2 * Extensible Firmware Interface
4 * Based on Extensible Firmware Interface Specification version 1.0
6 * Copyright (C) 1999 VA Linux Systems
7 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
8 * Copyright (C) 1999-2002 Hewlett-Packard Co.
9 * David Mosberger-Tang <davidm@hpl.hp.com>
10 * Stephane Eranian <eranian@hpl.hp.com>
12 * All EFI Runtime Services are not implemented yet as EFI only
13 * supports physical mode addressing on SoftSDV. This is to be fixed
14 * in a future version. --drummond 1999-07-20
16 * Implemented EFI runtime services and virtual mode calls. --davidm
18 * Goutham Rao: <goutham.rao@intel.com>
19 * Skip non-WB memory and ignore empty memory ranges.
22 #include <linux/kernel.h>
23 #include <linux/init.h>
25 #include <linux/types.h>
26 #include <linux/time.h>
27 #include <linux/spinlock.h>
28 #include <linux/bootmem.h>
29 #include <linux/ioport.h>
30 #include <linux/module.h>
31 #include <linux/efi.h>
32 #include <linux/kexec.h>
34 #include <asm/setup.h>
37 #include <asm/pgtable.h>
38 #include <asm/processor.h>
40 #include <asm/tlbflush.h>
45 extern efi_status_t asmlinkage efi_call_phys(void *, ...);
49 static struct efi efi_phys;
50 struct efi_memory_map memmap;
53 * We require an early boot_ioremap mapping mechanism initially
55 extern void * boot_ioremap(unsigned long, unsigned long);
58 * To make EFI call EFI runtime service in physical addressing mode we need
59 * prelog/epilog before/after the invocation to disable interrupt, to
60 * claim EFI runtime service handler exclusively and to duplicate a memory in
61 * low memory space say 0 - 3G.
64 static unsigned long efi_rt_eflags;
65 static DEFINE_SPINLOCK(efi_rt_lock);
66 static pgd_t efi_bak_pg_dir_pointer[2];
68 static void efi_call_phys_prelog(void) __acquires(efi_rt_lock)
72 struct Xgt_desc_struct gdt_descr;
74 spin_lock(&efi_rt_lock);
75 local_irq_save(efi_rt_eflags);
78 * If I don't have PSE, I should just duplicate two entries in page
79 * directory. If I have PSE, I just need to duplicate one entry in
84 if (cr4 & X86_CR4_PSE) {
85 efi_bak_pg_dir_pointer[0].pgd =
86 swapper_pg_dir[pgd_index(0)].pgd;
87 swapper_pg_dir[0].pgd =
88 swapper_pg_dir[pgd_index(PAGE_OFFSET)].pgd;
90 efi_bak_pg_dir_pointer[0].pgd =
91 swapper_pg_dir[pgd_index(0)].pgd;
92 efi_bak_pg_dir_pointer[1].pgd =
93 swapper_pg_dir[pgd_index(0x400000)].pgd;
94 swapper_pg_dir[pgd_index(0)].pgd =
95 swapper_pg_dir[pgd_index(PAGE_OFFSET)].pgd;
96 temp = PAGE_OFFSET + 0x400000;
97 swapper_pg_dir[pgd_index(0x400000)].pgd =
98 swapper_pg_dir[pgd_index(temp)].pgd;
102 * After the lock is released, the original page table is restored.
106 gdt_descr.address = __pa(get_cpu_gdt_table(0));
107 gdt_descr.size = GDT_SIZE - 1;
108 load_gdt(&gdt_descr);
111 static void efi_call_phys_epilog(void) __releases(efi_rt_lock)
114 struct Xgt_desc_struct gdt_descr;
116 gdt_descr.address = (unsigned long)get_cpu_gdt_table(0);
117 gdt_descr.size = GDT_SIZE - 1;
118 load_gdt(&gdt_descr);
122 if (cr4 & X86_CR4_PSE) {
123 swapper_pg_dir[pgd_index(0)].pgd =
124 efi_bak_pg_dir_pointer[0].pgd;
126 swapper_pg_dir[pgd_index(0)].pgd =
127 efi_bak_pg_dir_pointer[0].pgd;
128 swapper_pg_dir[pgd_index(0x400000)].pgd =
129 efi_bak_pg_dir_pointer[1].pgd;
133 * After the lock is released, the original page table is restored.
137 local_irq_restore(efi_rt_eflags);
138 spin_unlock(&efi_rt_lock);
142 phys_efi_set_virtual_address_map(unsigned long memory_map_size,
143 unsigned long descriptor_size,
144 u32 descriptor_version,
145 efi_memory_desc_t *virtual_map)
149 efi_call_phys_prelog();
150 status = efi_call_phys(efi_phys.set_virtual_address_map,
151 memory_map_size, descriptor_size,
152 descriptor_version, virtual_map);
153 efi_call_phys_epilog();
158 phys_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
162 efi_call_phys_prelog();
163 status = efi_call_phys(efi_phys.get_time, tm, tc);
164 efi_call_phys_epilog();
168 inline int efi_set_rtc_mmss(unsigned long nowtime)
170 int real_seconds, real_minutes;
175 spin_lock(&efi_rt_lock);
176 status = efi.get_time(&eft, &cap);
177 spin_unlock(&efi_rt_lock);
178 if (status != EFI_SUCCESS)
179 panic("Ooops, efitime: can't read time!\n");
180 real_seconds = nowtime % 60;
181 real_minutes = nowtime / 60;
183 if (((abs(real_minutes - eft.minute) + 15)/30) & 1)
187 eft.minute = real_minutes;
188 eft.second = real_seconds;
190 if (status != EFI_SUCCESS) {
191 printk("Ooops: efitime: can't read time!\n");
197 * This is used during kernel init before runtime
198 * services have been remapped and also during suspend, therefore,
199 * we'll need to call both in physical and virtual modes.
201 inline unsigned long efi_get_time(void)
208 /* if we are in virtual mode use remapped function */
209 status = efi.get_time(&eft, &cap);
211 /* we are in physical mode */
212 status = phys_efi_get_time(&eft, &cap);
215 if (status != EFI_SUCCESS)
216 printk("Oops: efitime: can't read time status: 0x%lx\n",status);
218 return mktime(eft.year, eft.month, eft.day, eft.hour,
219 eft.minute, eft.second);
222 int is_available_memory(efi_memory_desc_t * md)
224 if (!(md->attribute & EFI_MEMORY_WB))
228 case EFI_LOADER_CODE:
229 case EFI_LOADER_DATA:
230 case EFI_BOOT_SERVICES_CODE:
231 case EFI_BOOT_SERVICES_DATA:
232 case EFI_CONVENTIONAL_MEMORY:
239 * We need to map the EFI memory map again after paging_init().
241 void __init efi_map_memmap(void)
245 memmap.map = bt_ioremap((unsigned long) memmap.phys_map,
246 (memmap.nr_map * memmap.desc_size));
247 if (memmap.map == NULL)
248 printk(KERN_ERR PFX "Could not remap the EFI memmap!\n");
250 memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
254 static void __init print_efi_memmap(void)
256 efi_memory_desc_t *md;
260 for (p = memmap.map, i = 0; p < memmap.map_end; p += memmap.desc_size, i++) {
262 printk(KERN_INFO "mem%02u: type=%u, attr=0x%llx, "
263 "range=[0x%016llx-0x%016llx) (%lluMB)\n",
264 i, md->type, md->attribute, md->phys_addr,
265 md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
266 (md->num_pages >> (20 - EFI_PAGE_SHIFT)));
269 #endif /* EFI_DEBUG */
272 * Walks the EFI memory map and calls CALLBACK once for each EFI
273 * memory descriptor that has memory that is available for kernel use.
275 void efi_memmap_walk(efi_freemem_callback_t callback, void *arg)
281 } uninitialized_var(prev), curr;
282 efi_memory_desc_t *md;
283 unsigned long start, end;
286 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
289 if ((md->num_pages == 0) || (!is_available_memory(md)))
292 curr.start = md->phys_addr;
293 curr.end = curr.start + (md->num_pages << EFI_PAGE_SHIFT);
299 if (curr.start < prev.start)
300 printk(KERN_INFO PFX "Unordered memory map\n");
301 if (prev.end == curr.start)
305 (unsigned long) (PAGE_ALIGN(prev.start));
306 end = (unsigned long) (prev.end & PAGE_MASK);
308 && (*callback) (start, end, arg) < 0)
315 start = (unsigned long) PAGE_ALIGN(prev.start);
316 end = (unsigned long) (prev.end & PAGE_MASK);
318 (*callback) (start, end, arg);
322 void __init efi_init(void)
324 efi_config_table_t *config_tables;
325 efi_runtime_services_t *runtime;
327 char vendor[100] = "unknown";
328 unsigned long num_config_tables;
331 memset(&efi, 0, sizeof(efi) );
332 memset(&efi_phys, 0, sizeof(efi_phys));
334 efi_phys.systab = EFI_SYSTAB;
335 memmap.phys_map = EFI_MEMMAP;
336 memmap.nr_map = EFI_MEMMAP_SIZE/EFI_MEMDESC_SIZE;
337 memmap.desc_version = EFI_MEMDESC_VERSION;
338 memmap.desc_size = EFI_MEMDESC_SIZE;
340 efi.systab = (efi_system_table_t *)
341 boot_ioremap((unsigned long) efi_phys.systab,
342 sizeof(efi_system_table_t));
344 * Verify the EFI Table
346 if (efi.systab == NULL)
347 printk(KERN_ERR PFX "Woah! Couldn't map the EFI system table.\n");
348 if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
349 printk(KERN_ERR PFX "Woah! EFI system table signature incorrect\n");
350 if ((efi.systab->hdr.revision >> 16) == 0)
351 printk(KERN_ERR PFX "Warning: EFI system table version "
352 "%d.%02d, expected 1.00 or greater\n",
353 efi.systab->hdr.revision >> 16,
354 efi.systab->hdr.revision & 0xffff);
357 * Grab some details from the system table
359 num_config_tables = efi.systab->nr_tables;
360 config_tables = (efi_config_table_t *)efi.systab->tables;
361 runtime = efi.systab->runtime;
364 * Show what we know for posterity
366 c16 = (efi_char16_t *) boot_ioremap(efi.systab->fw_vendor, 2);
368 for (i = 0; i < (sizeof(vendor) - 1) && *c16; ++i)
372 printk(KERN_ERR PFX "Could not map the firmware vendor!\n");
374 printk(KERN_INFO PFX "EFI v%u.%.02u by %s \n",
375 efi.systab->hdr.revision >> 16,
376 efi.systab->hdr.revision & 0xffff, vendor);
379 * Let's see what config tables the firmware passed to us.
381 config_tables = (efi_config_table_t *)
382 boot_ioremap((unsigned long) config_tables,
383 num_config_tables * sizeof(efi_config_table_t));
385 if (config_tables == NULL)
386 printk(KERN_ERR PFX "Could not map EFI Configuration Table!\n");
388 efi.mps = EFI_INVALID_TABLE_ADDR;
389 efi.acpi = EFI_INVALID_TABLE_ADDR;
390 efi.acpi20 = EFI_INVALID_TABLE_ADDR;
391 efi.smbios = EFI_INVALID_TABLE_ADDR;
392 efi.sal_systab = EFI_INVALID_TABLE_ADDR;
393 efi.boot_info = EFI_INVALID_TABLE_ADDR;
394 efi.hcdp = EFI_INVALID_TABLE_ADDR;
395 efi.uga = EFI_INVALID_TABLE_ADDR;
397 for (i = 0; i < num_config_tables; i++) {
398 if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
399 efi.mps = config_tables[i].table;
400 printk(KERN_INFO " MPS=0x%lx ", config_tables[i].table);
402 if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
403 efi.acpi20 = config_tables[i].table;
404 printk(KERN_INFO " ACPI 2.0=0x%lx ", config_tables[i].table);
406 if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
407 efi.acpi = config_tables[i].table;
408 printk(KERN_INFO " ACPI=0x%lx ", config_tables[i].table);
410 if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
411 efi.smbios = config_tables[i].table;
412 printk(KERN_INFO " SMBIOS=0x%lx ", config_tables[i].table);
414 if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
415 efi.hcdp = config_tables[i].table;
416 printk(KERN_INFO " HCDP=0x%lx ", config_tables[i].table);
418 if (efi_guidcmp(config_tables[i].guid, UGA_IO_PROTOCOL_GUID) == 0) {
419 efi.uga = config_tables[i].table;
420 printk(KERN_INFO " UGA=0x%lx ", config_tables[i].table);
426 * Check out the runtime services table. We need to map
427 * the runtime services table so that we can grab the physical
428 * address of several of the EFI runtime functions, needed to
429 * set the firmware into virtual mode.
432 runtime = (efi_runtime_services_t *) boot_ioremap((unsigned long)
434 sizeof(efi_runtime_services_t));
435 if (runtime != NULL) {
437 * We will only need *early* access to the following
438 * two EFI runtime services before set_virtual_address_map
441 efi_phys.get_time = (efi_get_time_t *) runtime->get_time;
442 efi_phys.set_virtual_address_map =
443 (efi_set_virtual_address_map_t *)
444 runtime->set_virtual_address_map;
446 printk(KERN_ERR PFX "Could not map the runtime service table!\n");
448 /* Map the EFI memory map for use until paging_init() */
449 memmap.map = boot_ioremap((unsigned long) EFI_MEMMAP, EFI_MEMMAP_SIZE);
450 if (memmap.map == NULL)
451 printk(KERN_ERR PFX "Could not map the EFI memory map!\n");
453 memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
460 static inline void __init check_range_for_systab(efi_memory_desc_t *md)
462 if (((unsigned long)md->phys_addr <= (unsigned long)efi_phys.systab) &&
463 ((unsigned long)efi_phys.systab < md->phys_addr +
464 ((unsigned long)md->num_pages << EFI_PAGE_SHIFT))) {
467 addr = md->virt_addr - md->phys_addr +
468 (unsigned long)efi_phys.systab;
469 efi.systab = (efi_system_table_t *)addr;
474 * Wrap all the virtual calls in a way that forces the parameters on the stack.
477 #define efi_call_virt(f, args...) \
478 ((efi_##f##_t __attribute__((regparm(0)))*)efi.systab->runtime->f)(args)
480 static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
482 return efi_call_virt(get_time, tm, tc);
485 static efi_status_t virt_efi_set_time (efi_time_t *tm)
487 return efi_call_virt(set_time, tm);
490 static efi_status_t virt_efi_get_wakeup_time (efi_bool_t *enabled,
494 return efi_call_virt(get_wakeup_time, enabled, pending, tm);
497 static efi_status_t virt_efi_set_wakeup_time (efi_bool_t enabled,
500 return efi_call_virt(set_wakeup_time, enabled, tm);
503 static efi_status_t virt_efi_get_variable (efi_char16_t *name,
504 efi_guid_t *vendor, u32 *attr,
505 unsigned long *data_size, void *data)
507 return efi_call_virt(get_variable, name, vendor, attr, data_size, data);
510 static efi_status_t virt_efi_get_next_variable (unsigned long *name_size,
514 return efi_call_virt(get_next_variable, name_size, name, vendor);
517 static efi_status_t virt_efi_set_variable (efi_char16_t *name,
520 unsigned long data_size, void *data)
522 return efi_call_virt(set_variable, name, vendor, attr, data_size, data);
525 static efi_status_t virt_efi_get_next_high_mono_count (u32 *count)
527 return efi_call_virt(get_next_high_mono_count, count);
530 static void virt_efi_reset_system (int reset_type, efi_status_t status,
531 unsigned long data_size,
534 efi_call_virt(reset_system, reset_type, status, data_size, data);
538 * This function will switch the EFI runtime services to virtual mode.
539 * Essentially, look through the EFI memmap and map every region that
540 * has the runtime attribute bit set in its memory descriptor and update
541 * that memory descriptor with the virtual address obtained from ioremap().
542 * This enables the runtime services to be called without having to
543 * thunk back into physical mode for every invocation.
546 void __init efi_enter_virtual_mode(void)
548 efi_memory_desc_t *md;
554 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
557 if (!(md->attribute & EFI_MEMORY_RUNTIME))
560 md->virt_addr = (unsigned long)ioremap(md->phys_addr,
561 md->num_pages << EFI_PAGE_SHIFT);
562 if (!(unsigned long)md->virt_addr) {
563 printk(KERN_ERR PFX "ioremap of 0x%lX failed\n",
564 (unsigned long)md->phys_addr);
566 /* update the virtual address of the EFI system table */
567 check_range_for_systab(md);
572 status = phys_efi_set_virtual_address_map(
573 memmap.desc_size * memmap.nr_map,
578 if (status != EFI_SUCCESS) {
579 printk (KERN_ALERT "You are screwed! "
580 "Unable to switch EFI into virtual mode "
581 "(status=%lx)\n", status);
582 panic("EFI call to SetVirtualAddressMap() failed!");
586 * Now that EFI is in virtual mode, update the function
587 * pointers in the runtime service table to the new virtual addresses.
590 efi.get_time = virt_efi_get_time;
591 efi.set_time = virt_efi_set_time;
592 efi.get_wakeup_time = virt_efi_get_wakeup_time;
593 efi.set_wakeup_time = virt_efi_set_wakeup_time;
594 efi.get_variable = virt_efi_get_variable;
595 efi.get_next_variable = virt_efi_get_next_variable;
596 efi.set_variable = virt_efi_set_variable;
597 efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count;
598 efi.reset_system = virt_efi_reset_system;
602 efi_initialize_iomem_resources(struct resource *code_resource,
603 struct resource *data_resource)
605 struct resource *res;
606 efi_memory_desc_t *md;
609 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
612 if ((md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT)) >
615 res = kzalloc(sizeof(struct resource), GFP_ATOMIC);
617 case EFI_RESERVED_TYPE:
618 res->name = "Reserved Memory";
620 case EFI_LOADER_CODE:
621 res->name = "Loader Code";
623 case EFI_LOADER_DATA:
624 res->name = "Loader Data";
626 case EFI_BOOT_SERVICES_DATA:
627 res->name = "BootServices Data";
629 case EFI_BOOT_SERVICES_CODE:
630 res->name = "BootServices Code";
632 case EFI_RUNTIME_SERVICES_CODE:
633 res->name = "Runtime Service Code";
635 case EFI_RUNTIME_SERVICES_DATA:
636 res->name = "Runtime Service Data";
638 case EFI_CONVENTIONAL_MEMORY:
639 res->name = "Conventional Memory";
641 case EFI_UNUSABLE_MEMORY:
642 res->name = "Unusable Memory";
644 case EFI_ACPI_RECLAIM_MEMORY:
645 res->name = "ACPI Reclaim";
647 case EFI_ACPI_MEMORY_NVS:
648 res->name = "ACPI NVS";
650 case EFI_MEMORY_MAPPED_IO:
651 res->name = "Memory Mapped IO";
653 case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
654 res->name = "Memory Mapped IO Port Space";
657 res->name = "Reserved";
660 res->start = md->phys_addr;
661 res->end = res->start + ((md->num_pages << EFI_PAGE_SHIFT) - 1);
662 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
663 if (request_resource(&iomem_resource, res) < 0)
664 printk(KERN_ERR PFX "Failed to allocate res %s : "
665 "0x%llx-0x%llx\n", res->name,
666 (unsigned long long)res->start,
667 (unsigned long long)res->end);
669 * We don't know which region contains kernel data so we try
670 * it repeatedly and let the resource manager test it.
672 if (md->type == EFI_CONVENTIONAL_MEMORY) {
673 request_resource(res, code_resource);
674 request_resource(res, data_resource);
676 request_resource(res, &crashk_res);
683 * Convenience functions to obtain memory types and attributes
686 u32 efi_mem_type(unsigned long phys_addr)
688 efi_memory_desc_t *md;
691 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
693 if ((md->phys_addr <= phys_addr) && (phys_addr <
694 (md->phys_addr + (md-> num_pages << EFI_PAGE_SHIFT)) ))
700 u64 efi_mem_attributes(unsigned long phys_addr)
702 efi_memory_desc_t *md;
705 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
707 if ((md->phys_addr <= phys_addr) && (phys_addr <
708 (md->phys_addr + (md-> num_pages << EFI_PAGE_SHIFT)) ))
709 return md->attribute;