0] & RX_COMP1_RELEASE_FLOW) {
2175                 while ((skb = __skb_dequeue(flow))) {
2176                         cas_skb_release(skb);
2177                 }
2178         }
2179 }
2180
2181 /* put rx descriptor back on ring. if a buffer is in use by a higher
2182  * layer, this will need to put in a replacement.
2183  */
2184 static void cas_post_page(struct cas *cp, const int ring, const int index)
2185 {
2186         cas_page_t *new;
2187         int entry;
2188
2189         entry = cp->rx_old[ring];
2190
2191         new = cas_page_swap(cp, ring, index);
2192         cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
2193         cp->init_rxds[ring][entry].index  =
2194                 cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) |
2195                             CAS_BASE(RX_INDEX_RING, ring));
2196
2197         entry = RX_DESC_ENTRY(ring, entry + 1);
2198         cp->rx_old[ring] = entry;
2199
2200         if (entry % 4)
2201                 return;
2202
2203         if (ring == 0)
2204                 writel(entry, cp->regs + REG_RX_KICK);
2205         else if ((N_RX_DESC_RINGS > 1) &&
2206                  (cp->cas_flags & CAS_FLAG_REG_PLUS))
2207                 writel(entry, cp->regs + REG_PLUS_RX_KICK1);
2208 }
2209
2210
2211 /* only when things are bad */
2212 static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
2213 {
2214         unsigned int entry, last, count, released;
2215         int cluster;
2216         cas_page_t **page = cp->rx_pages[ring];
2217
2218         entry = cp->rx_old[ring];
2219
2220         if (netif_msg_intr(cp))
2221                 printk(KERN_DEBUG "%s: rxd[%d] interrupt, done: %d\n",
2222                        cp->dev->name, ring, entry);
2223
2224         cluster = -1;
2225         count = entry & 0x3;
2226         last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
2227         released = 0;
2228         while (entry != last) {
2229                 /* make a new buffer if it's still in use */
2230                 if (page_count(page[entry]->buffer) > 1) {
2231                         cas_page_t *new = cas_page_dequeue(cp);
2232                         if (!new) {
2233                                 /* let the timer know that we need to
2234                                  * do this again
2235                                  */
2236                                 cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
2237                                 if (!timer_pending(&cp->link_timer))
2238                                         mod_timer(&cp->link_timer, jiffies +
2239                                                   CAS_LINK_FAST_TIMEOUT);
2240                                 cp->rx_old[ring]  = entry;
2241                                 cp->rx_last[ring] = num ? num - released : 0;
2242                                 return -ENOMEM;
2243                         }
2244                         spin_lock(&cp->rx_inuse_lock);
2245                         list_add(&page[entry]->list, &cp->rx_inuse_list);
2246                         spin_unlock(&cp->rx_inuse_lock);
2247                         cp->init_rxds[ring][entry].buffer =
2248                                 cpu_to_le64(new->dma_addr);
2249                         page[entry] = new;
2250
2251                 }
2252
2253                 if (++count == 4) {
2254                         cluster = entry;
2255                         count = 0;
2256                 }
2257                 released++;
2258                 entry = RX_DESC_ENTRY(ring, entry + 1);
2259         }
2260         cp->rx_old[ring] = entry;
2261
2262         if (cluster < 0)
2263                 return 0;
2264
2265         if (ring == 0)
2266                 writel(cluster, cp->regs + REG_RX_KICK);
2267         else if ((N_RX_DESC_RINGS > 1) &&
2268                  (cp->cas_flags & CAS_FLAG_REG_PLUS))
2269                 writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
2270         return 0;
2271 }
2272
2273
2274 /* process a completion ring. packets are set up in three basic ways:
2275  * small packets: should be copied header + data in single buffer.
2276  * large packets: header and data in a single buffer.
2277  * split packets: header in a separate buffer from data.
2278  *                data may be in multiple pages. data may be > 256
2279  *                bytes but in a single page.
2280  *
2281  * NOTE: RX page posting is done in this routine as well. while there's
2282  *       the capability of using multiple RX completion rings, it isn't
2283  *       really worthwhile due to the fact that the page posting will
2284  *       force serialization on the single descriptor ring.
2285  */
2286 static int cas_rx_ringN(struct cas *cp, int ring, int budget)
2287 {
2288         struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
2289         int entry, drops;
2290         int npackets = 0;
2291
2292         if (netif_msg_intr(cp))
2293                 printk(KERN_DEBUG "%s: rx[%d] interrupt, done: %d/%d\n",
2294                        cp->dev->name, ring,
2295                        readl(cp->regs + REG_RX_COMP_HEAD),
2296                        cp->rx_new[ring]);
2297
2298         entry = cp->rx_new[ring];
2299         drops = 0;
2300         while (1) {
2301                 struct cas_rx_comp *rxc = rxcs + entry;
2302                 struct sk_buff *skb;
2303                 int type, len;
2304                 u64 words[4];
2305                 int i, dring;
2306
2307                 words[0] = le64_to_cpu(rxc->word1);
2308                 words[1] = le64_to_cpu(rxc->word2);
2309                 words[2] = le64_to_cpu(rxc->word3);
2310                 words[3] = le64_to_cpu(rxc->word4);
2311
2312                 /* don't touch if still owned by hw */
2313                 type = CAS_VAL(RX_COMP1_TYPE, words[0]);
2314                 if (type == 0)
2315                         break;
2316
2317                 /* hw hasn't cleared the zero bit yet */
2318                 if (words[3] & RX_COMP4_ZERO) {
2319                         break;
2320                 }
2321
2322                 /* get info on the packet */
2323                 if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
2324                         spin_lock(&cp->stat_lock[ring]);
2325                         cp->net_stats[ring].rx_errors++;
2326                         if (words[3] & RX_COMP4_LEN_MISMATCH)
2327                                 cp->net_stats[ring].rx_length_errors++;
2328                         if (words[3] & RX_COMP4_BAD)
2329                                 cp->net_stats[ring].rx_crc_errors++;
2330                         spin_unlock(&cp->stat_lock[ring]);
2331
2332                         /* We'll just return it to Cassini. */
2333                 drop_it:
2334                         spin_lock(&cp->stat_lock[ring]);
2335                         ++cp->net_stats[ring].rx_dropped;
2336                         spin_unlock(&cp->stat_lock[ring]);
2337                         goto next;
2338                 }
2339
2340                 len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
2341                 if (len < 0) {
2342                         ++drops;
2343                         goto drop_it;
2344                 }
2345
2346                 /* see if it's a flow re-assembly or not. the driver
2347                  * itself handles release back up.
2348                  */
2349                 if (RX_DONT_BATCH || (type == 0x2)) {
2350                         /* non-reassm: these always get released */
2351                         cas_skb_release(skb);
2352                 } else {
2353                         cas_rx_flow_pkt(cp, words, skb);
2354                 }
2355
2356                 spin_lock(&cp->stat_lock[ring]);
2357                 cp->net_stats[ring].rx_packets++;
2358                 cp->net_stats[ring].rx_bytes += len;
2359                 spin_unlock(&cp->stat_lock[ring]);
2360                 cp->dev->last_rx = jiffies;
2361
2362         next:
2363                 npackets++;
2364
2365                 /* should it be released? */
2366                 if (words[0] & RX_COMP1_RELEASE_HDR) {
2367                         i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2368                         dring = CAS_VAL(RX_INDEX_RING, i);
2369                         i = CAS_VAL(RX_INDEX_NUM, i);
2370                         cas_post_page(cp, dring, i);
2371                 }
2372
2373                 if (words[0] & RX_COMP1_RELEASE_DATA) {
2374                         i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2375                         dring = CAS_VAL(RX_INDEX_RING, i);
2376                         i = CAS_VAL(RX_INDEX_NUM, i);
2377                         cas_post_page(cp, dring, i);
2378                 }
2379
2380                 if (words[0] & RX_COMP1_RELEASE_NEXT) {
2381                         i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2382                         dring = CAS_VAL(RX_INDEX_RING, i);
2383                         i = CAS_VAL(RX_INDEX_NUM, i);
2384                         cas_post_page(cp, dring, i);
2385                 }
2386
2387                 /* skip to the next entry */
2388                 entry = RX_COMP_ENTRY(ring, entry + 1 +
2389                                       CAS_VAL(RX_COMP1_SKIP, words[0]));
2390 #ifdef USE_NAPI
2391                 if (budget && (npackets >= budget))
2392                         break;
2393 #endif
2394         }
2395         cp->rx_new[ring] = entry;
2396
2397         if (drops)
2398                 printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n",
2399                        cp->dev->name);
2400         return npackets;
2401 }
2402
2403
2404 /* put completion entries back on the ring */
2405 static void cas_post_rxcs_ringN(struct net_device *dev,
2406                                 struct cas *cp, int ring)
2407 {
2408         struct cas_rx_comp *rxc = cp->init_rxcs[ring];
2409         int last, entry;
2410
2411         last = cp->rx_cur[ring];
2412         entry = cp->rx_new[ring];
2413         if (netif_msg_intr(cp))
2414                 printk(KERN_DEBUG "%s: rxc[%d] interrupt, done: %d/%d\n",
2415                        dev->name, ring, readl(cp->regs + REG_RX_COMP_HEAD),
2416                        entry);
2417
2418         /* zero and re-mark descriptors */
2419         while (last != entry) {
2420                 cas_rxc_init(rxc + last);
2421                 last = RX_COMP_ENTRY(ring, last + 1);
2422         }
2423         cp->rx_cur[ring] = last;
2424
2425         if (ring == 0)
2426                 writel(last, cp->regs + REG_RX_COMP_TAIL);
2427         else if (cp->cas_flags & CAS_FLAG_REG_PLUS)
2428                 writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
2429 }
2430
2431
2432
2433 /* cassini can use all four PCI interrupts for the completion ring.
2434  * rings 3 and 4 are identical
2435  */
2436 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2437 static inline void cas_handle_irqN(struct net_device *dev,
2438                                    struct cas *cp, const u32 status,
2439                                    const int ring)
2440 {
2441         if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT))
2442                 cas_post_rxcs_ringN(dev, cp, ring);
2443 }
2444
2445 static irqreturn_t cas_interruptN(int irq, void *dev_id)
2446 {
2447         struct net_device *dev = dev_id;
2448         struct cas *cp = netdev_priv(dev);
2449         unsigned long flags;
2450         int ring;
2451         u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
2452
2453         /* check for shared irq */
2454         if (status == 0)
2455                 return IRQ_NONE;
2456
2457         ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
2458         spin_lock_irqsave(&cp->lock, flags);
2459         if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2460 #ifdef USE_NAPI
2461                 cas_mask_intr(cp);
2462                 netif_rx_schedule(dev, &cp->napi);
2463 #else
2464                 cas_rx_ringN(cp, ring, 0);
2465 #endif
2466                 status &= ~INTR_RX_DONE_ALT;
2467         }
2468
2469         if (status)
2470                 cas_handle_irqN(dev, cp, status, ring);
2471         spin_unlock_irqrestore(&cp->lock, flags);
2472         return IRQ_HANDLED;
2473 }
2474 #endif
2475
2476 #ifdef USE_PCI_INTB
2477 /* everything but rx packets */
2478 static inline void cas_handle_irq1(struct cas *cp, const u32 status)
2479 {
2480         if (status & INTR_RX_BUF_UNAVAIL_1) {
2481                 /* Frame arrived, no free RX buffers available.
2482                  * NOTE: we can get this on a link transition. */
2483                 cas_post_rxds_ringN(cp, 1, 0);
2484                 spin_lock(&cp->stat_lock[1]);
2485                 cp->net_stats[1].rx_dropped++;
2486                 spin_unlock(&cp->stat_lock[1]);
2487         }
2488
2489         if (status & INTR_RX_BUF_AE_1)
2490                 cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) -
2491                                     RX_AE_FREEN_VAL(1));
2492
2493         if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2494                 cas_post_rxcs_ringN(cp, 1);
2495 }
2496
2497 /* ring 2 handles a few more events than 3 and 4 */
2498 static irqreturn_t cas_interrupt1(int irq, void *dev_id)
2499 {
2500         struct net_device *dev = dev_id;
2501         struct cas *cp = netdev_priv(dev);
2502         unsigned long flags;
2503         u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2504
2505         /* check for shared interrupt */
2506         if (status == 0)
2507                 return IRQ_NONE;
2508
2509         spin_lock_irqsave(&cp->lock, flags);
2510         if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2511 #ifdef USE_NAPI
2512                 cas_mask_intr(cp);
2513                 netif_rx_schedule(dev, &cp->napi);
2514 #else
2515                 cas_rx_ringN(cp, 1, 0);
2516 #endif
2517                 status &= ~INTR_RX_DONE_ALT;
2518         }
2519         if (status)
2520                 cas_handle_irq1(cp, status);
2521         spin_unlock_irqrestore(&cp->lock, flags);
2522         return IRQ_HANDLED;
2523 }
2524 #endif
2525
2526 static inline void cas_handle_irq(struct net_device *dev,
2527                                   struct cas *cp, const u32 status)
2528 {
2529         /* housekeeping interrupts */
2530         if (status & INTR_ERROR_MASK)
2531                 cas_abnormal_irq(dev, cp, status);
2532
2533         if (status & INTR_RX_BUF_UNAVAIL) {
2534                 /* Frame arrived, no free RX buffers available.
2535                  * NOTE: we can get this on a link transition.
2536                  */
2537                 cas_post_rxds_ringN(cp, 0, 0);
2538                 spin_lock(&cp->stat_lock[0]);
2539                 cp->net_stats[0].rx_dropped++;
2540                 spin_unlock(&cp->stat_lock[0]);
2541         } else if (status & INTR_RX_BUF_AE) {
2542                 cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
2543                                     RX_AE_FREEN_VAL(0));
2544         }
2545
2546         if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2547                 cas_post_rxcs_ringN(dev, cp, 0);
2548 }
2549
2550 static irqreturn_t cas_interrupt(int irq, void *dev_id)
2551 {
2552         struct net_device *dev = dev_id;
2553         struct cas *cp = netdev_priv(dev);
2554         unsigned long flags;
2555         u32 status = readl(cp->regs + REG_INTR_STATUS);
2556
2557         if (status == 0)
2558                 return IRQ_NONE;
2559
2560         spin_lock_irqsave(&cp->lock, flags);
2561         if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
2562                 cas_tx(dev, cp, status);
2563                 status &= ~(INTR_TX_ALL | INTR_TX_INTME);
2564         }
2565
2566         if (status & INTR_RX_DONE) {
2567 #ifdef USE_NAPI
2568                 cas_mask_intr(cp);
2569                 netif_rx_schedule(dev, &cp->napi);
2570 #else
2571                 cas_rx_ringN(cp, 0, 0);
2572 #endif
2573                 status &= ~INTR_RX_DONE;
2574         }
2575
2576         if (status)
2577                 cas_handle_irq(dev, cp, status);
2578         spin_unlock_irqrestore(&cp->lock, flags);
2579         return IRQ_HANDLED;
2580 }
2581
2582
2583 #ifdef USE_NAPI
2584 static int cas_poll(struct napi_struct *napi, int budget)
2585 {
2586         struct cas *cp = container_of(napi, struct cas, napi);
2587         struct net_device *dev = cp->dev;
2588         int i, enable_intr, credits;
2589         u32 status = readl(cp->regs + REG_INTR_STATUS);
2590         unsigned long flags;
2591
2592         spin_lock_irqsave(&cp->lock, flags);
2593         cas_tx(dev, cp, status);
2594         spin_unlock_irqrestore(&cp->lock, flags);
2595
2596         /* NAPI rx packets. we spread the credits across all of the
2597          * rxc rings
2598          *
2599          * to make sure we're fair with the work we loop through each
2600          * ring N_RX_COMP_RING times with a request of
2601          * budget / N_RX_COMP_RINGS
2602          */
2603         enable_intr = 1;
2604         credits = 0;
2605         for (i = 0; i < N_RX_COMP_RINGS; i++) {
2606                 int j;
2607                 for (j = 0; j < N_RX_COMP_RINGS; j++) {
2608                         credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS);
2609                         if (credits >= budget) {
2610                                 enable_intr = 0;
2611                                 goto rx_comp;
2612                         }
2613                 }
2614         }
2615
2616 rx_comp:
2617         /* final rx completion */
2618         spin_lock_irqsave(&cp->lock, flags);
2619         if (status)
2620                 cas_handle_irq(dev, cp, status);
2621
2622 #ifdef USE_PCI_INTB
2623         if (N_RX_COMP_RINGS > 1) {
2624                 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2625                 if (status)
2626                         cas_handle_irq1(dev, cp, status);
2627         }
2628 #endif
2629
2630 #ifdef USE_PCI_INTC
2631         if (N_RX_COMP_RINGS > 2) {
2632                 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
2633                 if (status)
2634                         cas_handle_irqN(dev, cp, status, 2);
2635         }
2636 #endif
2637
2638 #ifdef USE_PCI_INTD
2639         if (N_RX_COMP_RINGS > 3) {
2640                 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
2641                 if (status)
2642                         cas_handle_irqN(dev, cp, status, 3);
2643         }
2644 #endif
2645         spin_unlock_irqrestore(&cp->lock, flags);
2646         if (enable_intr) {
2647                 netif_rx_complete(dev, napi);
2648                 cas_unmask_intr(cp);
2649         }
2650         return credits;
2651 }
2652 #endif
2653
2654 #ifdef CONFIG_NET_POLL_CONTROLLER
2655 static void cas_netpoll(struct net_device *dev)
2656 {
2657         struct cas *cp = netdev_priv(dev);
2658
2659         cas_disable_irq(cp, 0);
2660         cas_interrupt(cp->pdev->irq, dev);
2661         cas_enable_irq(cp, 0);
2662
2663 #ifdef USE_PCI_INTB
2664         if (N_RX_COMP_RINGS > 1) {
2665                 /* cas_interrupt1(); */
2666         }
2667 #endif
2668 #ifdef USE_PCI_INTC
2669         if (N_RX_COMP_RINGS > 2) {
2670                 /* cas_interruptN(); */
2671         }
2672 #endif
2673 #ifdef USE_PCI_INTD
2674         if (N_RX_COMP_RINGS > 3) {
2675                 /* cas_interruptN(); */
2676         }
2677 #endif
2678 }
2679 #endif
2680
2681 static void cas_tx_timeout(struct net_device *dev)
2682 {
2683         struct cas *cp = netdev_priv(dev);
2684
2685         printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
2686         if (!cp->hw_running) {
2687                 printk("%s: hrm.. hw not running!\n", dev->name);
2688                 return;
2689         }
2690
2691         printk(KERN_ERR "%s: MIF_STATE[%08x]\n",
2692                dev->name, readl(cp->regs + REG_MIF_STATE_MACHINE));
2693
2694         printk(KERN_ERR "%s: MAC_STATE[%08x]\n",
2695                dev->name, readl(cp->regs + REG_MAC_STATE_MACHINE));
2696
2697         printk(KERN_ERR "%s: TX_STATE[%08x:%08x:%08x] "
2698                "FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2699                dev->name,
2700                readl(cp->regs + REG_TX_CFG),
2701                readl(cp->regs + REG_MAC_TX_STATUS),
2702                readl(cp->regs + REG_MAC_TX_CFG),
2703                readl(cp->regs + REG_TX_FIFO_PKT_CNT),
2704                readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
2705                readl(cp->regs + REG_TX_FIFO_READ_PTR),
2706                readl(cp->regs + REG_TX_SM_1),
2707                readl(cp->regs + REG_TX_SM_2));
2708
2709         printk(KERN_ERR "%s: RX_STATE[%08x:%08x:%08x]\n",
2710                dev->name,
2711                readl(cp->regs + REG_RX_CFG),
2712                readl(cp->regs + REG_MAC_RX_STATUS),
2713                readl(cp->regs + REG_MAC_RX_CFG));
2714
2715         printk(KERN_ERR "%s: HP_STATE[%08x:%08x:%08x:%08x]\n",
2716                dev->name,
2717                readl(cp->regs + REG_HP_STATE_MACHINE),
2718                readl(cp->regs + REG_HP_STATUS0),
2719                readl(cp->regs + REG_HP_STATUS1),
2720                readl(cp->regs + REG_HP_STATUS2));
2721
2722 #if 1
2723         atomic_inc(&cp->reset_task_pending);
2724         atomic_inc(&cp->reset_task_pending_all);
2725         schedule_work(&cp->reset_task);
2726 #else
2727         atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
2728         schedule_work(&cp->reset_task);
2729 #endif
2730 }
2731
2732 static inline int cas_intme(int ring, int entry)
2733 {
2734         /* Algorithm: IRQ every 1/2 of descriptors. */
2735         if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
2736                 return 1;
2737         return 0;
2738 }
2739
2740
2741 static void cas_write_txd(struct cas *cp, int ring, int entry,
2742                           dma_addr_t mapping, int len, u64 ctrl, int last)
2743 {
2744         struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
2745
2746         ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
2747         if (cas_intme(ring, entry))
2748                 ctrl |= TX_DESC_INTME;
2749         if (last)
2750                 ctrl |= TX_DESC_EOF;
2751         txd->control = cpu_to_le64(ctrl);
2752         txd->buffer = cpu_to_le64(mapping);
2753 }
2754
2755 static inline void *tx_tiny_buf(struct cas *cp, const int ring,
2756                                 const int entry)
2757 {
2758         return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
2759 }
2760
2761 static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring,
2762                                      const int entry, const int tentry)
2763 {
2764         cp->tx_tiny_use[ring][tentry].nbufs++;
2765         cp->tx_tiny_use[ring][entry].used = 1;
2766         return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
2767 }
2768
2769 static inline int cas_xmit_tx_ringN(struct cas *cp, int ring,
2770                                     struct sk_buff *skb)
2771 {
2772         struct net_device *dev = cp->dev;
2773         int entry, nr_frags, frag, tabort, tentry;
2774         dma_addr_t mapping;
2775         unsigned long flags;
2776         u64 ctrl;
2777         u32 len;
2778
2779         spin_lock_irqsave(&cp->tx_lock[ring], flags);
2780
2781         /* This is a hard error, log it. */
2782         if (TX_BUFFS_AVAIL(cp, ring) <=
2783             CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
2784                 netif_stop_queue(dev);
2785                 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2786                 printk(KERN_ERR PFX "%s: BUG! Tx Ring full when "
2787                        "queue awake!\n", dev->name);
2788                 return 1;
2789         }
2790
2791         ctrl = 0;
2792         if (skb->ip_summed == CHECKSUM_PARTIAL) {
2793                 const u64 csum_start_off = skb_transport_offset(skb);
2794                 const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
2795
2796                 ctrl =  TX_DESC_CSUM_EN |
2797                         CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
2798                         CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
2799         }
2800
2801         entry = cp->tx_new[ring];
2802         cp->tx_skbs[ring][entry] = skb;
2803
2804         nr_frags = skb_shinfo(skb)->nr_frags;
2805         len = skb_headlen(skb);
2806         mapping = pci_map_page(cp->pdev, virt_to_page(skb->data),
2807                                offset_in_page(skb->data), len,
2808                                PCI_DMA_TODEVICE);
2809
2810         tentry = entry;
2811         tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
2812         if (unlikely(tabort)) {
2813                 /* NOTE: len is always >  tabort */
2814                 cas_write_txd(cp, ring, entry, mapping, len - tabort,
2815                               ctrl | TX_DESC_SOF, 0);
2816                 entry = TX_DESC_NEXT(ring, entry);
2817
2818                 skb_copy_from_linear_data_offset(skb, len - tabort,
2819                               tx_tiny_buf(cp, ring, entry), tabort);
2820                 mapping = tx_tiny_map(cp, ring, entry, tentry);
2821                 cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
2822                               (nr_frags == 0));
2823         } else {
2824                 cas_write_txd(cp, ring, entry, mapping, len, ctrl |
2825                               TX_DESC_SOF, (nr_frags == 0));
2826         }
2827         entry = TX_DESC_NEXT(ring, entry);
2828
2829         for (frag = 0; frag < nr_frags; frag++) {
2830                 skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
2831
2832                 len = fragp->size;
2833                 mapping = pci_map_page(cp->pdev, fragp->page,
2834                                        fragp->page_offset, len,
2835                                        PCI_DMA_TODEVICE);
2836
2837                 tabort = cas_calc_tabort(cp, fragp->page_offset, len);
2838                 if (unlikely(tabort)) {
2839                         void *addr;
2840
2841                         /* NOTE: len is always > tabort */
2842                         cas_write_txd(cp, ring, entry, mapping, len - tabort,
2843                                       ctrl, 0);
2844                         entry = TX_DESC_NEXT(ring, entry);
2845
2846                         addr = cas_page_map(fragp->page);
2847                         memcpy(tx_tiny_buf(cp, ring, entry),
2848                                addr + fragp->page_offset + len - tabort,
2849                                tabort);
2850                         cas_page_unmap(addr);
2851                         mapping = tx_tiny_map(cp, ring, entry, tentry);
2852                         len     = tabort;
2853                 }
2854
2855                 cas_write_txd(cp, ring, entry, mapping, len, ctrl,
2856                               (frag + 1 == nr_frags));
2857                 entry = TX_DESC_NEXT(ring, entry);
2858         }
2859
2860         cp->tx_new[ring] = entry;
2861         if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
2862                 netif_stop_queue(dev);
2863
2864         if (netif_msg_tx_queued(cp))
2865                 printk(KERN_DEBUG "%s: tx[%d] queued, slot %d, skblen %d, "
2866                        "avail %d\n",
2867                        dev->name, ring, entry, skb->len,
2868                        TX_BUFFS_AVAIL(cp, ring));
2869         writel(entry, cp->regs + REG_TX_KICKN(ring));
2870         spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2871         return 0;
2872 }
2873
2874 static int cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
2875 {
2876         struct cas *cp = netdev_priv(dev);
2877
2878         /* this is only used as a load-balancing hint, so it doesn't
2879          * need to be SMP safe
2880          */
2881         static int ring;
2882
2883         if (skb_padto(skb, cp->min_frame_size))
2884                 return 0;
2885
2886         /* XXX: we need some higher-level QoS hooks to steer packets to
2887          *      individual queues.
2888          */
2889         if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
2890                 return 1;
2891         dev->trans_start = jiffies;
2892         return 0;
2893 }
2894
2895 static void cas_init_tx_dma(struct cas *cp)
2896 {
2897         u64 desc_dma = cp->block_dvma;
2898         unsigned long off;
2899         u32 val;
2900         int i;
2901
2902         /* set up tx completion writeback registers. must be 8-byte aligned */
2903 #ifdef USE_TX_COMPWB
2904         off = offsetof(struct cas_init_block, tx_compwb);
2905         writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
2906         writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
2907 #endif
2908
2909         /* enable completion writebacks, enable paced mode,
2910          * disable read pipe, and disable pre-interrupt compwbs
2911          */
2912         val =   TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 |
2913                 TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
2914                 TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE |
2915                 TX_CFG_INTR_COMPWB_DIS;
2916
2917         /* write out tx ring info and tx desc bases */
2918         for (i = 0; i < MAX_TX_RINGS; i++) {
2919                 off = (unsigned long) cp->init_txds[i] -
2920                         (unsigned long) cp->init_block;
2921
2922                 val |= CAS_TX_RINGN_BASE(i);
2923                 writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
2924                 writel((desc_dma + off) & 0xffffffff, cp->regs +
2925                        REG_TX_DBN_LOW(i));
2926                 /* don't zero out the kick register here as the system
2927                  * will wedge
2928                  */
2929         }
2930         writel(val, cp->regs + REG_TX_CFG);
2931
2932         /* program max burst sizes. these numbers should be different
2933          * if doing QoS.
2934          */
2935 #ifdef USE_QOS
2936         writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2937         writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
2938         writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
2939         writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
2940 #else
2941         writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2942         writel(0x800, cp->regs + REG_TX_MAXBURST_1);
2943         writel(0x800, cp->regs + REG_TX_MAXBURST_2);
2944         writel(0x800, cp->regs + REG_TX_MAXBURST_3);
2945 #endif
2946 }
2947
2948 /* Must be invoked under cp->lock. */
2949 static inline void cas_init_dma(struct cas *cp)
2950 {
2951         cas_init_tx_dma(cp);
2952         cas_init_rx_dma(cp);
2953 }
2954
2955 /* Must be invoked under cp->lock. */
2956 static u32 cas_setup_multicast(struct cas *cp)
2957 {
2958         u32 rxcfg = 0;
2959         int i;
2960
2961         if (cp->dev->flags & IFF_PROMISC) {
2962                 rxcfg |= MAC_RX_CFG_PROMISC_EN;
2963
2964         } else if (cp->dev->flags & IFF_ALLMULTI) {
2965                 for (i=0; i < 16; i++)
2966                         writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
2967                 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2968
2969         } else {
2970                 u16 hash_table[16];
2971                 u32 crc;
2972                 struct dev_mc_list *dmi = cp->dev->mc_list;
2973                 int i;
2974
2975                 /* use the alternate mac address registers for the
2976                  * first 15 multicast addresses
2977                  */
2978                 for (i = 1; i <= CAS_MC_EXACT_MATCH_SIZE; i++) {
2979                         if (!dmi) {
2980                                 writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 0));
2981                                 writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 1));
2982                                 writel(0x0, cp->regs + REG_MAC_ADDRN(i*3 + 2));
2983                                 continue;
2984                         }
2985                         writel((dmi->dmi_addr[4] << 8) | dmi->dmi_addr[5],
2986                                cp->regs + REG_MAC_ADDRN(i*3 + 0));
2987                         writel((dmi->dmi_addr[2] << 8) | dmi->dmi_addr[3],
2988                                cp->regs + REG_MAC_ADDRN(i*3 + 1));
2989                         writel((dmi->dmi_addr[0] << 8) | dmi->dmi_addr[1],
2990                                cp->regs + REG_MAC_ADDRN(i*3 + 2));
2991                         dmi = dmi->next;
2992                 }
2993
2994                 /* use hw hash table for the next series of
2995                  * multicast addresses
2996                  */
2997                 memset(hash_table, 0, sizeof(hash_table));
2998                 while (dmi) {
2999                         crc = ether_crc_le(ETH_ALEN, dmi->dmi_addr);
3000                         crc >>= 24;
3001                         hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
3002                         dmi = dmi->next;
3003                 }
3004                 for (i=0; i < 16; i++)
3005                         writel(hash_table[i], cp->regs +
3006                                REG_MAC_HASH_TABLEN(i));
3007                 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
3008         }
3009
3010         return rxcfg;
3011 }
3012
3013 /* must be invoked under cp->stat_lock[N_TX_RINGS] */
3014 static void cas_clear_mac_err(struct cas *cp)
3015 {
3016         writel(0, cp->regs + REG_MAC_COLL_NORMAL);
3017         writel(0, cp->regs + REG_MAC_COLL_FIRST);
3018         writel(0, cp->regs + REG_MAC_COLL_EXCESS);
3019         writel(0, cp->regs + REG_MAC_COLL_LATE);
3020         writel(0, cp->regs + REG_MAC_TIMER_DEFER);
3021         writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
3022         writel(0, cp->regs + REG_MAC_RECV_FRAME);
3023         writel(0, cp->regs + REG_MAC_LEN_ERR);
3024         writel(0, cp->regs + REG_MAC_ALIGN_ERR);
3025         writel(0, cp->regs + REG_MAC_FCS_ERR);
3026         writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
3027 }
3028
3029
3030 static void cas_mac_reset(struct cas *cp)
3031 {
3032         int i;
3033
3034         /* do both TX and RX reset */
3035         writel(0x1, cp->regs + REG_MAC_TX_RESET);
3036         writel(0x1, cp->regs + REG_MAC_RX_RESET);
3037
3038         /* wait for TX */
3039         i = STOP_TRIES;
3040         while (i-- > 0) {
3041                 if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
3042                         break;
3043                 udelay(10);
3044         }
3045
3046         /* wait for RX */
3047         i = STOP_TRIES;
3048         while (i-- > 0) {
3049                 if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
3050                         break;
3051                 udelay(10);
3052         }
3053
3054         if (readl(cp->regs + REG_MAC_TX_RESET) |
3055             readl(cp->regs + REG_MAC_RX_RESET))
3056                 printk(KERN_ERR "%s: mac tx[%d]/rx[%d] reset failed [%08x]\n",
3057                        cp->dev->name, readl(cp->regs + REG_MAC_TX_RESET),
3058                        readl(cp->regs + REG_MAC_RX_RESET),
3059                        readl(cp->regs + REG_MAC_STATE_MACHINE));
3060 }
3061
3062
3063 /* Must be invoked under cp->lock. */
3064 static void cas_init_mac(struct cas *cp)
3065 {
3066         unsigned char *e = &cp->dev->dev_addr[0];
3067         int i;
3068 #ifdef CONFIG_CASSINI_MULTICAST_REG_WRITE
3069         u32 rxcfg;
3070 #endif
3071         cas_mac_reset(cp);
3072
3073         /* setup core arbitration weight register */
3074         writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
3075
3076         /* XXX Use pci_dma_burst_advice() */
3077 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3078         /* set the infinite burst register for chips that don't have
3079          * pci issues.
3080          */
3081         if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
3082                 writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
3083 #endif
3084
3085         writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
3086
3087         writel(0x00, cp->regs + REG_MAC_IPG0);
3088         writel(0x08, cp->regs + REG_MAC_IPG1);
3089         writel(0x04, cp->regs + REG_MAC_IPG2);
3090
3091         /* change later for 802.3z */
3092         writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3093
3094         /* min frame + FCS */
3095         writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);
3096
3097         /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3098          * specify the maximum frame size to prevent RX tag errors on
3099          * oversized frames.
3100          */
3101         writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
3102                CAS_BASE(MAC_FRAMESIZE_MAX_FRAME,
3103                         (CAS_MAX_MTU + ETH_HLEN + 4 + 4)),
3104                cp->regs + REG_MAC_FRAMESIZE_MAX);
3105
3106         /* NOTE: crc_size is used as a surrogate for half-duplex.
3107          * workaround saturn half-duplex issue by increasing preamble
3108          * size to 65 bytes.
3109          */
3110         if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
3111                 writel(0x41, cp->regs + REG_MAC_PA_SIZE);
3112         else
3113                 writel(0x07, cp->regs + REG_MAC_PA_SIZE);
3114         writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
3115         writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
3116         writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
3117
3118         writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
3119
3120         writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
3121         writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
3122         writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
3123         writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
3124         writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);
3125
3126         /* setup mac address in perfect filter array */
3127         for (i = 0; i < 45; i++)
3128                 writel(0x0, cp->regs + REG_MAC_ADDRN(i));
3129
3130         writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
3131         writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
3132         writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
3133
3134         writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
3135         writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
3136         writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
3137
3138 #ifndef CONFIG_CASSINI_MULTICAST_REG_WRITE
3139         cp->mac_rx_cfg = cas_setup_multicast(cp);
3140 #else
3141         /* WTZ: Do what Adrian did in cas_set_multicast. Doing
3142          * a writel does not seem to be necessary because Cassini
3143          * seems to preserve the configuration when we do the reset.
3144          * If the chip is in trouble, though, it is not clear if we
3145          * can really count on this behavior. cas_set_multicast uses
3146          * spin_lock_irqsave, but we are called only in cas_init_hw and
3147          * cas_init_hw is protected by cas_lock_all, which calls
3148          * spin_lock_irq (so it doesn't need to save the flags, and
3149          * we should be OK for the writel, as that is the only
3150          * difference).
3151          */
3152         cp->mac_rx_cfg = rxcfg = cas_setup_multicast(cp);
3153         writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
3154 #endif
3155         spin_lock(&cp->stat_lock[N_TX_RINGS]);
3156         cas_clear_mac_err(cp);
3157         spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3158
3159         /* Setup MAC interrupts.  We want to get all of the interesting
3160          * counter expiration events, but we do not want to hear about
3161          * normal rx/tx as the DMA engine tells us that.
3162          */
3163         writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
3164         writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
3165
3166         /* Don't enable even the PAUSE interrupts for now, we
3167          * make no use of those events other than to record them.
3168          */
3169         writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
3170 }
3171
3172 /* Must be invoked under cp->lock. */
3173 static void cas_init_pause_thresholds(struct cas *cp)
3174 {
3175         /* Calculate pause thresholds.  Setting the OFF threshold to the
3176          * full RX fifo size effectively disables PAUSE generation
3177          */
3178         if (cp->rx_fifo_size <= (2 * 1024)) {
3179                 cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
3180         } else {
3181                 int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
3182                 if (max_frame * 3 > cp->rx_fifo_size) {
3183                         cp->rx_pause_off = 7104;
3184                         cp->rx_pause_on  = 960;
3185                 } else {
3186                         int off = (cp->rx_fifo_size - (max_frame * 2));
3187                         int on = off - max_frame;
3188                         cp->rx_pause_off = off;
3189                         cp->rx_pause_on = on;
3190                 }
3191         }
3192 }
3193
3194 static int cas_vpd_match(const void __iomem *p, const char *str)
3195 {
3196         int len = strlen(str) + 1;
3197         int i;
3198
3199         for (i = 0; i < len; i++) {
3200                 if (readb(p + i) != str[i])
3201                         return 0;
3202         }
3203         return 1;
3204 }
3205
3206
3207 /* get the mac address by reading the vpd information in the rom.
3208  * also get the phy type and determine if there's an entropy generator.
3209  * NOTE: this is a bit convoluted for the following reasons:
3210  *  1) vpd info has order-dependent mac addresses for multinic cards
3211  *  2) the only way to determine the nic order is to use the slot
3212  *     number.
3213  *  3) fiber cards don't have bridges, so their slot numbers don't
3214  *     mean anything.
3215  *  4) we don't actually know we have a fiber card until after
3216  *     the mac addresses are parsed.
3217  */
3218 static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
3219                             const int offset)
3220 {
3221         void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
3222         void __iomem *base, *kstart;
3223         int i, len;
3224         int found = 0;
3225 #define VPD_FOUND_MAC        0x01
3226 #define VPD_FOUND_PHY        0x02
3227
3228         int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
3229         int mac_off  = 0;
3230
3231         /* give us access to the PROM */
3232         writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
3233                cp->regs + REG_BIM_LOCAL_DEV_EN);
3234
3235         /* check for an expansion rom */
3236         if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
3237                 goto use_random_mac_addr;
3238
3239         /* search for beginning of vpd */
3240         base = NULL;
3241         for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
3242                 /* check for PCIR */
3243                 if ((readb(p + i + 0) == 0x50) &&
3244                     (readb(p + i + 1) == 0x43) &&
3245                     (readb(p + i + 2) == 0x49) &&
3246                     (readb(p + i + 3) == 0x52)) {
3247                         base = p + (readb(p + i + 8) |
3248                                     (readb(p + i + 9) << 8));
3249                         break;
3250                 }
3251         }
3252
3253         if (!base || (readb(base) != 0x82))
3254                 goto use_random_mac_addr;
3255
3256         i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
3257         while (i < EXPANSION_ROM_SIZE) {
3258                 if (readb(base + i) != 0x90) /* no vpd found */
3259                         goto use_random_mac_addr;
3260
3261                 /* found a vpd field */
3262                 len = readb(base + i + 1) | (readb(base + i + 2) << 8);
3263
3264                 /* extract keywords */
3265                 kstart = base + i + 3;
3266                 p = kstart;
3267                 while ((p - kstart) < len) {
3268                         int klen = readb(p + 2);
3269                         int j;
3270                         char type;
3271
3272                         p += 3;
3273
3274                         /* look for the following things:
3275                          * -- correct length == 29
3276                          * 3 (type) + 2 (size) +
3277                          * 18 (strlen("local-mac-address") + 1) +
3278                          * 6 (mac addr)
3279                          * -- VPD Instance 'I'
3280                          * -- VPD Type Bytes 'B'
3281                          * -- VPD data length == 6
3282                          * -- property string == local-mac-address
3283                          *
3284                          * -- correct length == 24
3285                          * 3 (type) + 2 (size) +
3286                          * 12 (strlen("entropy-dev") + 1) +
3287                          * 7 (strlen("vms110") + 1)
3288                          * -- VPD Instance 'I'
3289                          * -- VPD Type String 'B'
3290                          * -- VPD data length == 7
3291                          * -- property string == entropy-dev
3292                          *
3293                          * -- correct length == 18
3294                          * 3 (type) + 2 (size) +
3295                          * 9 (strlen("phy-type") + 1) +
3296                          * 4 (strlen("pcs") + 1)
3297                          * -- VPD Instance 'I'
3298                          * -- VPD Type String 'S'
3299                          * -- VPD data length == 4
3300                          * -- property string == phy-type
3301                          *
3302                          * -- correct length == 23
3303                          * 3 (type) + 2 (size) +
3304                          * 14 (strlen("phy-interface") + 1) +
3305                          * 4 (strlen("pcs") + 1)
3306                          * -- VPD Instance 'I'
3307                          * -- VPD Type String 'S'
3308                          * -- VPD data length == 4
3309                          * -- property string == phy-interface
3310                          */
3311                         if (readb(p) != 'I')
3312                                 goto next;
3313
3314                         /* finally, check string and length */
3315                         type = readb(p + 3);
3316                         if (type == 'B') {
3317                                 if ((klen == 29) && readb(p + 4) == 6 &&
3318                                     cas_vpd_match(p + 5,
3319                                                   "local-mac-address")) {
3320                                         if (mac_off++ > offset)
3321                                                 goto next;
3322
3323                                         /* set mac address */
3324                                         for (j = 0; j < 6; j++)
3325                                                 dev_addr[j] =
3326                                                         readb(p + 23 + j);
3327                                         goto found_mac;
3328                                 }
3329                         }
3330
3331                         if (type != 'S')
3332                                 goto next;
3333
3334 #ifdef USE_ENTROPY_DEV
3335                         if ((klen == 24) &&
3336                             cas_vpd_match(p + 5, "entropy-dev") &&
3337                             cas_vpd_match(p + 17, "vms110")) {
3338                                 cp->cas_flags |= CAS_FLAG_ENTROPY_DEV;
3339                                 goto next;
3340                         }
3341 #endif
3342
3343                         if (found & VPD_FOUND_PHY)
3344                                 goto next;
3345
3346                         if ((klen == 18) && readb(p + 4) == 4 &&
3347                             cas_vpd_match(p + 5, "phy-type")) {
3348                                 if (cas_vpd_match(p + 14, "pcs")) {
3349                                         phy_type = CAS_PHY_SERDES;
3350                                         goto found_phy;
3351                                 }
3352                         }
3353
3354                         if ((klen == 23) && readb(p + 4) == 4 &&
3355                             cas_vpd_match(p + 5, "phy-interface")) {
3356                                 if (cas_vpd_match(p + 19, "pcs")) {
3357                                         phy_type = CAS_PHY_SERDES;
3358                                         goto found_phy;
3359                                 }
3360                         }
3361 found_mac:
3362                         found |= VPD_FOUND_MAC;
3363                         goto next;
3364
3365 found_phy:
3366                         found |= VPD_FOUND_PHY;
3367
3368 next:
3369                         p += klen;
3370                 }
3371                 i += len + 3;
3372         }
3373
3374 use_random_mac_addr:
3375         if (found & VPD_FOUND_MAC)
3376                 goto done;
3377
3378         /* Sun MAC prefix then 3 random bytes. */
3379         printk(PFX "MAC address not found in ROM VPD\n");
3380         dev_addr[0] = 0x08;
3381         dev_addr[1] = 0x00;
3382         dev_addr[2] = 0x20;
3383         get_random_bytes(dev_addr + 3, 3);
3384
3385 done:
3386         writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3387         return phy_type;
3388 }
3389
3390 /* check pci invariants */
3391 static void cas_check_pci_invariants(struct cas *cp)
3392 {
3393         struct pci_dev *pdev = cp->pdev;
3394
3395         cp->cas_flags = 0;
3396         if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
3397             (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
3398                 if (pdev->revision >= CAS_ID_REVPLUS)
3399                         cp->cas_flags |= CAS_FLAG_REG_PLUS;
3400                 if (pdev->revision < CAS_ID_REVPLUS02u)
3401                         cp->cas_flags |= CAS_FLAG_TARGET_ABORT;
3402
3403                 /* Original Cassini supports HW CSUM, but it's not
3404                  * enabled by default as it can trigger TX hangs.
3405                  */
3406                 if (pdev->revision < CAS_ID_REV2)
3407                         cp->cas_flags |= CAS_FLAG_NO_HW_CSUM;
3408         } else {
3409                 /* Only sun has original cassini chips.  */
3410                 cp->cas_flags |= CAS_FLAG_REG_PLUS;
3411
3412                 /* We use a flag because the same phy might be externally
3413                  * connected.
3414                  */
3415                 if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
3416                     (pdev->device == PCI_DEVICE_ID_NS_SATURN))
3417                         cp->cas_flags |= CAS_FLAG_SATURN;
3418         }
3419 }
3420
3421
3422 static int cas_check_invariants(struct cas *cp)
3423 {
3424         struct pci_dev *pdev = cp->pdev;
3425         u32 cfg;
3426         int i;
3427
3428         /* get page size for rx buffers. */
3429         cp->page_order = 0;
3430 #ifdef USE_PAGE_ORDER
3431         if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) {
3432                 /* see if we can allocate larger pages */
3433                 struct page *page = alloc_pages(GFP_ATOMIC,
3434                                                 CAS_JUMBO_PAGE_SHIFT -
3435                                                 PAGE_SHIFT);
3436                 if (page) {
3437                         __free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT);
3438                         cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT;
3439                 } else {
3440                         printk(PFX "MTU limited to %d bytes\n", CAS_MAX_MTU);
3441                 }
3442         }
3443 #endif
3444         cp->page_size = (PAGE_SIZE << cp->page_order);
3445
3446         /* Fetch the FIFO configurations. */
3447         cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
3448         cp->rx_fifo_size = RX_FIFO_SIZE;
3449
3450         /* finish phy determination. MDIO1 takes precedence over MDIO0 if
3451          * they're both connected.
3452          */
3453         cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr,
3454                                         PCI_SLOT(pdev->devfn));
3455         if (cp->phy_type & CAS_PHY_SERDES) {
3456                 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3457                 return 0; /* no more checking needed */
3458         }
3459
3460         /* MII */
3461         cfg = readl(cp->regs + REG_MIF_CFG);
3462         if (cfg & MIF_CFG_MDIO_1) {
3463                 cp->phy_type = CAS_PHY_MII_MDIO1;
3464         } else if (cfg & MIF_CFG_MDIO_0) {
3465                 cp->phy_type = CAS_PHY_MII_MDIO0;
3466         }
3467
3468         cas_mif_poll(cp, 0);
3469         writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3470
3471         for (i = 0; i < 32; i++) {
3472                 u32 phy_id;
3473                 int j;
3474
3475                 for (j = 0; j < 3; j++) {
3476                         cp->phy_addr = i;
3477                         phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
3478                         phy_id |= cas_phy_read(cp, MII_PHYSID2);
3479                         if (phy_id && (phy_id != 0xFFFFFFFF)) {
3480                                 cp->phy_id = phy_id;
3481                                 goto done;
3482                         }
3483                 }
3484         }
3485         printk(KERN_ERR PFX "MII phy did not respond [%08x]\n",
3486                readl(cp->regs + REG_MIF_STATE_MACHINE));
3487         return -1;
3488
3489 done:
3490         /* see if we can do gigabit */
3491         cfg = cas_phy_read(cp, MII_BMSR);
3492         if ((cfg & CAS_BMSR_1000_EXTEND) &&
3493             cas_phy_read(cp, CAS_MII_1000_EXTEND))
3494                 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3495         return 0;
3496 }
3497
3498 /* Must be invoked under cp->lock. */
3499 static inline void cas_start_dma(struct cas *cp)
3500 {
3501         int i;
3502         u32 val;
3503         int txfailed = 0;
3504
3505         /* enable dma */
3506         val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
3507         writel(val, cp->regs + REG_TX_CFG);
3508         val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
3509         writel(val, cp->regs + REG_RX_CFG);
3510
3511         /* enable the mac */
3512         val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
3513         writel(val, cp->regs + REG_MAC_TX_CFG);
3514         val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
3515         writel(val, cp->regs + REG_MAC_RX_CFG);
3516
3517         i = STOP_TRIES;
3518         while (i-- > 0) {
3519                 val = readl(cp->regs + REG_MAC_TX_CFG);
3520                 if ((val & MAC_TX_CFG_EN))
3521                         break;
3522                 udelay(10);
3523         }
3524         if (i < 0) txfailed = 1;
3525         i = STOP_TRIES;
3526         while (i-- > 0) {
3527                 val = readl(cp->regs + REG_MAC_RX_CFG);
3528                 if ((val & MAC_RX_CFG_EN)) {
3529                         if (txfailed) {
3530                           printk(KERN_ERR
3531                                  "%s: enabling mac failed [tx:%08x:%08x].\n",
3532                                  cp->dev->name,
3533                                  readl(cp->regs + REG_MIF_STATE_MACHINE),
3534                                  readl(cp->regs + REG_MAC_STATE_MACHINE));
3535                         }
3536                         goto enable_rx_done;
3537                 }
3538                 udelay(10);
3539         }
3540         printk(KERN_ERR "%s: enabling mac failed [%s:%08x:%08x].\n",
3541                cp->dev->name,
3542                (txfailed? "tx,rx":"rx"),
3543                readl(cp->regs + REG_MIF_STATE_MACHINE),
3544                readl(cp->regs + REG_MAC_STATE_MACHINE));
3545
3546 enable_rx_done:
3547         cas_unmask_intr(cp); /* enable interrupts */
3548         writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
3549         writel(0, cp->regs + REG_RX_COMP_TAIL);
3550
3551         if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
3552                 if (N_RX_DESC_RINGS > 1)
3553                         writel(RX_DESC_RINGN_SIZE(1) - 4,
3554                                cp->regs + REG_PLUS_RX_KICK1);
3555
3556                 for (i = 1; i < N_RX_COMP_RINGS; i++)
3557                         writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i));
3558         }
3559 }
3560
3561 /* Must be invoked under cp->lock. */
3562 static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
3563                                    int *pause)
3564 {
3565         u32 val = readl(cp->regs + REG_PCS_MII_LPA);
3566         *fd     = (val & PCS_MII_LPA_FD) ? 1 : 0;
3567         *pause  = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
3568         if (val & PCS_MII_LPA_ASYM_PAUSE)
3569                 *pause |= 0x10;
3570         *spd = 1000;
3571 }
3572
3573 /* Must be invoked under cp->lock. */
3574 static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
3575                                    int *pause)
3576 {
3577         u32 val;
3578
3579         *fd = 0;
3580         *spd = 10;
3581         *pause = 0;
3582
3583         /* use GMII registers */
3584         val = cas_phy_read(cp, MII_LPA);
3585         if (val & CAS_LPA_PAUSE)
3586                 *pause = 0x01;
3587
3588         if (val & CAS_LPA_ASYM_PAUSE)
3589                 *pause |= 0x10;
3590
3591         if (val & LPA_DUPLEX)
3592                 *fd = 1;
3593         if (val & LPA_100)
3594                 *spd = 100;
3595
3596         if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
3597                 val = cas_phy_read(cp, CAS_MII_1000_STATUS);
3598                 if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
3599                         *spd = 1000;
3600                 if (val & CAS_LPA_1000FULL)
3601                         *fd = 1;
3602         }
3603 }
3604
3605 /* A link-up condition has occurred, initialize and enable the
3606  * rest of the chip.
3607  *
3608  * Must be invoked under cp->lock.
3609  */
3610 static void cas_set_link_modes(struct cas *cp)
3611 {
3612         u32 val;
3613         int full_duplex, speed, pause;
3614
3615         full_duplex = 0;
3616         speed = 10;
3617         pause = 0;
3618
3619         if (CAS_PHY_MII(cp->phy_type)) {
3620                 cas_mif_poll(cp, 0);
3621                 val = cas_phy_read(cp, MII_BMCR);
3622                 if (val & BMCR_ANENABLE) {
3623                         cas_read_mii_link_mode(cp, &full_duplex, &speed,
3624                                                &pause);
3625                 } else {
3626                         if (val & BMCR_FULLDPLX)
3627                                 full_duplex = 1;
3628
3629                         if (val & BMCR_SPEED100)
3630                                 speed = 100;
3631                         else if (val & CAS_BMCR_SPEED1000)
3632                                 speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
3633                                         1000 : 100;
3634                 }
3635                 cas_mif_poll(cp, 1);
3636
3637         } else {
3638                 val = readl(cp->regs + REG_PCS_MII_CTRL);
3639                 cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
3640                 if ((val & PCS_MII_AUTONEG_EN) == 0) {
3641                         if (val & PCS_MII_CTRL_DUPLEX)
3642                                 full_duplex = 1;
3643                 }
3644         }
3645
3646         if (netif_msg_link(cp))
3647                 printk(KERN_INFO "%s: Link up at %d Mbps, %s-duplex.\n",
3648                        cp->dev->name, speed, (full_duplex ? "full" : "half"));
3649
3650         val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED;
3651         if (CAS_PHY_MII(cp->phy_type)) {
3652                 val |= MAC_XIF_MII_BUFFER_OUTPUT_EN;
3653                 if (!full_duplex)
3654                         val |= MAC_XIF_DISABLE_ECHO;
3655         }
3656         if (full_duplex)
3657                 val |= MAC_XIF_FDPLX_LED;
3658         if (speed == 1000)
3659                 val |= MAC_XIF_GMII_MODE;
3660         writel(val, cp->regs + REG_MAC_XIF_CFG);
3661
3662         /* deal with carrier and collision detect. */
3663         val = MAC_TX_CFG_IPG_EN;
3664         if (full_duplex) {
3665                 val |= MAC_TX_CFG_IGNORE_CARRIER;
3666                 val |= MAC_TX_CFG_IGNORE_COLL;
3667         } else {
3668 #ifndef USE_CSMA_CD_PROTO
3669                 val |= MAC_TX_CFG_NEVER_GIVE_UP_EN;
3670                 val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM;
3671 #endif
3672         }
3673         /* val now set up for REG_MAC_TX_CFG */
3674
3675         /* If gigabit and half-duplex, enable carrier extension
3676          * mode.  increase slot time to 512 bytes as well.
3677          * else, disable it and make sure slot time is 64 bytes.
3678          * also activate checksum bug workaround
3679          */
3680         if ((speed == 1000) && !full_duplex) {
3681                 writel(val | MAC_TX_CFG_CARRIER_EXTEND,
3682                        cp->regs + REG_MAC_TX_CFG);
3683
3684                 val = readl(cp->regs + REG_MAC_RX_CFG);
3685                 val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
3686                 writel(val | MAC_RX_CFG_CARRIER_EXTEND,
3687                        cp->regs + REG_MAC_RX_CFG);
3688
3689                 writel(0x200, cp->regs + REG_MAC_SLOT_TIME);
3690
3691                 cp->crc_size = 4;
3692                 /* minimum size gigabit frame at half duplex */
3693                 cp->min_frame_size = CAS_1000MB_MIN_FRAME;
3694
3695         } else {
3696                 writel(val, cp->regs + REG_MAC_TX_CFG);
3697
3698                 /* checksum bug workaround. don't strip FCS when in
3699                  * half-duplex mode
3700                  */
3701                 val = readl(cp->regs + REG_MAC_RX_CFG);
3702                 if (full_duplex) {
3703                         val |= MAC_RX_CFG_STRIP_FCS;
3704                         cp->crc_size = 0;
3705                         cp->min_frame_size = CAS_MIN_MTU;
3706                 } else {
3707                         val &= ~MAC_RX_CFG_STRIP_FCS;
3708                         cp->crc_size = 4;
3709                         cp->min_frame_size = CAS_MIN_FRAME;
3710                 }
3711                 writel(val & ~MAC_RX_CFG_CARRIER_EXTEND,
3712                        cp->regs + REG_MAC_RX_CFG);
3713                 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3714         }
3715
3716         if (netif_msg_link(cp)) {
3717                 if (pause & 0x01) {
3718                         printk(KERN_INFO "%s: Pause is enabled "
3719                                "(rxfifo: %d off: %d on: %d)\n",
3720                                cp->dev->name,
3721                                cp->rx_fifo_size,
3722                                cp->rx_pause_off,
3723                                cp->rx_pause_on);
3724                 } else if (pause & 0x10) {
3725                         printk(KERN_INFO "%s: TX pause enabled\n",
3726                                cp->dev->name);
3727                 } else {
3728                         printk(KERN_INFO "%s: Pause is disabled\n",
3729                                cp->dev->name);
3730                 }
3731         }
3732
3733         val = readl(cp->regs + REG_MAC_CTRL_CFG);
3734         val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN);
3735         if (pause) { /* symmetric or asymmetric pause */
3736                 val |= MAC_CTRL_CFG_SEND_PAUSE_EN;
3737                 if (pause & 0x01) { /* symmetric pause */
3738                         val |= MAC_CTRL_CFG_RECV_PAUSE_EN;
3739                 }
3740         }
3741         writel(val, cp->regs + REG_MAC_CTRL_CFG);
3742         cas_start_dma(cp);
3743 }
3744
3745 /* Must be invoked under cp->lock. */
3746 static void cas_init_hw(struct cas *cp, int restart_link)
3747 {
3748         if (restart_link)
3749                 cas_phy_init(cp);
3750
3751         cas_init_pause_thresholds(cp);
3752         cas_init_mac(cp);
3753         cas_init_dma(cp);
3754
3755         if (restart_link) {
3756                 /* Default aneg parameters */
3757                 cp->timer_ticks = 0;
3758                 cas_begin_auto_negotiation(cp, NULL);
3759         } else if (cp->lstate == link_up) {
3760                 cas_set_link_modes(cp);
3761                 netif_carrier_on(cp->dev);
3762         }
3763 }
3764
3765 /* Must be invoked under cp->lock. on earlier cassini boards,
3766  * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3767  * let it settle out, and then restore pci state.
3768  */
3769 static void cas_hard_reset(struct cas *cp)
3770 {
3771         writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3772         udelay(20);
3773         pci_restore_state(cp->pdev);
3774 }
3775
3776
3777 static void cas_global_reset(struct cas *cp, int blkflag)
3778 {
3779         int limit;
3780
3781         /* issue a global reset. don't use RSTOUT. */
3782         if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
3783                 /* For PCS, when the blkflag is set, we should set the
3784                  * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3785                  * the last autonegotiation from being cleared.  We'll
3786                  * need some special handling if the chip is set into a
3787                  * loopback mode.
3788                  */
3789                 writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK),
3790                        cp->regs + REG_SW_RESET);
3791         } else {
3792                 writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET);
3793         }
3794
3795         /* need to wait at least 3ms before polling register */
3796         mdelay(3);
3797
3798         limit = STOP_TRIES;
3799         while (limit-- > 0) {
3800                 u32 val = readl(cp->regs + REG_SW_RESET);
3801                 if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
3802                         goto done;
3803                 udelay(10);
3804         }
3805         printk(KERN_ERR "%s: sw reset failed.\n", cp->dev->name);
3806
3807 done:
3808         /* enable various BIM interrupts */
3809         writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE |
3810                BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG);
3811
3812         /* clear out pci error status mask for handled errors.
3813          * we don't deal with DMA counter overflows as they happen
3814          * all the time.
3815          */
3816         writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO |
3817                                PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE |
3818                                PCI_ERR_BIM_DMA_READ), cp->regs +
3819                REG_PCI_ERR_STATUS_MASK);
3820
3821         /* set up for MII by default to address mac rx reset timeout
3822          * issue
3823          */
3824         writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3825 }
3826
3827 static void cas_reset(struct cas *cp, int blkflag)
3828 {
3829         u32 val;
3830
3831         cas_mask_intr(cp);
3832         cas_global_reset(cp, blkflag);
3833         cas_mac_reset(cp);
3834         cas_entropy_reset(cp);
3835
3836         /* disable dma engines. */
3837         val = readl(cp->regs + REG_TX_CFG);
3838         val &= ~TX_CFG_DMA_EN;
3839         writel(val, cp->regs + REG_TX_CFG);
3840
3841         val = readl(cp->regs + REG_RX_CFG);
3842         val &= ~RX_CFG_DMA_EN;
3843         writel(val, cp->regs + REG_RX_CFG);
3844
3845         /* program header parser */
3846         if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
3847             (CAS_HP_ALT_FIRMWARE == cas_prog_null)) {
3848                 cas_load_firmware(cp, CAS_HP_FIRMWARE);
3849         } else {
3850                 cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
3851         }
3852
3853         /* clear out error registers */
3854         spin_lock(&cp->stat_lock[N_TX_RINGS]);
3855         cas_clear_mac_err(cp);
3856         spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3857 }
3858
3859 /* Shut down the chip, must be called with pm_mutex held.  */
3860 static void cas_shutdown(struct cas *cp)
3861 {
3862         unsigned long flags;
3863
3864         /* Make us not-running to avoid timers respawning */
3865         cp->hw_running = 0;
3866
3867         del_timer_sync(&cp->link_timer);
3868
3869         /* Stop the reset task */
3870 #if 0
3871         while (atomic_read(&cp->reset_task_pending_mtu) ||
3872                atomic_read(&cp->reset_task_pending_spare) ||
3873                atomic_read(&cp->reset_task_pending_all))
3874                 schedule();
3875
3876 #else
3877         while (atomic_read(&cp->reset_task_pending))
3878                 schedule();
3879 #endif
3880         /* Actually stop the chip */
3881         cas_lock_all_save(cp, flags);
3882         cas_reset(cp, 0);
3883         if (cp->cas_flags & CAS_FLAG_SATURN)
3884                 cas_phy_powerdown(cp);
3885         cas_unlock_all_restore(cp, flags);
3886 }
3887
3888 static int cas_change_mtu(struct net_device *dev, int new_mtu)
3889 {
3890         struct cas *cp = netdev_priv(dev);
3891
3892         if (new_mtu < CAS_MIN_MTU || new_mtu > CAS_MAX_MTU)
3893                 return -EINVAL;
3894
3895         dev->mtu = new_mtu;
3896         if (!netif_running(dev) || !netif_device_present(dev))
3897                 return 0;
3898
3899         /* let the reset task handle it */
3900 #if 1
3901         atomic_inc(&cp->reset_task_pending);
3902         if ((cp->phy_type & CAS_PHY_SERDES)) {
3903                 atomic_inc(&cp->reset_task_pending_all);
3904         } else {
3905                 atomic_inc(&cp->reset_task_pending_mtu);
3906         }
3907         schedule_work(&cp->reset_task);
3908 #else
3909         atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ?
3910                    CAS_RESET_ALL : CAS_RESET_MTU);
3911         printk(KERN_ERR "reset called in cas_change_mtu\n");
3912         schedule_work(&cp->reset_task);
3913 #endif
3914
3915         flush_scheduled_work();
3916         return 0;
3917 }
3918
3919 static void cas_clean_txd(struct cas *cp, int ring)
3920 {
3921         struct cas_tx_desc *txd = cp->init_txds[ring];
3922         struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
3923         u64 daddr, dlen;
3924         int i, size;
3925
3926         size = TX_DESC_RINGN_SIZE(ring);
3927         for (i = 0; i < size; i++) {
3928                 int frag;
3929
3930                 if (skbs[i] == NULL)
3931                         continue;
3932
3933                 skb = skbs[i];
3934                 skbs[i] = NULL;
3935
3936                 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags;  frag++) {
3937                         int ent = i & (size - 1);
3938
3939                         /* first buffer is never a tiny buffer and so
3940                          * needs to be unmapped.
3941                          */
3942                         daddr = le64_to_cpu(txd[ent].buffer);
3943                         dlen  =  CAS_VAL(TX_DESC_BUFLEN,
3944                                          le64_to_cpu(txd[ent].control));
3945                         pci_unmap_page(cp->pdev, daddr, dlen,
3946                                        PCI_DMA_TODEVICE);
3947
3948                         if (frag != skb_shinfo(skb)->nr_frags) {
3949                                 i++;
3950
3951                                 /* next buffer might by a tiny buffer.
3952                                  * skip past it.
3953                                  */
3954                                 ent = i & (size - 1);
3955                                 if (cp->tx_tiny_use[ring][ent].used)
3956                                         i++;
3957                         }
3958                 }
3959                 dev_kfree_skb_any(skb);
3960         }
3961
3962         /* zero out tiny buf usage */
3963         memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
3964 }
3965
3966 /* freed on close */
3967 static inline void cas_free_rx_desc(struct cas *cp, int ring)
3968 {
3969         cas_page_t **page = cp->rx_pages[ring];
3970         int i, size;
3971
3972         size = RX_DESC_RINGN_SIZE(ring);
3973         for (i = 0; i < size; i++) {
3974                 if (page[i]) {
3975                         cas_page_free(cp, page[i]);
3976                         page[i] = NULL;
3977                 }
3978         }
3979 }
3980
3981 static void cas_free_rxds(struct cas *cp)
3982 {
3983         int i;
3984
3985         for (i = 0; i < N_RX_DESC_RINGS; i++)
3986                 cas_free_rx_desc(cp, i);
3987 }
3988
3989 /* Must be invoked under cp->lock. */
3990 static void cas_clean_rings(struct cas *cp)
3991 {
3992         int i;
3993
3994         /* need to clean all tx rings */
3995         memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS);
3996         memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS);
3997         for (i = 0; i < N_TX_RINGS; i++)
3998                 cas_clean_txd(cp, i);
3999
4000         /* zero out init block */
4001         memset(cp->init_block, 0, sizeof(struct cas_init_block));
4002         cas_clean_rxds(cp);
4003         cas_clean_rxcs(cp);
4004 }
4005
4006 /* allocated on open */
4007 static inline int cas_alloc_rx_desc(struct cas *cp, int ring)
4008 {
4009         cas_page_t **page = cp->rx_pages[ring];
4010         int size, i = 0;
4011
4012         size = RX_DESC_RINGN_SIZE(ring);
4013         for (i = 0; i < size; i++) {
4014                 if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL)
4015                         return -1;
4016         }
4017         return 0;
4018 }
4019
4020 static int cas_alloc_rxds(struct cas *cp)
4021 {
4022         int i;
4023
4024         for (i = 0; i < N_RX_DESC_RINGS; i++) {
4025                 if (cas_alloc_rx_desc(cp, i) < 0) {
4026                         cas_free_rxds(cp);
4027                         return -1;
4028                 }
4029         }
4030         return 0;
4031 }
4032
4033 static void cas_reset_task(struct work_struct *work)
4034 {
4035         struct cas *cp = container_of(work, struct cas, reset_task);
4036 #if 0
4037         int pending = atomic_read(&cp->reset_task_pending);
4038 #else
4039         int pending_all = atomic_read(&cp->reset_task_pending_all);
4040         int pending_spare = atomic_read(&cp->reset_task_pending_spare);
4041         int pending_mtu = atomic_read(&cp->reset_task_pending_mtu);
4042
4043         if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) {
4044                 /* We can have more tasks scheduled than actually
4045                  * needed.
4046                  */
4047                 atomic_dec(&cp->reset_task_pending);
4048                 return;
4049         }
4050 #endif
4051         /* The link went down, we reset the ring, but keep
4052          * DMA stopped. Use this function for reset
4053          * on error as well.
4054          */
4055         if (cp->hw_running) {
4056                 unsigned long flags;
4057
4058                 /* Make sure we don't get interrupts or tx packets */
4059                 netif_device_detach(cp->dev);
4060                 cas_lock_all_save(cp, flags);
4061
4062                 if (cp->opened) {
4063                         /* We call cas_spare_recover when we call cas_open.
4064                          * but we do not initialize the lists cas_spare_recover
4065                          * uses until cas_open is called.
4066                          */
4067                         cas_spare_recover(cp, GFP_ATOMIC);
4068                 }
4069 #if 1
4070                 /* test => only pending_spare set */
4071                 if (!pending_all && !pending_mtu)
4072                         goto done;
4073 #else
4074                 if (pending == CAS_RESET_SPARE)
4075                         goto done;
4076 #endif
4077                 /* when pending == CAS_RESET_ALL, the following
4078                  * call to cas_init_hw will restart auto negotiation.
4079                  * Setting the second argument of cas_reset to
4080                  * !(pending == CAS_RESET_ALL) will set this argument
4081                  * to 1 (avoiding reinitializing the PHY for the normal
4082                  * PCS case) when auto negotiation is not restarted.
4083                  */
4084 #if 1
4085                 cas_reset(cp, !(pending_all > 0));
4086                 if (cp->opened)
4087                         cas_clean_rings(cp);
4088                 cas_init_hw(cp, (pending_all > 0));
4089 #else
4090                 cas_reset(cp, !(pending == CAS_RESET_ALL));
4091                 if (cp->opened)
4092                         cas_clean_rings(cp);
4093                 cas_init_hw(cp, pending == CAS_RESET_ALL);
4094 #endif
4095
4096 done:
4097                 cas_unlock_all_restore(cp, flags);
4098                 netif_device_attach(cp->dev);
4099         }
4100 #if 1
4101         atomic_sub(pending_all, &cp->reset_task_pending_all);
4102         atomic_sub(pending_spare, &cp->reset_task_pending_spare);
4103         atomic_sub(pending_mtu, &cp->reset_task_pending_mtu);
4104         atomic_dec(&cp->reset_task_pending);
4105 #else
4106         atomic_set(&cp->reset_task_pending, 0);
4107 #endif
4108 }
4109
4110 static void cas_link_timer(unsigned long data)
4111 {
4112         struct cas *cp = (struct cas *) data;
4113         int mask, pending = 0, reset = 0;
4114         unsigned long flags;
4115
4116         if (link_transition_timeout != 0 &&
4117             cp->link_transition_jiffies_valid &&
4118             ((jiffies - cp->link_transition_jiffies) >
4119               (link_transition_timeout))) {
4120                 /* One-second counter so link-down workaround doesn't
4121                  * cause resets to occur so fast as to fool the switch
4122                  * into thinking the link is down.
4123                  */
4124                 cp->link_transition_jiffies_valid = 0;
4125         }
4126
4127         if (!cp->hw_running)
4128                 return;
4129
4130         spin_lock_irqsave(&cp->lock, flags);
4131         cas_lock_tx(cp);
4132         cas_entropy_gather(cp);
4133
4134         /* If the link task is still pending, we just
4135          * reschedule the link timer
4136          */
4137 #if 1
4138         if (atomic_read(&cp->reset_task_pending_all) ||
4139             atomic_read(&cp->reset_task_pending_spare) ||
4140             atomic_read(&cp->reset_task_pending_mtu))
4141                 goto done;
4142 #else
4143         if (atomic_read(&cp->reset_task_pending))
4144                 goto done;
4145 #endif
4146
4147         /* check for rx cleaning */
4148         if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) {
4149                 int i, rmask;
4150
4151                 for (i = 0; i < MAX_RX_DESC_RINGS; i++) {
4152                         rmask = CAS_FLAG_RXD_POST(i);
4153                         if ((mask & rmask) == 0)
4154                                 continue;
4155
4156                         /* post_rxds will do a mod_timer */
4157                         if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) {
4158                                 pending = 1;
4159                                 continue;
4160                         }
4161                         cp->cas_flags &= ~rmask;
4162                 }
4163         }
4164
4165         if (CAS_PHY_MII(cp->phy_type)) {
4166                 u16 bmsr;
4167                 cas_mif_poll(cp, 0);
4168                 bmsr = cas_phy_read(cp, MII_BMSR);
4169                 /* WTZ: Solaris driver reads this twice, but that
4170                  * may be due to the PCS case and the use of a
4171                  * common implementation. Read it twice here to be
4172                  * safe.
4173                  */
4174                 bmsr = cas_phy_read(cp, MII_BMSR);
4175                 cas_mif_poll(cp, 1);
4176                 readl(cp->regs + REG_MIF_STATUS); /* avoid dups */
4177                 reset = cas_mii_link_check(cp, bmsr);
4178         } else {
4179                 reset = cas_pcs_link_check(cp);
4180         }
4181
4182         if (reset)
4183                 goto done;
4184
4185         /* check for tx state machine confusion */
4186         if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) {
4187                 u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE);
4188                 u32 wptr, rptr;
4189                 int tlm  = CAS_VAL(MAC_SM_TLM, val);
4190
4191                 if (((tlm == 0x5) || (tlm == 0x3)) &&
4192                     (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) {
4193                         if (netif_msg_tx_err(cp))
4194                                 printk(KERN_DEBUG "%s: tx err: "
4195                                        "MAC_STATE[%08x]\n",
4196                                        cp->dev->name, val);
4197                         reset = 1;
4198                         goto done;
4199                 }
4200
4201                 val  = readl(cp->regs + REG_TX_FIFO_PKT_CNT);
4202                 wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR);
4203                 rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR);
4204                 if ((val == 0) && (wptr != rptr)) {
4205                         if (netif_msg_tx_err(cp))
4206                                 printk(KERN_DEBUG "%s: tx err: "
4207                                        "TX_FIFO[%08x:%08x:%08x]\n",
4208                                        cp->dev->name, val, wptr, rptr);
4209                         reset = 1;
4210                 }
4211
4212                 if (reset)
4213                         cas_hard_reset(cp);
4214         }
4215
4216 done:
4217         if (reset) {
4218 #if 1
4219                 atomic_inc(&cp->reset_task_pending);
4220                 atomic_inc(&cp->reset_task_pending_all);
4221                 schedule_work(&cp->reset_task);
4222 #else
4223                 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
4224                 printk(KERN_ERR "reset called in cas_link_timer\n");
4225                 schedule_work(&cp->reset_task);
4226 #endif
4227         }
4228
4229         if (!pending)
4230                 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
4231         cas_unlock_tx(cp);
4232         spin_unlock_irqrestore(&cp->lock, flags);
4233 }
4234
4235 /* tiny buffers are used to avoid target abort issues with
4236  * older cassini's
4237  */
4238 static void cas_tx_tiny_free(struct cas *cp)
4239 {
4240         struct pci_dev *pdev = cp->pdev;
4241         int i;
4242
4243         for (i = 0; i < N_TX_RINGS; i++) {
4244                 if (!cp->tx_tiny_bufs[i])
4245                         continue;
4246
4247                 pci_free_consistent(pdev, TX_TINY_BUF_BLOCK,
4248                                     cp->tx_tiny_bufs[i],
4249                                     cp->tx_tiny_dvma[i]);
4250                 cp->tx_tiny_bufs[i] = NULL;
4251         }
4252 }
4253
4254 static int cas_tx_tiny_alloc(struct cas *cp)
4255 {
4256         struct pci_dev *pdev = cp->pdev;
4257         int i;
4258
4259         for (i = 0; i < N_TX_RINGS; i++) {
4260                 cp->tx_tiny_bufs[i] =
4261                         pci_alloc_consistent(pdev, TX_TINY_BUF_BLOCK,
4262                                              &cp->tx_tiny_dvma[i]);
4263                 if (!cp->tx_tiny_bufs[i]) {
4264                         cas_tx_tiny_free(cp);
4265                         return -1;
4266                 }
4267         }
4268         return 0;
4269 }
4270
4271
4272 static int cas_open(struct net_device *dev)
4273 {
4274         struct cas *cp = netdev_priv(dev);
4275         int hw_was_up, err;
4276         unsigned long flags;
4277
4278         mutex_lock(&cp->pm_mutex);
4279
4280         hw_was_up = cp->hw_running;
4281
4282         /* The power-management mutex protects the hw_running
4283          * etc. state so it is safe to do this bit without cp->lock
4284          */
4285         if (!cp->hw_running) {
4286                 /* Reset the chip */
4287                 cas_lock_all_save(cp, flags);
4288                 /* We set the second arg to cas_reset to zero
4289                  * because cas_init_hw below will have its second
4290                  * argument set to non-zero, which will force
4291                  * autonegotiation to start.
4292                  */
4293                 cas_reset(cp, 0);
4294                 cp->hw_running = 1;
4295                 cas_unlock_all_restore(cp, flags);
4296         }
4297
4298         if (cas_tx_tiny_alloc(cp) < 0)
4299                 return -ENOMEM;
4300
4301         /* alloc rx descriptors */
4302         err = -ENOMEM;
4303         if (cas_alloc_rxds(cp) < 0)
4304                 goto err_tx_tiny;
4305
4306         /* allocate spares */
4307         cas_spare_init(cp);
4308         cas_spare_recover(cp, GFP_KERNEL);
4309
4310         /* We can now request the interrupt as we know it's masked
4311          * on the controller. cassini+ has up to 4 interrupts
4312          * that can be used, but you need to do explicit pci interrupt
4313          * mapping to expose them
4314          */
4315         if (request_irq(cp->pdev->irq, cas_interrupt,
4316                         IRQF_SHARED, dev->name, (void *) dev)) {
4317                 printk(KERN_ERR "%s: failed to request irq !\n",
4318                        cp->dev->name);
4319                 err = -EAGAIN;
4320                 goto err_spare;
4321         }
4322
4323 #ifdef USE_NAPI
4324         napi_enable(&cp->napi);
4325 #endif
4326         /* init hw */
4327         cas_lock_all_save(cp, flags);
4328         cas_clean_rings(cp);
4329         cas_init_hw(cp, !hw_was_up);
4330         cp->opened = 1;
4331         cas_unlock_all_restore(cp, flags);
4332
4333         netif_start_queue(dev);
4334         mutex_unlock(&cp->pm_mutex);
4335         return 0;
4336
4337 err_spare:
4338         cas_spare_free(cp);
4339         cas_free_rxds(cp);
4340 err_tx_tiny:
4341         cas_tx_tiny_free(cp);
4342         mutex_unlock(&cp->pm_mutex);
4343         return err;
4344 }
4345
4346 static int cas_close(struct net_device *dev)
4347 {
4348         unsigned long flags;
4349         struct cas *cp = netdev_priv(dev);
4350
4351 #ifdef USE_NAPI
4352         napi_disable(&cp->napi);
4353 #endif
4354         /* Make sure we don't get distracted by suspend/resume */
4355         mutex_lock(&cp->pm_mutex);
4356
4357         netif_stop_queue(dev);
4358
4359         /* Stop traffic, mark us closed */
4360         cas_lock_all_save(cp, flags);
4361         cp->opened = 0;
4362         cas_reset(cp, 0);
4363         cas_phy_init(cp);
4364         cas_begin_auto_negotiation(cp, NULL);
4365         cas_clean_rings(cp);
4366         cas_unlock_all_restore(cp, flags);
4367
4368         free_irq(cp->pdev->irq, (void *) dev);
4369         cas_spare_free(cp);
4370         cas_free_rxds(cp);
4371         cas_tx_tiny_free(cp);
4372         mutex_unlock(&cp->pm_mutex);
4373         return 0;
4374 }
4375
4376 static struct {
4377         const char name[ETH_GSTRING_LEN];
4378 } ethtool_cassini_statnames[] = {
4379         {"collisions"},
4380         {"rx_bytes"},
4381         {"rx_crc_errors"},
4382         {"rx_dropped"},
4383         {"rx_errors"},
4384         {"rx_fifo_errors"},
4385         {"rx_frame_errors"},
4386         {"rx_length_errors"},
4387         {"rx_over_errors"},
4388         {"rx_packets"},
4389         {"tx_aborted_errors"},
4390         {"tx_bytes"},
4391         {"tx_dropped"},
4392         {"tx_errors"},
4393         {"tx_fifo_errors"},
4394         {"tx_packets"}
4395 };
4396 #define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames)
4397
4398 static struct {
4399         const int offsets;      /* neg. values for 2nd arg to cas_read_phy */
4400 } ethtool_register_table[] = {
4401         {-MII_BMSR},
4402         {-MII_BMCR},
4403         {REG_CAWR},
4404         {REG_INF_BURST},
4405         {REG_BIM_CFG},
4406         {REG_RX_CFG},
4407         {REG_HP_CFG},
4408         {REG_MAC_TX_CFG},
4409         {REG_MAC_RX_CFG},
4410         {REG_MAC_CTRL_CFG},
4411         {REG_MAC_XIF_CFG},
4412         {REG_MIF_CFG},
4413         {REG_PCS_CFG},
4414         {REG_SATURN_PCFG},
4415         {REG_PCS_MII_STATUS},
4416         {REG_PCS_STATE_MACHINE},
4417         {REG_MAC_COLL_EXCESS},
4418         {REG_MAC_COLL_LATE}
4419 };
4420 #define CAS_REG_LEN     ARRAY_SIZE(ethtool_register_table)
4421 #define CAS_MAX_REGS    (sizeof (u32)*CAS_REG_LEN)
4422
4423 static void cas_read_regs(struct cas *cp, u8 *ptr, int len)
4424 {
4425         u8 *p;
4426         int i;
4427         unsigned long flags;
4428
4429         spin_lock_irqsave(&cp->lock, flags);
4430         for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) {
4431                 u16 hval;
4432                 u32 val;
4433                 if (ethtool_register_table[i].offsets < 0) {
4434                         hval = cas_phy_read(cp,
4435                                     -ethtool_register_table[i].offsets);
4436                         val = hval;
4437                 } else {
4438                         val= readl(cp->regs+ethtool_register_table[i].offsets);
4439                 }
4440                 memcpy(p, (u8 *)&val, sizeof(u32));
4441         }
4442         spin_unlock_irqrestore(&cp->lock, flags);
4443 }
4444
4445 static struct net_device_stats *cas_get_stats(struct net_device *dev)
4446 {
4447         struct cas *cp = netdev_priv(dev);
4448         struct net_device_stats *stats = cp->net_stats;
4449         unsigned long flags;
4450         int i;
4451         unsigned long tmp;
4452
4453         /* we collate all of the stats into net_stats[N_TX_RING] */
4454         if (!cp->hw_running)
4455                 return stats + N_TX_RINGS;
4456
4457         /* collect outstanding stats */
4458         /* WTZ: the Cassini spec gives these as 16 bit counters but
4459          * stored in 32-bit words.  Added a mask of 0xffff to be safe,
4460          * in case the chip somehow puts any garbage in the other bits.
4461          * Also, counter usage didn't seem to mach what Adrian did
4462          * in the parts of the code that set these quantities. Made
4463          * that consistent.
4464          */
4465         spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags);
4466         stats[N_TX_RINGS].rx_crc_errors +=
4467           readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff;
4468         stats[N_TX_RINGS].rx_frame_errors +=
4469                 readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff;
4470         stats[N_TX_RINGS].rx_length_errors +=
4471                 readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff;
4472 #if 1
4473         tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) +
4474                 (readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff);
4475         stats[N_TX_RINGS].tx_aborted_errors += tmp;
4476         stats[N_TX_RINGS].collisions +=
4477           tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff);
4478 #else
4479         stats[N_TX_RINGS].tx_aborted_errors +=
4480                 readl(cp->regs + REG_MAC_COLL_EXCESS);
4481         stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) +
4482                 readl(cp->regs + REG_MAC_COLL_LATE);
4483 #endif
4484         cas_clear_mac_err(cp);
4485
4486         /* saved bits that are unique to ring 0 */
4487         spin_lock(&cp->stat_lock[0]);
4488         stats[N_TX_RINGS].collisions        += stats[0].collisions;
4489         stats[N_TX_RINGS].rx_over_errors    += stats[0].rx_over_errors;
4490         stats[N_TX_RINGS].rx_frame_errors   += stats[0].rx_frame_errors;
4491         stats[N_TX_RINGS].rx_fifo_errors    += stats[0].rx_fifo_errors;
4492         stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors;
4493         stats[N_TX_RINGS].tx_fifo_errors    += stats[0].tx_fifo_errors;
4494         spin_unlock(&cp->stat_lock[0]);
4495
4496         for (i = 0; i < N_TX_RINGS; i++) {
4497                 spin_lock(&cp->stat_lock[i]);
4498                 stats[N_TX_RINGS].rx_length_errors +=
4499                         stats[i].rx_length_errors;
4500                 stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors;
4501                 stats[N_TX_RINGS].rx_packets    += stats[i].rx_packets;
4502                 stats[N_TX_RINGS].tx_packets    += stats[i].tx_packets;
4503                 stats[N_TX_RINGS].rx_bytes      += stats[i].rx_bytes;
4504                 stats[N_TX_RINGS].tx_bytes      += stats[i].tx_bytes;
4505                 stats[N_TX_RINGS].rx_errors     += stats[i].rx_errors;
4506                 stats[N_TX_RINGS].tx_errors     += stats[i].tx_errors;
4507                 stats[N_TX_RINGS].rx_dropped    += stats[i].rx_dropped;
4508                 stats[N_TX_RINGS].tx_dropped    += stats[i].tx_dropped;
4509                 memset(stats + i, 0, sizeof(struct net_device_stats));
4510                 spin_unlock(&cp->stat_lock[i]);
4511         }
4512         spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags);
4513         return stats + N_TX_RINGS;
4514 }
4515
4516
4517 static void cas_set_multicast(struct net_device *dev)
4518 {
4519         struct cas *cp = netdev_priv(dev);
4520         u32 rxcfg, rxcfg_new;
4521         unsigned long flags;
4522         int limit = STOP_TRIES;
4523
4524         if (!cp->hw_running)
4525                 return;
4526
4527         spin_lock_irqsave(&cp->lock, flags);
4528         rxcfg = readl(cp->regs + REG_MAC_RX_CFG);
4529
4530         /* disable RX MAC and wait for completion */
4531         writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4532         while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) {
4533                 if (!limit--)
4534                         break;
4535                 udelay(10);
4536         }
4537
4538         /* disable hash filter and wait for completion */
4539         limit = STOP_TRIES;
4540         rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN);
4541         writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4542         while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) {
4543                 if (!limit--)
4544                         break;
4545                 udelay(10);
4546         }
4547
4548         /* program hash filters */
4549         cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp);
4550         rxcfg |= rxcfg_new;
4551         writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
4552         spin_unlock_irqrestore(&cp->lock, flags);
4553 }
4554
4555 static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4556 {
4557         struct cas *cp = netdev_priv(dev);
4558         strncpy(info->driver, DRV_MODULE_NAME, ETHTOOL_BUSINFO_LEN);
4559         strncpy(info->version, DRV_MODULE_VERSION, ETHTOOL_BUSINFO_LEN);
4560         info->fw_version[0] = '\0';
4561         strncpy(info->bus_info, pci_name(cp->pdev), ETHTOOL_BUSINFO_LEN);
4562         info->regdump_len = cp->casreg_len < CAS_MAX_REGS ?
4563                 cp->casreg_len : CAS_MAX_REGS;
4564         info->n_stats = CAS_NUM_STAT_KEYS;
4565 }
4566
4567 static int cas_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4568 {
4569         struct cas *cp = netdev_priv(dev);
4570         u16 bmcr;
4571         int full_duplex, speed, pause;
4572         unsigned long flags;
4573         enum link_state linkstate = link_up;
4574
4575         cmd->advertising = 0;
4576         cmd->supported = SUPPORTED_Autoneg;
4577         if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
4578                 cmd->supported |= SUPPORTED_1000baseT_Full;
4579                 cmd->advertising |= ADVERTISED_1000baseT_Full;
4580         }
4581
4582         /* Record PHY settings if HW is on. */
4583         spin_lock_irqsave(&cp->lock, flags);
4584         bmcr = 0;
4585         linkstate = cp->lstate;
4586         if (CAS_PHY_MII(cp->phy_type)) {
4587                 cmd->port = PORT_MII;
4588                 cmd->transceiver = (cp->cas_flags & CAS_FLAG_SATURN) ?
4589                         XCVR_INTERNAL : XCVR_EXTERNAL;
4590                 cmd->phy_address = cp->phy_addr;
4591                 cmd->advertising |= ADVERTISED_TP | ADVERTISED_MII |
4592                         ADVERTISED_10baseT_Half |
4593                         ADVERTISED_10baseT_Full |
4594                         ADVERTISED_100baseT_Half |
4595                         ADVERTISED_100baseT_Full;
4596
4597                 cmd->supported |=
4598                         (SUPPORTED_10baseT_Half |
4599                          SUPPORTED_10baseT_Full |
4600                          SUPPORTED_100baseT_Half |
4601                          SUPPORTED_100baseT_Full |
4602                          SUPPORTED_TP | SUPPORTED_MII);
4603
4604                 if (cp->hw_running) {
4605                         cas_mif_poll(cp, 0);
4606                         bmcr = cas_phy_read(cp, MII_BMCR);
4607                         cas_read_mii_link_mode(cp, &full_duplex,
4608                                                &speed, &pause);
4609                         cas_mif_poll(cp, 1);
4610                 }
4611
4612         } else {
4613                 cmd->port = PORT_FIBRE;
4614                 cmd->transceiver = XCVR_INTERNAL;
4615                 cmd->phy_address = 0;
4616                 cmd->supported   |= SUPPORTED_FIBRE;
4617                 cmd->advertising |= ADVERTISED_FIBRE;
4618
4619                 if (cp->hw_running) {
4620                         /* pcs uses the same bits as mii */
4621                         bmcr = readl(cp->regs + REG_PCS_MII_CTRL);
4622                         cas_read_pcs_link_mode(cp, &full_duplex,
4623                                                &speed, &pause);
4624                 }
4625         }
4626         spin_unlock_irqrestore(&cp->lock, flags);
4627
4628         if (bmcr & BMCR_ANENABLE) {
4629                 cmd->advertising |= ADVERTISED_Autoneg;
4630                 cmd->autoneg = AUTONEG_ENABLE;
4631                 cmd->speed = ((speed == 10) ?
4632                               SPEED_10 :
4633                               ((speed == 1000) ?
4634                                SPEED_1000 : SPEED_100));
4635                 cmd->duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
4636         } else {
4637                 cmd->autoneg = AUTONEG_DISABLE;
4638                 cmd->speed =
4639                         (bmcr & CAS_BMCR_SPEED1000) ?
4640                         SPEED_1000 :
4641                         ((bmcr & BMCR_SPEED100) ? SPEED_100:
4642                          SPEED_10);
4643                 cmd->duplex =
4644                         (bmcr & BMCR_FULLDPLX) ?
4645                         DUPLEX_FULL : DUPLEX_HALF;
4646         }
4647         if (linkstate != link_up) {
4648                 /* Force these to "unknown" if the link is not up and
4649                  * autonogotiation in enabled. We can set the link
4650                  * speed to 0, but not cmd->duplex,
4651                  * because its legal values are 0 and 1.  Ethtool will
4652                  * print the value reported in parentheses after the
4653                  * word "Unknown" for unrecognized values.
4654                  *
4655                  * If in forced mode, we report the speed and duplex
4656                  * settings that we configured.
4657                  */
4658                 if (cp->link_cntl & BMCR_ANENABLE) {
4659                         cmd->speed = 0;
4660                         cmd->duplex = 0xff;
4661                 } else {
4662                         cmd->speed = SPEED_10;
4663                         if (cp->link_cntl & BMCR_SPEED100) {
4664                                 cmd->speed = SPEED_100;
4665                         } else if (cp->link_cntl & CAS_BMCR_SPEED1000) {
4666                                 cmd->speed = SPEED_1000;
4667                         }
4668                         cmd->duplex = (cp->link_cntl & BMCR_FULLDPLX)?
4669                                 DUPLEX_FULL : DUPLEX_HALF;
4670                 }
4671         }
4672         return 0;
4673 }
4674
4675 static int cas_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
4676 {
4677         struct cas *cp = netdev_priv(dev);
4678         unsigned long flags;
4679
4680         /* Verify the settings we care about. */
4681         if (cmd->autoneg != AUTONEG_ENABLE &&
4682             cmd->autoneg != AUTONEG_DISABLE)
4683                 return -EINVAL;
4684
4685         if (cmd->autoneg == AUTONEG_DISABLE &&
4686             ((cmd->speed != SPEED_1000 &&
4687               cmd->speed != SPEED_100 &&
4688               cmd->speed != SPEED_10) ||
4689              (cmd->duplex != DUPLEX_HALF &&
4690               cmd->duplex != DUPLEX_FULL)))
4691                 return -EINVAL;
4692
4693         /* Apply settings and restart link process. */
4694         spin_lock_irqsave(&cp->lock, flags);
4695         cas_begin_auto_negotiation(cp, cmd);
4696         spin_unlock_irqrestore(&cp->lock, flags);
4697         return 0;
4698 }
4699
4700 static int cas_nway_reset(struct net_device *dev)
4701 {
4702         struct cas *cp = netdev_priv(dev);
4703         unsigned long flags;
4704
4705         if ((cp->link_cntl & BMCR_ANENABLE) == 0)
4706                 return -EINVAL;
4707
4708         /* Restart link process. */
4709         spin_lock_irqsave(&cp->lock, flags);
4710         cas_begin_auto_negotiation(cp, NULL);
4711         spin_unlock_irqrestore(&cp->lock, flags);
4712
4713         return 0;
4714 }
4715
4716 static u32 cas_get_link(struct net_device *dev)
4717 {
4718         struct cas *cp = netdev_priv(dev);
4719         return cp->lstate == link_up;
4720 }
4721
4722 static u32 cas_get_msglevel(struct net_device *dev)
4723 {
4724         struct cas *cp = netdev_priv(dev);
4725         return cp->msg_enable;
4726 }
4727
4728 static void cas_set_msglevel(struct net_device *dev, u32 value)
4729 {
4730         struct cas *cp = netdev_priv(dev);
4731         cp->msg_enable = value;
4732 }
4733
4734 static int cas_get_regs_len(struct net_device *dev)
4735 {
4736         struct cas *cp = netdev_priv(dev);
4737         return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS;
4738 }
4739
4740 static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs,
4741                              void *p)
4742 {
4743         struct cas *cp = netdev_priv(dev);
4744         regs->version = 0;
4745         /* cas_read_regs handles locks (cp->lock).  */
4746         cas_read_regs(cp, p, regs->len / sizeof(u32));
4747 }
4748
4749 static int cas_get_sset_count(struct net_device *dev, int sset)
4750 {
4751         switch (sset) {
4752         case ETH_SS_STATS:
4753                 return CAS_NUM_STAT_KEYS;
4754         default:
4755                 return -EOPNOTSUPP;
4756         }
4757 }
4758
4759 static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data)
4760 {
4761          memcpy(data, &ethtool_cassini_statnames,
4762                                          CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN);
4763 }
4764
4765 static void cas_get_ethtool_stats(struct net_device *dev,
4766                                       struct ethtool_stats *estats, u64 *data)
4767 {
4768         struct cas *cp = netdev_priv(dev);
4769         struct net_device_stats *stats = cas_get_stats(cp->dev);
4770         int i = 0;
4771         data[i++] = stats->collisions;
4772         data[i++] = stats->rx_bytes;
4773         data[i++] = stats->rx_crc_errors;
4774         data[i++] = stats->rx_dropped;
4775         data[i++] = stats->rx_errors;
4776         data[i++] = stats->rx_fifo_errors;
4777         data[i++] = stats->rx_frame_errors;
4778         data[i++] = stats->rx_length_errors;
4779         data[i++] = stats->rx_over_errors;
4780         data[i++] = stats->rx_packets;
4781         data[i++] = stats->tx_aborted_errors;
4782         data[i++] = stats->tx_bytes;
4783         data[i++] = stats->tx_dropped;
4784         data[i++] = stats->tx_errors;
4785         data[i++] = stats->tx_fifo_errors;
4786         data[i++] = stats->tx_packets;
4787         BUG_ON(i != CAS_NUM_STAT_KEYS);
4788 }
4789
4790 static const struct ethtool_ops cas_ethtool_ops = {
4791         .get_drvinfo            = cas_get_drvinfo,
4792         .get_settings           = cas_get_settings,
4793         .set_settings           = cas_set_settings,
4794         .nway_reset             = cas_nway_reset,
4795         .get_link               = cas_get_link,
4796         .get_msglevel           = cas_get_msglevel,
4797         .set_msglevel           = cas_set_msglevel,
4798         .get_regs_len           = cas_get_regs_len,
4799         .get_regs               = cas_get_regs,
4800         .get_sset_count         = cas_get_sset_count,
4801         .get_strings            = cas_get_strings,
4802         .get_ethtool_stats      = cas_get_ethtool_stats,
4803 };
4804
4805 static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4806 {
4807         struct cas *cp = netdev_priv(dev);
4808         struct mii_ioctl_data *data = if_mii(ifr);
4809         unsigned long flags;
4810         int rc = -EOPNOTSUPP;
4811
4812         /* Hold the PM mutex while doing ioctl's or we may collide
4813          * with open/close and power management and oops.
4814          */
4815         mutex_lock(&cp->pm_mutex);
4816         switch (cmd) {
4817         case SIOCGMIIPHY:               /* Get address of MII PHY in use. */
4818                 data->phy_id = cp->phy_addr;
4819                 /* Fallthrough... */
4820
4821         case SIOCGMIIREG:               /* Read MII PHY register. */
4822                 spin_lock_irqsave(&cp->lock, flags);
4823                 cas_mif_poll(cp, 0);
4824                 data->val_out = cas_phy_read(cp, data->reg_num & 0x1f);
4825                 cas_mif_poll(cp, 1);
4826                 spin_unlock_irqrestore(&cp->lock, flags);
4827                 rc = 0;
4828                 break;
4829
4830         case SIOCSMIIREG:               /* Write MII PHY register. */
4831                 if (!capable(CAP_NET_ADMIN)) {
4832                         rc = -EPERM;
4833                         break;
4834                 }
4835                 spin_lock_irqsave(&cp->lock, flags);
4836                 cas_mif_poll(cp, 0);
4837                 rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in);
4838                 cas_mif_poll(cp, 1);
4839                 spin_unlock_irqrestore(&cp->lock, flags);
4840                 break;
4841         default:
4842                 break;
4843         };
4844
4845         mutex_unlock(&cp->pm_mutex);
4846         return rc;
4847 }
4848
4849 /* When this chip sits underneath an Intel 31154 bridge, it is the
4850  * only subordinate device and we can tweak the bridge settings to
4851  * reflect that fact.
4852  */
4853 static void __devinit cas_program_bridge(struct pci_dev *cas_pdev)
4854 {
4855         struct pci_dev *pdev = cas_pdev->bus->self;
4856         u32 val;
4857
4858         if (!pdev)
4859                 return;
4860
4861         if (pdev->vendor != 0x8086 || pdev->device != 0x537c)
4862                 return;
4863
4864         /* Clear bit 10 (Bus Parking Control) in the Secondary
4865          * Arbiter Control/Status Register which lives at offset
4866          * 0x41.  Using a 32-bit word read/modify/write at 0x40
4867          * is much simpler so that's how we do this.
4868          */
4869         pci_read_config_dword(pdev, 0x40, &val);
4870         val &= ~0x00040000;
4871         pci_write_config_dword(pdev, 0x40, val);
4872
4873         /* Max out the Multi-Transaction Timer settings since
4874          * Cassini is the only device present.
4875          *
4876          * The register is 16-bit and lives at 0x50.  When the
4877          * settings are enabled, it extends the GRANT# signal
4878          * for a requestor after a transaction is complete.  This
4879          * allows the next request to run without first needing
4880          * to negotiate the GRANT# signal back.
4881          *
4882          * Bits 12:10 define the grant duration:
4883          *
4884          *      1       --      16 clocks
4885          *      2       --      32 clocks
4886          *      3       --      64 clocks
4887          *      4       --      128 clocks
4888          *      5       --      256 clocks
4889          *
4890          * All other values are illegal.
4891          *
4892          * Bits 09:00 define which REQ/GNT signal pairs get the
4893          * GRANT# signal treatment.  We set them all.
4894          */
4895         pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff);
4896
4897         /* The Read Prefecth Policy register is 16-bit and sits at
4898          * offset 0x52.  It enables a "smart" pre-fetch policy.  We
4899          * enable it and max out all of the settings since only one
4900          * device is sitting underneath and thus bandwidth sharing is
4901          * not an issue.
4902          *
4903          * The register has several 3 bit fields, which indicates a
4904          * multiplier applied to the base amount of prefetching the
4905          * chip would do.  These fields are at:
4906          *
4907          *      15:13   ---     ReRead Primary Bus
4908          *      12:10   ---     FirstRead Primary Bus
4909          *      09:07   ---     ReRead Secondary Bus
4910          *      06:04   ---     FirstRead Secondary Bus
4911          *
4912          * Bits 03:00 control which REQ/GNT pairs the prefetch settings
4913          * get enabled on.  Bit 3 is a grouped enabler which controls
4914          * all of the REQ/GNT pairs from [8:3].  Bits 2 to 0 control
4915          * the individual REQ/GNT pairs [2:0].
4916          */
4917         pci_write_config_word(pdev, 0x52,
4918                               (0x7 << 13) |
4919                               (0x7 << 10) |
4920                               (0x7 <<  7) |
4921                               (0x7 <<  4) |
4922                               (0xf <<  0));
4923
4924         /* Force cacheline size to 0x8 */
4925         pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08);
4926
4927         /* Force latency timer to maximum setting so Cassini can
4928          * sit on the bus as long as it likes.
4929          */
4930         pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff);
4931 }
4932
4933 static int __devinit cas_init_one(struct pci_dev *pdev,
4934                                   const struct pci_device_id *ent)
4935 {
4936         static int cas_version_printed = 0;
4937         unsigned long casreg_len;
4938         struct net_device *dev;
4939         struct cas *cp;
4940         int i, err, pci_using_dac;
4941         u16 pci_cmd;
4942         u8 orig_cacheline_size = 0, cas_cacheline_size = 0;
4943         DECLARE_MAC_BUF(mac);
4944
4945         if (cas_version_printed++ == 0)
4946                 printk(KERN_INFO "%s", version);
4947
4948         err = pci_enable_device(pdev);
4949         if (err) {
4950                 dev_err(&pdev->dev, "Cannot enable PCI device, aborting.\n");
4951                 return err;
4952         }
4953
4954         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4955                 dev_err(&pdev->dev, "Cannot find proper PCI device "
4956                        "base address, aborting.\n");
4957                 err = -ENODEV;
4958                 goto err_out_disable_pdev;
4959         }
4960
4961         dev = alloc_etherdev(sizeof(*cp));
4962         if (!dev) {
4963                 dev_err(&pdev->dev, "Etherdev alloc failed, aborting.\n");
4964                 err = -ENOMEM;
4965                 goto err_out_disable_pdev;
4966         }
4967         SET_NETDEV_DEV(dev, &pdev->dev);
4968
4969         err = pci_request_regions(pdev, dev->name);
4970         if (err) {
4971                 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting.\n");
4972                 goto err_out_free_netdev;
4973         }
4974         pci_set_master(pdev);
4975
4976         /* we must always turn on parity response or else parity
4977          * doesn't get generated properly. disable SERR/PERR as well.
4978          * in addition, we want to turn MWI on.
4979          */
4980         pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
4981         pci_cmd &= ~PCI_COMMAND_SERR;
4982         pci_cmd |= PCI_COMMAND_PARITY;
4983         pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
4984         if (pci_try_set_mwi(pdev))
4985                 printk(KERN_WARNING PFX "Could not enable MWI for %s\n",
4986                        pci_name(pdev));
4987
4988         cas_program_bridge(pdev);
4989
4990         /*
4991          * On some architectures, the default cache line size set
4992          * by pci_try_set_mwi reduces perforamnce.  We have to increase
4993          * it for this case.  To start, we'll print some configuration
4994          * data.
4995          */
4996 #if 1
4997         pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
4998                              &orig_cacheline_size);
4999         if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) {
5000                 cas_cacheline_size =
5001                         (CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ?
5002                         CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES;
5003                 if (pci_write_config_byte(pdev,
5004                                           PCI_CACHE_LINE_SIZE,
5005                                           cas_cacheline_size)) {
5006                         dev_err(&pdev->dev, "Could not set PCI cache "
5007                                "line size\n");
5008                         goto err_write_cacheline;
5009                 }
5010         }
5011 #endif
5012
5013
5014         /* Configure DMA attributes. */
5015         if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
5016                 pci_using_dac = 1;
5017                 err = pci_set_consistent_dma_mask(pdev,
5018                                                   DMA_64BIT_MASK);
5019                 if (err < 0) {
5020                         dev_err(&pdev->dev, "Unable to obtain 64-bit DMA "
5021                                "for consistent allocations\n");
5022                         goto err_out_free_res;
5023                 }
5024
5025         } else {
5026                 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
5027                 if (err) {
5028                         dev_err(&pdev->dev, "No usable DMA configuration, "
5029                                "aborting.\n");
5030                         goto err_out_free_res;
5031                 }
5032                 pci_using_dac = 0;
5033         }
5034
5035         casreg_len = pci_resource_len(pdev, 0);
5036
5037         cp = netdev_priv(dev);
5038         cp->pdev = pdev;
5039 #if 1
5040         /* A value of 0 indicates we never explicitly set it */
5041         cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0;
5042 #endif
5043         cp->dev = dev;
5044         cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE :
5045           cassini_debug;
5046
5047         cp->link_transition = LINK_TRANSITION_UNKNOWN;
5048         cp->link_transition_jiffies_valid = 0;
5049
5050         spin_lock_init(&cp->lock);
5051         spin_lock_init(&cp->rx_inuse_lock);
5052         spin_lock_init(&cp->rx_spare_lock);
5053         for (i = 0; i < N_TX_RINGS; i++) {
5054                 spin_lock_init(&cp->stat_lock[i]);
5055                 spin_lock_init(&cp->tx_lock[i]);
5056         }
5057         spin_lock_init(&cp->stat_lock[N_TX_RINGS]);
5058         mutex_init(&cp->pm_mutex);
5059
5060         init_timer(&cp->link_timer);
5061         cp->link_timer.function = cas_link_timer;
5062         cp->link_timer.data = (unsigned long) cp;
5063
5064 #if 1
5065         /* Just in case the implementation of atomic operations
5066          * change so that an explicit initialization is necessary.
5067          */
5068         atomic_set(&cp->reset_task_pending, 0);
5069         atomic_set(&cp->reset_task_pending_all, 0);
5070         atomic_set(&cp->reset_task_pending_spare, 0);
5071         atomic_set(&cp->reset_task_pending_mtu, 0);
5072 #endif
5073         INIT_WORK(&cp->reset_task, cas_reset_task);
5074
5075         /* Default link parameters */
5076         if (link_mode >= 0 && link_mode <= 6)
5077                 cp->link_cntl = link_modes[link_mode];
5078         else
5079                 cp->link_cntl = BMCR_ANENABLE;
5080         cp->lstate = link_down;
5081         cp->link_transition = LINK_TRANSITION_LINK_DOWN;
5082         netif_carrier_off(cp->dev);
5083         cp->timer_ticks = 0;
5084
5085         /* give us access to cassini registers */
5086         cp->regs = pci_iomap(pdev, 0, casreg_len);
5087         if (!cp->regs) {
5088                 dev_err(&pdev->dev, "Cannot map device registers, aborting.\n");
5089                 goto err_out_free_res;
5090         }
5091         cp->casreg_len = casreg_len;
5092
5093         pci_save_state(pdev);
5094         cas_check_pci_invariants(cp);
5095         cas_hard_reset(cp);
5096         cas_reset(cp, 0);
5097         if (cas_check_invariants(cp))
5098                 goto err_out_iounmap;
5099
5100         cp->init_block = (struct cas_init_block *)
5101                 pci_alloc_consistent(pdev, sizeof(struct cas_init_block),
5102                                      &cp->block_dvma);
5103         if (!cp->init_block) {
5104                 dev_err(&pdev->dev, "Cannot allocate init block, aborting.\n");
5105                 goto err_out_iounmap;
5106         }
5107
5108         for (i = 0; i < N_TX_RINGS; i++)
5109                 cp->init_txds[i] = cp->init_block->txds[i];
5110
5111         for (i = 0; i < N_RX_DESC_RINGS; i++)
5112                 cp->init_rxds[i] = cp->init_block->rxds[i];
5113
5114         for (i = 0; i < N_RX_COMP_RINGS; i++)
5115                 cp->init_rxcs[i] = cp->init_block->rxcs[i];
5116
5117         for (i = 0; i < N_RX_FLOWS; i++)
5118                 skb_queue_head_init(&cp->rx_flows[i]);
5119
5120         dev->open = cas_open;
5121         dev->stop = cas_close;
5122         dev->hard_start_xmit = cas_start_xmit;
5123         dev->get_stats = cas_get_stats;
5124         dev->set_multicast_list = cas_set_multicast;
5125         dev->do_ioctl = cas_ioctl;
5126         dev->ethtool_ops = &cas_ethtool_ops;
5127         dev->tx_timeout = cas_tx_timeout;
5128         dev->watchdog_timeo = CAS_TX_TIMEOUT;
5129         dev->change_mtu = cas_change_mtu;
5130 #ifdef USE_NAPI
5131         netif_napi_add(dev, &cp->napi, cas_poll, 64);
5132 #endif
5133 #ifdef CONFIG_NET_POLL_CONTROLLER
5134         dev->poll_controller = cas_netpoll;
5135 #endif
5136         dev->irq = pdev->irq;
5137         dev->dma = 0;
5138
5139         /* Cassini features. */
5140         if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0)
5141                 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
5142
5143         if (pci_using_dac)
5144                 dev->features |= NETIF_F_HIGHDMA;
5145
5146         if (register_netdev(dev)) {
5147                 dev_err(&pdev->dev, "Cannot register net device, aborting.\n");
5148                 goto err_out_free_consistent;
5149         }
5150
5151         i = readl(cp->regs + REG_BIM_CFG);
5152         printk(KERN_INFO "%s: Sun Cassini%s (%sbit/%sMHz PCI/%s) "
5153                "Ethernet[%d] %s\n",  dev->name,
5154                (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "",
5155                (i & BIM_CFG_32BIT) ? "32" : "64",
5156                (i & BIM_CFG_66MHZ) ? "66" : "33",
5157                (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq,
5158                print_mac(mac, dev->dev_addr));
5159
5160         pci_set_drvdata(pdev, dev);
5161         cp->hw_running = 1;
5162         cas_entropy_reset(cp);
5163         cas_phy_init(cp);
5164         cas_begin_auto_negotiation(cp, NULL);
5165         return 0;
5166
5167 err_out_free_consistent:
5168         pci_free_consistent(pdev, sizeof(struct cas_init_block),
5169                             cp->init_block, cp->block_dvma);
5170
5171 err_out_iounmap:
5172         mutex_lock(&cp->pm_mutex);
5173         if (cp->hw_running)
5174                 cas_shutdown(cp);
5175         mutex_unlock(&cp->pm_mutex);
5176
5177         pci_iounmap(pdev, cp->regs);
5178
5179
5180 err_out_free_res:
5181         pci_release_regions(pdev);
5182
5183 err_write_cacheline:
5184         /* Try to restore it in case the error occured after we
5185          * set it.
5186          */
5187         pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size);
5188
5189 err_out_free_netdev:
5190         free_netdev(dev);
5191
5192 err_out_disable_pdev:
5193         pci_disable_device(pdev);
5194         pci_set_drvdata(pdev, NULL);
5195         return -ENODEV;
5196 }
5197
5198 static void __devexit cas_remove_one(struct pci_dev *pdev)
5199 {
5200         struct net_device *dev = pci_get_drvdata(pdev);
5201         struct cas *cp;
5202         if (!dev)
5203                 return;
5204
5205         cp = netdev_priv(dev);
5206         unregister_netdev(dev);
5207
5208         mutex_lock(&cp->pm_mutex);
5209         flush_scheduled_work();
5210         if (cp->hw_running)
5211                 cas_shutdown(cp);
5212         mutex_unlock(&cp->pm_mutex);
5213
5214 #if 1
5215         if (cp->orig_cacheline_size) {
5216                 /* Restore the cache line size if we had modified
5217                  * it.
5218                  */
5219                 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
5220                                       cp->orig_cacheline_size);
5221         }
5222 #endif
5223         pci_free_consistent(pdev, sizeof(struct cas_init_block),
5224                             cp->init_block, cp->block_dvma);
5225         pci_iounmap(pdev, cp->regs);
5226         free_netdev(dev);
5227         pci_release_regions(pdev);
5228         pci_disable_device(pdev);
5229         pci_set_drvdata(pdev, NULL);
5230 }
5231
5232 #ifdef CONFIG_PM
5233 static int cas_suspend(struct pci_dev *pdev, pm_message_t state)
5234 {
5235         struct net_device *dev = pci_get_drvdata(pdev);
5236         struct cas *cp = netdev_priv(dev);
5237         unsigned long flags;
5238
5239         mutex_lock(&cp->pm_mutex);
5240
5241         /* If the driver is opened, we stop the DMA */
5242         if (cp->opened) {
5243                 netif_device_detach(dev);
5244
5245                 cas_lock_all_save(cp, flags);
5246
5247                 /* We can set the second arg of cas_reset to 0
5248                  * because on resume, we'll call cas_init_hw with
5249                  * its second arg set so that autonegotiation is
5250                  * restarted.
5251                  */
5252                 cas_reset(cp, 0);
5253                 cas_clean_rings(cp);
5254                 cas_unlock_all_restore(cp, flags);
5255         }
5256
5257         if (cp->hw_running)
5258                 cas_shutdown(cp);
5259         mutex_unlock(&cp->pm_mutex);
5260
5261         return 0;
5262 }
5263
5264 static int cas_resume(struct pci_dev *pdev)
5265 {
5266         struct net_device *dev = pci_get_drvdata(pdev);
5267         struct cas *cp = netdev_priv(dev);
5268
5269         printk(KERN_INFO "%s: resuming\n", dev->name);
5270
5271         mutex_lock(&cp->pm_mutex);
5272         cas_hard_reset(cp);
5273         if (cp->opened) {
5274                 unsigned long flags;
5275                 cas_lock_all_save(cp, flags);
5276                 cas_reset(cp, 0);
5277                 cp->hw_running = 1;
5278                 cas_clean_rings(cp);
5279                 cas_init_hw(cp, 1);
5280                 cas_unlock_all_restore(cp, flags);
5281
5282                 netif_device_attach(dev);
5283         }
5284         mutex_unlock(&cp->pm_mutex);
5285         return 0;
5286 }
5287 #endif /* CONFIG_PM */
5288
5289 static struct pci_driver cas_driver = {
5290         .name           = DRV_MODULE_NAME,
5291         .id_table       = cas_pci_tbl,
5292         .probe          = cas_init_one,
5293         .remove         = __devexit_p(cas_remove_one),
5294 #ifdef CONFIG_PM
5295         .suspend        = cas_suspend,
5296         .resume         = cas_resume
5297 #endif
5298 };
5299
5300 static int __init cas_init(void)
5301 {
5302         if (linkdown_timeout > 0)
5303                 link_transition_timeout = linkdown_timeout * HZ;
5304         else
5305                 link_transition_timeout = 0;
5306
5307         return pci_register_driver(&cas_driver);
5308 }
5309
5310 static void __exit cas_cleanup(void)
5311 {
5312         pci_unregister_driver(&cas_driver);
5313 }
5314
5315 module_init(cas_init);
5316 module_exit(cas_cleanup);