Merge branch 'x86/core' into x86/headers
[linux-2.6] / arch / x86 / mm / init_32.c
1 /*
2  *
3  *  Copyright (C) 1995  Linus Torvalds
4  *
5  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6  */
7
8 #include <linux/module.h>
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/hugetlb.h>
19 #include <linux/swap.h>
20 #include <linux/smp.h>
21 #include <linux/init.h>
22 #include <linux/highmem.h>
23 #include <linux/pagemap.h>
24 #include <linux/pci.h>
25 #include <linux/pfn.h>
26 #include <linux/poison.h>
27 #include <linux/bootmem.h>
28 #include <linux/slab.h>
29 #include <linux/proc_fs.h>
30 #include <linux/memory_hotplug.h>
31 #include <linux/initrd.h>
32 #include <linux/cpumask.h>
33
34 #include <asm/asm.h>
35 #include <asm/bios_ebda.h>
36 #include <asm/processor.h>
37 #include <asm/system.h>
38 #include <asm/uaccess.h>
39 #include <asm/pgtable.h>
40 #include <asm/dma.h>
41 #include <asm/fixmap.h>
42 #include <asm/e820.h>
43 #include <asm/apic.h>
44 #include <asm/bugs.h>
45 #include <asm/tlb.h>
46 #include <asm/tlbflush.h>
47 #include <asm/pgalloc.h>
48 #include <asm/sections.h>
49 #include <asm/paravirt.h>
50 #include <asm/setup.h>
51 #include <asm/cacheflush.h>
52
53 unsigned int __VMALLOC_RESERVE = 128 << 20;
54
55 unsigned long max_low_pfn_mapped;
56 unsigned long max_pfn_mapped;
57
58 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
59 unsigned long highstart_pfn, highend_pfn;
60
61 static noinline int do_test_wp_bit(void);
62
63
64 static unsigned long __initdata table_start;
65 static unsigned long __meminitdata table_end;
66 static unsigned long __meminitdata table_top;
67
68 static int __initdata after_init_bootmem;
69
70 static __init void *alloc_low_page(void)
71 {
72         unsigned long pfn = table_end++;
73         void *adr;
74
75         if (pfn >= table_top)
76                 panic("alloc_low_page: ran out of memory");
77
78         adr = __va(pfn * PAGE_SIZE);
79         memset(adr, 0, PAGE_SIZE);
80         return adr;
81 }
82
83 /*
84  * Creates a middle page table and puts a pointer to it in the
85  * given global directory entry. This only returns the gd entry
86  * in non-PAE compilation mode, since the middle layer is folded.
87  */
88 static pmd_t * __init one_md_table_init(pgd_t *pgd)
89 {
90         pud_t *pud;
91         pmd_t *pmd_table;
92
93 #ifdef CONFIG_X86_PAE
94         if (!(pgd_val(*pgd) & _PAGE_PRESENT)) {
95                 if (after_init_bootmem)
96                         pmd_table = (pmd_t *)alloc_bootmem_low_pages(PAGE_SIZE);
97                 else
98                         pmd_table = (pmd_t *)alloc_low_page();
99                 paravirt_alloc_pmd(&init_mm, __pa(pmd_table) >> PAGE_SHIFT);
100                 set_pgd(pgd, __pgd(__pa(pmd_table) | _PAGE_PRESENT));
101                 pud = pud_offset(pgd, 0);
102                 BUG_ON(pmd_table != pmd_offset(pud, 0));
103
104                 return pmd_table;
105         }
106 #endif
107         pud = pud_offset(pgd, 0);
108         pmd_table = pmd_offset(pud, 0);
109
110         return pmd_table;
111 }
112
113 /*
114  * Create a page table and place a pointer to it in a middle page
115  * directory entry:
116  */
117 static pte_t * __init one_page_table_init(pmd_t *pmd)
118 {
119         if (!(pmd_val(*pmd) & _PAGE_PRESENT)) {
120                 pte_t *page_table = NULL;
121
122                 if (after_init_bootmem) {
123 #ifdef CONFIG_DEBUG_PAGEALLOC
124                         page_table = (pte_t *) alloc_bootmem_pages(PAGE_SIZE);
125 #endif
126                         if (!page_table)
127                                 page_table =
128                                 (pte_t *)alloc_bootmem_low_pages(PAGE_SIZE);
129                 } else
130                         page_table = (pte_t *)alloc_low_page();
131
132                 paravirt_alloc_pte(&init_mm, __pa(page_table) >> PAGE_SHIFT);
133                 set_pmd(pmd, __pmd(__pa(page_table) | _PAGE_TABLE));
134                 BUG_ON(page_table != pte_offset_kernel(pmd, 0));
135         }
136
137         return pte_offset_kernel(pmd, 0);
138 }
139
140 static pte_t *__init page_table_kmap_check(pte_t *pte, pmd_t *pmd,
141                                            unsigned long vaddr, pte_t *lastpte)
142 {
143 #ifdef CONFIG_HIGHMEM
144         /*
145          * Something (early fixmap) may already have put a pte
146          * page here, which causes the page table allocation
147          * to become nonlinear. Attempt to fix it, and if it
148          * is still nonlinear then we have to bug.
149          */
150         int pmd_idx_kmap_begin = fix_to_virt(FIX_KMAP_END) >> PMD_SHIFT;
151         int pmd_idx_kmap_end = fix_to_virt(FIX_KMAP_BEGIN) >> PMD_SHIFT;
152
153         if (pmd_idx_kmap_begin != pmd_idx_kmap_end
154             && (vaddr >> PMD_SHIFT) >= pmd_idx_kmap_begin
155             && (vaddr >> PMD_SHIFT) <= pmd_idx_kmap_end
156             && ((__pa(pte) >> PAGE_SHIFT) < table_start
157                 || (__pa(pte) >> PAGE_SHIFT) >= table_end)) {
158                 pte_t *newpte;
159                 int i;
160
161                 BUG_ON(after_init_bootmem);
162                 newpte = alloc_low_page();
163                 for (i = 0; i < PTRS_PER_PTE; i++)
164                         set_pte(newpte + i, pte[i]);
165
166                 paravirt_alloc_pte(&init_mm, __pa(newpte) >> PAGE_SHIFT);
167                 set_pmd(pmd, __pmd(__pa(newpte)|_PAGE_TABLE));
168                 BUG_ON(newpte != pte_offset_kernel(pmd, 0));
169                 __flush_tlb_all();
170
171                 paravirt_release_pte(__pa(pte) >> PAGE_SHIFT);
172                 pte = newpte;
173         }
174         BUG_ON(vaddr < fix_to_virt(FIX_KMAP_BEGIN - 1)
175                && vaddr > fix_to_virt(FIX_KMAP_END)
176                && lastpte && lastpte + PTRS_PER_PTE != pte);
177 #endif
178         return pte;
179 }
180
181 /*
182  * This function initializes a certain range of kernel virtual memory
183  * with new bootmem page tables, everywhere page tables are missing in
184  * the given range.
185  *
186  * NOTE: The pagetables are allocated contiguous on the physical space
187  * so we can cache the place of the first one and move around without
188  * checking the pgd every time.
189  */
190 static void __init
191 page_table_range_init(unsigned long start, unsigned long end, pgd_t *pgd_base)
192 {
193         int pgd_idx, pmd_idx;
194         unsigned long vaddr;
195         pgd_t *pgd;
196         pmd_t *pmd;
197         pte_t *pte = NULL;
198
199         vaddr = start;
200         pgd_idx = pgd_index(vaddr);
201         pmd_idx = pmd_index(vaddr);
202         pgd = pgd_base + pgd_idx;
203
204         for ( ; (pgd_idx < PTRS_PER_PGD) && (vaddr != end); pgd++, pgd_idx++) {
205                 pmd = one_md_table_init(pgd);
206                 pmd = pmd + pmd_index(vaddr);
207                 for (; (pmd_idx < PTRS_PER_PMD) && (vaddr != end);
208                                                         pmd++, pmd_idx++) {
209                         pte = page_table_kmap_check(one_page_table_init(pmd),
210                                                     pmd, vaddr, pte);
211
212                         vaddr += PMD_SIZE;
213                 }
214                 pmd_idx = 0;
215         }
216 }
217
218 static inline int is_kernel_text(unsigned long addr)
219 {
220         if (addr >= PAGE_OFFSET && addr <= (unsigned long)__init_end)
221                 return 1;
222         return 0;
223 }
224
225 /*
226  * This maps the physical memory to kernel virtual address space, a total
227  * of max_low_pfn pages, by creating page tables starting from address
228  * PAGE_OFFSET:
229  */
230 static void __init kernel_physical_mapping_init(pgd_t *pgd_base,
231                                                 unsigned long start_pfn,
232                                                 unsigned long end_pfn,
233                                                 int use_pse)
234 {
235         int pgd_idx, pmd_idx, pte_ofs;
236         unsigned long pfn;
237         pgd_t *pgd;
238         pmd_t *pmd;
239         pte_t *pte;
240         unsigned pages_2m, pages_4k;
241         int mapping_iter;
242
243         /*
244          * First iteration will setup identity mapping using large/small pages
245          * based on use_pse, with other attributes same as set by
246          * the early code in head_32.S
247          *
248          * Second iteration will setup the appropriate attributes (NX, GLOBAL..)
249          * as desired for the kernel identity mapping.
250          *
251          * This two pass mechanism conforms to the TLB app note which says:
252          *
253          *     "Software should not write to a paging-structure entry in a way
254          *      that would change, for any linear address, both the page size
255          *      and either the page frame or attributes."
256          */
257         mapping_iter = 1;
258
259         if (!cpu_has_pse)
260                 use_pse = 0;
261
262 repeat:
263         pages_2m = pages_4k = 0;
264         pfn = start_pfn;
265         pgd_idx = pgd_index((pfn<<PAGE_SHIFT) + PAGE_OFFSET);
266         pgd = pgd_base + pgd_idx;
267         for (; pgd_idx < PTRS_PER_PGD; pgd++, pgd_idx++) {
268                 pmd = one_md_table_init(pgd);
269
270                 if (pfn >= end_pfn)
271                         continue;
272 #ifdef CONFIG_X86_PAE
273                 pmd_idx = pmd_index((pfn<<PAGE_SHIFT) + PAGE_OFFSET);
274                 pmd += pmd_idx;
275 #else
276                 pmd_idx = 0;
277 #endif
278                 for (; pmd_idx < PTRS_PER_PMD && pfn < end_pfn;
279                      pmd++, pmd_idx++) {
280                         unsigned int addr = pfn * PAGE_SIZE + PAGE_OFFSET;
281
282                         /*
283                          * Map with big pages if possible, otherwise
284                          * create normal page tables:
285                          */
286                         if (use_pse) {
287                                 unsigned int addr2;
288                                 pgprot_t prot = PAGE_KERNEL_LARGE;
289                                 /*
290                                  * first pass will use the same initial
291                                  * identity mapping attribute + _PAGE_PSE.
292                                  */
293                                 pgprot_t init_prot =
294                                         __pgprot(PTE_IDENT_ATTR |
295                                                  _PAGE_PSE);
296
297                                 addr2 = (pfn + PTRS_PER_PTE-1) * PAGE_SIZE +
298                                         PAGE_OFFSET + PAGE_SIZE-1;
299
300                                 if (is_kernel_text(addr) ||
301                                     is_kernel_text(addr2))
302                                         prot = PAGE_KERNEL_LARGE_EXEC;
303
304                                 pages_2m++;
305                                 if (mapping_iter == 1)
306                                         set_pmd(pmd, pfn_pmd(pfn, init_prot));
307                                 else
308                                         set_pmd(pmd, pfn_pmd(pfn, prot));
309
310                                 pfn += PTRS_PER_PTE;
311                                 continue;
312                         }
313                         pte = one_page_table_init(pmd);
314
315                         pte_ofs = pte_index((pfn<<PAGE_SHIFT) + PAGE_OFFSET);
316                         pte += pte_ofs;
317                         for (; pte_ofs < PTRS_PER_PTE && pfn < end_pfn;
318                              pte++, pfn++, pte_ofs++, addr += PAGE_SIZE) {
319                                 pgprot_t prot = PAGE_KERNEL;
320                                 /*
321                                  * first pass will use the same initial
322                                  * identity mapping attribute.
323                                  */
324                                 pgprot_t init_prot = __pgprot(PTE_IDENT_ATTR);
325
326                                 if (is_kernel_text(addr))
327                                         prot = PAGE_KERNEL_EXEC;
328
329                                 pages_4k++;
330                                 if (mapping_iter == 1)
331                                         set_pte(pte, pfn_pte(pfn, init_prot));
332                                 else
333                                         set_pte(pte, pfn_pte(pfn, prot));
334                         }
335                 }
336         }
337         if (mapping_iter == 1) {
338                 /*
339                  * update direct mapping page count only in the first
340                  * iteration.
341                  */
342                 update_page_count(PG_LEVEL_2M, pages_2m);
343                 update_page_count(PG_LEVEL_4K, pages_4k);
344
345                 /*
346                  * local global flush tlb, which will flush the previous
347                  * mappings present in both small and large page TLB's.
348                  */
349                 __flush_tlb_all();
350
351                 /*
352                  * Second iteration will set the actual desired PTE attributes.
353                  */
354                 mapping_iter = 2;
355                 goto repeat;
356         }
357 }
358
359 /*
360  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
361  * is valid. The argument is a physical page number.
362  *
363  *
364  * On x86, access has to be given to the first megabyte of ram because that area
365  * contains bios code and data regions used by X and dosemu and similar apps.
366  * Access has to be given to non-kernel-ram areas as well, these contain the PCI
367  * mmio resources as well as potential bios/acpi data regions.
368  */
369 int devmem_is_allowed(unsigned long pagenr)
370 {
371         if (pagenr <= 256)
372                 return 1;
373         if (iomem_is_exclusive(pagenr << PAGE_SHIFT))
374                 return 0;
375         if (!page_is_ram(pagenr))
376                 return 1;
377         return 0;
378 }
379
380 pte_t *kmap_pte;
381 pgprot_t kmap_prot;
382
383 static inline pte_t *kmap_get_fixmap_pte(unsigned long vaddr)
384 {
385         return pte_offset_kernel(pmd_offset(pud_offset(pgd_offset_k(vaddr),
386                         vaddr), vaddr), vaddr);
387 }
388
389 static void __init kmap_init(void)
390 {
391         unsigned long kmap_vstart;
392
393         /*
394          * Cache the first kmap pte:
395          */
396         kmap_vstart = __fix_to_virt(FIX_KMAP_BEGIN);
397         kmap_pte = kmap_get_fixmap_pte(kmap_vstart);
398
399         kmap_prot = PAGE_KERNEL;
400 }
401
402 #ifdef CONFIG_HIGHMEM
403 static void __init permanent_kmaps_init(pgd_t *pgd_base)
404 {
405         unsigned long vaddr;
406         pgd_t *pgd;
407         pud_t *pud;
408         pmd_t *pmd;
409         pte_t *pte;
410
411         vaddr = PKMAP_BASE;
412         page_table_range_init(vaddr, vaddr + PAGE_SIZE*LAST_PKMAP, pgd_base);
413
414         pgd = swapper_pg_dir + pgd_index(vaddr);
415         pud = pud_offset(pgd, vaddr);
416         pmd = pmd_offset(pud, vaddr);
417         pte = pte_offset_kernel(pmd, vaddr);
418         pkmap_page_table = pte;
419 }
420
421 static void __init add_one_highpage_init(struct page *page, int pfn)
422 {
423         ClearPageReserved(page);
424         init_page_count(page);
425         __free_page(page);
426         totalhigh_pages++;
427 }
428
429 struct add_highpages_data {
430         unsigned long start_pfn;
431         unsigned long end_pfn;
432 };
433
434 static int __init add_highpages_work_fn(unsigned long start_pfn,
435                                          unsigned long end_pfn, void *datax)
436 {
437         int node_pfn;
438         struct page *page;
439         unsigned long final_start_pfn, final_end_pfn;
440         struct add_highpages_data *data;
441
442         data = (struct add_highpages_data *)datax;
443
444         final_start_pfn = max(start_pfn, data->start_pfn);
445         final_end_pfn = min(end_pfn, data->end_pfn);
446         if (final_start_pfn >= final_end_pfn)
447                 return 0;
448
449         for (node_pfn = final_start_pfn; node_pfn < final_end_pfn;
450              node_pfn++) {
451                 if (!pfn_valid(node_pfn))
452                         continue;
453                 page = pfn_to_page(node_pfn);
454                 add_one_highpage_init(page, node_pfn);
455         }
456
457         return 0;
458
459 }
460
461 void __init add_highpages_with_active_regions(int nid, unsigned long start_pfn,
462                                               unsigned long end_pfn)
463 {
464         struct add_highpages_data data;
465
466         data.start_pfn = start_pfn;
467         data.end_pfn = end_pfn;
468
469         work_with_active_regions(nid, add_highpages_work_fn, &data);
470 }
471
472 #ifndef CONFIG_NUMA
473 static void __init set_highmem_pages_init(void)
474 {
475         add_highpages_with_active_regions(0, highstart_pfn, highend_pfn);
476
477         totalram_pages += totalhigh_pages;
478 }
479 #endif /* !CONFIG_NUMA */
480
481 #else
482 static inline void permanent_kmaps_init(pgd_t *pgd_base)
483 {
484 }
485 static inline void set_highmem_pages_init(void)
486 {
487 }
488 #endif /* CONFIG_HIGHMEM */
489
490 void __init native_pagetable_setup_start(pgd_t *base)
491 {
492         unsigned long pfn, va;
493         pgd_t *pgd;
494         pud_t *pud;
495         pmd_t *pmd;
496         pte_t *pte;
497
498         /*
499          * Remove any mappings which extend past the end of physical
500          * memory from the boot time page table:
501          */
502         for (pfn = max_low_pfn + 1; pfn < 1<<(32-PAGE_SHIFT); pfn++) {
503                 va = PAGE_OFFSET + (pfn<<PAGE_SHIFT);
504                 pgd = base + pgd_index(va);
505                 if (!pgd_present(*pgd))
506                         break;
507
508                 pud = pud_offset(pgd, va);
509                 pmd = pmd_offset(pud, va);
510                 if (!pmd_present(*pmd))
511                         break;
512
513                 pte = pte_offset_kernel(pmd, va);
514                 if (!pte_present(*pte))
515                         break;
516
517                 pte_clear(NULL, va, pte);
518         }
519         paravirt_alloc_pmd(&init_mm, __pa(base) >> PAGE_SHIFT);
520 }
521
522 void __init native_pagetable_setup_done(pgd_t *base)
523 {
524 }
525
526 /*
527  * Build a proper pagetable for the kernel mappings.  Up until this
528  * point, we've been running on some set of pagetables constructed by
529  * the boot process.
530  *
531  * If we're booting on native hardware, this will be a pagetable
532  * constructed in arch/x86/kernel/head_32.S.  The root of the
533  * pagetable will be swapper_pg_dir.
534  *
535  * If we're booting paravirtualized under a hypervisor, then there are
536  * more options: we may already be running PAE, and the pagetable may
537  * or may not be based in swapper_pg_dir.  In any case,
538  * paravirt_pagetable_setup_start() will set up swapper_pg_dir
539  * appropriately for the rest of the initialization to work.
540  *
541  * In general, pagetable_init() assumes that the pagetable may already
542  * be partially populated, and so it avoids stomping on any existing
543  * mappings.
544  */
545 static void __init early_ioremap_page_table_range_init(pgd_t *pgd_base)
546 {
547         unsigned long vaddr, end;
548
549         /*
550          * Fixed mappings, only the page table structure has to be
551          * created - mappings will be set by set_fixmap():
552          */
553         vaddr = __fix_to_virt(__end_of_fixed_addresses - 1) & PMD_MASK;
554         end = (FIXADDR_TOP + PMD_SIZE - 1) & PMD_MASK;
555         page_table_range_init(vaddr, end, pgd_base);
556         early_ioremap_reset();
557 }
558
559 static void __init pagetable_init(void)
560 {
561         pgd_t *pgd_base = swapper_pg_dir;
562
563         permanent_kmaps_init(pgd_base);
564 }
565
566 #ifdef CONFIG_ACPI_SLEEP
567 /*
568  * ACPI suspend needs this for resume, because things like the intel-agp
569  * driver might have split up a kernel 4MB mapping.
570  */
571 char swsusp_pg_dir[PAGE_SIZE]
572         __attribute__ ((aligned(PAGE_SIZE)));
573
574 static inline void save_pg_dir(void)
575 {
576         memcpy(swsusp_pg_dir, swapper_pg_dir, PAGE_SIZE);
577 }
578 #else /* !CONFIG_ACPI_SLEEP */
579 static inline void save_pg_dir(void)
580 {
581 }
582 #endif /* !CONFIG_ACPI_SLEEP */
583
584 void zap_low_mappings(void)
585 {
586         int i;
587
588         /*
589          * Zap initial low-memory mappings.
590          *
591          * Note that "pgd_clear()" doesn't do it for
592          * us, because pgd_clear() is a no-op on i386.
593          */
594         for (i = 0; i < KERNEL_PGD_BOUNDARY; i++) {
595 #ifdef CONFIG_X86_PAE
596                 set_pgd(swapper_pg_dir+i, __pgd(1 + __pa(empty_zero_page)));
597 #else
598                 set_pgd(swapper_pg_dir+i, __pgd(0));
599 #endif
600         }
601         flush_tlb_all();
602 }
603
604 int nx_enabled;
605
606 pteval_t __supported_pte_mask __read_mostly = ~(_PAGE_NX | _PAGE_GLOBAL | _PAGE_IOMAP);
607 EXPORT_SYMBOL_GPL(__supported_pte_mask);
608
609 #ifdef CONFIG_X86_PAE
610
611 static int disable_nx __initdata;
612
613 /*
614  * noexec = on|off
615  *
616  * Control non executable mappings.
617  *
618  * on      Enable
619  * off     Disable
620  */
621 static int __init noexec_setup(char *str)
622 {
623         if (!str || !strcmp(str, "on")) {
624                 if (cpu_has_nx) {
625                         __supported_pte_mask |= _PAGE_NX;
626                         disable_nx = 0;
627                 }
628         } else {
629                 if (!strcmp(str, "off")) {
630                         disable_nx = 1;
631                         __supported_pte_mask &= ~_PAGE_NX;
632                 } else {
633                         return -EINVAL;
634                 }
635         }
636
637         return 0;
638 }
639 early_param("noexec", noexec_setup);
640
641 static void __init set_nx(void)
642 {
643         unsigned int v[4], l, h;
644
645         if (cpu_has_pae && (cpuid_eax(0x80000000) > 0x80000001)) {
646                 cpuid(0x80000001, &v[0], &v[1], &v[2], &v[3]);
647
648                 if ((v[3] & (1 << 20)) && !disable_nx) {
649                         rdmsr(MSR_EFER, l, h);
650                         l |= EFER_NX;
651                         wrmsr(MSR_EFER, l, h);
652                         nx_enabled = 1;
653                         __supported_pte_mask |= _PAGE_NX;
654                 }
655         }
656 }
657 #endif
658
659 /* user-defined highmem size */
660 static unsigned int highmem_pages = -1;
661
662 /*
663  * highmem=size forces highmem to be exactly 'size' bytes.
664  * This works even on boxes that have no highmem otherwise.
665  * This also works to reduce highmem size on bigger boxes.
666  */
667 static int __init parse_highmem(char *arg)
668 {
669         if (!arg)
670                 return -EINVAL;
671
672         highmem_pages = memparse(arg, &arg) >> PAGE_SHIFT;
673         return 0;
674 }
675 early_param("highmem", parse_highmem);
676
677 #define MSG_HIGHMEM_TOO_BIG \
678         "highmem size (%luMB) is bigger than pages available (%luMB)!\n"
679
680 #define MSG_LOWMEM_TOO_SMALL \
681         "highmem size (%luMB) results in <64MB lowmem, ignoring it!\n"
682 /*
683  * All of RAM fits into lowmem - but if user wants highmem
684  * artificially via the highmem=x boot parameter then create
685  * it:
686  */
687 void __init lowmem_pfn_init(void)
688 {
689         /* max_low_pfn is 0, we already have early_res support */
690         max_low_pfn = max_pfn;
691
692         if (highmem_pages == -1)
693                 highmem_pages = 0;
694 #ifdef CONFIG_HIGHMEM
695         if (highmem_pages >= max_pfn) {
696                 printk(KERN_ERR MSG_HIGHMEM_TOO_BIG,
697                         pages_to_mb(highmem_pages), pages_to_mb(max_pfn));
698                 highmem_pages = 0;
699         }
700         if (highmem_pages) {
701                 if (max_low_pfn - highmem_pages < 64*1024*1024/PAGE_SIZE) {
702                         printk(KERN_ERR MSG_LOWMEM_TOO_SMALL,
703                                 pages_to_mb(highmem_pages));
704                         highmem_pages = 0;
705                 }
706                 max_low_pfn -= highmem_pages;
707         }
708 #else
709         if (highmem_pages)
710                 printk(KERN_ERR "ignoring highmem size on non-highmem kernel!\n");
711 #endif
712 }
713
714 #define MSG_HIGHMEM_TOO_SMALL \
715         "only %luMB highmem pages available, ignoring highmem size of %luMB!\n"
716
717 #define MSG_HIGHMEM_TRIMMED \
718         "Warning: only 4GB will be used. Use a HIGHMEM64G enabled kernel!\n"
719 /*
720  * We have more RAM than fits into lowmem - we try to put it into
721  * highmem, also taking the highmem=x boot parameter into account:
722  */
723 void __init highmem_pfn_init(void)
724 {
725         max_low_pfn = MAXMEM_PFN;
726
727         if (highmem_pages == -1)
728                 highmem_pages = max_pfn - MAXMEM_PFN;
729
730         if (highmem_pages + MAXMEM_PFN < max_pfn)
731                 max_pfn = MAXMEM_PFN + highmem_pages;
732
733         if (highmem_pages + MAXMEM_PFN > max_pfn) {
734                 printk(KERN_WARNING MSG_HIGHMEM_TOO_SMALL,
735                         pages_to_mb(max_pfn - MAXMEM_PFN),
736                         pages_to_mb(highmem_pages));
737                 highmem_pages = 0;
738         }
739 #ifndef CONFIG_HIGHMEM
740         /* Maximum memory usable is what is directly addressable */
741         printk(KERN_WARNING "Warning only %ldMB will be used.\n", MAXMEM>>20);
742         if (max_pfn > MAX_NONPAE_PFN)
743                 printk(KERN_WARNING "Use a HIGHMEM64G enabled kernel.\n");
744         else
745                 printk(KERN_WARNING "Use a HIGHMEM enabled kernel.\n");
746         max_pfn = MAXMEM_PFN;
747 #else /* !CONFIG_HIGHMEM */
748 #ifndef CONFIG_HIGHMEM64G
749         if (max_pfn > MAX_NONPAE_PFN) {
750                 max_pfn = MAX_NONPAE_PFN;
751                 printk(KERN_WARNING MSG_HIGHMEM_TRIMMED);
752         }
753 #endif /* !CONFIG_HIGHMEM64G */
754 #endif /* !CONFIG_HIGHMEM */
755 }
756
757 /*
758  * Determine low and high memory ranges:
759  */
760 void __init find_low_pfn_range(void)
761 {
762         /* it could update max_pfn */
763
764         if (max_pfn <= MAXMEM_PFN)
765                 lowmem_pfn_init();
766         else
767                 highmem_pfn_init();
768 }
769
770 #ifndef CONFIG_NEED_MULTIPLE_NODES
771 void __init initmem_init(unsigned long start_pfn,
772                                   unsigned long end_pfn)
773 {
774 #ifdef CONFIG_HIGHMEM
775         highstart_pfn = highend_pfn = max_pfn;
776         if (max_pfn > max_low_pfn)
777                 highstart_pfn = max_low_pfn;
778         memory_present(0, 0, highend_pfn);
779         e820_register_active_regions(0, 0, highend_pfn);
780         printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",
781                 pages_to_mb(highend_pfn - highstart_pfn));
782         num_physpages = highend_pfn;
783         high_memory = (void *) __va(highstart_pfn * PAGE_SIZE - 1) + 1;
784 #else
785         memory_present(0, 0, max_low_pfn);
786         e820_register_active_regions(0, 0, max_low_pfn);
787         num_physpages = max_low_pfn;
788         high_memory = (void *) __va(max_low_pfn * PAGE_SIZE - 1) + 1;
789 #endif
790 #ifdef CONFIG_FLATMEM
791         max_mapnr = num_physpages;
792 #endif
793         printk(KERN_NOTICE "%ldMB LOWMEM available.\n",
794                         pages_to_mb(max_low_pfn));
795
796         setup_bootmem_allocator();
797 }
798 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
799
800 static void __init zone_sizes_init(void)
801 {
802         unsigned long max_zone_pfns[MAX_NR_ZONES];
803         memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
804         max_zone_pfns[ZONE_DMA] =
805                 virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT;
806         max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
807 #ifdef CONFIG_HIGHMEM
808         max_zone_pfns[ZONE_HIGHMEM] = highend_pfn;
809 #endif
810
811         free_area_init_nodes(max_zone_pfns);
812 }
813
814 void __init setup_bootmem_allocator(void)
815 {
816         int i;
817         unsigned long bootmap_size, bootmap;
818         /*
819          * Initialize the boot-time allocator (with low memory only):
820          */
821         bootmap_size = bootmem_bootmap_pages(max_low_pfn)<<PAGE_SHIFT;
822         bootmap = find_e820_area(min_low_pfn<<PAGE_SHIFT,
823                                  max_pfn_mapped<<PAGE_SHIFT, bootmap_size,
824                                  PAGE_SIZE);
825         if (bootmap == -1L)
826                 panic("Cannot find bootmem map of size %ld\n", bootmap_size);
827         reserve_early(bootmap, bootmap + bootmap_size, "BOOTMAP");
828
829         /* don't touch min_low_pfn */
830         bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap >> PAGE_SHIFT,
831                                          min_low_pfn, max_low_pfn);
832         printk(KERN_INFO "  mapped low ram: 0 - %08lx\n",
833                  max_pfn_mapped<<PAGE_SHIFT);
834         printk(KERN_INFO "  low ram: %08lx - %08lx\n",
835                  min_low_pfn<<PAGE_SHIFT, max_low_pfn<<PAGE_SHIFT);
836         printk(KERN_INFO "  bootmap %08lx - %08lx\n",
837                  bootmap, bootmap + bootmap_size);
838         for_each_online_node(i)
839                 free_bootmem_with_active_regions(i, max_low_pfn);
840         early_res_to_bootmem(0, max_low_pfn<<PAGE_SHIFT);
841
842         after_init_bootmem = 1;
843 }
844
845 static void __init find_early_table_space(unsigned long end, int use_pse)
846 {
847         unsigned long puds, pmds, ptes, tables, start;
848
849         puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
850         tables = PAGE_ALIGN(puds * sizeof(pud_t));
851
852         pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
853         tables += PAGE_ALIGN(pmds * sizeof(pmd_t));
854
855         if (use_pse) {
856                 unsigned long extra;
857
858                 extra = end - ((end>>PMD_SHIFT) << PMD_SHIFT);
859                 extra += PMD_SIZE;
860                 ptes = (extra + PAGE_SIZE - 1) >> PAGE_SHIFT;
861         } else
862                 ptes = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
863
864         tables += PAGE_ALIGN(ptes * sizeof(pte_t));
865
866         /* for fixmap */
867         tables += PAGE_ALIGN(__end_of_fixed_addresses * sizeof(pte_t));
868
869         /*
870          * RED-PEN putting page tables only on node 0 could
871          * cause a hotspot and fill up ZONE_DMA. The page tables
872          * need roughly 0.5KB per GB.
873          */
874         start = 0x7000;
875         table_start = find_e820_area(start, max_pfn_mapped<<PAGE_SHIFT,
876                                         tables, PAGE_SIZE);
877         if (table_start == -1UL)
878                 panic("Cannot find space for the kernel page tables");
879
880         table_start >>= PAGE_SHIFT;
881         table_end = table_start;
882         table_top = table_start + (tables>>PAGE_SHIFT);
883
884         printk(KERN_DEBUG "kernel direct mapping tables up to %lx @ %lx-%lx\n",
885                 end, table_start << PAGE_SHIFT,
886                 (table_start << PAGE_SHIFT) + tables);
887 }
888
889 unsigned long __init_refok init_memory_mapping(unsigned long start,
890                                                 unsigned long end)
891 {
892         pgd_t *pgd_base = swapper_pg_dir;
893         unsigned long start_pfn, end_pfn;
894         unsigned long big_page_start;
895 #ifdef CONFIG_DEBUG_PAGEALLOC
896         /*
897          * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
898          * This will simplify cpa(), which otherwise needs to support splitting
899          * large pages into small in interrupt context, etc.
900          */
901         int use_pse = 0;
902 #else
903         int use_pse = cpu_has_pse;
904 #endif
905
906         /*
907          * Find space for the kernel direct mapping tables.
908          */
909         if (!after_init_bootmem)
910                 find_early_table_space(end, use_pse);
911
912 #ifdef CONFIG_X86_PAE
913         set_nx();
914         if (nx_enabled)
915                 printk(KERN_INFO "NX (Execute Disable) protection: active\n");
916 #endif
917
918         /* Enable PSE if available */
919         if (cpu_has_pse)
920                 set_in_cr4(X86_CR4_PSE);
921
922         /* Enable PGE if available */
923         if (cpu_has_pge) {
924                 set_in_cr4(X86_CR4_PGE);
925                 __supported_pte_mask |= _PAGE_GLOBAL;
926         }
927
928         /*
929          * Don't use a large page for the first 2/4MB of memory
930          * because there are often fixed size MTRRs in there
931          * and overlapping MTRRs into large pages can cause
932          * slowdowns.
933          */
934         big_page_start = PMD_SIZE;
935
936         if (start < big_page_start) {
937                 start_pfn = start >> PAGE_SHIFT;
938                 end_pfn = min(big_page_start>>PAGE_SHIFT, end>>PAGE_SHIFT);
939         } else {
940                 /* head is not big page alignment ? */
941                 start_pfn = start >> PAGE_SHIFT;
942                 end_pfn = ((start + (PMD_SIZE - 1))>>PMD_SHIFT)
943                                  << (PMD_SHIFT - PAGE_SHIFT);
944         }
945         if (start_pfn < end_pfn)
946                 kernel_physical_mapping_init(pgd_base, start_pfn, end_pfn, 0);
947
948         /* big page range */
949         start_pfn = ((start + (PMD_SIZE - 1))>>PMD_SHIFT)
950                          << (PMD_SHIFT - PAGE_SHIFT);
951         if (start_pfn < (big_page_start >> PAGE_SHIFT))
952                 start_pfn =  big_page_start >> PAGE_SHIFT;
953         end_pfn = (end>>PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
954         if (start_pfn < end_pfn)
955                 kernel_physical_mapping_init(pgd_base, start_pfn, end_pfn,
956                                              use_pse);
957
958         /* tail is not big page alignment ? */
959         start_pfn = end_pfn;
960         if (start_pfn > (big_page_start>>PAGE_SHIFT)) {
961                 end_pfn = end >> PAGE_SHIFT;
962                 if (start_pfn < end_pfn)
963                         kernel_physical_mapping_init(pgd_base, start_pfn,
964                                                          end_pfn, 0);
965         }
966
967         early_ioremap_page_table_range_init(pgd_base);
968
969         load_cr3(swapper_pg_dir);
970
971         __flush_tlb_all();
972
973         if (!after_init_bootmem)
974                 reserve_early(table_start << PAGE_SHIFT,
975                                  table_end << PAGE_SHIFT, "PGTABLE");
976
977         if (!after_init_bootmem)
978                 early_memtest(start, end);
979
980         return end >> PAGE_SHIFT;
981 }
982
983
984 /*
985  * paging_init() sets up the page tables - note that the first 8MB are
986  * already mapped by head.S.
987  *
988  * This routines also unmaps the page at virtual kernel address 0, so
989  * that we can trap those pesky NULL-reference errors in the kernel.
990  */
991 void __init paging_init(void)
992 {
993         pagetable_init();
994
995         __flush_tlb_all();
996
997         kmap_init();
998
999         /*
1000          * NOTE: at this point the bootmem allocator is fully available.
1001          */
1002         sparse_init();
1003         zone_sizes_init();
1004 }
1005
1006 /*
1007  * Test if the WP bit works in supervisor mode. It isn't supported on 386's
1008  * and also on some strange 486's. All 586+'s are OK. This used to involve
1009  * black magic jumps to work around some nasty CPU bugs, but fortunately the
1010  * switch to using exceptions got rid of all that.
1011  */
1012 static void __init test_wp_bit(void)
1013 {
1014         printk(KERN_INFO
1015   "Checking if this processor honours the WP bit even in supervisor mode...");
1016
1017         /* Any page-aligned address will do, the test is non-destructive */
1018         __set_fixmap(FIX_WP_TEST, __pa(&swapper_pg_dir), PAGE_READONLY);
1019         boot_cpu_data.wp_works_ok = do_test_wp_bit();
1020         clear_fixmap(FIX_WP_TEST);
1021
1022         if (!boot_cpu_data.wp_works_ok) {
1023                 printk(KERN_CONT "No.\n");
1024 #ifdef CONFIG_X86_WP_WORKS_OK
1025                 panic(
1026   "This kernel doesn't support CPU's with broken WP. Recompile it for a 386!");
1027 #endif
1028         } else {
1029                 printk(KERN_CONT "Ok.\n");
1030         }
1031 }
1032
1033 static struct kcore_list kcore_mem, kcore_vmalloc;
1034
1035 void __init mem_init(void)
1036 {
1037         int codesize, reservedpages, datasize, initsize;
1038         int tmp;
1039
1040         pci_iommu_alloc();
1041
1042 #ifdef CONFIG_FLATMEM
1043         BUG_ON(!mem_map);
1044 #endif
1045         /* this will put all low memory onto the freelists */
1046         totalram_pages += free_all_bootmem();
1047
1048         reservedpages = 0;
1049         for (tmp = 0; tmp < max_low_pfn; tmp++)
1050                 /*
1051                  * Only count reserved RAM pages:
1052                  */
1053                 if (page_is_ram(tmp) && PageReserved(pfn_to_page(tmp)))
1054                         reservedpages++;
1055
1056         set_highmem_pages_init();
1057
1058         codesize =  (unsigned long) &_etext - (unsigned long) &_text;
1059         datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
1060         initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
1061
1062         kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
1063         kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
1064                    VMALLOC_END-VMALLOC_START);
1065
1066         printk(KERN_INFO "Memory: %luk/%luk available (%dk kernel code, "
1067                         "%dk reserved, %dk data, %dk init, %ldk highmem)\n",
1068                 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
1069                 num_physpages << (PAGE_SHIFT-10),
1070                 codesize >> 10,
1071                 reservedpages << (PAGE_SHIFT-10),
1072                 datasize >> 10,
1073                 initsize >> 10,
1074                 (unsigned long) (totalhigh_pages << (PAGE_SHIFT-10))
1075                );
1076
1077         printk(KERN_INFO "virtual kernel memory layout:\n"
1078                 "    fixmap  : 0x%08lx - 0x%08lx   (%4ld kB)\n"
1079 #ifdef CONFIG_HIGHMEM
1080                 "    pkmap   : 0x%08lx - 0x%08lx   (%4ld kB)\n"
1081 #endif
1082                 "    vmalloc : 0x%08lx - 0x%08lx   (%4ld MB)\n"
1083                 "    lowmem  : 0x%08lx - 0x%08lx   (%4ld MB)\n"
1084                 "      .init : 0x%08lx - 0x%08lx   (%4ld kB)\n"
1085                 "      .data : 0x%08lx - 0x%08lx   (%4ld kB)\n"
1086                 "      .text : 0x%08lx - 0x%08lx   (%4ld kB)\n",
1087                 FIXADDR_START, FIXADDR_TOP,
1088                 (FIXADDR_TOP - FIXADDR_START) >> 10,
1089
1090 #ifdef CONFIG_HIGHMEM
1091                 PKMAP_BASE, PKMAP_BASE+LAST_PKMAP*PAGE_SIZE,
1092                 (LAST_PKMAP*PAGE_SIZE) >> 10,
1093 #endif
1094
1095                 VMALLOC_START, VMALLOC_END,
1096                 (VMALLOC_END - VMALLOC_START) >> 20,
1097
1098                 (unsigned long)__va(0), (unsigned long)high_memory,
1099                 ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
1100
1101                 (unsigned long)&__init_begin, (unsigned long)&__init_end,
1102                 ((unsigned long)&__init_end -
1103                  (unsigned long)&__init_begin) >> 10,
1104
1105                 (unsigned long)&_etext, (unsigned long)&_edata,
1106                 ((unsigned long)&_edata - (unsigned long)&_etext) >> 10,
1107
1108                 (unsigned long)&_text, (unsigned long)&_etext,
1109                 ((unsigned long)&_etext - (unsigned long)&_text) >> 10);
1110
1111         /*
1112          * Check boundaries twice: Some fundamental inconsistencies can
1113          * be detected at build time already.
1114          */
1115 #define __FIXADDR_TOP (-PAGE_SIZE)
1116 #ifdef CONFIG_HIGHMEM
1117         BUILD_BUG_ON(PKMAP_BASE + LAST_PKMAP*PAGE_SIZE  > FIXADDR_START);
1118         BUILD_BUG_ON(VMALLOC_END                        > PKMAP_BASE);
1119 #endif
1120 #define high_memory (-128UL << 20)
1121         BUILD_BUG_ON(VMALLOC_START                      >= VMALLOC_END);
1122 #undef high_memory
1123 #undef __FIXADDR_TOP
1124
1125 #ifdef CONFIG_HIGHMEM
1126         BUG_ON(PKMAP_BASE + LAST_PKMAP*PAGE_SIZE        > FIXADDR_START);
1127         BUG_ON(VMALLOC_END                              > PKMAP_BASE);
1128 #endif
1129         BUG_ON(VMALLOC_START                            >= VMALLOC_END);
1130         BUG_ON((unsigned long)high_memory               > VMALLOC_START);
1131
1132         if (boot_cpu_data.wp_works_ok < 0)
1133                 test_wp_bit();
1134
1135         save_pg_dir();
1136         zap_low_mappings();
1137 }
1138
1139 #ifdef CONFIG_MEMORY_HOTPLUG
1140 int arch_add_memory(int nid, u64 start, u64 size)
1141 {
1142         struct pglist_data *pgdata = NODE_DATA(nid);
1143         struct zone *zone = pgdata->node_zones + ZONE_HIGHMEM;
1144         unsigned long start_pfn = start >> PAGE_SHIFT;
1145         unsigned long nr_pages = size >> PAGE_SHIFT;
1146
1147         return __add_pages(nid, zone, start_pfn, nr_pages);
1148 }
1149 #endif
1150
1151 /*
1152  * This function cannot be __init, since exceptions don't work in that
1153  * section.  Put this after the callers, so that it cannot be inlined.
1154  */
1155 static noinline int do_test_wp_bit(void)
1156 {
1157         char tmp_reg;
1158         int flag;
1159
1160         __asm__ __volatile__(
1161                 "       movb %0, %1     \n"
1162                 "1:     movb %1, %0     \n"
1163                 "       xorl %2, %2     \n"
1164                 "2:                     \n"
1165                 _ASM_EXTABLE(1b,2b)
1166                 :"=m" (*(char *)fix_to_virt(FIX_WP_TEST)),
1167                  "=q" (tmp_reg),
1168                  "=r" (flag)
1169                 :"2" (1)
1170                 :"memory");
1171
1172         return flag;
1173 }
1174
1175 #ifdef CONFIG_DEBUG_RODATA
1176 const int rodata_test_data = 0xC3;
1177 EXPORT_SYMBOL_GPL(rodata_test_data);
1178
1179 void mark_rodata_ro(void)
1180 {
1181         unsigned long start = PFN_ALIGN(_text);
1182         unsigned long size = PFN_ALIGN(_etext) - start;
1183
1184 #ifndef CONFIG_DYNAMIC_FTRACE
1185         /* Dynamic tracing modifies the kernel text section */
1186         set_pages_ro(virt_to_page(start), size >> PAGE_SHIFT);
1187         printk(KERN_INFO "Write protecting the kernel text: %luk\n",
1188                 size >> 10);
1189
1190 #ifdef CONFIG_CPA_DEBUG
1191         printk(KERN_INFO "Testing CPA: Reverting %lx-%lx\n",
1192                 start, start+size);
1193         set_pages_rw(virt_to_page(start), size>>PAGE_SHIFT);
1194
1195         printk(KERN_INFO "Testing CPA: write protecting again\n");
1196         set_pages_ro(virt_to_page(start), size>>PAGE_SHIFT);
1197 #endif
1198 #endif /* CONFIG_DYNAMIC_FTRACE */
1199
1200         start += size;
1201         size = (unsigned long)__end_rodata - start;
1202         set_pages_ro(virt_to_page(start), size >> PAGE_SHIFT);
1203         printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1204                 size >> 10);
1205         rodata_test();
1206
1207 #ifdef CONFIG_CPA_DEBUG
1208         printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, start + size);
1209         set_pages_rw(virt_to_page(start), size >> PAGE_SHIFT);
1210
1211         printk(KERN_INFO "Testing CPA: write protecting again\n");
1212         set_pages_ro(virt_to_page(start), size >> PAGE_SHIFT);
1213 #endif
1214 }
1215 #endif
1216
1217 void free_init_pages(char *what, unsigned long begin, unsigned long end)
1218 {
1219 #ifdef CONFIG_DEBUG_PAGEALLOC
1220         /*
1221          * If debugging page accesses then do not free this memory but
1222          * mark them not present - any buggy init-section access will
1223          * create a kernel page fault:
1224          */
1225         printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n",
1226                 begin, PAGE_ALIGN(end));
1227         set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
1228 #else
1229         unsigned long addr;
1230
1231         /*
1232          * We just marked the kernel text read only above, now that
1233          * we are going to free part of that, we need to make that
1234          * writeable first.
1235          */
1236         set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
1237
1238         for (addr = begin; addr < end; addr += PAGE_SIZE) {
1239                 ClearPageReserved(virt_to_page(addr));
1240                 init_page_count(virt_to_page(addr));
1241                 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
1242                 free_page(addr);
1243                 totalram_pages++;
1244         }
1245         printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
1246 #endif
1247 }
1248
1249 void free_initmem(void)
1250 {
1251         free_init_pages("unused kernel memory",
1252                         (unsigned long)(&__init_begin),
1253                         (unsigned long)(&__init_end));
1254 }
1255
1256 #ifdef CONFIG_BLK_DEV_INITRD
1257 void free_initrd_mem(unsigned long start, unsigned long end)
1258 {
1259         free_init_pages("initrd memory", start, end);
1260 }
1261 #endif
1262
1263 int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
1264                                    int flags)
1265 {
1266         return reserve_bootmem(phys, len, flags);
1267 }