[ALSA] hda-codec - Allocate amp hash array dynamically
[linux-2.6] / sound / pci / hda / hda_codec.c
1 /*
2  * Universal Interface for Intel High Definition Audio Codec
3  *
4  * Copyright (c) 2004 Takashi Iwai <tiwai@suse.de>
5  *
6  *
7  *  This driver is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License as published by
9  *  the Free Software Foundation; either version 2 of the License, or
10  *  (at your option) any later version.
11  *
12  *  This driver is distributed in the hope that it will be useful,
13  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *  GNU General Public License for more details.
16  *
17  *  You should have received a copy of the GNU General Public License
18  *  along with this program; if not, write to the Free Software
19  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  */
21
22 #include <sound/driver.h>
23 #include <linux/init.h>
24 #include <linux/delay.h>
25 #include <linux/slab.h>
26 #include <linux/pci.h>
27 #include <linux/moduleparam.h>
28 #include <sound/core.h>
29 #include "hda_codec.h"
30 #include <sound/asoundef.h>
31 #include <sound/initval.h>
32 #include "hda_local.h"
33
34
35 MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
36 MODULE_DESCRIPTION("Universal interface for High Definition Audio Codec");
37 MODULE_LICENSE("GPL");
38
39
40 /*
41  * vendor / preset table
42  */
43
44 struct hda_vendor_id {
45         unsigned int id;
46         const char *name;
47 };
48
49 /* codec vendor labels */
50 static struct hda_vendor_id hda_vendor_ids[] = {
51         { 0x10ec, "Realtek" },
52         { 0x11d4, "Analog Devices" },
53         { 0x13f6, "C-Media" },
54         { 0x434d, "C-Media" },
55         { 0x8384, "SigmaTel" },
56         {} /* terminator */
57 };
58
59 /* codec presets */
60 #include "hda_patch.h"
61
62
63 /**
64  * snd_hda_codec_read - send a command and get the response
65  * @codec: the HDA codec
66  * @nid: NID to send the command
67  * @direct: direct flag
68  * @verb: the verb to send
69  * @parm: the parameter for the verb
70  *
71  * Send a single command and read the corresponding response.
72  *
73  * Returns the obtained response value, or -1 for an error.
74  */
75 unsigned int snd_hda_codec_read(struct hda_codec *codec, hda_nid_t nid, int direct,
76                                 unsigned int verb, unsigned int parm)
77 {
78         unsigned int res;
79         down(&codec->bus->cmd_mutex);
80         if (! codec->bus->ops.command(codec, nid, direct, verb, parm))
81                 res = codec->bus->ops.get_response(codec);
82         else
83                 res = (unsigned int)-1;
84         up(&codec->bus->cmd_mutex);
85         return res;
86 }
87
88 /**
89  * snd_hda_codec_write - send a single command without waiting for response
90  * @codec: the HDA codec
91  * @nid: NID to send the command
92  * @direct: direct flag
93  * @verb: the verb to send
94  * @parm: the parameter for the verb
95  *
96  * Send a single command without waiting for response.
97  *
98  * Returns 0 if successful, or a negative error code.
99  */
100 int snd_hda_codec_write(struct hda_codec *codec, hda_nid_t nid, int direct,
101                          unsigned int verb, unsigned int parm)
102 {
103         int err;
104         down(&codec->bus->cmd_mutex);
105         err = codec->bus->ops.command(codec, nid, direct, verb, parm);
106         up(&codec->bus->cmd_mutex);
107         return err;
108 }
109
110 /**
111  * snd_hda_sequence_write - sequence writes
112  * @codec: the HDA codec
113  * @seq: VERB array to send
114  *
115  * Send the commands sequentially from the given array.
116  * The array must be terminated with NID=0.
117  */
118 void snd_hda_sequence_write(struct hda_codec *codec, const struct hda_verb *seq)
119 {
120         for (; seq->nid; seq++)
121                 snd_hda_codec_write(codec, seq->nid, 0, seq->verb, seq->param);
122 }
123
124 /**
125  * snd_hda_get_sub_nodes - get the range of sub nodes
126  * @codec: the HDA codec
127  * @nid: NID to parse
128  * @start_id: the pointer to store the start NID
129  *
130  * Parse the NID and store the start NID of its sub-nodes.
131  * Returns the number of sub-nodes.
132  */
133 int snd_hda_get_sub_nodes(struct hda_codec *codec, hda_nid_t nid, hda_nid_t *start_id)
134 {
135         unsigned int parm;
136
137         parm = snd_hda_param_read(codec, nid, AC_PAR_NODE_COUNT);
138         *start_id = (parm >> 16) & 0x7fff;
139         return (int)(parm & 0x7fff);
140 }
141
142 /**
143  * snd_hda_get_connections - get connection list
144  * @codec: the HDA codec
145  * @nid: NID to parse
146  * @conn_list: connection list array
147  * @max_conns: max. number of connections to store
148  *
149  * Parses the connection list of the given widget and stores the list
150  * of NIDs.
151  *
152  * Returns the number of connections, or a negative error code.
153  */
154 int snd_hda_get_connections(struct hda_codec *codec, hda_nid_t nid,
155                             hda_nid_t *conn_list, int max_conns)
156 {
157         unsigned int parm;
158         int i, j, conn_len, num_tupples, conns;
159         unsigned int shift, num_elems, mask;
160
161         snd_assert(conn_list && max_conns > 0, return -EINVAL);
162
163         parm = snd_hda_param_read(codec, nid, AC_PAR_CONNLIST_LEN);
164         if (parm & AC_CLIST_LONG) {
165                 /* long form */
166                 shift = 16;
167                 num_elems = 2;
168         } else {
169                 /* short form */
170                 shift = 8;
171                 num_elems = 4;
172         }
173         conn_len = parm & AC_CLIST_LENGTH;
174         num_tupples = num_elems / 2;
175         mask = (1 << (shift-1)) - 1;
176
177         if (! conn_len)
178                 return 0; /* no connection */
179
180         if (conn_len == 1) {
181                 /* single connection */
182                 parm = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_CONNECT_LIST, 0);
183                 conn_list[0] = parm & mask;
184                 return 1;
185         }
186
187         /* multi connection */
188         conns = 0;
189         for (i = 0; i < conn_len; i += num_elems) {
190                 parm = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_CONNECT_LIST, i);
191                 for (j = 0; j < num_tupples; j++) {
192                         int range_val;
193                         hda_nid_t val1, val2, n;
194                         range_val = parm & (1 << (shift-1)); /* ranges */
195                         val1 = parm & mask;
196                         parm >>= shift;
197                         val2 = parm & mask;
198                         parm >>= shift;
199                         if (range_val) {
200                                 /* ranges between val1 and val2 */
201                                 if (val1 > val2) {
202                                         snd_printk(KERN_WARNING "hda_codec: invalid dep_range_val %x:%x\n", val1, val2);
203                                         continue;
204                                 }
205                                 for (n = val1; n <= val2; n++) {
206                                         if (conns >= max_conns)
207                                                 return -EINVAL;
208                                         conn_list[conns++] = n;
209                                 }
210                         } else {
211                                 if (! val1)
212                                         break;
213                                 if (conns >= max_conns)
214                                         return -EINVAL;
215                                 conn_list[conns++] = val1;
216                                 if (! val2)
217                                         break;
218                                 if (conns >= max_conns)
219                                         return -EINVAL;
220                                 conn_list[conns++] = val2;
221                         }
222                 }
223         }
224         return conns;
225 }
226
227
228 /**
229  * snd_hda_queue_unsol_event - add an unsolicited event to queue
230  * @bus: the BUS
231  * @res: unsolicited event (lower 32bit of RIRB entry)
232  * @res_ex: codec addr and flags (upper 32bit or RIRB entry)
233  *
234  * Adds the given event to the queue.  The events are processed in
235  * the workqueue asynchronously.  Call this function in the interrupt
236  * hanlder when RIRB receives an unsolicited event.
237  *
238  * Returns 0 if successful, or a negative error code.
239  */
240 int snd_hda_queue_unsol_event(struct hda_bus *bus, u32 res, u32 res_ex)
241 {
242         struct hda_bus_unsolicited *unsol;
243         unsigned int wp;
244
245         if ((unsol = bus->unsol) == NULL)
246                 return 0;
247
248         wp = (unsol->wp + 1) % HDA_UNSOL_QUEUE_SIZE;
249         unsol->wp = wp;
250
251         wp <<= 1;
252         unsol->queue[wp] = res;
253         unsol->queue[wp + 1] = res_ex;
254
255         queue_work(unsol->workq, &unsol->work);
256
257         return 0;
258 }
259
260 /*
261  * process queueud unsolicited events
262  */
263 static void process_unsol_events(void *data)
264 {
265         struct hda_bus *bus = data;
266         struct hda_bus_unsolicited *unsol = bus->unsol;
267         struct hda_codec *codec;
268         unsigned int rp, caddr, res;
269
270         while (unsol->rp != unsol->wp) {
271                 rp = (unsol->rp + 1) % HDA_UNSOL_QUEUE_SIZE;
272                 unsol->rp = rp;
273                 rp <<= 1;
274                 res = unsol->queue[rp];
275                 caddr = unsol->queue[rp + 1];
276                 if (! (caddr & (1 << 4))) /* no unsolicited event? */
277                         continue;
278                 codec = bus->caddr_tbl[caddr & 0x0f];
279                 if (codec && codec->patch_ops.unsol_event)
280                         codec->patch_ops.unsol_event(codec, res);
281         }
282 }
283
284 /*
285  * initialize unsolicited queue
286  */
287 static int init_unsol_queue(struct hda_bus *bus)
288 {
289         struct hda_bus_unsolicited *unsol;
290
291         unsol = kzalloc(sizeof(*unsol), GFP_KERNEL);
292         if (! unsol) {
293                 snd_printk(KERN_ERR "hda_codec: can't allocate unsolicited queue\n");
294                 return -ENOMEM;
295         }
296         unsol->workq = create_workqueue("hda_codec");
297         if (! unsol->workq) {
298                 snd_printk(KERN_ERR "hda_codec: can't create workqueue\n");
299                 kfree(unsol);
300                 return -ENOMEM;
301         }
302         INIT_WORK(&unsol->work, process_unsol_events, bus);
303         bus->unsol = unsol;
304         return 0;
305 }
306
307 /*
308  * destructor
309  */
310 static void snd_hda_codec_free(struct hda_codec *codec);
311
312 static int snd_hda_bus_free(struct hda_bus *bus)
313 {
314         struct list_head *p, *n;
315
316         if (! bus)
317                 return 0;
318         if (bus->unsol) {
319                 destroy_workqueue(bus->unsol->workq);
320                 kfree(bus->unsol);
321         }
322         list_for_each_safe(p, n, &bus->codec_list) {
323                 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
324                 snd_hda_codec_free(codec);
325         }
326         if (bus->ops.private_free)
327                 bus->ops.private_free(bus);
328         kfree(bus);
329         return 0;
330 }
331
332 static int snd_hda_bus_dev_free(snd_device_t *device)
333 {
334         struct hda_bus *bus = device->device_data;
335         return snd_hda_bus_free(bus);
336 }
337
338 /**
339  * snd_hda_bus_new - create a HDA bus
340  * @card: the card entry
341  * @temp: the template for hda_bus information
342  * @busp: the pointer to store the created bus instance
343  *
344  * Returns 0 if successful, or a negative error code.
345  */
346 int snd_hda_bus_new(snd_card_t *card, const struct hda_bus_template *temp,
347                     struct hda_bus **busp)
348 {
349         struct hda_bus *bus;
350         int err;
351         static snd_device_ops_t dev_ops = {
352                 .dev_free = snd_hda_bus_dev_free,
353         };
354
355         snd_assert(temp, return -EINVAL);
356         snd_assert(temp->ops.command && temp->ops.get_response, return -EINVAL);
357
358         if (busp)
359                 *busp = NULL;
360
361         bus = kzalloc(sizeof(*bus), GFP_KERNEL);
362         if (bus == NULL) {
363                 snd_printk(KERN_ERR "can't allocate struct hda_bus\n");
364                 return -ENOMEM;
365         }
366
367         bus->card = card;
368         bus->private_data = temp->private_data;
369         bus->pci = temp->pci;
370         bus->modelname = temp->modelname;
371         bus->ops = temp->ops;
372
373         init_MUTEX(&bus->cmd_mutex);
374         INIT_LIST_HEAD(&bus->codec_list);
375
376         init_unsol_queue(bus);
377
378         if ((err = snd_device_new(card, SNDRV_DEV_BUS, bus, &dev_ops)) < 0) {
379                 snd_hda_bus_free(bus);
380                 return err;
381         }
382         if (busp)
383                 *busp = bus;
384         return 0;
385 }
386
387
388 /*
389  * find a matching codec preset
390  */
391 static const struct hda_codec_preset *find_codec_preset(struct hda_codec *codec)
392 {
393         const struct hda_codec_preset **tbl, *preset;
394
395         for (tbl = hda_preset_tables; *tbl; tbl++) {
396                 for (preset = *tbl; preset->id; preset++) {
397                         u32 mask = preset->mask;
398                         if (! mask)
399                                 mask = ~0;
400                         if (preset->id == (codec->vendor_id & mask))
401                                 return preset;
402                 }
403         }
404         return NULL;
405 }
406
407 /*
408  * snd_hda_get_codec_name - store the codec name
409  */
410 void snd_hda_get_codec_name(struct hda_codec *codec,
411                             char *name, int namelen)
412 {
413         const struct hda_vendor_id *c;
414         const char *vendor = NULL;
415         u16 vendor_id = codec->vendor_id >> 16;
416         char tmp[16];
417
418         for (c = hda_vendor_ids; c->id; c++) {
419                 if (c->id == vendor_id) {
420                         vendor = c->name;
421                         break;
422                 }
423         }
424         if (! vendor) {
425                 sprintf(tmp, "Generic %04x", vendor_id);
426                 vendor = tmp;
427         }
428         if (codec->preset && codec->preset->name)
429                 snprintf(name, namelen, "%s %s", vendor, codec->preset->name);
430         else
431                 snprintf(name, namelen, "%s ID %x", vendor, codec->vendor_id & 0xffff);
432 }
433
434 /*
435  * look for an AFG and MFG nodes
436  */
437 static void setup_fg_nodes(struct hda_codec *codec)
438 {
439         int i, total_nodes;
440         hda_nid_t nid;
441
442         total_nodes = snd_hda_get_sub_nodes(codec, AC_NODE_ROOT, &nid);
443         for (i = 0; i < total_nodes; i++, nid++) {
444                 switch((snd_hda_param_read(codec, nid, AC_PAR_FUNCTION_TYPE) & 0xff)) {
445                 case AC_GRP_AUDIO_FUNCTION:
446                         codec->afg = nid;
447                         break;
448                 case AC_GRP_MODEM_FUNCTION:
449                         codec->mfg = nid;
450                         break;
451                 default:
452                         break;
453                 }
454         }
455 }
456
457 /*
458  * codec destructor
459  */
460 static void snd_hda_codec_free(struct hda_codec *codec)
461 {
462         if (! codec)
463                 return;
464         list_del(&codec->list);
465         codec->bus->caddr_tbl[codec->addr] = NULL;
466         if (codec->patch_ops.free)
467                 codec->patch_ops.free(codec);
468         kfree(codec->amp_info);
469         kfree(codec);
470 }
471
472 static void init_amp_hash(struct hda_codec *codec);
473
474 /**
475  * snd_hda_codec_new - create a HDA codec
476  * @bus: the bus to assign
477  * @codec_addr: the codec address
478  * @codecp: the pointer to store the generated codec
479  *
480  * Returns 0 if successful, or a negative error code.
481  */
482 int snd_hda_codec_new(struct hda_bus *bus, unsigned int codec_addr,
483                       struct hda_codec **codecp)
484 {
485         struct hda_codec *codec;
486         char component[13];
487         int err;
488
489         snd_assert(bus, return -EINVAL);
490         snd_assert(codec_addr <= HDA_MAX_CODEC_ADDRESS, return -EINVAL);
491
492         if (bus->caddr_tbl[codec_addr]) {
493                 snd_printk(KERN_ERR "hda_codec: address 0x%x is already occupied\n", codec_addr);
494                 return -EBUSY;
495         }
496
497         codec = kzalloc(sizeof(*codec), GFP_KERNEL);
498         if (codec == NULL) {
499                 snd_printk(KERN_ERR "can't allocate struct hda_codec\n");
500                 return -ENOMEM;
501         }
502
503         codec->bus = bus;
504         codec->addr = codec_addr;
505         init_MUTEX(&codec->spdif_mutex);
506         init_amp_hash(codec);
507
508         list_add_tail(&codec->list, &bus->codec_list);
509         bus->caddr_tbl[codec_addr] = codec;
510
511         codec->vendor_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_VENDOR_ID);
512         codec->subsystem_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_SUBSYSTEM_ID);
513         codec->revision_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_REV_ID);
514
515         setup_fg_nodes(codec);
516         if (! codec->afg && ! codec->mfg) {
517                 snd_printdd("hda_codec: no AFG or MFG node found\n");
518                 snd_hda_codec_free(codec);
519                 return -ENODEV;
520         }
521
522         if (! codec->subsystem_id) {
523                 hda_nid_t nid = codec->afg ? codec->afg : codec->mfg;
524                 codec->subsystem_id = snd_hda_codec_read(codec, nid, 0,
525                                                          AC_VERB_GET_SUBSYSTEM_ID,
526                                                          0);
527         }
528
529         codec->preset = find_codec_preset(codec);
530         if (! *bus->card->mixername)
531                 snd_hda_get_codec_name(codec, bus->card->mixername,
532                                        sizeof(bus->card->mixername));
533
534         if (codec->preset && codec->preset->patch)
535                 err = codec->preset->patch(codec);
536         else
537                 err = snd_hda_parse_generic_codec(codec);
538         if (err < 0) {
539                 snd_hda_codec_free(codec);
540                 return err;
541         }
542
543         snd_hda_codec_proc_new(codec);
544
545         sprintf(component, "HDA:%08x", codec->vendor_id);
546         snd_component_add(codec->bus->card, component);
547
548         if (codecp)
549                 *codecp = codec;
550         return 0;
551 }
552
553 /**
554  * snd_hda_codec_setup_stream - set up the codec for streaming
555  * @codec: the CODEC to set up
556  * @nid: the NID to set up
557  * @stream_tag: stream tag to pass, it's between 0x1 and 0xf.
558  * @channel_id: channel id to pass, zero based.
559  * @format: stream format.
560  */
561 void snd_hda_codec_setup_stream(struct hda_codec *codec, hda_nid_t nid, u32 stream_tag,
562                                 int channel_id, int format)
563 {
564         if (! nid)
565                 return;
566
567         snd_printdd("hda_codec_setup_stream: NID=0x%x, stream=0x%x, channel=%d, format=0x%x\n",
568                     nid, stream_tag, channel_id, format);
569         snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CHANNEL_STREAMID,
570                             (stream_tag << 4) | channel_id);
571         msleep(1);
572         snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_STREAM_FORMAT, format);
573 }
574
575
576 /*
577  * amp access functions
578  */
579
580 /* FIXME: more better hash key? */
581 #define HDA_HASH_KEY(nid,dir,idx) (u32)((nid) + ((idx) << 16) + ((dir) << 24))
582 #define INFO_AMP_CAPS   (1<<0)
583 #define INFO_AMP_VOL(ch)        (1 << (1 + (ch)))
584
585 /* initialize the hash table */
586 static void init_amp_hash(struct hda_codec *codec)
587 {
588         memset(codec->amp_hash, 0xff, sizeof(codec->amp_hash));
589         codec->num_amp_entries = 0;
590         codec->amp_info_size = 0;
591         codec->amp_info = NULL;
592 }
593
594 /* query the hash.  allocate an entry if not found. */
595 static struct hda_amp_info *get_alloc_amp_hash(struct hda_codec *codec, u32 key)
596 {
597         u16 idx = key % (u16)ARRAY_SIZE(codec->amp_hash);
598         u16 cur = codec->amp_hash[idx];
599         struct hda_amp_info *info;
600
601         while (cur != 0xffff) {
602                 info = &codec->amp_info[cur];
603                 if (info->key == key)
604                         return info;
605                 cur = info->next;
606         }
607
608         /* add a new hash entry */
609         if (codec->num_amp_entries >= codec->amp_info_size) {
610                 /* reallocate the array */
611                 int new_size = codec->amp_info_size + 64;
612                 struct hda_amp_info *new_info = kcalloc(new_size, sizeof(struct hda_amp_info),
613                                                         GFP_KERNEL);
614                 if (! new_info) {
615                         snd_printk(KERN_ERR "hda_codec: can't malloc amp_info\n");
616                         return NULL;
617                 }
618                 if (codec->amp_info) {
619                         memcpy(new_info, codec->amp_info,
620                                codec->amp_info_size * sizeof(struct hda_amp_info));
621                         kfree(codec->amp_info);
622                 }
623                 codec->amp_info_size = new_size;
624                 codec->amp_info = new_info;
625         }
626         cur = codec->num_amp_entries++;
627         info = &codec->amp_info[cur];
628         info->key = key;
629         info->status = 0; /* not initialized yet */
630         info->next = codec->amp_hash[idx];
631         codec->amp_hash[idx] = cur;
632
633         return info;
634 }
635
636 /*
637  * query AMP capabilities for the given widget and direction
638  */
639 static u32 query_amp_caps(struct hda_codec *codec, hda_nid_t nid, int direction)
640 {
641         struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, 0));
642
643         if (! info)
644                 return 0;
645         if (! (info->status & INFO_AMP_CAPS)) {
646                 if (!(snd_hda_param_read(codec, nid, AC_PAR_AUDIO_WIDGET_CAP) & AC_WCAP_AMP_OVRD))
647                         nid = codec->afg;
648                 info->amp_caps = snd_hda_param_read(codec, nid, direction == HDA_OUTPUT ?
649                                                     AC_PAR_AMP_OUT_CAP : AC_PAR_AMP_IN_CAP);
650                 info->status |= INFO_AMP_CAPS;
651         }
652         return info->amp_caps;
653 }
654
655 /*
656  * read the current volume to info
657  * if the cache exists, read the cache value.
658  */
659 static unsigned int get_vol_mute(struct hda_codec *codec, struct hda_amp_info *info,
660                          hda_nid_t nid, int ch, int direction, int index)
661 {
662         u32 val, parm;
663
664         if (info->status & INFO_AMP_VOL(ch))
665                 return info->vol[ch];
666
667         parm = ch ? AC_AMP_GET_RIGHT : AC_AMP_GET_LEFT;
668         parm |= direction == HDA_OUTPUT ? AC_AMP_GET_OUTPUT : AC_AMP_GET_INPUT;
669         parm |= index;
670         val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_AMP_GAIN_MUTE, parm);
671         info->vol[ch] = val & 0xff;
672         info->status |= INFO_AMP_VOL(ch);
673         return info->vol[ch];
674 }
675
676 /*
677  * write the current volume in info to the h/w and update the cache
678  */
679 static void put_vol_mute(struct hda_codec *codec, struct hda_amp_info *info,
680                          hda_nid_t nid, int ch, int direction, int index, int val)
681 {
682         u32 parm;
683
684         parm = ch ? AC_AMP_SET_RIGHT : AC_AMP_SET_LEFT;
685         parm |= direction == HDA_OUTPUT ? AC_AMP_SET_OUTPUT : AC_AMP_SET_INPUT;
686         parm |= index << AC_AMP_SET_INDEX_SHIFT;
687         parm |= val;
688         snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_AMP_GAIN_MUTE, parm);
689         info->vol[ch] = val;
690 }
691
692 /*
693  * read AMP value.  The volume is between 0 to 0x7f, 0x80 = mute bit.
694  */
695 static int snd_hda_codec_amp_read(struct hda_codec *codec, hda_nid_t nid, int ch, int direction, int index)
696 {
697         struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, index));
698         if (! info)
699                 return 0;
700         return get_vol_mute(codec, info, nid, ch, direction, index);
701 }
702
703 /*
704  * update the AMP value, mask = bit mask to set, val = the value
705  */
706 static int snd_hda_codec_amp_update(struct hda_codec *codec, hda_nid_t nid, int ch, int direction, int idx, int mask, int val)
707 {
708         struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, idx));
709
710         if (! info)
711                 return 0;
712         val &= mask;
713         val |= get_vol_mute(codec, info, nid, ch, direction, idx) & ~mask;
714         if (info->vol[ch] == val && ! codec->in_resume)
715                 return 0;
716         put_vol_mute(codec, info, nid, ch, direction, idx, val);
717         return 1;
718 }
719
720
721 /*
722  * AMP control callbacks
723  */
724 /* retrieve parameters from private_value */
725 #define get_amp_nid(kc)         ((kc)->private_value & 0xffff)
726 #define get_amp_channels(kc)    (((kc)->private_value >> 16) & 0x3)
727 #define get_amp_direction(kc)   (((kc)->private_value >> 18) & 0x1)
728 #define get_amp_index(kc)       (((kc)->private_value >> 19) & 0xf)
729
730 /* volume */
731 int snd_hda_mixer_amp_volume_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo)
732 {
733         struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
734         u16 nid = get_amp_nid(kcontrol);
735         u8 chs = get_amp_channels(kcontrol);
736         int dir = get_amp_direction(kcontrol);
737         u32 caps;
738
739         caps = query_amp_caps(codec, nid, dir);
740         caps = (caps & AC_AMPCAP_NUM_STEPS) >> AC_AMPCAP_NUM_STEPS_SHIFT; /* num steps */
741         if (! caps) {
742                 printk(KERN_WARNING "hda_codec: num_steps = 0 for NID=0x%x\n", nid);
743                 return -EINVAL;
744         }
745         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
746         uinfo->count = chs == 3 ? 2 : 1;
747         uinfo->value.integer.min = 0;
748         uinfo->value.integer.max = caps;
749         return 0;
750 }
751
752 int snd_hda_mixer_amp_volume_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
753 {
754         struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
755         hda_nid_t nid = get_amp_nid(kcontrol);
756         int chs = get_amp_channels(kcontrol);
757         int dir = get_amp_direction(kcontrol);
758         int idx = get_amp_index(kcontrol);
759         long *valp = ucontrol->value.integer.value;
760
761         if (chs & 1)
762                 *valp++ = snd_hda_codec_amp_read(codec, nid, 0, dir, idx) & 0x7f;
763         if (chs & 2)
764                 *valp = snd_hda_codec_amp_read(codec, nid, 1, dir, idx) & 0x7f;
765         return 0;
766 }
767
768 int snd_hda_mixer_amp_volume_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
769 {
770         struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
771         hda_nid_t nid = get_amp_nid(kcontrol);
772         int chs = get_amp_channels(kcontrol);
773         int dir = get_amp_direction(kcontrol);
774         int idx = get_amp_index(kcontrol);
775         long *valp = ucontrol->value.integer.value;
776         int change = 0;
777
778         if (chs & 1) {
779                 change = snd_hda_codec_amp_update(codec, nid, 0, dir, idx,
780                                                   0x7f, *valp);
781                 valp++;
782         }
783         if (chs & 2)
784                 change |= snd_hda_codec_amp_update(codec, nid, 1, dir, idx,
785                                                    0x7f, *valp);
786         return change;
787 }
788
789 /* switch */
790 int snd_hda_mixer_amp_switch_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo)
791 {
792         int chs = get_amp_channels(kcontrol);
793
794         uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
795         uinfo->count = chs == 3 ? 2 : 1;
796         uinfo->value.integer.min = 0;
797         uinfo->value.integer.max = 1;
798         return 0;
799 }
800
801 int snd_hda_mixer_amp_switch_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
802 {
803         struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
804         hda_nid_t nid = get_amp_nid(kcontrol);
805         int chs = get_amp_channels(kcontrol);
806         int dir = get_amp_direction(kcontrol);
807         int idx = get_amp_index(kcontrol);
808         long *valp = ucontrol->value.integer.value;
809
810         if (chs & 1)
811                 *valp++ = (snd_hda_codec_amp_read(codec, nid, 0, dir, idx) & 0x80) ? 0 : 1;
812         if (chs & 2)
813                 *valp = (snd_hda_codec_amp_read(codec, nid, 1, dir, idx) & 0x80) ? 0 : 1;
814         return 0;
815 }
816
817 int snd_hda_mixer_amp_switch_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
818 {
819         struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
820         hda_nid_t nid = get_amp_nid(kcontrol);
821         int chs = get_amp_channels(kcontrol);
822         int dir = get_amp_direction(kcontrol);
823         int idx = get_amp_index(kcontrol);
824         long *valp = ucontrol->value.integer.value;
825         int change = 0;
826
827         if (chs & 1) {
828                 change = snd_hda_codec_amp_update(codec, nid, 0, dir, idx,
829                                                   0x80, *valp ? 0 : 0x80);
830                 valp++;
831         }
832         if (chs & 2)
833                 change |= snd_hda_codec_amp_update(codec, nid, 1, dir, idx,
834                                                    0x80, *valp ? 0 : 0x80);
835         
836         return change;
837 }
838
839 /*
840  * bound volume controls
841  *
842  * bind multiple volumes (# indices, from 0)
843  */
844
845 #define AMP_VAL_IDX_SHIFT       19
846 #define AMP_VAL_IDX_MASK        (0x0f<<19)
847
848 int snd_hda_mixer_bind_switch_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
849 {
850         struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
851         unsigned long pval;
852         int err;
853
854         down(&codec->spdif_mutex); /* reuse spdif_mutex */
855         pval = kcontrol->private_value;
856         kcontrol->private_value = pval & ~AMP_VAL_IDX_MASK; /* index 0 */
857         err = snd_hda_mixer_amp_switch_get(kcontrol, ucontrol);
858         kcontrol->private_value = pval;
859         up(&codec->spdif_mutex);
860         return err;
861 }
862
863 int snd_hda_mixer_bind_switch_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
864 {
865         struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
866         unsigned long pval;
867         int i, indices, err = 0, change = 0;
868
869         down(&codec->spdif_mutex); /* reuse spdif_mutex */
870         pval = kcontrol->private_value;
871         indices = (pval & AMP_VAL_IDX_MASK) >> AMP_VAL_IDX_SHIFT;
872         for (i = 0; i < indices; i++) {
873                 kcontrol->private_value = (pval & ~AMP_VAL_IDX_MASK) | (i << AMP_VAL_IDX_SHIFT);
874                 err = snd_hda_mixer_amp_switch_put(kcontrol, ucontrol);
875                 if (err < 0)
876                         break;
877                 change |= err;
878         }
879         kcontrol->private_value = pval;
880         up(&codec->spdif_mutex);
881         return err < 0 ? err : change;
882 }
883
884 /*
885  * SPDIF out controls
886  */
887
888 static int snd_hda_spdif_mask_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo)
889 {
890         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
891         uinfo->count = 1;
892         return 0;
893 }
894
895 static int snd_hda_spdif_cmask_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
896 {
897         ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
898                                            IEC958_AES0_NONAUDIO |
899                                            IEC958_AES0_CON_EMPHASIS_5015 |
900                                            IEC958_AES0_CON_NOT_COPYRIGHT;
901         ucontrol->value.iec958.status[1] = IEC958_AES1_CON_CATEGORY |
902                                            IEC958_AES1_CON_ORIGINAL;
903         return 0;
904 }
905
906 static int snd_hda_spdif_pmask_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
907 {
908         ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
909                                            IEC958_AES0_NONAUDIO |
910                                            IEC958_AES0_PRO_EMPHASIS_5015;
911         return 0;
912 }
913
914 static int snd_hda_spdif_default_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
915 {
916         struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
917
918         ucontrol->value.iec958.status[0] = codec->spdif_status & 0xff;
919         ucontrol->value.iec958.status[1] = (codec->spdif_status >> 8) & 0xff;
920         ucontrol->value.iec958.status[2] = (codec->spdif_status >> 16) & 0xff;
921         ucontrol->value.iec958.status[3] = (codec->spdif_status >> 24) & 0xff;
922
923         return 0;
924 }
925
926 /* convert from SPDIF status bits to HDA SPDIF bits
927  * bit 0 (DigEn) is always set zero (to be filled later)
928  */
929 static unsigned short convert_from_spdif_status(unsigned int sbits)
930 {
931         unsigned short val = 0;
932
933         if (sbits & IEC958_AES0_PROFESSIONAL)
934                 val |= 1 << 6;
935         if (sbits & IEC958_AES0_NONAUDIO)
936                 val |= 1 << 5;
937         if (sbits & IEC958_AES0_PROFESSIONAL) {
938                 if ((sbits & IEC958_AES0_PRO_EMPHASIS) == IEC958_AES0_PRO_EMPHASIS_5015)
939                         val |= 1 << 3;
940         } else {
941                 if ((sbits & IEC958_AES0_CON_EMPHASIS) == IEC958_AES0_CON_EMPHASIS_5015)
942                         val |= 1 << 3;
943                 if (! (sbits & IEC958_AES0_CON_NOT_COPYRIGHT))
944                         val |= 1 << 4;
945                 if (sbits & (IEC958_AES1_CON_ORIGINAL << 8))
946                         val |= 1 << 7;
947                 val |= sbits & (IEC958_AES1_CON_CATEGORY << 8);
948         }
949         return val;
950 }
951
952 /* convert to SPDIF status bits from HDA SPDIF bits
953  */
954 static unsigned int convert_to_spdif_status(unsigned short val)
955 {
956         unsigned int sbits = 0;
957
958         if (val & (1 << 5))
959                 sbits |= IEC958_AES0_NONAUDIO;
960         if (val & (1 << 6))
961                 sbits |= IEC958_AES0_PROFESSIONAL;
962         if (sbits & IEC958_AES0_PROFESSIONAL) {
963                 if (sbits & (1 << 3))
964                         sbits |= IEC958_AES0_PRO_EMPHASIS_5015;
965         } else {
966                 if (val & (1 << 3))
967                         sbits |= IEC958_AES0_CON_EMPHASIS_5015;
968                 if (! (val & (1 << 4)))
969                         sbits |= IEC958_AES0_CON_NOT_COPYRIGHT;
970                 if (val & (1 << 7))
971                         sbits |= (IEC958_AES1_CON_ORIGINAL << 8);
972                 sbits |= val & (0x7f << 8);
973         }
974         return sbits;
975 }
976
977 static int snd_hda_spdif_default_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
978 {
979         struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
980         hda_nid_t nid = kcontrol->private_value;
981         unsigned short val;
982         int change;
983
984         down(&codec->spdif_mutex);
985         codec->spdif_status = ucontrol->value.iec958.status[0] |
986                 ((unsigned int)ucontrol->value.iec958.status[1] << 8) |
987                 ((unsigned int)ucontrol->value.iec958.status[2] << 16) |
988                 ((unsigned int)ucontrol->value.iec958.status[3] << 24);
989         val = convert_from_spdif_status(codec->spdif_status);
990         val |= codec->spdif_ctls & 1;
991         change = codec->spdif_ctls != val;
992         codec->spdif_ctls = val;
993
994         if (change || codec->in_resume) {
995                 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val & 0xff);
996                 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_2, val >> 8);
997         }
998
999         up(&codec->spdif_mutex);
1000         return change;
1001 }
1002
1003 static int snd_hda_spdif_out_switch_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo)
1004 {
1005         uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1006         uinfo->count = 1;
1007         uinfo->value.integer.min = 0;
1008         uinfo->value.integer.max = 1;
1009         return 0;
1010 }
1011
1012 static int snd_hda_spdif_out_switch_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
1013 {
1014         struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1015
1016         ucontrol->value.integer.value[0] = codec->spdif_ctls & 1;
1017         return 0;
1018 }
1019
1020 static int snd_hda_spdif_out_switch_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
1021 {
1022         struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1023         hda_nid_t nid = kcontrol->private_value;
1024         unsigned short val;
1025         int change;
1026
1027         down(&codec->spdif_mutex);
1028         val = codec->spdif_ctls & ~1;
1029         if (ucontrol->value.integer.value[0])
1030                 val |= 1;
1031         change = codec->spdif_ctls != val;
1032         if (change || codec->in_resume) {
1033                 codec->spdif_ctls = val;
1034                 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val & 0xff);
1035                 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_AMP_GAIN_MUTE,
1036                                     AC_AMP_SET_RIGHT | AC_AMP_SET_LEFT |
1037                                     AC_AMP_SET_OUTPUT | ((val & 1) ? 0 : 0x80));
1038         }
1039         up(&codec->spdif_mutex);
1040         return change;
1041 }
1042
1043 static snd_kcontrol_new_t dig_mixes[] = {
1044         {
1045                 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1046                 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1047                 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1048                 .info = snd_hda_spdif_mask_info,
1049                 .get = snd_hda_spdif_cmask_get,
1050         },
1051         {
1052                 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1053                 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1054                 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PRO_MASK),
1055                 .info = snd_hda_spdif_mask_info,
1056                 .get = snd_hda_spdif_pmask_get,
1057         },
1058         {
1059                 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1060                 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1061                 .info = snd_hda_spdif_mask_info,
1062                 .get = snd_hda_spdif_default_get,
1063                 .put = snd_hda_spdif_default_put,
1064         },
1065         {
1066                 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1067                 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH),
1068                 .info = snd_hda_spdif_out_switch_info,
1069                 .get = snd_hda_spdif_out_switch_get,
1070                 .put = snd_hda_spdif_out_switch_put,
1071         },
1072         { } /* end */
1073 };
1074
1075 /**
1076  * snd_hda_create_spdif_out_ctls - create Output SPDIF-related controls
1077  * @codec: the HDA codec
1078  * @nid: audio out widget NID
1079  *
1080  * Creates controls related with the SPDIF output.
1081  * Called from each patch supporting the SPDIF out.
1082  *
1083  * Returns 0 if successful, or a negative error code.
1084  */
1085 int snd_hda_create_spdif_out_ctls(struct hda_codec *codec, hda_nid_t nid)
1086 {
1087         int err;
1088         snd_kcontrol_t *kctl;
1089         snd_kcontrol_new_t *dig_mix;
1090
1091         for (dig_mix = dig_mixes; dig_mix->name; dig_mix++) {
1092                 kctl = snd_ctl_new1(dig_mix, codec);
1093                 kctl->private_value = nid;
1094                 if ((err = snd_ctl_add(codec->bus->card, kctl)) < 0)
1095                         return err;
1096         }
1097         codec->spdif_ctls = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0);
1098         codec->spdif_status = convert_to_spdif_status(codec->spdif_ctls);
1099         return 0;
1100 }
1101
1102 /*
1103  * SPDIF input
1104  */
1105
1106 #define snd_hda_spdif_in_switch_info    snd_hda_spdif_out_switch_info
1107
1108 static int snd_hda_spdif_in_switch_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
1109 {
1110         struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1111
1112         ucontrol->value.integer.value[0] = codec->spdif_in_enable;
1113         return 0;
1114 }
1115
1116 static int snd_hda_spdif_in_switch_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
1117 {
1118         struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1119         hda_nid_t nid = kcontrol->private_value;
1120         unsigned int val = !!ucontrol->value.integer.value[0];
1121         int change;
1122
1123         down(&codec->spdif_mutex);
1124         change = codec->spdif_in_enable != val;
1125         if (change || codec->in_resume) {
1126                 codec->spdif_in_enable = val;
1127                 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val);
1128         }
1129         up(&codec->spdif_mutex);
1130         return change;
1131 }
1132
1133 static int snd_hda_spdif_in_status_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
1134 {
1135         struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1136         hda_nid_t nid = kcontrol->private_value;
1137         unsigned short val;
1138         unsigned int sbits;
1139
1140         val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0);
1141         sbits = convert_to_spdif_status(val);
1142         ucontrol->value.iec958.status[0] = sbits;
1143         ucontrol->value.iec958.status[1] = sbits >> 8;
1144         ucontrol->value.iec958.status[2] = sbits >> 16;
1145         ucontrol->value.iec958.status[3] = sbits >> 24;
1146         return 0;
1147 }
1148
1149 static snd_kcontrol_new_t dig_in_ctls[] = {
1150         {
1151                 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1152                 .name = SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH),
1153                 .info = snd_hda_spdif_in_switch_info,
1154                 .get = snd_hda_spdif_in_switch_get,
1155                 .put = snd_hda_spdif_in_switch_put,
1156         },
1157         {
1158                 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1159                 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1160                 .name = SNDRV_CTL_NAME_IEC958("",CAPTURE,DEFAULT),
1161                 .info = snd_hda_spdif_mask_info,
1162                 .get = snd_hda_spdif_in_status_get,
1163         },
1164         { } /* end */
1165 };
1166
1167 /**
1168  * snd_hda_create_spdif_in_ctls - create Input SPDIF-related controls
1169  * @codec: the HDA codec
1170  * @nid: audio in widget NID
1171  *
1172  * Creates controls related with the SPDIF input.
1173  * Called from each patch supporting the SPDIF in.
1174  *
1175  * Returns 0 if successful, or a negative error code.
1176  */
1177 int snd_hda_create_spdif_in_ctls(struct hda_codec *codec, hda_nid_t nid)
1178 {
1179         int err;
1180         snd_kcontrol_t *kctl;
1181         snd_kcontrol_new_t *dig_mix;
1182
1183         for (dig_mix = dig_in_ctls; dig_mix->name; dig_mix++) {
1184                 kctl = snd_ctl_new1(dig_mix, codec);
1185                 kctl->private_value = nid;
1186                 if ((err = snd_ctl_add(codec->bus->card, kctl)) < 0)
1187                         return err;
1188         }
1189         codec->spdif_in_enable = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0) & 1;
1190         return 0;
1191 }
1192
1193
1194 /**
1195  * snd_hda_build_controls - build mixer controls
1196  * @bus: the BUS
1197  *
1198  * Creates mixer controls for each codec included in the bus.
1199  *
1200  * Returns 0 if successful, otherwise a negative error code.
1201  */
1202 int snd_hda_build_controls(struct hda_bus *bus)
1203 {
1204         struct list_head *p;
1205
1206         /* build controls */
1207         list_for_each(p, &bus->codec_list) {
1208                 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1209                 int err;
1210                 if (! codec->patch_ops.build_controls)
1211                         continue;
1212                 err = codec->patch_ops.build_controls(codec);
1213                 if (err < 0)
1214                         return err;
1215         }
1216
1217         /* initialize */
1218         list_for_each(p, &bus->codec_list) {
1219                 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1220                 int err;
1221                 if (! codec->patch_ops.init)
1222                         continue;
1223                 err = codec->patch_ops.init(codec);
1224                 if (err < 0)
1225                         return err;
1226         }
1227         return 0;
1228 }
1229
1230
1231 /*
1232  * stream formats
1233  */
1234 struct hda_rate_tbl {
1235         unsigned int hz;
1236         unsigned int alsa_bits;
1237         unsigned int hda_fmt;
1238 };
1239
1240 static struct hda_rate_tbl rate_bits[] = {
1241         /* rate in Hz, ALSA rate bitmask, HDA format value */
1242
1243         /* autodetected value used in snd_hda_query_supported_pcm */
1244         { 8000, SNDRV_PCM_RATE_8000, 0x0500 }, /* 1/6 x 48 */
1245         { 11025, SNDRV_PCM_RATE_11025, 0x4300 }, /* 1/4 x 44 */
1246         { 16000, SNDRV_PCM_RATE_16000, 0x0200 }, /* 1/3 x 48 */
1247         { 22050, SNDRV_PCM_RATE_22050, 0x4100 }, /* 1/2 x 44 */
1248         { 32000, SNDRV_PCM_RATE_32000, 0x0a00 }, /* 2/3 x 48 */
1249         { 44100, SNDRV_PCM_RATE_44100, 0x4000 }, /* 44 */
1250         { 48000, SNDRV_PCM_RATE_48000, 0x0000 }, /* 48 */
1251         { 88200, SNDRV_PCM_RATE_88200, 0x4800 }, /* 2 x 44 */
1252         { 96000, SNDRV_PCM_RATE_96000, 0x0800 }, /* 2 x 48 */
1253         { 176400, SNDRV_PCM_RATE_176400, 0x5800 },/* 4 x 44 */
1254         { 192000, SNDRV_PCM_RATE_192000, 0x1800 }, /* 4 x 48 */
1255
1256         /* not autodetected value */
1257         { 9600, SNDRV_PCM_RATE_KNOT, 0x0400 }, /* 1/5 x 48 */
1258
1259         { 0 } /* terminator */
1260 };
1261
1262 /**
1263  * snd_hda_calc_stream_format - calculate format bitset
1264  * @rate: the sample rate
1265  * @channels: the number of channels
1266  * @format: the PCM format (SNDRV_PCM_FORMAT_XXX)
1267  * @maxbps: the max. bps
1268  *
1269  * Calculate the format bitset from the given rate, channels and th PCM format.
1270  *
1271  * Return zero if invalid.
1272  */
1273 unsigned int snd_hda_calc_stream_format(unsigned int rate,
1274                                         unsigned int channels,
1275                                         unsigned int format,
1276                                         unsigned int maxbps)
1277 {
1278         int i;
1279         unsigned int val = 0;
1280
1281         for (i = 0; rate_bits[i].hz; i++)
1282                 if (rate_bits[i].hz == rate) {
1283                         val = rate_bits[i].hda_fmt;
1284                         break;
1285                 }
1286         if (! rate_bits[i].hz) {
1287                 snd_printdd("invalid rate %d\n", rate);
1288                 return 0;
1289         }
1290
1291         if (channels == 0 || channels > 8) {
1292                 snd_printdd("invalid channels %d\n", channels);
1293                 return 0;
1294         }
1295         val |= channels - 1;
1296
1297         switch (snd_pcm_format_width(format)) {
1298         case 8:  val |= 0x00; break;
1299         case 16: val |= 0x10; break;
1300         case 20:
1301         case 24:
1302         case 32:
1303                 if (maxbps >= 32)
1304                         val |= 0x40;
1305                 else if (maxbps >= 24)
1306                         val |= 0x30;
1307                 else
1308                         val |= 0x20;
1309                 break;
1310         default:
1311                 snd_printdd("invalid format width %d\n", snd_pcm_format_width(format));
1312                 return 0;
1313         }
1314
1315         return val;
1316 }
1317
1318 /**
1319  * snd_hda_query_supported_pcm - query the supported PCM rates and formats
1320  * @codec: the HDA codec
1321  * @nid: NID to query
1322  * @ratesp: the pointer to store the detected rate bitflags
1323  * @formatsp: the pointer to store the detected formats
1324  * @bpsp: the pointer to store the detected format widths
1325  *
1326  * Queries the supported PCM rates and formats.  The NULL @ratesp, @formatsp
1327  * or @bsps argument is ignored.
1328  *
1329  * Returns 0 if successful, otherwise a negative error code.
1330  */
1331 int snd_hda_query_supported_pcm(struct hda_codec *codec, hda_nid_t nid,
1332                                 u32 *ratesp, u64 *formatsp, unsigned int *bpsp)
1333 {
1334         int i;
1335         unsigned int val, streams;
1336
1337         val = 0;
1338         if (nid != codec->afg &&
1339             snd_hda_param_read(codec, nid, AC_PAR_AUDIO_WIDGET_CAP) & AC_WCAP_FORMAT_OVRD) {
1340                 val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
1341                 if (val == -1)
1342                         return -EIO;
1343         }
1344         if (! val)
1345                 val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
1346
1347         if (ratesp) {
1348                 u32 rates = 0;
1349                 for (i = 0; rate_bits[i].hz; i++) {
1350                         if (val & (1 << i))
1351                                 rates |= rate_bits[i].alsa_bits;
1352                 }
1353                 *ratesp = rates;
1354         }
1355
1356         if (formatsp || bpsp) {
1357                 u64 formats = 0;
1358                 unsigned int bps;
1359                 unsigned int wcaps;
1360
1361                 wcaps = snd_hda_param_read(codec, nid, AC_PAR_AUDIO_WIDGET_CAP);
1362                 streams = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
1363                 if (streams == -1)
1364                         return -EIO;
1365                 if (! streams) {
1366                         streams = snd_hda_param_read(codec, codec->afg, AC_PAR_STREAM);
1367                         if (streams == -1)
1368                                 return -EIO;
1369                 }
1370
1371                 bps = 0;
1372                 if (streams & AC_SUPFMT_PCM) {
1373                         if (val & AC_SUPPCM_BITS_8) {
1374                                 formats |= SNDRV_PCM_FMTBIT_U8;
1375                                 bps = 8;
1376                         }
1377                         if (val & AC_SUPPCM_BITS_16) {
1378                                 formats |= SNDRV_PCM_FMTBIT_S16_LE;
1379                                 bps = 16;
1380                         }
1381                         if (wcaps & AC_WCAP_DIGITAL) {
1382                                 if (val & AC_SUPPCM_BITS_32)
1383                                         formats |= SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE;
1384                                 if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24))
1385                                         formats |= SNDRV_PCM_FMTBIT_S32_LE;
1386                                 if (val & AC_SUPPCM_BITS_24)
1387                                         bps = 24;
1388                                 else if (val & AC_SUPPCM_BITS_20)
1389                                         bps = 20;
1390                         } else if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24|AC_SUPPCM_BITS_32)) {
1391                                 formats |= SNDRV_PCM_FMTBIT_S32_LE;
1392                                 if (val & AC_SUPPCM_BITS_32)
1393                                         bps = 32;
1394                                 else if (val & AC_SUPPCM_BITS_20)
1395                                         bps = 20;
1396                                 else if (val & AC_SUPPCM_BITS_24)
1397                                         bps = 24;
1398                         }
1399                 }
1400                 else if (streams == AC_SUPFMT_FLOAT32) { /* should be exclusive */
1401                         formats |= SNDRV_PCM_FMTBIT_FLOAT_LE;
1402                         bps = 32;
1403                 } else if (streams == AC_SUPFMT_AC3) { /* should be exclusive */
1404                         /* temporary hack: we have still no proper support
1405                          * for the direct AC3 stream...
1406                          */
1407                         formats |= SNDRV_PCM_FMTBIT_U8;
1408                         bps = 8;
1409                 }
1410                 if (formatsp)
1411                         *formatsp = formats;
1412                 if (bpsp)
1413                         *bpsp = bps;
1414         }
1415
1416         return 0;
1417 }
1418
1419 /**
1420  * snd_hda_is_supported_format - check whether the given node supports the format val
1421  *
1422  * Returns 1 if supported, 0 if not.
1423  */
1424 int snd_hda_is_supported_format(struct hda_codec *codec, hda_nid_t nid,
1425                                 unsigned int format)
1426 {
1427         int i;
1428         unsigned int val = 0, rate, stream;
1429
1430         if (nid != codec->afg &&
1431             snd_hda_param_read(codec, nid, AC_PAR_AUDIO_WIDGET_CAP) & AC_WCAP_FORMAT_OVRD) {
1432                 val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
1433                 if (val == -1)
1434                         return 0;
1435         }
1436         if (! val) {
1437                 val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
1438                 if (val == -1)
1439                         return 0;
1440         }
1441
1442         rate = format & 0xff00;
1443         for (i = 0; rate_bits[i].hz; i++)
1444                 if (rate_bits[i].hda_fmt == rate) {
1445                         if (val & (1 << i))
1446                                 break;
1447                         return 0;
1448                 }
1449         if (! rate_bits[i].hz)
1450                 return 0;
1451
1452         stream = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
1453         if (stream == -1)
1454                 return 0;
1455         if (! stream && nid != codec->afg)
1456                 stream = snd_hda_param_read(codec, codec->afg, AC_PAR_STREAM);
1457         if (! stream || stream == -1)
1458                 return 0;
1459
1460         if (stream & AC_SUPFMT_PCM) {
1461                 switch (format & 0xf0) {
1462                 case 0x00:
1463                         if (! (val & AC_SUPPCM_BITS_8))
1464                                 return 0;
1465                         break;
1466                 case 0x10:
1467                         if (! (val & AC_SUPPCM_BITS_16))
1468                                 return 0;
1469                         break;
1470                 case 0x20:
1471                         if (! (val & AC_SUPPCM_BITS_20))
1472                                 return 0;
1473                         break;
1474                 case 0x30:
1475                         if (! (val & AC_SUPPCM_BITS_24))
1476                                 return 0;
1477                         break;
1478                 case 0x40:
1479                         if (! (val & AC_SUPPCM_BITS_32))
1480                                 return 0;
1481                         break;
1482                 default:
1483                         return 0;
1484                 }
1485         } else {
1486                 /* FIXME: check for float32 and AC3? */
1487         }
1488
1489         return 1;
1490 }
1491
1492 /*
1493  * PCM stuff
1494  */
1495 static int hda_pcm_default_open_close(struct hda_pcm_stream *hinfo,
1496                                       struct hda_codec *codec,
1497                                       snd_pcm_substream_t *substream)
1498 {
1499         return 0;
1500 }
1501
1502 static int hda_pcm_default_prepare(struct hda_pcm_stream *hinfo,
1503                                    struct hda_codec *codec,
1504                                    unsigned int stream_tag,
1505                                    unsigned int format,
1506                                    snd_pcm_substream_t *substream)
1507 {
1508         snd_hda_codec_setup_stream(codec, hinfo->nid, stream_tag, 0, format);
1509         return 0;
1510 }
1511
1512 static int hda_pcm_default_cleanup(struct hda_pcm_stream *hinfo,
1513                                    struct hda_codec *codec,
1514                                    snd_pcm_substream_t *substream)
1515 {
1516         snd_hda_codec_setup_stream(codec, hinfo->nid, 0, 0, 0);
1517         return 0;
1518 }
1519
1520 static int set_pcm_default_values(struct hda_codec *codec, struct hda_pcm_stream *info)
1521 {
1522         if (info->nid) {
1523                 /* query support PCM information from the given NID */
1524                 if (! info->rates || ! info->formats)
1525                         snd_hda_query_supported_pcm(codec, info->nid,
1526                                                     info->rates ? NULL : &info->rates,
1527                                                     info->formats ? NULL : &info->formats,
1528                                                     info->maxbps ? NULL : &info->maxbps);
1529         }
1530         if (info->ops.open == NULL)
1531                 info->ops.open = hda_pcm_default_open_close;
1532         if (info->ops.close == NULL)
1533                 info->ops.close = hda_pcm_default_open_close;
1534         if (info->ops.prepare == NULL) {
1535                 snd_assert(info->nid, return -EINVAL);
1536                 info->ops.prepare = hda_pcm_default_prepare;
1537         }
1538         if (info->ops.cleanup == NULL) {
1539                 snd_assert(info->nid, return -EINVAL);
1540                 info->ops.cleanup = hda_pcm_default_cleanup;
1541         }
1542         return 0;
1543 }
1544
1545 /**
1546  * snd_hda_build_pcms - build PCM information
1547  * @bus: the BUS
1548  *
1549  * Create PCM information for each codec included in the bus.
1550  *
1551  * The build_pcms codec patch is requested to set up codec->num_pcms and
1552  * codec->pcm_info properly.  The array is referred by the top-level driver
1553  * to create its PCM instances.
1554  * The allocated codec->pcm_info should be released in codec->patch_ops.free
1555  * callback.
1556  *
1557  * At least, substreams, channels_min and channels_max must be filled for
1558  * each stream.  substreams = 0 indicates that the stream doesn't exist.
1559  * When rates and/or formats are zero, the supported values are queried
1560  * from the given nid.  The nid is used also by the default ops.prepare
1561  * and ops.cleanup callbacks.
1562  *
1563  * The driver needs to call ops.open in its open callback.  Similarly,
1564  * ops.close is supposed to be called in the close callback.
1565  * ops.prepare should be called in the prepare or hw_params callback
1566  * with the proper parameters for set up.
1567  * ops.cleanup should be called in hw_free for clean up of streams.
1568  *
1569  * This function returns 0 if successfull, or a negative error code.
1570  */
1571 int snd_hda_build_pcms(struct hda_bus *bus)
1572 {
1573         struct list_head *p;
1574
1575         list_for_each(p, &bus->codec_list) {
1576                 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1577                 unsigned int pcm, s;
1578                 int err;
1579                 if (! codec->patch_ops.build_pcms)
1580                         continue;
1581                 err = codec->patch_ops.build_pcms(codec);
1582                 if (err < 0)
1583                         return err;
1584                 for (pcm = 0; pcm < codec->num_pcms; pcm++) {
1585                         for (s = 0; s < 2; s++) {
1586                                 struct hda_pcm_stream *info;
1587                                 info = &codec->pcm_info[pcm].stream[s];
1588                                 if (! info->substreams)
1589                                         continue;
1590                                 err = set_pcm_default_values(codec, info);
1591                                 if (err < 0)
1592                                         return err;
1593                         }
1594                 }
1595         }
1596         return 0;
1597 }
1598
1599
1600 /**
1601  * snd_hda_check_board_config - compare the current codec with the config table
1602  * @codec: the HDA codec
1603  * @tbl: configuration table, terminated by null entries
1604  *
1605  * Compares the modelname or PCI subsystem id of the current codec with the
1606  * given configuration table.  If a matching entry is found, returns its
1607  * config value (supposed to be 0 or positive).
1608  *
1609  * If no entries are matching, the function returns a negative value.
1610  */
1611 int snd_hda_check_board_config(struct hda_codec *codec, const struct hda_board_config *tbl)
1612 {
1613         const struct hda_board_config *c;
1614
1615         if (codec->bus->modelname) {
1616                 for (c = tbl; c->modelname || c->pci_subvendor; c++) {
1617                         if (c->modelname &&
1618                             ! strcmp(codec->bus->modelname, c->modelname)) {
1619                                 snd_printd(KERN_INFO "hda_codec: model '%s' is selected\n", c->modelname);
1620                                 return c->config;
1621                         }
1622                 }
1623         }
1624
1625         if (codec->bus->pci) {
1626                 u16 subsystem_vendor, subsystem_device;
1627                 pci_read_config_word(codec->bus->pci, PCI_SUBSYSTEM_VENDOR_ID, &subsystem_vendor);
1628                 pci_read_config_word(codec->bus->pci, PCI_SUBSYSTEM_ID, &subsystem_device);
1629                 for (c = tbl; c->modelname || c->pci_subvendor; c++) {
1630                         if (c->pci_subvendor == subsystem_vendor &&
1631                             (! c->pci_subdevice /* all match */||
1632                              (c->pci_subdevice == subsystem_device))) {
1633                                 snd_printdd(KERN_INFO "hda_codec: PCI %x:%x, codec config %d is selected\n",
1634                                             subsystem_vendor, subsystem_device, c->config);
1635                                 return c->config;
1636                         }
1637                 }
1638         }
1639         return -1;
1640 }
1641
1642 /**
1643  * snd_hda_add_new_ctls - create controls from the array
1644  * @codec: the HDA codec
1645  * @knew: the array of snd_kcontrol_new_t
1646  *
1647  * This helper function creates and add new controls in the given array.
1648  * The array must be terminated with an empty entry as terminator.
1649  *
1650  * Returns 0 if successful, or a negative error code.
1651  */
1652 int snd_hda_add_new_ctls(struct hda_codec *codec, snd_kcontrol_new_t *knew)
1653 {
1654         int err;
1655
1656         for (; knew->name; knew++) {
1657                 err = snd_ctl_add(codec->bus->card, snd_ctl_new1(knew, codec));
1658                 if (err < 0)
1659                         return err;
1660         }
1661         return 0;
1662 }
1663
1664
1665 /*
1666  * input MUX helper
1667  */
1668 int snd_hda_input_mux_info(const struct hda_input_mux *imux, snd_ctl_elem_info_t *uinfo)
1669 {
1670         unsigned int index;
1671
1672         uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1673         uinfo->count = 1;
1674         uinfo->value.enumerated.items = imux->num_items;
1675         index = uinfo->value.enumerated.item;
1676         if (index >= imux->num_items)
1677                 index = imux->num_items - 1;
1678         strcpy(uinfo->value.enumerated.name, imux->items[index].label);
1679         return 0;
1680 }
1681
1682 int snd_hda_input_mux_put(struct hda_codec *codec, const struct hda_input_mux *imux,
1683                           snd_ctl_elem_value_t *ucontrol, hda_nid_t nid,
1684                           unsigned int *cur_val)
1685 {
1686         unsigned int idx;
1687
1688         idx = ucontrol->value.enumerated.item[0];
1689         if (idx >= imux->num_items)
1690                 idx = imux->num_items - 1;
1691         if (*cur_val == idx && ! codec->in_resume)
1692                 return 0;
1693         snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CONNECT_SEL,
1694                             imux->items[idx].index);
1695         *cur_val = idx;
1696         return 1;
1697 }
1698
1699
1700 /*
1701  * Multi-channel / digital-out PCM helper functions
1702  */
1703
1704 /*
1705  * open the digital out in the exclusive mode
1706  */
1707 int snd_hda_multi_out_dig_open(struct hda_codec *codec, struct hda_multi_out *mout)
1708 {
1709         down(&codec->spdif_mutex);
1710         if (mout->dig_out_used) {
1711                 up(&codec->spdif_mutex);
1712                 return -EBUSY; /* already being used */
1713         }
1714         mout->dig_out_used = HDA_DIG_EXCLUSIVE;
1715         up(&codec->spdif_mutex);
1716         return 0;
1717 }
1718
1719 /*
1720  * release the digital out
1721  */
1722 int snd_hda_multi_out_dig_close(struct hda_codec *codec, struct hda_multi_out *mout)
1723 {
1724         down(&codec->spdif_mutex);
1725         mout->dig_out_used = 0;
1726         up(&codec->spdif_mutex);
1727         return 0;
1728 }
1729
1730 /*
1731  * set up more restrictions for analog out
1732  */
1733 int snd_hda_multi_out_analog_open(struct hda_codec *codec, struct hda_multi_out *mout,
1734                                   snd_pcm_substream_t *substream)
1735 {
1736         substream->runtime->hw.channels_max = mout->max_channels;
1737         return snd_pcm_hw_constraint_step(substream->runtime, 0,
1738                                           SNDRV_PCM_HW_PARAM_CHANNELS, 2);
1739 }
1740
1741 /*
1742  * set up the i/o for analog out
1743  * when the digital out is available, copy the front out to digital out, too.
1744  */
1745 int snd_hda_multi_out_analog_prepare(struct hda_codec *codec, struct hda_multi_out *mout,
1746                                      unsigned int stream_tag,
1747                                      unsigned int format,
1748                                      snd_pcm_substream_t *substream)
1749 {
1750         hda_nid_t *nids = mout->dac_nids;
1751         int chs = substream->runtime->channels;
1752         int i;
1753
1754         down(&codec->spdif_mutex);
1755         if (mout->dig_out_nid && mout->dig_out_used != HDA_DIG_EXCLUSIVE) {
1756                 if (chs == 2 &&
1757                     snd_hda_is_supported_format(codec, mout->dig_out_nid, format) &&
1758                     ! (codec->spdif_status & IEC958_AES0_NONAUDIO)) {
1759                         mout->dig_out_used = HDA_DIG_ANALOG_DUP;
1760                         /* setup digital receiver */
1761                         snd_hda_codec_setup_stream(codec, mout->dig_out_nid,
1762                                                    stream_tag, 0, format);
1763                 } else {
1764                         mout->dig_out_used = 0;
1765                         snd_hda_codec_setup_stream(codec, mout->dig_out_nid, 0, 0, 0);
1766                 }
1767         }
1768         up(&codec->spdif_mutex);
1769
1770         /* front */
1771         snd_hda_codec_setup_stream(codec, nids[HDA_FRONT], stream_tag, 0, format);
1772         if (mout->hp_nid)
1773                 /* headphone out will just decode front left/right (stereo) */
1774                 snd_hda_codec_setup_stream(codec, mout->hp_nid, stream_tag, 0, format);
1775         /* surrounds */
1776         for (i = 1; i < mout->num_dacs; i++) {
1777                 if (chs >= (i + 1) * 2) /* independent out */
1778                         snd_hda_codec_setup_stream(codec, nids[i], stream_tag, i * 2,
1779                                                    format);
1780                 else /* copy front */
1781                         snd_hda_codec_setup_stream(codec, nids[i], stream_tag, 0,
1782                                                    format);
1783         }
1784         return 0;
1785 }
1786
1787 /*
1788  * clean up the setting for analog out
1789  */
1790 int snd_hda_multi_out_analog_cleanup(struct hda_codec *codec, struct hda_multi_out *mout)
1791 {
1792         hda_nid_t *nids = mout->dac_nids;
1793         int i;
1794
1795         for (i = 0; i < mout->num_dacs; i++)
1796                 snd_hda_codec_setup_stream(codec, nids[i], 0, 0, 0);
1797         if (mout->hp_nid)
1798                 snd_hda_codec_setup_stream(codec, mout->hp_nid, 0, 0, 0);
1799         down(&codec->spdif_mutex);
1800         if (mout->dig_out_nid && mout->dig_out_used == HDA_DIG_ANALOG_DUP) {
1801                 snd_hda_codec_setup_stream(codec, mout->dig_out_nid, 0, 0, 0);
1802                 mout->dig_out_used = 0;
1803         }
1804         up(&codec->spdif_mutex);
1805         return 0;
1806 }
1807
1808 /*
1809  * Helper for automatic ping configuration
1810  */
1811 /* parse all pin widgets and store the useful pin nids to cfg */
1812 int snd_hda_parse_pin_def_config(struct hda_codec *codec, struct auto_pin_cfg *cfg)
1813 {
1814         hda_nid_t nid, nid_start;
1815         int i, j, nodes;
1816         short seq, sequences[4], assoc_line_out;
1817
1818         memset(cfg, 0, sizeof(*cfg));
1819
1820         memset(sequences, 0, sizeof(sequences));
1821         assoc_line_out = 0;
1822
1823         nodes = snd_hda_get_sub_nodes(codec, codec->afg, &nid_start);
1824         for (nid = nid_start; nid < nodes + nid_start; nid++) {
1825                 unsigned int wid_caps = snd_hda_param_read(codec, nid,
1826                                                            AC_PAR_AUDIO_WIDGET_CAP);
1827                 unsigned int wid_type = (wid_caps & AC_WCAP_TYPE) >> AC_WCAP_TYPE_SHIFT;
1828                 unsigned int def_conf;
1829                 short assoc, loc;
1830
1831                 /* read all default configuration for pin complex */
1832                 if (wid_type != AC_WID_PIN)
1833                         continue;
1834                 def_conf = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_CONFIG_DEFAULT, 0);
1835                 if (get_defcfg_connect(def_conf) == AC_JACK_PORT_NONE)
1836                         continue;
1837                 loc = get_defcfg_location(def_conf);
1838                 switch (get_defcfg_device(def_conf)) {
1839                 case AC_JACK_LINE_OUT:
1840                 case AC_JACK_SPEAKER:
1841                         seq = get_defcfg_sequence(def_conf);
1842                         assoc = get_defcfg_association(def_conf);
1843                         if (! assoc)
1844                                 continue;
1845                         if (! assoc_line_out)
1846                                 assoc_line_out = assoc;
1847                         else if (assoc_line_out != assoc)
1848                                 continue;
1849                         if (cfg->line_outs >= ARRAY_SIZE(cfg->line_out_pins))
1850                                 continue;
1851                         cfg->line_out_pins[cfg->line_outs] = nid;
1852                         sequences[cfg->line_outs] = seq;
1853                         cfg->line_outs++;
1854                         break;
1855                 case AC_JACK_HP_OUT:
1856                         cfg->hp_pin = nid;
1857                         break;
1858                 case AC_JACK_MIC_IN:
1859                         if (loc == AC_JACK_LOC_FRONT)
1860                                 cfg->input_pins[AUTO_PIN_FRONT_MIC] = nid;
1861                         else
1862                                 cfg->input_pins[AUTO_PIN_MIC] = nid;
1863                         break;
1864                 case AC_JACK_LINE_IN:
1865                         if (loc == AC_JACK_LOC_FRONT)
1866                                 cfg->input_pins[AUTO_PIN_FRONT_LINE] = nid;
1867                         else
1868                                 cfg->input_pins[AUTO_PIN_LINE] = nid;
1869                         break;
1870                 case AC_JACK_CD:
1871                         cfg->input_pins[AUTO_PIN_CD] = nid;
1872                         break;
1873                 case AC_JACK_AUX:
1874                         cfg->input_pins[AUTO_PIN_AUX] = nid;
1875                         break;
1876                 case AC_JACK_SPDIF_OUT:
1877                         cfg->dig_out_pin = nid;
1878                         break;
1879                 case AC_JACK_SPDIF_IN:
1880                         cfg->dig_in_pin = nid;
1881                         break;
1882                 }
1883         }
1884
1885         /* sort by sequence */
1886         for (i = 0; i < cfg->line_outs; i++)
1887                 for (j = i + 1; j < cfg->line_outs; j++)
1888                         if (sequences[i] > sequences[j]) {
1889                                 seq = sequences[i];
1890                                 sequences[i] = sequences[j];
1891                                 sequences[j] = seq;
1892                                 nid = cfg->line_out_pins[i];
1893                                 cfg->line_out_pins[i] = cfg->line_out_pins[j];
1894                                 cfg->line_out_pins[j] = nid;
1895                         }
1896
1897         /* Reorder the surround channels
1898          * ALSA sequence is front/surr/clfe/side
1899          * HDA sequence is:
1900          *    4-ch: front/surr  =>  OK as it is
1901          *    6-ch: front/clfe/surr
1902          *    8-ch: front/clfe/side/surr
1903          */
1904         switch (cfg->line_outs) {
1905         case 3:
1906                 nid = cfg->line_out_pins[1];
1907                 cfg->line_out_pins[1] = cfg->line_out_pins[2];
1908                 cfg->line_out_pins[2] = nid;
1909                 break;
1910         case 4:
1911                 nid = cfg->line_out_pins[1];
1912                 cfg->line_out_pins[1] = cfg->line_out_pins[3];
1913                 cfg->line_out_pins[3] = cfg->line_out_pins[2];
1914                 cfg->line_out_pins[2] = nid;
1915                 break;
1916         }
1917
1918         return 0;
1919 }
1920
1921 #ifdef CONFIG_PM
1922 /*
1923  * power management
1924  */
1925
1926 /**
1927  * snd_hda_suspend - suspend the codecs
1928  * @bus: the HDA bus
1929  * @state: suspsend state
1930  *
1931  * Returns 0 if successful.
1932  */
1933 int snd_hda_suspend(struct hda_bus *bus, pm_message_t state)
1934 {
1935         struct list_head *p;
1936
1937         /* FIXME: should handle power widget capabilities */
1938         list_for_each(p, &bus->codec_list) {
1939                 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1940                 if (codec->patch_ops.suspend)
1941                         codec->patch_ops.suspend(codec, state);
1942         }
1943         return 0;
1944 }
1945
1946 /**
1947  * snd_hda_resume - resume the codecs
1948  * @bus: the HDA bus
1949  * @state: resume state
1950  *
1951  * Returns 0 if successful.
1952  */
1953 int snd_hda_resume(struct hda_bus *bus)
1954 {
1955         struct list_head *p;
1956
1957         list_for_each(p, &bus->codec_list) {
1958                 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1959                 if (codec->patch_ops.resume)
1960                         codec->patch_ops.resume(codec);
1961         }
1962         return 0;
1963 }
1964
1965 /**
1966  * snd_hda_resume_ctls - resume controls in the new control list
1967  * @codec: the HDA codec
1968  * @knew: the array of snd_kcontrol_new_t
1969  *
1970  * This function resumes the mixer controls in the snd_kcontrol_new_t array,
1971  * originally for snd_hda_add_new_ctls().
1972  * The array must be terminated with an empty entry as terminator.
1973  */
1974 int snd_hda_resume_ctls(struct hda_codec *codec, snd_kcontrol_new_t *knew)
1975 {
1976         snd_ctl_elem_value_t *val;
1977
1978         val = kmalloc(sizeof(*val), GFP_KERNEL);
1979         if (! val)
1980                 return -ENOMEM;
1981         codec->in_resume = 1;
1982         for (; knew->name; knew++) {
1983                 int i, count;
1984                 count = knew->count ? knew->count : 1;
1985                 for (i = 0; i < count; i++) {
1986                         memset(val, 0, sizeof(*val));
1987                         val->id.iface = knew->iface;
1988                         val->id.device = knew->device;
1989                         val->id.subdevice = knew->subdevice;
1990                         strcpy(val->id.name, knew->name);
1991                         val->id.index = knew->index ? knew->index : i;
1992                         /* Assume that get callback reads only from cache,
1993                          * not accessing to the real hardware
1994                          */
1995                         if (snd_ctl_elem_read(codec->bus->card, val) < 0)
1996                                 continue;
1997                         snd_ctl_elem_write(codec->bus->card, NULL, val);
1998                 }
1999         }
2000         codec->in_resume = 0;
2001         kfree(val);
2002         return 0;
2003 }
2004
2005 /**
2006  * snd_hda_resume_spdif_out - resume the digital out
2007  * @codec: the HDA codec
2008  */
2009 int snd_hda_resume_spdif_out(struct hda_codec *codec)
2010 {
2011         return snd_hda_resume_ctls(codec, dig_mixes);
2012 }
2013
2014 /**
2015  * snd_hda_resume_spdif_in - resume the digital in
2016  * @codec: the HDA codec
2017  */
2018 int snd_hda_resume_spdif_in(struct hda_codec *codec)
2019 {
2020         return snd_hda_resume_ctls(codec, dig_in_ctls);
2021 }
2022 #endif
2023
2024 /*
2025  * symbols exported for controller modules
2026  */
2027 EXPORT_SYMBOL(snd_hda_codec_read);
2028 EXPORT_SYMBOL(snd_hda_codec_write);
2029 EXPORT_SYMBOL(snd_hda_sequence_write);
2030 EXPORT_SYMBOL(snd_hda_get_sub_nodes);
2031 EXPORT_SYMBOL(snd_hda_queue_unsol_event);
2032 EXPORT_SYMBOL(snd_hda_bus_new);
2033 EXPORT_SYMBOL(snd_hda_codec_new);
2034 EXPORT_SYMBOL(snd_hda_codec_setup_stream);
2035 EXPORT_SYMBOL(snd_hda_calc_stream_format);
2036 EXPORT_SYMBOL(snd_hda_build_pcms);
2037 EXPORT_SYMBOL(snd_hda_build_controls);
2038 #ifdef CONFIG_PM
2039 EXPORT_SYMBOL(snd_hda_suspend);
2040 EXPORT_SYMBOL(snd_hda_resume);
2041 #endif
2042
2043 /*
2044  *  INIT part
2045  */
2046
2047 static int __init alsa_hda_init(void)
2048 {
2049         return 0;
2050 }
2051
2052 static void __exit alsa_hda_exit(void)
2053 {
2054 }
2055
2056 module_init(alsa_hda_init)
2057 module_exit(alsa_hda_exit)