Merge master.kernel.org:/home/rmk/linux-2.6-arm
[linux-2.6] / arch / sparc64 / kernel / time.c
1 /* $Id: time.c,v 1.42 2002/01/23 14:33:55 davem Exp $
2  * time.c: UltraSparc timer and TOD clock support.
3  *
4  * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
5  * Copyright (C) 1998 Eddie C. Dost   (ecd@skynet.be)
6  *
7  * Based largely on code which is:
8  *
9  * Copyright (C) 1996 Thomas K. Dyas (tdyas@eden.rutgers.edu)
10  */
11
12 #include <linux/errno.h>
13 #include <linux/module.h>
14 #include <linux/sched.h>
15 #include <linux/kernel.h>
16 #include <linux/param.h>
17 #include <linux/string.h>
18 #include <linux/mm.h>
19 #include <linux/interrupt.h>
20 #include <linux/time.h>
21 #include <linux/timex.h>
22 #include <linux/init.h>
23 #include <linux/ioport.h>
24 #include <linux/mc146818rtc.h>
25 #include <linux/delay.h>
26 #include <linux/profile.h>
27 #include <linux/bcd.h>
28 #include <linux/jiffies.h>
29 #include <linux/cpufreq.h>
30 #include <linux/percpu.h>
31 #include <linux/profile.h>
32 #include <linux/miscdevice.h>
33 #include <linux/rtc.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/clockchips.h>
36 #include <linux/clocksource.h>
37
38 #include <asm/oplib.h>
39 #include <asm/mostek.h>
40 #include <asm/timer.h>
41 #include <asm/irq.h>
42 #include <asm/io.h>
43 #include <asm/prom.h>
44 #include <asm/of_device.h>
45 #include <asm/starfire.h>
46 #include <asm/smp.h>
47 #include <asm/sections.h>
48 #include <asm/cpudata.h>
49 #include <asm/uaccess.h>
50 #include <asm/prom.h>
51 #include <asm/irq_regs.h>
52
53 DEFINE_SPINLOCK(mostek_lock);
54 DEFINE_SPINLOCK(rtc_lock);
55 void __iomem *mstk48t02_regs = NULL;
56 #ifdef CONFIG_PCI
57 unsigned long ds1287_regs = 0UL;
58 static void __iomem *bq4802_regs;
59 #endif
60
61 static void __iomem *mstk48t08_regs;
62 static void __iomem *mstk48t59_regs;
63
64 static int set_rtc_mmss(unsigned long);
65
66 #define TICK_PRIV_BIT   (1UL << 63)
67 #define TICKCMP_IRQ_BIT (1UL << 63)
68
69 #ifdef CONFIG_SMP
70 unsigned long profile_pc(struct pt_regs *regs)
71 {
72         unsigned long pc = instruction_pointer(regs);
73
74         if (in_lock_functions(pc))
75                 return regs->u_regs[UREG_RETPC];
76         return pc;
77 }
78 EXPORT_SYMBOL(profile_pc);
79 #endif
80
81 static void tick_disable_protection(void)
82 {
83         /* Set things up so user can access tick register for profiling
84          * purposes.  Also workaround BB_ERRATA_1 by doing a dummy
85          * read back of %tick after writing it.
86          */
87         __asm__ __volatile__(
88         "       ba,pt   %%xcc, 1f\n"
89         "        nop\n"
90         "       .align  64\n"
91         "1:     rd      %%tick, %%g2\n"
92         "       add     %%g2, 6, %%g2\n"
93         "       andn    %%g2, %0, %%g2\n"
94         "       wrpr    %%g2, 0, %%tick\n"
95         "       rdpr    %%tick, %%g0"
96         : /* no outputs */
97         : "r" (TICK_PRIV_BIT)
98         : "g2");
99 }
100
101 static void tick_disable_irq(void)
102 {
103         __asm__ __volatile__(
104         "       ba,pt   %%xcc, 1f\n"
105         "        nop\n"
106         "       .align  64\n"
107         "1:     wr      %0, 0x0, %%tick_cmpr\n"
108         "       rd      %%tick_cmpr, %%g0"
109         : /* no outputs */
110         : "r" (TICKCMP_IRQ_BIT));
111 }
112
113 static void tick_init_tick(void)
114 {
115         tick_disable_protection();
116         tick_disable_irq();
117 }
118
119 static unsigned long tick_get_tick(void)
120 {
121         unsigned long ret;
122
123         __asm__ __volatile__("rd        %%tick, %0\n\t"
124                              "mov       %0, %0"
125                              : "=r" (ret));
126
127         return ret & ~TICK_PRIV_BIT;
128 }
129
130 static int tick_add_compare(unsigned long adj)
131 {
132         unsigned long orig_tick, new_tick, new_compare;
133
134         __asm__ __volatile__("rd        %%tick, %0"
135                              : "=r" (orig_tick));
136
137         orig_tick &= ~TICKCMP_IRQ_BIT;
138
139         /* Workaround for Spitfire Errata (#54 I think??), I discovered
140          * this via Sun BugID 4008234, mentioned in Solaris-2.5.1 patch
141          * number 103640.
142          *
143          * On Blackbird writes to %tick_cmpr can fail, the
144          * workaround seems to be to execute the wr instruction
145          * at the start of an I-cache line, and perform a dummy
146          * read back from %tick_cmpr right after writing to it. -DaveM
147          */
148         __asm__ __volatile__("ba,pt     %%xcc, 1f\n\t"
149                              " add      %1, %2, %0\n\t"
150                              ".align    64\n"
151                              "1:\n\t"
152                              "wr        %0, 0, %%tick_cmpr\n\t"
153                              "rd        %%tick_cmpr, %%g0\n\t"
154                              : "=r" (new_compare)
155                              : "r" (orig_tick), "r" (adj));
156
157         __asm__ __volatile__("rd        %%tick, %0"
158                              : "=r" (new_tick));
159         new_tick &= ~TICKCMP_IRQ_BIT;
160
161         return ((long)(new_tick - (orig_tick+adj))) > 0L;
162 }
163
164 static unsigned long tick_add_tick(unsigned long adj)
165 {
166         unsigned long new_tick;
167
168         /* Also need to handle Blackbird bug here too. */
169         __asm__ __volatile__("rd        %%tick, %0\n\t"
170                              "add       %0, %1, %0\n\t"
171                              "wrpr      %0, 0, %%tick\n\t"
172                              : "=&r" (new_tick)
173                              : "r" (adj));
174
175         return new_tick;
176 }
177
178 static struct sparc64_tick_ops tick_operations __read_mostly = {
179         .name           =       "tick",
180         .init_tick      =       tick_init_tick,
181         .disable_irq    =       tick_disable_irq,
182         .get_tick       =       tick_get_tick,
183         .add_tick       =       tick_add_tick,
184         .add_compare    =       tick_add_compare,
185         .softint_mask   =       1UL << 0,
186 };
187
188 struct sparc64_tick_ops *tick_ops __read_mostly = &tick_operations;
189
190 static void stick_disable_irq(void)
191 {
192         __asm__ __volatile__(
193         "wr     %0, 0x0, %%asr25"
194         : /* no outputs */
195         : "r" (TICKCMP_IRQ_BIT));
196 }
197
198 static void stick_init_tick(void)
199 {
200         /* Writes to the %tick and %stick register are not
201          * allowed on sun4v.  The Hypervisor controls that
202          * bit, per-strand.
203          */
204         if (tlb_type != hypervisor) {
205                 tick_disable_protection();
206                 tick_disable_irq();
207
208                 /* Let the user get at STICK too. */
209                 __asm__ __volatile__(
210                 "       rd      %%asr24, %%g2\n"
211                 "       andn    %%g2, %0, %%g2\n"
212                 "       wr      %%g2, 0, %%asr24"
213                 : /* no outputs */
214                 : "r" (TICK_PRIV_BIT)
215                 : "g1", "g2");
216         }
217
218         stick_disable_irq();
219 }
220
221 static unsigned long stick_get_tick(void)
222 {
223         unsigned long ret;
224
225         __asm__ __volatile__("rd        %%asr24, %0"
226                              : "=r" (ret));
227
228         return ret & ~TICK_PRIV_BIT;
229 }
230
231 static unsigned long stick_add_tick(unsigned long adj)
232 {
233         unsigned long new_tick;
234
235         __asm__ __volatile__("rd        %%asr24, %0\n\t"
236                              "add       %0, %1, %0\n\t"
237                              "wr        %0, 0, %%asr24\n\t"
238                              : "=&r" (new_tick)
239                              : "r" (adj));
240
241         return new_tick;
242 }
243
244 static int stick_add_compare(unsigned long adj)
245 {
246         unsigned long orig_tick, new_tick;
247
248         __asm__ __volatile__("rd        %%asr24, %0"
249                              : "=r" (orig_tick));
250         orig_tick &= ~TICKCMP_IRQ_BIT;
251
252         __asm__ __volatile__("wr        %0, 0, %%asr25"
253                              : /* no outputs */
254                              : "r" (orig_tick + adj));
255
256         __asm__ __volatile__("rd        %%asr24, %0"
257                              : "=r" (new_tick));
258         new_tick &= ~TICKCMP_IRQ_BIT;
259
260         return ((long)(new_tick - (orig_tick+adj))) > 0L;
261 }
262
263 static struct sparc64_tick_ops stick_operations __read_mostly = {
264         .name           =       "stick",
265         .init_tick      =       stick_init_tick,
266         .disable_irq    =       stick_disable_irq,
267         .get_tick       =       stick_get_tick,
268         .add_tick       =       stick_add_tick,
269         .add_compare    =       stick_add_compare,
270         .softint_mask   =       1UL << 16,
271 };
272
273 /* On Hummingbird the STICK/STICK_CMPR register is implemented
274  * in I/O space.  There are two 64-bit registers each, the
275  * first holds the low 32-bits of the value and the second holds
276  * the high 32-bits.
277  *
278  * Since STICK is constantly updating, we have to access it carefully.
279  *
280  * The sequence we use to read is:
281  * 1) read high
282  * 2) read low
283  * 3) read high again, if it rolled re-read both low and high again.
284  *
285  * Writing STICK safely is also tricky:
286  * 1) write low to zero
287  * 2) write high
288  * 3) write low
289  */
290 #define HBIRD_STICKCMP_ADDR     0x1fe0000f060UL
291 #define HBIRD_STICK_ADDR        0x1fe0000f070UL
292
293 static unsigned long __hbird_read_stick(void)
294 {
295         unsigned long ret, tmp1, tmp2, tmp3;
296         unsigned long addr = HBIRD_STICK_ADDR+8;
297
298         __asm__ __volatile__("ldxa      [%1] %5, %2\n"
299                              "1:\n\t"
300                              "sub       %1, 0x8, %1\n\t"
301                              "ldxa      [%1] %5, %3\n\t"
302                              "add       %1, 0x8, %1\n\t"
303                              "ldxa      [%1] %5, %4\n\t"
304                              "cmp       %4, %2\n\t"
305                              "bne,a,pn  %%xcc, 1b\n\t"
306                              " mov      %4, %2\n\t"
307                              "sllx      %4, 32, %4\n\t"
308                              "or        %3, %4, %0\n\t"
309                              : "=&r" (ret), "=&r" (addr),
310                                "=&r" (tmp1), "=&r" (tmp2), "=&r" (tmp3)
311                              : "i" (ASI_PHYS_BYPASS_EC_E), "1" (addr));
312
313         return ret;
314 }
315
316 static void __hbird_write_stick(unsigned long val)
317 {
318         unsigned long low = (val & 0xffffffffUL);
319         unsigned long high = (val >> 32UL);
320         unsigned long addr = HBIRD_STICK_ADDR;
321
322         __asm__ __volatile__("stxa      %%g0, [%0] %4\n\t"
323                              "add       %0, 0x8, %0\n\t"
324                              "stxa      %3, [%0] %4\n\t"
325                              "sub       %0, 0x8, %0\n\t"
326                              "stxa      %2, [%0] %4"
327                              : "=&r" (addr)
328                              : "0" (addr), "r" (low), "r" (high),
329                                "i" (ASI_PHYS_BYPASS_EC_E));
330 }
331
332 static void __hbird_write_compare(unsigned long val)
333 {
334         unsigned long low = (val & 0xffffffffUL);
335         unsigned long high = (val >> 32UL);
336         unsigned long addr = HBIRD_STICKCMP_ADDR + 0x8UL;
337
338         __asm__ __volatile__("stxa      %3, [%0] %4\n\t"
339                              "sub       %0, 0x8, %0\n\t"
340                              "stxa      %2, [%0] %4"
341                              : "=&r" (addr)
342                              : "0" (addr), "r" (low), "r" (high),
343                                "i" (ASI_PHYS_BYPASS_EC_E));
344 }
345
346 static void hbtick_disable_irq(void)
347 {
348         __hbird_write_compare(TICKCMP_IRQ_BIT);
349 }
350
351 static void hbtick_init_tick(void)
352 {
353         tick_disable_protection();
354
355         /* XXX This seems to be necessary to 'jumpstart' Hummingbird
356          * XXX into actually sending STICK interrupts.  I think because
357          * XXX of how we store %tick_cmpr in head.S this somehow resets the
358          * XXX {TICK + STICK} interrupt mux.  -DaveM
359          */
360         __hbird_write_stick(__hbird_read_stick());
361
362         hbtick_disable_irq();
363 }
364
365 static unsigned long hbtick_get_tick(void)
366 {
367         return __hbird_read_stick() & ~TICK_PRIV_BIT;
368 }
369
370 static unsigned long hbtick_add_tick(unsigned long adj)
371 {
372         unsigned long val;
373
374         val = __hbird_read_stick() + adj;
375         __hbird_write_stick(val);
376
377         return val;
378 }
379
380 static int hbtick_add_compare(unsigned long adj)
381 {
382         unsigned long val = __hbird_read_stick();
383         unsigned long val2;
384
385         val &= ~TICKCMP_IRQ_BIT;
386         val += adj;
387         __hbird_write_compare(val);
388
389         val2 = __hbird_read_stick() & ~TICKCMP_IRQ_BIT;
390
391         return ((long)(val2 - val)) > 0L;
392 }
393
394 static struct sparc64_tick_ops hbtick_operations __read_mostly = {
395         .name           =       "hbtick",
396         .init_tick      =       hbtick_init_tick,
397         .disable_irq    =       hbtick_disable_irq,
398         .get_tick       =       hbtick_get_tick,
399         .add_tick       =       hbtick_add_tick,
400         .add_compare    =       hbtick_add_compare,
401         .softint_mask   =       1UL << 0,
402 };
403
404 static unsigned long timer_ticks_per_nsec_quotient __read_mostly;
405
406 #define TICK_SIZE (tick_nsec / 1000)
407
408 #define USEC_AFTER      500000
409 #define USEC_BEFORE     500000
410
411 static void sync_cmos_clock(unsigned long dummy);
412
413 static DEFINE_TIMER(sync_cmos_timer, sync_cmos_clock, 0, 0);
414
415 static void sync_cmos_clock(unsigned long dummy)
416 {
417         struct timeval now, next;
418         int fail = 1;
419
420         /*
421          * If we have an externally synchronized Linux clock, then update
422          * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
423          * called as close as possible to 500 ms before the new second starts.
424          * This code is run on a timer.  If the clock is set, that timer
425          * may not expire at the correct time.  Thus, we adjust...
426          */
427         if (!ntp_synced())
428                 /*
429                  * Not synced, exit, do not restart a timer (if one is
430                  * running, let it run out).
431                  */
432                 return;
433
434         do_gettimeofday(&now);
435         if (now.tv_usec >= USEC_AFTER - ((unsigned) TICK_SIZE) / 2 &&
436             now.tv_usec <= USEC_BEFORE + ((unsigned) TICK_SIZE) / 2)
437                 fail = set_rtc_mmss(now.tv_sec);
438
439         next.tv_usec = USEC_AFTER - now.tv_usec;
440         if (next.tv_usec <= 0)
441                 next.tv_usec += USEC_PER_SEC;
442
443         if (!fail)
444                 next.tv_sec = 659;
445         else
446                 next.tv_sec = 0;
447
448         if (next.tv_usec >= USEC_PER_SEC) {
449                 next.tv_sec++;
450                 next.tv_usec -= USEC_PER_SEC;
451         }
452         mod_timer(&sync_cmos_timer, jiffies + timeval_to_jiffies(&next));
453 }
454
455 void notify_arch_cmos_timer(void)
456 {
457         mod_timer(&sync_cmos_timer, jiffies + 1);
458 }
459
460 /* Kick start a stopped clock (procedure from the Sun NVRAM/hostid FAQ). */
461 static void __init kick_start_clock(void)
462 {
463         void __iomem *regs = mstk48t02_regs;
464         u8 sec, tmp;
465         int i, count;
466
467         prom_printf("CLOCK: Clock was stopped. Kick start ");
468
469         spin_lock_irq(&mostek_lock);
470
471         /* Turn on the kick start bit to start the oscillator. */
472         tmp = mostek_read(regs + MOSTEK_CREG);
473         tmp |= MSTK_CREG_WRITE;
474         mostek_write(regs + MOSTEK_CREG, tmp);
475         tmp = mostek_read(regs + MOSTEK_SEC);
476         tmp &= ~MSTK_STOP;
477         mostek_write(regs + MOSTEK_SEC, tmp);
478         tmp = mostek_read(regs + MOSTEK_HOUR);
479         tmp |= MSTK_KICK_START;
480         mostek_write(regs + MOSTEK_HOUR, tmp);
481         tmp = mostek_read(regs + MOSTEK_CREG);
482         tmp &= ~MSTK_CREG_WRITE;
483         mostek_write(regs + MOSTEK_CREG, tmp);
484
485         spin_unlock_irq(&mostek_lock);
486
487         /* Delay to allow the clock oscillator to start. */
488         sec = MSTK_REG_SEC(regs);
489         for (i = 0; i < 3; i++) {
490                 while (sec == MSTK_REG_SEC(regs))
491                         for (count = 0; count < 100000; count++)
492                                 /* nothing */ ;
493                 prom_printf(".");
494                 sec = MSTK_REG_SEC(regs);
495         }
496         prom_printf("\n");
497
498         spin_lock_irq(&mostek_lock);
499
500         /* Turn off kick start and set a "valid" time and date. */
501         tmp = mostek_read(regs + MOSTEK_CREG);
502         tmp |= MSTK_CREG_WRITE;
503         mostek_write(regs + MOSTEK_CREG, tmp);
504         tmp = mostek_read(regs + MOSTEK_HOUR);
505         tmp &= ~MSTK_KICK_START;
506         mostek_write(regs + MOSTEK_HOUR, tmp);
507         MSTK_SET_REG_SEC(regs,0);
508         MSTK_SET_REG_MIN(regs,0);
509         MSTK_SET_REG_HOUR(regs,0);
510         MSTK_SET_REG_DOW(regs,5);
511         MSTK_SET_REG_DOM(regs,1);
512         MSTK_SET_REG_MONTH(regs,8);
513         MSTK_SET_REG_YEAR(regs,1996 - MSTK_YEAR_ZERO);
514         tmp = mostek_read(regs + MOSTEK_CREG);
515         tmp &= ~MSTK_CREG_WRITE;
516         mostek_write(regs + MOSTEK_CREG, tmp);
517
518         spin_unlock_irq(&mostek_lock);
519
520         /* Ensure the kick start bit is off. If it isn't, turn it off. */
521         while (mostek_read(regs + MOSTEK_HOUR) & MSTK_KICK_START) {
522                 prom_printf("CLOCK: Kick start still on!\n");
523
524                 spin_lock_irq(&mostek_lock);
525
526                 tmp = mostek_read(regs + MOSTEK_CREG);
527                 tmp |= MSTK_CREG_WRITE;
528                 mostek_write(regs + MOSTEK_CREG, tmp);
529
530                 tmp = mostek_read(regs + MOSTEK_HOUR);
531                 tmp &= ~MSTK_KICK_START;
532                 mostek_write(regs + MOSTEK_HOUR, tmp);
533
534                 tmp = mostek_read(regs + MOSTEK_CREG);
535                 tmp &= ~MSTK_CREG_WRITE;
536                 mostek_write(regs + MOSTEK_CREG, tmp);
537
538                 spin_unlock_irq(&mostek_lock);
539         }
540
541         prom_printf("CLOCK: Kick start procedure successful.\n");
542 }
543
544 /* Return nonzero if the clock chip battery is low. */
545 static int __init has_low_battery(void)
546 {
547         void __iomem *regs = mstk48t02_regs;
548         u8 data1, data2;
549
550         spin_lock_irq(&mostek_lock);
551
552         data1 = mostek_read(regs + MOSTEK_EEPROM);      /* Read some data. */
553         mostek_write(regs + MOSTEK_EEPROM, ~data1);     /* Write back the complement. */
554         data2 = mostek_read(regs + MOSTEK_EEPROM);      /* Read back the complement. */
555         mostek_write(regs + MOSTEK_EEPROM, data1);      /* Restore original value. */
556
557         spin_unlock_irq(&mostek_lock);
558
559         return (data1 == data2);        /* Was the write blocked? */
560 }
561
562 /* Probe for the real time clock chip. */
563 static void __init set_system_time(void)
564 {
565         unsigned int year, mon, day, hour, min, sec;
566         void __iomem *mregs = mstk48t02_regs;
567 #ifdef CONFIG_PCI
568         unsigned long dregs = ds1287_regs;
569         void __iomem *bregs = bq4802_regs;
570 #else
571         unsigned long dregs = 0UL;
572         void __iomem *bregs = 0UL;
573 #endif
574         u8 tmp;
575
576         if (!mregs && !dregs && !bregs) {
577                 prom_printf("Something wrong, clock regs not mapped yet.\n");
578                 prom_halt();
579         }               
580
581         if (mregs) {
582                 spin_lock_irq(&mostek_lock);
583
584                 /* Traditional Mostek chip. */
585                 tmp = mostek_read(mregs + MOSTEK_CREG);
586                 tmp |= MSTK_CREG_READ;
587                 mostek_write(mregs + MOSTEK_CREG, tmp);
588
589                 sec = MSTK_REG_SEC(mregs);
590                 min = MSTK_REG_MIN(mregs);
591                 hour = MSTK_REG_HOUR(mregs);
592                 day = MSTK_REG_DOM(mregs);
593                 mon = MSTK_REG_MONTH(mregs);
594                 year = MSTK_CVT_YEAR( MSTK_REG_YEAR(mregs) );
595         } else if (bregs) {
596                 unsigned char val = readb(bregs + 0x0e);
597                 unsigned int century;
598
599                 /* BQ4802 RTC chip. */
600
601                 writeb(val | 0x08, bregs + 0x0e);
602
603                 sec  = readb(bregs + 0x00);
604                 min  = readb(bregs + 0x02);
605                 hour = readb(bregs + 0x04);
606                 day  = readb(bregs + 0x06);
607                 mon  = readb(bregs + 0x09);
608                 year = readb(bregs + 0x0a);
609                 century = readb(bregs + 0x0f);
610
611                 writeb(val, bregs + 0x0e);
612
613                 BCD_TO_BIN(sec);
614                 BCD_TO_BIN(min);
615                 BCD_TO_BIN(hour);
616                 BCD_TO_BIN(day);
617                 BCD_TO_BIN(mon);
618                 BCD_TO_BIN(year);
619                 BCD_TO_BIN(century);
620
621                 year += (century * 100);
622         } else {
623                 /* Dallas 12887 RTC chip. */
624
625                 do {
626                         sec  = CMOS_READ(RTC_SECONDS);
627                         min  = CMOS_READ(RTC_MINUTES);
628                         hour = CMOS_READ(RTC_HOURS);
629                         day  = CMOS_READ(RTC_DAY_OF_MONTH);
630                         mon  = CMOS_READ(RTC_MONTH);
631                         year = CMOS_READ(RTC_YEAR);
632                 } while (sec != CMOS_READ(RTC_SECONDS));
633
634                 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
635                         BCD_TO_BIN(sec);
636                         BCD_TO_BIN(min);
637                         BCD_TO_BIN(hour);
638                         BCD_TO_BIN(day);
639                         BCD_TO_BIN(mon);
640                         BCD_TO_BIN(year);
641                 }
642                 if ((year += 1900) < 1970)
643                         year += 100;
644         }
645
646         xtime.tv_sec = mktime(year, mon, day, hour, min, sec);
647         xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ);
648         set_normalized_timespec(&wall_to_monotonic,
649                                 -xtime.tv_sec, -xtime.tv_nsec);
650
651         if (mregs) {
652                 tmp = mostek_read(mregs + MOSTEK_CREG);
653                 tmp &= ~MSTK_CREG_READ;
654                 mostek_write(mregs + MOSTEK_CREG, tmp);
655
656                 spin_unlock_irq(&mostek_lock);
657         }
658 }
659
660 /* davem suggests we keep this within the 4M locked kernel image */
661 static u32 starfire_get_time(void)
662 {
663         static char obp_gettod[32];
664         static u32 unix_tod;
665
666         sprintf(obp_gettod, "h# %08x unix-gettod",
667                 (unsigned int) (long) &unix_tod);
668         prom_feval(obp_gettod);
669
670         return unix_tod;
671 }
672
673 static int starfire_set_time(u32 val)
674 {
675         /* Do nothing, time is set using the service processor
676          * console on this platform.
677          */
678         return 0;
679 }
680
681 static u32 hypervisor_get_time(void)
682 {
683         register unsigned long func asm("%o5");
684         register unsigned long arg0 asm("%o0");
685         register unsigned long arg1 asm("%o1");
686         int retries = 10000;
687
688 retry:
689         func = HV_FAST_TOD_GET;
690         arg0 = 0;
691         arg1 = 0;
692         __asm__ __volatile__("ta        %6"
693                              : "=&r" (func), "=&r" (arg0), "=&r" (arg1)
694                              : "0" (func), "1" (arg0), "2" (arg1),
695                                "i" (HV_FAST_TRAP));
696         if (arg0 == HV_EOK)
697                 return arg1;
698         if (arg0 == HV_EWOULDBLOCK) {
699                 if (--retries > 0) {
700                         udelay(100);
701                         goto retry;
702                 }
703                 printk(KERN_WARNING "SUN4V: tod_get() timed out.\n");
704                 return 0;
705         }
706         printk(KERN_WARNING "SUN4V: tod_get() not supported.\n");
707         return 0;
708 }
709
710 static int hypervisor_set_time(u32 secs)
711 {
712         register unsigned long func asm("%o5");
713         register unsigned long arg0 asm("%o0");
714         int retries = 10000;
715
716 retry:
717         func = HV_FAST_TOD_SET;
718         arg0 = secs;
719         __asm__ __volatile__("ta        %4"
720                              : "=&r" (func), "=&r" (arg0)
721                              : "0" (func), "1" (arg0),
722                                "i" (HV_FAST_TRAP));
723         if (arg0 == HV_EOK)
724                 return 0;
725         if (arg0 == HV_EWOULDBLOCK) {
726                 if (--retries > 0) {
727                         udelay(100);
728                         goto retry;
729                 }
730                 printk(KERN_WARNING "SUN4V: tod_set() timed out.\n");
731                 return -EAGAIN;
732         }
733         printk(KERN_WARNING "SUN4V: tod_set() not supported.\n");
734         return -EOPNOTSUPP;
735 }
736
737 static int __init clock_model_matches(const char *model)
738 {
739         if (strcmp(model, "mk48t02") &&
740             strcmp(model, "mk48t08") &&
741             strcmp(model, "mk48t59") &&
742             strcmp(model, "m5819") &&
743             strcmp(model, "m5819p") &&
744             strcmp(model, "m5823") &&
745             strcmp(model, "ds1287") &&
746             strcmp(model, "bq4802"))
747                 return 0;
748
749         return 1;
750 }
751
752 static int __devinit clock_probe(struct of_device *op, const struct of_device_id *match)
753 {
754         struct device_node *dp = op->node;
755         const char *model = of_get_property(dp, "model", NULL);
756         const char *compat = of_get_property(dp, "compatible", NULL);
757         unsigned long size, flags;
758         void __iomem *regs;
759
760         if (!model)
761                 model = compat;
762
763         if (!model || !clock_model_matches(model))
764                 return -ENODEV;
765
766         /* On an Enterprise system there can be multiple mostek clocks.
767          * We should only match the one that is on the central FHC bus.
768          */
769         if (!strcmp(dp->parent->name, "fhc") &&
770             strcmp(dp->parent->parent->name, "central") != 0)
771                 return -ENODEV;
772
773         size = (op->resource[0].end - op->resource[0].start) + 1;
774         regs = of_ioremap(&op->resource[0], 0, size, "clock");
775         if (!regs)
776                 return -ENOMEM;
777
778 #ifdef CONFIG_PCI
779         if (!strcmp(model, "ds1287") ||
780             !strcmp(model, "m5819") ||
781             !strcmp(model, "m5819p") ||
782             !strcmp(model, "m5823")) {
783                 ds1287_regs = (unsigned long) regs;
784         } else if (!strcmp(model, "bq4802")) {
785                 bq4802_regs = regs;
786         } else
787 #endif
788         if (model[5] == '0' && model[6] == '2') {
789                 mstk48t02_regs = regs;
790         } else if(model[5] == '0' && model[6] == '8') {
791                 mstk48t08_regs = regs;
792                 mstk48t02_regs = mstk48t08_regs + MOSTEK_48T08_48T02;
793         } else {
794                 mstk48t59_regs = regs;
795                 mstk48t02_regs = mstk48t59_regs + MOSTEK_48T59_48T02;
796         }
797
798         printk(KERN_INFO "%s: Clock regs at %p\n", dp->full_name, regs);
799
800         local_irq_save(flags);
801
802         if (mstk48t02_regs != NULL) {
803                 /* Report a low battery voltage condition. */
804                 if (has_low_battery())
805                         prom_printf("NVRAM: Low battery voltage!\n");
806
807                 /* Kick start the clock if it is completely stopped. */
808                 if (mostek_read(mstk48t02_regs + MOSTEK_SEC) & MSTK_STOP)
809                         kick_start_clock();
810         }
811
812         set_system_time();
813         
814         local_irq_restore(flags);
815
816         return 0;
817 }
818
819 static struct of_device_id clock_match[] = {
820         {
821                 .name = "eeprom",
822         },
823         {
824                 .name = "rtc",
825         },
826         {},
827 };
828
829 static struct of_platform_driver clock_driver = {
830         .name           = "clock",
831         .match_table    = clock_match,
832         .probe          = clock_probe,
833 };
834
835 static int __init clock_init(void)
836 {
837         if (this_is_starfire) {
838                 xtime.tv_sec = starfire_get_time();
839                 xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ);
840                 set_normalized_timespec(&wall_to_monotonic,
841                                         -xtime.tv_sec, -xtime.tv_nsec);
842                 return 0;
843         }
844         if (tlb_type == hypervisor) {
845                 xtime.tv_sec = hypervisor_get_time();
846                 xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ);
847                 set_normalized_timespec(&wall_to_monotonic,
848                                         -xtime.tv_sec, -xtime.tv_nsec);
849                 return 0;
850         }
851
852         return of_register_driver(&clock_driver, &of_bus_type);
853 }
854
855 /* Must be after subsys_initcall() so that busses are probed.  Must
856  * be before device_initcall() because things like the RTC driver
857  * need to see the clock registers.
858  */
859 fs_initcall(clock_init);
860
861 /* This is gets the master TICK_INT timer going. */
862 static unsigned long sparc64_init_timers(void)
863 {
864         struct device_node *dp;
865         struct property *prop;
866         unsigned long clock;
867 #ifdef CONFIG_SMP
868         extern void smp_tick_init(void);
869 #endif
870
871         dp = of_find_node_by_path("/");
872         if (tlb_type == spitfire) {
873                 unsigned long ver, manuf, impl;
874
875                 __asm__ __volatile__ ("rdpr %%ver, %0"
876                                       : "=&r" (ver));
877                 manuf = ((ver >> 48) & 0xffff);
878                 impl = ((ver >> 32) & 0xffff);
879                 if (manuf == 0x17 && impl == 0x13) {
880                         /* Hummingbird, aka Ultra-IIe */
881                         tick_ops = &hbtick_operations;
882                         prop = of_find_property(dp, "stick-frequency", NULL);
883                 } else {
884                         tick_ops = &tick_operations;
885                         cpu_find_by_instance(0, &dp, NULL);
886                         prop = of_find_property(dp, "clock-frequency", NULL);
887                 }
888         } else {
889                 tick_ops = &stick_operations;
890                 prop = of_find_property(dp, "stick-frequency", NULL);
891         }
892         clock = *(unsigned int *) prop->value;
893
894 #ifdef CONFIG_SMP
895         smp_tick_init();
896 #endif
897
898         return clock;
899 }
900
901 struct freq_table {
902         unsigned long clock_tick_ref;
903         unsigned int ref_freq;
904 };
905 static DEFINE_PER_CPU(struct freq_table, sparc64_freq_table) = { 0, 0 };
906
907 unsigned long sparc64_get_clock_tick(unsigned int cpu)
908 {
909         struct freq_table *ft = &per_cpu(sparc64_freq_table, cpu);
910
911         if (ft->clock_tick_ref)
912                 return ft->clock_tick_ref;
913         return cpu_data(cpu).clock_tick;
914 }
915
916 #ifdef CONFIG_CPU_FREQ
917
918 static int sparc64_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
919                                     void *data)
920 {
921         struct cpufreq_freqs *freq = data;
922         unsigned int cpu = freq->cpu;
923         struct freq_table *ft = &per_cpu(sparc64_freq_table, cpu);
924
925         if (!ft->ref_freq) {
926                 ft->ref_freq = freq->old;
927                 ft->clock_tick_ref = cpu_data(cpu).clock_tick;
928         }
929         if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
930             (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
931             (val == CPUFREQ_RESUMECHANGE)) {
932                 cpu_data(cpu).clock_tick =
933                         cpufreq_scale(ft->clock_tick_ref,
934                                       ft->ref_freq,
935                                       freq->new);
936         }
937
938         return 0;
939 }
940
941 static struct notifier_block sparc64_cpufreq_notifier_block = {
942         .notifier_call  = sparc64_cpufreq_notifier
943 };
944
945 #endif /* CONFIG_CPU_FREQ */
946
947 static int sparc64_next_event(unsigned long delta,
948                               struct clock_event_device *evt)
949 {
950         return tick_ops->add_compare(delta) ? -ETIME : 0;
951 }
952
953 static void sparc64_timer_setup(enum clock_event_mode mode,
954                                 struct clock_event_device *evt)
955 {
956         switch (mode) {
957         case CLOCK_EVT_MODE_ONESHOT:
958                 break;
959
960         case CLOCK_EVT_MODE_SHUTDOWN:
961                 tick_ops->disable_irq();
962                 break;
963
964         case CLOCK_EVT_MODE_PERIODIC:
965         case CLOCK_EVT_MODE_UNUSED:
966                 WARN_ON(1);
967                 break;
968         };
969 }
970
971 static struct clock_event_device sparc64_clockevent = {
972         .features       = CLOCK_EVT_FEAT_ONESHOT,
973         .set_mode       = sparc64_timer_setup,
974         .set_next_event = sparc64_next_event,
975         .rating         = 100,
976         .shift          = 30,
977         .irq            = -1,
978 };
979 static DEFINE_PER_CPU(struct clock_event_device, sparc64_events);
980
981 void timer_interrupt(int irq, struct pt_regs *regs)
982 {
983         struct pt_regs *old_regs = set_irq_regs(regs);
984         unsigned long tick_mask = tick_ops->softint_mask;
985         int cpu = smp_processor_id();
986         struct clock_event_device *evt = &per_cpu(sparc64_events, cpu);
987
988         clear_softint(tick_mask);
989
990         irq_enter();
991
992         kstat_this_cpu.irqs[0]++;
993
994         if (unlikely(!evt->event_handler)) {
995                 printk(KERN_WARNING
996                        "Spurious SPARC64 timer interrupt on cpu %d\n", cpu);
997         } else
998                 evt->event_handler(evt);
999
1000         irq_exit();
1001
1002         set_irq_regs(old_regs);
1003 }
1004
1005 void __devinit setup_sparc64_timer(void)
1006 {
1007         struct clock_event_device *sevt;
1008         unsigned long pstate;
1009
1010         /* Guarantee that the following sequences execute
1011          * uninterrupted.
1012          */
1013         __asm__ __volatile__("rdpr      %%pstate, %0\n\t"
1014                              "wrpr      %0, %1, %%pstate"
1015                              : "=r" (pstate)
1016                              : "i" (PSTATE_IE));
1017
1018         tick_ops->init_tick();
1019
1020         /* Restore PSTATE_IE. */
1021         __asm__ __volatile__("wrpr      %0, 0x0, %%pstate"
1022                              : /* no outputs */
1023                              : "r" (pstate));
1024
1025         sevt = &__get_cpu_var(sparc64_events);
1026
1027         memcpy(sevt, &sparc64_clockevent, sizeof(*sevt));
1028         sevt->cpumask = cpumask_of_cpu(smp_processor_id());
1029
1030         clockevents_register_device(sevt);
1031 }
1032
1033 #define SPARC64_NSEC_PER_CYC_SHIFT      10UL
1034
1035 static struct clocksource clocksource_tick = {
1036         .rating         = 100,
1037         .mask           = CLOCKSOURCE_MASK(64),
1038         .shift          = 16,
1039         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
1040 };
1041
1042 static void __init setup_clockevent_multiplier(unsigned long hz)
1043 {
1044         unsigned long mult, shift = 32;
1045
1046         while (1) {
1047                 mult = div_sc(hz, NSEC_PER_SEC, shift);
1048                 if (mult && (mult >> 32UL) == 0UL)
1049                         break;
1050
1051                 shift--;
1052         }
1053
1054         sparc64_clockevent.shift = shift;
1055         sparc64_clockevent.mult = mult;
1056 }
1057
1058 void __init time_init(void)
1059 {
1060         unsigned long clock = sparc64_init_timers();
1061
1062         timer_ticks_per_nsec_quotient =
1063                 clocksource_hz2mult(clock, SPARC64_NSEC_PER_CYC_SHIFT);
1064
1065         clocksource_tick.name = tick_ops->name;
1066         clocksource_tick.mult =
1067                 clocksource_hz2mult(clock,
1068                                     clocksource_tick.shift);
1069         clocksource_tick.read = tick_ops->get_tick;
1070
1071         printk("clocksource: mult[%x] shift[%d]\n",
1072                clocksource_tick.mult, clocksource_tick.shift);
1073
1074         clocksource_register(&clocksource_tick);
1075
1076         sparc64_clockevent.name = tick_ops->name;
1077
1078         setup_clockevent_multiplier(clock);
1079
1080         sparc64_clockevent.max_delta_ns =
1081                 clockevent_delta2ns(0x7fffffffffffffff, &sparc64_clockevent);
1082         sparc64_clockevent.min_delta_ns =
1083                 clockevent_delta2ns(0xF, &sparc64_clockevent);
1084
1085         printk("clockevent: mult[%lx] shift[%d]\n",
1086                sparc64_clockevent.mult, sparc64_clockevent.shift);
1087
1088         setup_sparc64_timer();
1089
1090 #ifdef CONFIG_CPU_FREQ
1091         cpufreq_register_notifier(&sparc64_cpufreq_notifier_block,
1092                                   CPUFREQ_TRANSITION_NOTIFIER);
1093 #endif
1094 }
1095
1096 unsigned long long sched_clock(void)
1097 {
1098         unsigned long ticks = tick_ops->get_tick();
1099
1100         return (ticks * timer_ticks_per_nsec_quotient)
1101                 >> SPARC64_NSEC_PER_CYC_SHIFT;
1102 }
1103
1104 static int set_rtc_mmss(unsigned long nowtime)
1105 {
1106         int real_seconds, real_minutes, chip_minutes;
1107         void __iomem *mregs = mstk48t02_regs;
1108 #ifdef CONFIG_PCI
1109         unsigned long dregs = ds1287_regs;
1110         void __iomem *bregs = bq4802_regs;
1111 #else
1112         unsigned long dregs = 0UL;
1113         void __iomem *bregs = 0UL;
1114 #endif
1115         unsigned long flags;
1116         u8 tmp;
1117
1118         /* 
1119          * Not having a register set can lead to trouble.
1120          * Also starfire doesn't have a tod clock.
1121          */
1122         if (!mregs && !dregs & !bregs)
1123                 return -1;
1124
1125         if (mregs) {
1126                 spin_lock_irqsave(&mostek_lock, flags);
1127
1128                 /* Read the current RTC minutes. */
1129                 tmp = mostek_read(mregs + MOSTEK_CREG);
1130                 tmp |= MSTK_CREG_READ;
1131                 mostek_write(mregs + MOSTEK_CREG, tmp);
1132
1133                 chip_minutes = MSTK_REG_MIN(mregs);
1134
1135                 tmp = mostek_read(mregs + MOSTEK_CREG);
1136                 tmp &= ~MSTK_CREG_READ;
1137                 mostek_write(mregs + MOSTEK_CREG, tmp);
1138
1139                 /*
1140                  * since we're only adjusting minutes and seconds,
1141                  * don't interfere with hour overflow. This avoids
1142                  * messing with unknown time zones but requires your
1143                  * RTC not to be off by more than 15 minutes
1144                  */
1145                 real_seconds = nowtime % 60;
1146                 real_minutes = nowtime / 60;
1147                 if (((abs(real_minutes - chip_minutes) + 15)/30) & 1)
1148                         real_minutes += 30;     /* correct for half hour time zone */
1149                 real_minutes %= 60;
1150
1151                 if (abs(real_minutes - chip_minutes) < 30) {
1152                         tmp = mostek_read(mregs + MOSTEK_CREG);
1153                         tmp |= MSTK_CREG_WRITE;
1154                         mostek_write(mregs + MOSTEK_CREG, tmp);
1155
1156                         MSTK_SET_REG_SEC(mregs,real_seconds);
1157                         MSTK_SET_REG_MIN(mregs,real_minutes);
1158
1159                         tmp = mostek_read(mregs + MOSTEK_CREG);
1160                         tmp &= ~MSTK_CREG_WRITE;
1161                         mostek_write(mregs + MOSTEK_CREG, tmp);
1162
1163                         spin_unlock_irqrestore(&mostek_lock, flags);
1164
1165                         return 0;
1166                 } else {
1167                         spin_unlock_irqrestore(&mostek_lock, flags);
1168
1169                         return -1;
1170                 }
1171         } else if (bregs) {
1172                 int retval = 0;
1173                 unsigned char val = readb(bregs + 0x0e);
1174
1175                 /* BQ4802 RTC chip. */
1176
1177                 writeb(val | 0x08, bregs + 0x0e);
1178
1179                 chip_minutes = readb(bregs + 0x02);
1180                 BCD_TO_BIN(chip_minutes);
1181                 real_seconds = nowtime % 60;
1182                 real_minutes = nowtime / 60;
1183                 if (((abs(real_minutes - chip_minutes) + 15)/30) & 1)
1184                         real_minutes += 30;
1185                 real_minutes %= 60;
1186
1187                 if (abs(real_minutes - chip_minutes) < 30) {
1188                         BIN_TO_BCD(real_seconds);
1189                         BIN_TO_BCD(real_minutes);
1190                         writeb(real_seconds, bregs + 0x00);
1191                         writeb(real_minutes, bregs + 0x02);
1192                 } else {
1193                         printk(KERN_WARNING
1194                                "set_rtc_mmss: can't update from %d to %d\n",
1195                                chip_minutes, real_minutes);
1196                         retval = -1;
1197                 }
1198
1199                 writeb(val, bregs + 0x0e);
1200
1201                 return retval;
1202         } else {
1203                 int retval = 0;
1204                 unsigned char save_control, save_freq_select;
1205
1206                 /* Stolen from arch/i386/kernel/time.c, see there for
1207                  * credits and descriptive comments.
1208                  */
1209                 spin_lock_irqsave(&rtc_lock, flags);
1210                 save_control = CMOS_READ(RTC_CONTROL); /* tell the clock it's being set */
1211                 CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
1212
1213                 save_freq_select = CMOS_READ(RTC_FREQ_SELECT); /* stop and reset prescaler */
1214                 CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
1215
1216                 chip_minutes = CMOS_READ(RTC_MINUTES);
1217                 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1218                         BCD_TO_BIN(chip_minutes);
1219                 real_seconds = nowtime % 60;
1220                 real_minutes = nowtime / 60;
1221                 if (((abs(real_minutes - chip_minutes) + 15)/30) & 1)
1222                         real_minutes += 30;
1223                 real_minutes %= 60;
1224
1225                 if (abs(real_minutes - chip_minutes) < 30) {
1226                         if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1227                                 BIN_TO_BCD(real_seconds);
1228                                 BIN_TO_BCD(real_minutes);
1229                         }
1230                         CMOS_WRITE(real_seconds,RTC_SECONDS);
1231                         CMOS_WRITE(real_minutes,RTC_MINUTES);
1232                 } else {
1233                         printk(KERN_WARNING
1234                                "set_rtc_mmss: can't update from %d to %d\n",
1235                                chip_minutes, real_minutes);
1236                         retval = -1;
1237                 }
1238
1239                 CMOS_WRITE(save_control, RTC_CONTROL);
1240                 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
1241                 spin_unlock_irqrestore(&rtc_lock, flags);
1242
1243                 return retval;
1244         }
1245 }
1246
1247 #define RTC_IS_OPEN             0x01    /* means /dev/rtc is in use     */
1248 static unsigned char mini_rtc_status;   /* bitmapped status byte.       */
1249
1250 #define FEBRUARY        2
1251 #define STARTOFTIME     1970
1252 #define SECDAY          86400L
1253 #define SECYR           (SECDAY * 365)
1254 #define leapyear(year)          ((year) % 4 == 0 && \
1255                                  ((year) % 100 != 0 || (year) % 400 == 0))
1256 #define days_in_year(a)         (leapyear(a) ? 366 : 365)
1257 #define days_in_month(a)        (month_days[(a) - 1])
1258
1259 static int month_days[12] = {
1260         31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1261 };
1262
1263 /*
1264  * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1265  */
1266 static void GregorianDay(struct rtc_time * tm)
1267 {
1268         int leapsToDate;
1269         int lastYear;
1270         int day;
1271         int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1272
1273         lastYear = tm->tm_year - 1;
1274
1275         /*
1276          * Number of leap corrections to apply up to end of last year
1277          */
1278         leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1279
1280         /*
1281          * This year is a leap year if it is divisible by 4 except when it is
1282          * divisible by 100 unless it is divisible by 400
1283          *
1284          * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1285          */
1286         day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1287
1288         day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1289                    tm->tm_mday;
1290
1291         tm->tm_wday = day % 7;
1292 }
1293
1294 static void to_tm(int tim, struct rtc_time *tm)
1295 {
1296         register int    i;
1297         register long   hms, day;
1298
1299         day = tim / SECDAY;
1300         hms = tim % SECDAY;
1301
1302         /* Hours, minutes, seconds are easy */
1303         tm->tm_hour = hms / 3600;
1304         tm->tm_min = (hms % 3600) / 60;
1305         tm->tm_sec = (hms % 3600) % 60;
1306
1307         /* Number of years in days */
1308         for (i = STARTOFTIME; day >= days_in_year(i); i++)
1309                 day -= days_in_year(i);
1310         tm->tm_year = i;
1311
1312         /* Number of months in days left */
1313         if (leapyear(tm->tm_year))
1314                 days_in_month(FEBRUARY) = 29;
1315         for (i = 1; day >= days_in_month(i); i++)
1316                 day -= days_in_month(i);
1317         days_in_month(FEBRUARY) = 28;
1318         tm->tm_mon = i;
1319
1320         /* Days are what is left over (+1) from all that. */
1321         tm->tm_mday = day + 1;
1322
1323         /*
1324          * Determine the day of week
1325          */
1326         GregorianDay(tm);
1327 }
1328
1329 /* Both Starfire and SUN4V give us seconds since Jan 1st, 1970,
1330  * aka Unix time.  So we have to convert to/from rtc_time.
1331  */
1332 static void starfire_get_rtc_time(struct rtc_time *time)
1333 {
1334         u32 seconds = starfire_get_time();
1335
1336         to_tm(seconds, time);
1337         time->tm_year -= 1900;
1338         time->tm_mon -= 1;
1339 }
1340
1341 static int starfire_set_rtc_time(struct rtc_time *time)
1342 {
1343         u32 seconds = mktime(time->tm_year + 1900, time->tm_mon + 1,
1344                              time->tm_mday, time->tm_hour,
1345                              time->tm_min, time->tm_sec);
1346
1347         return starfire_set_time(seconds);
1348 }
1349
1350 static void hypervisor_get_rtc_time(struct rtc_time *time)
1351 {
1352         u32 seconds = hypervisor_get_time();
1353
1354         to_tm(seconds, time);
1355         time->tm_year -= 1900;
1356         time->tm_mon -= 1;
1357 }
1358
1359 static int hypervisor_set_rtc_time(struct rtc_time *time)
1360 {
1361         u32 seconds = mktime(time->tm_year + 1900, time->tm_mon + 1,
1362                              time->tm_mday, time->tm_hour,
1363                              time->tm_min, time->tm_sec);
1364
1365         return hypervisor_set_time(seconds);
1366 }
1367
1368 static void bq4802_get_rtc_time(struct rtc_time *time)
1369 {
1370         unsigned char val = readb(bq4802_regs + 0x0e);
1371         unsigned int century;
1372
1373         writeb(val | 0x08, bq4802_regs + 0x0e);
1374
1375         time->tm_sec = readb(bq4802_regs + 0x00);
1376         time->tm_min = readb(bq4802_regs + 0x02);
1377         time->tm_hour = readb(bq4802_regs + 0x04);
1378         time->tm_mday = readb(bq4802_regs + 0x06);
1379         time->tm_mon = readb(bq4802_regs + 0x09);
1380         time->tm_year = readb(bq4802_regs + 0x0a);
1381         time->tm_wday = readb(bq4802_regs + 0x08);
1382         century = readb(bq4802_regs + 0x0f);
1383
1384         writeb(val, bq4802_regs + 0x0e);
1385
1386         BCD_TO_BIN(time->tm_sec);
1387         BCD_TO_BIN(time->tm_min);
1388         BCD_TO_BIN(time->tm_hour);
1389         BCD_TO_BIN(time->tm_mday);
1390         BCD_TO_BIN(time->tm_mon);
1391         BCD_TO_BIN(time->tm_year);
1392         BCD_TO_BIN(time->tm_wday);
1393         BCD_TO_BIN(century);
1394
1395         time->tm_year += (century * 100);
1396         time->tm_year -= 1900;
1397
1398         time->tm_mon--;
1399 }
1400
1401 static int bq4802_set_rtc_time(struct rtc_time *time)
1402 {
1403         unsigned char val = readb(bq4802_regs + 0x0e);
1404         unsigned char sec, min, hrs, day, mon, yrs, century;
1405         unsigned int year;
1406
1407         year = time->tm_year + 1900;
1408         century = year / 100;
1409         yrs = year % 100;
1410
1411         mon = time->tm_mon + 1;   /* tm_mon starts at zero */
1412         day = time->tm_mday;
1413         hrs = time->tm_hour;
1414         min = time->tm_min;
1415         sec = time->tm_sec;
1416
1417         BIN_TO_BCD(sec);
1418         BIN_TO_BCD(min);
1419         BIN_TO_BCD(hrs);
1420         BIN_TO_BCD(day);
1421         BIN_TO_BCD(mon);
1422         BIN_TO_BCD(yrs);
1423         BIN_TO_BCD(century);
1424
1425         writeb(val | 0x08, bq4802_regs + 0x0e);
1426
1427         writeb(sec, bq4802_regs + 0x00);
1428         writeb(min, bq4802_regs + 0x02);
1429         writeb(hrs, bq4802_regs + 0x04);
1430         writeb(day, bq4802_regs + 0x06);
1431         writeb(mon, bq4802_regs + 0x09);
1432         writeb(yrs, bq4802_regs + 0x0a);
1433         writeb(century, bq4802_regs + 0x0f);
1434
1435         writeb(val, bq4802_regs + 0x0e);
1436
1437         return 0;
1438 }
1439
1440 struct mini_rtc_ops {
1441         void (*get_rtc_time)(struct rtc_time *);
1442         int (*set_rtc_time)(struct rtc_time *);
1443 };
1444
1445 static struct mini_rtc_ops starfire_rtc_ops = {
1446         .get_rtc_time = starfire_get_rtc_time,
1447         .set_rtc_time = starfire_set_rtc_time,
1448 };
1449
1450 static struct mini_rtc_ops hypervisor_rtc_ops = {
1451         .get_rtc_time = hypervisor_get_rtc_time,
1452         .set_rtc_time = hypervisor_set_rtc_time,
1453 };
1454
1455 static struct mini_rtc_ops bq4802_rtc_ops = {
1456         .get_rtc_time = bq4802_get_rtc_time,
1457         .set_rtc_time = bq4802_set_rtc_time,
1458 };
1459
1460 static struct mini_rtc_ops *mini_rtc_ops;
1461
1462 static inline void mini_get_rtc_time(struct rtc_time *time)
1463 {
1464         unsigned long flags;
1465
1466         spin_lock_irqsave(&rtc_lock, flags);
1467         mini_rtc_ops->get_rtc_time(time);
1468         spin_unlock_irqrestore(&rtc_lock, flags);
1469 }
1470
1471 static inline int mini_set_rtc_time(struct rtc_time *time)
1472 {
1473         unsigned long flags;
1474         int err;
1475
1476         spin_lock_irqsave(&rtc_lock, flags);
1477         err = mini_rtc_ops->set_rtc_time(time);
1478         spin_unlock_irqrestore(&rtc_lock, flags);
1479
1480         return err;
1481 }
1482
1483 static int mini_rtc_ioctl(struct inode *inode, struct file *file,
1484                           unsigned int cmd, unsigned long arg)
1485 {
1486         struct rtc_time wtime;
1487         void __user *argp = (void __user *)arg;
1488
1489         switch (cmd) {
1490
1491         case RTC_PLL_GET:
1492                 return -EINVAL;
1493
1494         case RTC_PLL_SET:
1495                 return -EINVAL;
1496
1497         case RTC_UIE_OFF:       /* disable ints from RTC updates.       */
1498                 return 0;
1499
1500         case RTC_UIE_ON:        /* enable ints for RTC updates. */
1501                 return -EINVAL;
1502
1503         case RTC_RD_TIME:       /* Read the time/date from RTC  */
1504                 /* this doesn't get week-day, who cares */
1505                 memset(&wtime, 0, sizeof(wtime));
1506                 mini_get_rtc_time(&wtime);
1507
1508                 return copy_to_user(argp, &wtime, sizeof(wtime)) ? -EFAULT : 0;
1509
1510         case RTC_SET_TIME:      /* Set the RTC */
1511             {
1512                 int year, days;
1513
1514                 if (!capable(CAP_SYS_TIME))
1515                         return -EACCES;
1516
1517                 if (copy_from_user(&wtime, argp, sizeof(wtime)))
1518                         return -EFAULT;
1519
1520                 year = wtime.tm_year + 1900;
1521                 days = month_days[wtime.tm_mon] +
1522                        ((wtime.tm_mon == 1) && leapyear(year));
1523
1524                 if ((wtime.tm_mon < 0 || wtime.tm_mon > 11) ||
1525                     (wtime.tm_mday < 1))
1526                         return -EINVAL;
1527
1528                 if (wtime.tm_mday < 0 || wtime.tm_mday > days)
1529                         return -EINVAL;
1530
1531                 if (wtime.tm_hour < 0 || wtime.tm_hour >= 24 ||
1532                     wtime.tm_min < 0 || wtime.tm_min >= 60 ||
1533                     wtime.tm_sec < 0 || wtime.tm_sec >= 60)
1534                         return -EINVAL;
1535
1536                 return mini_set_rtc_time(&wtime);
1537             }
1538         }
1539
1540         return -EINVAL;
1541 }
1542
1543 static int mini_rtc_open(struct inode *inode, struct file *file)
1544 {
1545         if (mini_rtc_status & RTC_IS_OPEN)
1546                 return -EBUSY;
1547
1548         mini_rtc_status |= RTC_IS_OPEN;
1549
1550         return 0;
1551 }
1552
1553 static int mini_rtc_release(struct inode *inode, struct file *file)
1554 {
1555         mini_rtc_status &= ~RTC_IS_OPEN;
1556         return 0;
1557 }
1558
1559
1560 static const struct file_operations mini_rtc_fops = {
1561         .owner          = THIS_MODULE,
1562         .ioctl          = mini_rtc_ioctl,
1563         .open           = mini_rtc_open,
1564         .release        = mini_rtc_release,
1565 };
1566
1567 static struct miscdevice rtc_mini_dev =
1568 {
1569         .minor          = RTC_MINOR,
1570         .name           = "rtc",
1571         .fops           = &mini_rtc_fops,
1572 };
1573
1574 static int __init rtc_mini_init(void)
1575 {
1576         int retval;
1577
1578         if (tlb_type == hypervisor)
1579                 mini_rtc_ops = &hypervisor_rtc_ops;
1580         else if (this_is_starfire)
1581                 mini_rtc_ops = &starfire_rtc_ops;
1582         else if (bq4802_regs)
1583                 mini_rtc_ops = &bq4802_rtc_ops;
1584         else
1585                 return -ENODEV;
1586
1587         printk(KERN_INFO "Mini RTC Driver\n");
1588
1589         retval = misc_register(&rtc_mini_dev);
1590         if (retval < 0)
1591                 return retval;
1592
1593         return 0;
1594 }
1595
1596 static void __exit rtc_mini_exit(void)
1597 {
1598         misc_deregister(&rtc_mini_dev);
1599 }
1600
1601
1602 module_init(rtc_mini_init);
1603 module_exit(rtc_mini_exit);