md: change ITERATE_RDEV to rdev_for_each
[linux-2.6] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/gfp.h>
9 #include <linux/list.h>
10 #include <linux/mmzone.h>
11 #include <linux/rbtree.h>
12 #include <linux/prio_tree.h>
13 #include <linux/debug_locks.h>
14 #include <linux/mm_types.h>
15
16 struct mempolicy;
17 struct anon_vma;
18 struct file_ra_state;
19 struct user_struct;
20 struct writeback_control;
21
22 #ifndef CONFIG_DISCONTIGMEM          /* Don't use mapnrs, do it properly */
23 extern unsigned long max_mapnr;
24 #endif
25
26 extern unsigned long num_physpages;
27 extern void * high_memory;
28 extern int page_cluster;
29
30 #ifdef CONFIG_SYSCTL
31 extern int sysctl_legacy_va_layout;
32 #else
33 #define sysctl_legacy_va_layout 0
34 #endif
35
36 extern unsigned long mmap_min_addr;
37
38 #include <asm/page.h>
39 #include <asm/pgtable.h>
40 #include <asm/processor.h>
41
42 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
43
44 /*
45  * Linux kernel virtual memory manager primitives.
46  * The idea being to have a "virtual" mm in the same way
47  * we have a virtual fs - giving a cleaner interface to the
48  * mm details, and allowing different kinds of memory mappings
49  * (from shared memory to executable loading to arbitrary
50  * mmap() functions).
51  */
52
53 extern struct kmem_cache *vm_area_cachep;
54
55 /*
56  * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is
57  * disabled, then there's a single shared list of VMAs maintained by the
58  * system, and mm's subscribe to these individually
59  */
60 struct vm_list_struct {
61         struct vm_list_struct   *next;
62         struct vm_area_struct   *vma;
63 };
64
65 #ifndef CONFIG_MMU
66 extern struct rb_root nommu_vma_tree;
67 extern struct rw_semaphore nommu_vma_sem;
68
69 extern unsigned int kobjsize(const void *objp);
70 #endif
71
72 /*
73  * vm_flags..
74  */
75 #define VM_READ         0x00000001      /* currently active flags */
76 #define VM_WRITE        0x00000002
77 #define VM_EXEC         0x00000004
78 #define VM_SHARED       0x00000008
79
80 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
81 #define VM_MAYREAD      0x00000010      /* limits for mprotect() etc */
82 #define VM_MAYWRITE     0x00000020
83 #define VM_MAYEXEC      0x00000040
84 #define VM_MAYSHARE     0x00000080
85
86 #define VM_GROWSDOWN    0x00000100      /* general info on the segment */
87 #define VM_GROWSUP      0x00000200
88 #define VM_PFNMAP       0x00000400      /* Page-ranges managed without "struct page", just pure PFN */
89 #define VM_DENYWRITE    0x00000800      /* ETXTBSY on write attempts.. */
90
91 #define VM_EXECUTABLE   0x00001000
92 #define VM_LOCKED       0x00002000
93 #define VM_IO           0x00004000      /* Memory mapped I/O or similar */
94
95                                         /* Used by sys_madvise() */
96 #define VM_SEQ_READ     0x00008000      /* App will access data sequentially */
97 #define VM_RAND_READ    0x00010000      /* App will not benefit from clustered reads */
98
99 #define VM_DONTCOPY     0x00020000      /* Do not copy this vma on fork */
100 #define VM_DONTEXPAND   0x00040000      /* Cannot expand with mremap() */
101 #define VM_RESERVED     0x00080000      /* Count as reserved_vm like IO */
102 #define VM_ACCOUNT      0x00100000      /* Is a VM accounted object */
103 #define VM_HUGETLB      0x00400000      /* Huge TLB Page VM */
104 #define VM_NONLINEAR    0x00800000      /* Is non-linear (remap_file_pages) */
105 #define VM_MAPPED_COPY  0x01000000      /* T if mapped copy of data (nommu mmap) */
106 #define VM_INSERTPAGE   0x02000000      /* The vma has had "vm_insert_page()" done on it */
107 #define VM_ALWAYSDUMP   0x04000000      /* Always include in core dumps */
108
109 #define VM_CAN_NONLINEAR 0x08000000     /* Has ->fault & does nonlinear pages */
110
111 #ifndef VM_STACK_DEFAULT_FLAGS          /* arch can override this */
112 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
113 #endif
114
115 #ifdef CONFIG_STACK_GROWSUP
116 #define VM_STACK_FLAGS  (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
117 #else
118 #define VM_STACK_FLAGS  (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
119 #endif
120
121 #define VM_READHINTMASK                 (VM_SEQ_READ | VM_RAND_READ)
122 #define VM_ClearReadHint(v)             (v)->vm_flags &= ~VM_READHINTMASK
123 #define VM_NormalReadHint(v)            (!((v)->vm_flags & VM_READHINTMASK))
124 #define VM_SequentialReadHint(v)        ((v)->vm_flags & VM_SEQ_READ)
125 #define VM_RandomReadHint(v)            ((v)->vm_flags & VM_RAND_READ)
126
127 /*
128  * mapping from the currently active vm_flags protection bits (the
129  * low four bits) to a page protection mask..
130  */
131 extern pgprot_t protection_map[16];
132
133 #define FAULT_FLAG_WRITE        0x01    /* Fault was a write access */
134 #define FAULT_FLAG_NONLINEAR    0x02    /* Fault was via a nonlinear mapping */
135
136
137 /*
138  * vm_fault is filled by the the pagefault handler and passed to the vma's
139  * ->fault function. The vma's ->fault is responsible for returning a bitmask
140  * of VM_FAULT_xxx flags that give details about how the fault was handled.
141  *
142  * pgoff should be used in favour of virtual_address, if possible. If pgoff
143  * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
144  * mapping support.
145  */
146 struct vm_fault {
147         unsigned int flags;             /* FAULT_FLAG_xxx flags */
148         pgoff_t pgoff;                  /* Logical page offset based on vma */
149         void __user *virtual_address;   /* Faulting virtual address */
150
151         struct page *page;              /* ->fault handlers should return a
152                                          * page here, unless VM_FAULT_NOPAGE
153                                          * is set (which is also implied by
154                                          * VM_FAULT_ERROR).
155                                          */
156 };
157
158 /*
159  * These are the virtual MM functions - opening of an area, closing and
160  * unmapping it (needed to keep files on disk up-to-date etc), pointer
161  * to the functions called when a no-page or a wp-page exception occurs. 
162  */
163 struct vm_operations_struct {
164         void (*open)(struct vm_area_struct * area);
165         void (*close)(struct vm_area_struct * area);
166         int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
167         struct page *(*nopage)(struct vm_area_struct *area,
168                         unsigned long address, int *type);
169         unsigned long (*nopfn)(struct vm_area_struct *area,
170                         unsigned long address);
171
172         /* notification that a previously read-only page is about to become
173          * writable, if an error is returned it will cause a SIGBUS */
174         int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page);
175 #ifdef CONFIG_NUMA
176         int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
177         struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
178                                         unsigned long addr);
179         int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
180                 const nodemask_t *to, unsigned long flags);
181 #endif
182 };
183
184 struct mmu_gather;
185 struct inode;
186
187 #define page_private(page)              ((page)->private)
188 #define set_page_private(page, v)       ((page)->private = (v))
189
190 /*
191  * FIXME: take this include out, include page-flags.h in
192  * files which need it (119 of them)
193  */
194 #include <linux/page-flags.h>
195
196 #ifdef CONFIG_DEBUG_VM
197 #define VM_BUG_ON(cond) BUG_ON(cond)
198 #else
199 #define VM_BUG_ON(condition) do { } while(0)
200 #endif
201
202 /*
203  * Methods to modify the page usage count.
204  *
205  * What counts for a page usage:
206  * - cache mapping   (page->mapping)
207  * - private data    (page->private)
208  * - page mapped in a task's page tables, each mapping
209  *   is counted separately
210  *
211  * Also, many kernel routines increase the page count before a critical
212  * routine so they can be sure the page doesn't go away from under them.
213  */
214
215 /*
216  * Drop a ref, return true if the refcount fell to zero (the page has no users)
217  */
218 static inline int put_page_testzero(struct page *page)
219 {
220         VM_BUG_ON(atomic_read(&page->_count) == 0);
221         return atomic_dec_and_test(&page->_count);
222 }
223
224 /*
225  * Try to grab a ref unless the page has a refcount of zero, return false if
226  * that is the case.
227  */
228 static inline int get_page_unless_zero(struct page *page)
229 {
230         VM_BUG_ON(PageTail(page));
231         return atomic_inc_not_zero(&page->_count);
232 }
233
234 /* Support for virtually mapped pages */
235 struct page *vmalloc_to_page(const void *addr);
236 unsigned long vmalloc_to_pfn(const void *addr);
237
238 /* Determine if an address is within the vmalloc range */
239 static inline int is_vmalloc_addr(const void *x)
240 {
241         unsigned long addr = (unsigned long)x;
242
243         return addr >= VMALLOC_START && addr < VMALLOC_END;
244 }
245
246 static inline struct page *compound_head(struct page *page)
247 {
248         if (unlikely(PageTail(page)))
249                 return page->first_page;
250         return page;
251 }
252
253 static inline int page_count(struct page *page)
254 {
255         return atomic_read(&compound_head(page)->_count);
256 }
257
258 static inline void get_page(struct page *page)
259 {
260         page = compound_head(page);
261         VM_BUG_ON(atomic_read(&page->_count) == 0);
262         atomic_inc(&page->_count);
263 }
264
265 static inline struct page *virt_to_head_page(const void *x)
266 {
267         struct page *page = virt_to_page(x);
268         return compound_head(page);
269 }
270
271 /*
272  * Setup the page count before being freed into the page allocator for
273  * the first time (boot or memory hotplug)
274  */
275 static inline void init_page_count(struct page *page)
276 {
277         atomic_set(&page->_count, 1);
278 }
279
280 void put_page(struct page *page);
281 void put_pages_list(struct list_head *pages);
282
283 void split_page(struct page *page, unsigned int order);
284
285 /*
286  * Compound pages have a destructor function.  Provide a
287  * prototype for that function and accessor functions.
288  * These are _only_ valid on the head of a PG_compound page.
289  */
290 typedef void compound_page_dtor(struct page *);
291
292 static inline void set_compound_page_dtor(struct page *page,
293                                                 compound_page_dtor *dtor)
294 {
295         page[1].lru.next = (void *)dtor;
296 }
297
298 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
299 {
300         return (compound_page_dtor *)page[1].lru.next;
301 }
302
303 static inline int compound_order(struct page *page)
304 {
305         if (!PageHead(page))
306                 return 0;
307         return (unsigned long)page[1].lru.prev;
308 }
309
310 static inline void set_compound_order(struct page *page, unsigned long order)
311 {
312         page[1].lru.prev = (void *)order;
313 }
314
315 /*
316  * Multiple processes may "see" the same page. E.g. for untouched
317  * mappings of /dev/null, all processes see the same page full of
318  * zeroes, and text pages of executables and shared libraries have
319  * only one copy in memory, at most, normally.
320  *
321  * For the non-reserved pages, page_count(page) denotes a reference count.
322  *   page_count() == 0 means the page is free. page->lru is then used for
323  *   freelist management in the buddy allocator.
324  *   page_count() > 0  means the page has been allocated.
325  *
326  * Pages are allocated by the slab allocator in order to provide memory
327  * to kmalloc and kmem_cache_alloc. In this case, the management of the
328  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
329  * unless a particular usage is carefully commented. (the responsibility of
330  * freeing the kmalloc memory is the caller's, of course).
331  *
332  * A page may be used by anyone else who does a __get_free_page().
333  * In this case, page_count still tracks the references, and should only
334  * be used through the normal accessor functions. The top bits of page->flags
335  * and page->virtual store page management information, but all other fields
336  * are unused and could be used privately, carefully. The management of this
337  * page is the responsibility of the one who allocated it, and those who have
338  * subsequently been given references to it.
339  *
340  * The other pages (we may call them "pagecache pages") are completely
341  * managed by the Linux memory manager: I/O, buffers, swapping etc.
342  * The following discussion applies only to them.
343  *
344  * A pagecache page contains an opaque `private' member, which belongs to the
345  * page's address_space. Usually, this is the address of a circular list of
346  * the page's disk buffers. PG_private must be set to tell the VM to call
347  * into the filesystem to release these pages.
348  *
349  * A page may belong to an inode's memory mapping. In this case, page->mapping
350  * is the pointer to the inode, and page->index is the file offset of the page,
351  * in units of PAGE_CACHE_SIZE.
352  *
353  * If pagecache pages are not associated with an inode, they are said to be
354  * anonymous pages. These may become associated with the swapcache, and in that
355  * case PG_swapcache is set, and page->private is an offset into the swapcache.
356  *
357  * In either case (swapcache or inode backed), the pagecache itself holds one
358  * reference to the page. Setting PG_private should also increment the
359  * refcount. The each user mapping also has a reference to the page.
360  *
361  * The pagecache pages are stored in a per-mapping radix tree, which is
362  * rooted at mapping->page_tree, and indexed by offset.
363  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
364  * lists, we instead now tag pages as dirty/writeback in the radix tree.
365  *
366  * All pagecache pages may be subject to I/O:
367  * - inode pages may need to be read from disk,
368  * - inode pages which have been modified and are MAP_SHARED may need
369  *   to be written back to the inode on disk,
370  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
371  *   modified may need to be swapped out to swap space and (later) to be read
372  *   back into memory.
373  */
374
375 /*
376  * The zone field is never updated after free_area_init_core()
377  * sets it, so none of the operations on it need to be atomic.
378  */
379
380
381 /*
382  * page->flags layout:
383  *
384  * There are three possibilities for how page->flags get
385  * laid out.  The first is for the normal case, without
386  * sparsemem.  The second is for sparsemem when there is
387  * plenty of space for node and section.  The last is when
388  * we have run out of space and have to fall back to an
389  * alternate (slower) way of determining the node.
390  *
391  *        No sparsemem: |       NODE     | ZONE | ... | FLAGS |
392  * with space for node: | SECTION | NODE | ZONE | ... | FLAGS |
393  *   no space for node: | SECTION |     ZONE    | ... | FLAGS |
394  */
395 #ifdef CONFIG_SPARSEMEM
396 #define SECTIONS_WIDTH          SECTIONS_SHIFT
397 #else
398 #define SECTIONS_WIDTH          0
399 #endif
400
401 #define ZONES_WIDTH             ZONES_SHIFT
402
403 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED
404 #define NODES_WIDTH             NODES_SHIFT
405 #else
406 #define NODES_WIDTH             0
407 #endif
408
409 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
410 #define SECTIONS_PGOFF          ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
411 #define NODES_PGOFF             (SECTIONS_PGOFF - NODES_WIDTH)
412 #define ZONES_PGOFF             (NODES_PGOFF - ZONES_WIDTH)
413
414 /*
415  * We are going to use the flags for the page to node mapping if its in
416  * there.  This includes the case where there is no node, so it is implicit.
417  */
418 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
419 #define NODE_NOT_IN_PAGE_FLAGS
420 #endif
421
422 #ifndef PFN_SECTION_SHIFT
423 #define PFN_SECTION_SHIFT 0
424 #endif
425
426 /*
427  * Define the bit shifts to access each section.  For non-existant
428  * sections we define the shift as 0; that plus a 0 mask ensures
429  * the compiler will optimise away reference to them.
430  */
431 #define SECTIONS_PGSHIFT        (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
432 #define NODES_PGSHIFT           (NODES_PGOFF * (NODES_WIDTH != 0))
433 #define ZONES_PGSHIFT           (ZONES_PGOFF * (ZONES_WIDTH != 0))
434
435 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */
436 #ifdef NODE_NOT_IN_PAGEFLAGS
437 #define ZONEID_SHIFT            (SECTIONS_SHIFT + ZONES_SHIFT)
438 #define ZONEID_PGOFF            ((SECTIONS_PGOFF < ZONES_PGOFF)? \
439                                                 SECTIONS_PGOFF : ZONES_PGOFF)
440 #else
441 #define ZONEID_SHIFT            (NODES_SHIFT + ZONES_SHIFT)
442 #define ZONEID_PGOFF            ((NODES_PGOFF < ZONES_PGOFF)? \
443                                                 NODES_PGOFF : ZONES_PGOFF)
444 #endif
445
446 #define ZONEID_PGSHIFT          (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
447
448 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
449 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
450 #endif
451
452 #define ZONES_MASK              ((1UL << ZONES_WIDTH) - 1)
453 #define NODES_MASK              ((1UL << NODES_WIDTH) - 1)
454 #define SECTIONS_MASK           ((1UL << SECTIONS_WIDTH) - 1)
455 #define ZONEID_MASK             ((1UL << ZONEID_SHIFT) - 1)
456
457 static inline enum zone_type page_zonenum(struct page *page)
458 {
459         return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
460 }
461
462 /*
463  * The identification function is only used by the buddy allocator for
464  * determining if two pages could be buddies. We are not really
465  * identifying a zone since we could be using a the section number
466  * id if we have not node id available in page flags.
467  * We guarantee only that it will return the same value for two
468  * combinable pages in a zone.
469  */
470 static inline int page_zone_id(struct page *page)
471 {
472         return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
473 }
474
475 static inline int zone_to_nid(struct zone *zone)
476 {
477 #ifdef CONFIG_NUMA
478         return zone->node;
479 #else
480         return 0;
481 #endif
482 }
483
484 #ifdef NODE_NOT_IN_PAGE_FLAGS
485 extern int page_to_nid(struct page *page);
486 #else
487 static inline int page_to_nid(struct page *page)
488 {
489         return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
490 }
491 #endif
492
493 static inline struct zone *page_zone(struct page *page)
494 {
495         return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
496 }
497
498 static inline unsigned long page_to_section(struct page *page)
499 {
500         return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
501 }
502
503 static inline void set_page_zone(struct page *page, enum zone_type zone)
504 {
505         page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
506         page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
507 }
508
509 static inline void set_page_node(struct page *page, unsigned long node)
510 {
511         page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
512         page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
513 }
514
515 static inline void set_page_section(struct page *page, unsigned long section)
516 {
517         page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
518         page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
519 }
520
521 static inline void set_page_links(struct page *page, enum zone_type zone,
522         unsigned long node, unsigned long pfn)
523 {
524         set_page_zone(page, zone);
525         set_page_node(page, node);
526         set_page_section(page, pfn_to_section_nr(pfn));
527 }
528
529 /*
530  * If a hint addr is less than mmap_min_addr change hint to be as
531  * low as possible but still greater than mmap_min_addr
532  */
533 static inline unsigned long round_hint_to_min(unsigned long hint)
534 {
535 #ifdef CONFIG_SECURITY
536         hint &= PAGE_MASK;
537         if (((void *)hint != NULL) &&
538             (hint < mmap_min_addr))
539                 return PAGE_ALIGN(mmap_min_addr);
540 #endif
541         return hint;
542 }
543
544 /*
545  * Some inline functions in vmstat.h depend on page_zone()
546  */
547 #include <linux/vmstat.h>
548
549 static __always_inline void *lowmem_page_address(struct page *page)
550 {
551         return __va(page_to_pfn(page) << PAGE_SHIFT);
552 }
553
554 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
555 #define HASHED_PAGE_VIRTUAL
556 #endif
557
558 #if defined(WANT_PAGE_VIRTUAL)
559 #define page_address(page) ((page)->virtual)
560 #define set_page_address(page, address)                 \
561         do {                                            \
562                 (page)->virtual = (address);            \
563         } while(0)
564 #define page_address_init()  do { } while(0)
565 #endif
566
567 #if defined(HASHED_PAGE_VIRTUAL)
568 void *page_address(struct page *page);
569 void set_page_address(struct page *page, void *virtual);
570 void page_address_init(void);
571 #endif
572
573 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
574 #define page_address(page) lowmem_page_address(page)
575 #define set_page_address(page, address)  do { } while(0)
576 #define page_address_init()  do { } while(0)
577 #endif
578
579 /*
580  * On an anonymous page mapped into a user virtual memory area,
581  * page->mapping points to its anon_vma, not to a struct address_space;
582  * with the PAGE_MAPPING_ANON bit set to distinguish it.
583  *
584  * Please note that, confusingly, "page_mapping" refers to the inode
585  * address_space which maps the page from disk; whereas "page_mapped"
586  * refers to user virtual address space into which the page is mapped.
587  */
588 #define PAGE_MAPPING_ANON       1
589
590 extern struct address_space swapper_space;
591 static inline struct address_space *page_mapping(struct page *page)
592 {
593         struct address_space *mapping = page->mapping;
594
595         VM_BUG_ON(PageSlab(page));
596         if (unlikely(PageSwapCache(page)))
597                 mapping = &swapper_space;
598         else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
599                 mapping = NULL;
600         return mapping;
601 }
602
603 static inline int PageAnon(struct page *page)
604 {
605         return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
606 }
607
608 /*
609  * Return the pagecache index of the passed page.  Regular pagecache pages
610  * use ->index whereas swapcache pages use ->private
611  */
612 static inline pgoff_t page_index(struct page *page)
613 {
614         if (unlikely(PageSwapCache(page)))
615                 return page_private(page);
616         return page->index;
617 }
618
619 /*
620  * The atomic page->_mapcount, like _count, starts from -1:
621  * so that transitions both from it and to it can be tracked,
622  * using atomic_inc_and_test and atomic_add_negative(-1).
623  */
624 static inline void reset_page_mapcount(struct page *page)
625 {
626         atomic_set(&(page)->_mapcount, -1);
627 }
628
629 static inline int page_mapcount(struct page *page)
630 {
631         return atomic_read(&(page)->_mapcount) + 1;
632 }
633
634 /*
635  * Return true if this page is mapped into pagetables.
636  */
637 static inline int page_mapped(struct page *page)
638 {
639         return atomic_read(&(page)->_mapcount) >= 0;
640 }
641
642 /*
643  * Error return values for the *_nopage functions
644  */
645 #define NOPAGE_SIGBUS   (NULL)
646 #define NOPAGE_OOM      ((struct page *) (-1))
647
648 /*
649  * Error return values for the *_nopfn functions
650  */
651 #define NOPFN_SIGBUS    ((unsigned long) -1)
652 #define NOPFN_OOM       ((unsigned long) -2)
653 #define NOPFN_REFAULT   ((unsigned long) -3)
654
655 /*
656  * Different kinds of faults, as returned by handle_mm_fault().
657  * Used to decide whether a process gets delivered SIGBUS or
658  * just gets major/minor fault counters bumped up.
659  */
660
661 #define VM_FAULT_MINOR  0 /* For backwards compat. Remove me quickly. */
662
663 #define VM_FAULT_OOM    0x0001
664 #define VM_FAULT_SIGBUS 0x0002
665 #define VM_FAULT_MAJOR  0x0004
666 #define VM_FAULT_WRITE  0x0008  /* Special case for get_user_pages */
667
668 #define VM_FAULT_NOPAGE 0x0100  /* ->fault installed the pte, not return page */
669 #define VM_FAULT_LOCKED 0x0200  /* ->fault locked the returned page */
670
671 #define VM_FAULT_ERROR  (VM_FAULT_OOM | VM_FAULT_SIGBUS)
672
673 #define offset_in_page(p)       ((unsigned long)(p) & ~PAGE_MASK)
674
675 extern void show_free_areas(void);
676
677 #ifdef CONFIG_SHMEM
678 int shmem_lock(struct file *file, int lock, struct user_struct *user);
679 #else
680 static inline int shmem_lock(struct file *file, int lock,
681                              struct user_struct *user)
682 {
683         return 0;
684 }
685 #endif
686 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);
687
688 int shmem_zero_setup(struct vm_area_struct *);
689
690 #ifndef CONFIG_MMU
691 extern unsigned long shmem_get_unmapped_area(struct file *file,
692                                              unsigned long addr,
693                                              unsigned long len,
694                                              unsigned long pgoff,
695                                              unsigned long flags);
696 #endif
697
698 extern int can_do_mlock(void);
699 extern int user_shm_lock(size_t, struct user_struct *);
700 extern void user_shm_unlock(size_t, struct user_struct *);
701
702 /*
703  * Parameter block passed down to zap_pte_range in exceptional cases.
704  */
705 struct zap_details {
706         struct vm_area_struct *nonlinear_vma;   /* Check page->index if set */
707         struct address_space *check_mapping;    /* Check page->mapping if set */
708         pgoff_t first_index;                    /* Lowest page->index to unmap */
709         pgoff_t last_index;                     /* Highest page->index to unmap */
710         spinlock_t *i_mmap_lock;                /* For unmap_mapping_range: */
711         unsigned long truncate_count;           /* Compare vm_truncate_count */
712 };
713
714 struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t);
715 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
716                 unsigned long size, struct zap_details *);
717 unsigned long unmap_vmas(struct mmu_gather **tlb,
718                 struct vm_area_struct *start_vma, unsigned long start_addr,
719                 unsigned long end_addr, unsigned long *nr_accounted,
720                 struct zap_details *);
721
722 /**
723  * mm_walk - callbacks for walk_page_range
724  * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
725  * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
726  * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
727  * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
728  * @pte_hole: if set, called for each hole at all levels
729  *
730  * (see walk_page_range for more details)
731  */
732 struct mm_walk {
733         int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, void *);
734         int (*pud_entry)(pud_t *, unsigned long, unsigned long, void *);
735         int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, void *);
736         int (*pte_entry)(pte_t *, unsigned long, unsigned long, void *);
737         int (*pte_hole)(unsigned long, unsigned long, void *);
738 };
739
740 int walk_page_range(const struct mm_struct *, unsigned long addr,
741                     unsigned long end, const struct mm_walk *walk,
742                     void *private);
743 void free_pgd_range(struct mmu_gather **tlb, unsigned long addr,
744                 unsigned long end, unsigned long floor, unsigned long ceiling);
745 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma,
746                 unsigned long floor, unsigned long ceiling);
747 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
748                         struct vm_area_struct *vma);
749 void unmap_mapping_range(struct address_space *mapping,
750                 loff_t const holebegin, loff_t const holelen, int even_cows);
751
752 static inline void unmap_shared_mapping_range(struct address_space *mapping,
753                 loff_t const holebegin, loff_t const holelen)
754 {
755         unmap_mapping_range(mapping, holebegin, holelen, 0);
756 }
757
758 extern int vmtruncate(struct inode * inode, loff_t offset);
759 extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end);
760
761 #ifdef CONFIG_MMU
762 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
763                         unsigned long address, int write_access);
764 #else
765 static inline int handle_mm_fault(struct mm_struct *mm,
766                         struct vm_area_struct *vma, unsigned long address,
767                         int write_access)
768 {
769         /* should never happen if there's no MMU */
770         BUG();
771         return VM_FAULT_SIGBUS;
772 }
773 #endif
774
775 extern int make_pages_present(unsigned long addr, unsigned long end);
776 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
777
778 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
779                 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
780 void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long);
781
782 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
783 extern void do_invalidatepage(struct page *page, unsigned long offset);
784
785 int __set_page_dirty_nobuffers(struct page *page);
786 int __set_page_dirty_no_writeback(struct page *page);
787 int redirty_page_for_writepage(struct writeback_control *wbc,
788                                 struct page *page);
789 int FASTCALL(set_page_dirty(struct page *page));
790 int set_page_dirty_lock(struct page *page);
791 int clear_page_dirty_for_io(struct page *page);
792
793 extern unsigned long move_page_tables(struct vm_area_struct *vma,
794                 unsigned long old_addr, struct vm_area_struct *new_vma,
795                 unsigned long new_addr, unsigned long len);
796 extern unsigned long do_mremap(unsigned long addr,
797                                unsigned long old_len, unsigned long new_len,
798                                unsigned long flags, unsigned long new_addr);
799 extern int mprotect_fixup(struct vm_area_struct *vma,
800                           struct vm_area_struct **pprev, unsigned long start,
801                           unsigned long end, unsigned long newflags);
802
803 /*
804  * A callback you can register to apply pressure to ageable caches.
805  *
806  * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'.  It should
807  * look through the least-recently-used 'nr_to_scan' entries and
808  * attempt to free them up.  It should return the number of objects
809  * which remain in the cache.  If it returns -1, it means it cannot do
810  * any scanning at this time (eg. there is a risk of deadlock).
811  *
812  * The 'gfpmask' refers to the allocation we are currently trying to
813  * fulfil.
814  *
815  * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
816  * querying the cache size, so a fastpath for that case is appropriate.
817  */
818 struct shrinker {
819         int (*shrink)(int nr_to_scan, gfp_t gfp_mask);
820         int seeks;      /* seeks to recreate an obj */
821
822         /* These are for internal use */
823         struct list_head list;
824         long nr;        /* objs pending delete */
825 };
826 #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
827 extern void register_shrinker(struct shrinker *);
828 extern void unregister_shrinker(struct shrinker *);
829
830 int vma_wants_writenotify(struct vm_area_struct *vma);
831
832 extern pte_t *FASTCALL(get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl));
833
834 #ifdef __PAGETABLE_PUD_FOLDED
835 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
836                                                 unsigned long address)
837 {
838         return 0;
839 }
840 #else
841 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
842 #endif
843
844 #ifdef __PAGETABLE_PMD_FOLDED
845 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
846                                                 unsigned long address)
847 {
848         return 0;
849 }
850 #else
851 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
852 #endif
853
854 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
855 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
856
857 /*
858  * The following ifdef needed to get the 4level-fixup.h header to work.
859  * Remove it when 4level-fixup.h has been removed.
860  */
861 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
862 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
863 {
864         return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
865                 NULL: pud_offset(pgd, address);
866 }
867
868 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
869 {
870         return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
871                 NULL: pmd_offset(pud, address);
872 }
873 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
874
875 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
876 /*
877  * We tuck a spinlock to guard each pagetable page into its struct page,
878  * at page->private, with BUILD_BUG_ON to make sure that this will not
879  * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
880  * When freeing, reset page->mapping so free_pages_check won't complain.
881  */
882 #define __pte_lockptr(page)     &((page)->ptl)
883 #define pte_lock_init(_page)    do {                                    \
884         spin_lock_init(__pte_lockptr(_page));                           \
885 } while (0)
886 #define pte_lock_deinit(page)   ((page)->mapping = NULL)
887 #define pte_lockptr(mm, pmd)    ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
888 #else
889 /*
890  * We use mm->page_table_lock to guard all pagetable pages of the mm.
891  */
892 #define pte_lock_init(page)     do {} while (0)
893 #define pte_lock_deinit(page)   do {} while (0)
894 #define pte_lockptr(mm, pmd)    ({(void)(pmd); &(mm)->page_table_lock;})
895 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
896
897 #define pte_offset_map_lock(mm, pmd, address, ptlp)     \
898 ({                                                      \
899         spinlock_t *__ptl = pte_lockptr(mm, pmd);       \
900         pte_t *__pte = pte_offset_map(pmd, address);    \
901         *(ptlp) = __ptl;                                \
902         spin_lock(__ptl);                               \
903         __pte;                                          \
904 })
905
906 #define pte_unmap_unlock(pte, ptl)      do {            \
907         spin_unlock(ptl);                               \
908         pte_unmap(pte);                                 \
909 } while (0)
910
911 #define pte_alloc_map(mm, pmd, address)                 \
912         ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
913                 NULL: pte_offset_map(pmd, address))
914
915 #define pte_alloc_map_lock(mm, pmd, address, ptlp)      \
916         ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
917                 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
918
919 #define pte_alloc_kernel(pmd, address)                  \
920         ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
921                 NULL: pte_offset_kernel(pmd, address))
922
923 extern void free_area_init(unsigned long * zones_size);
924 extern void free_area_init_node(int nid, pg_data_t *pgdat,
925         unsigned long * zones_size, unsigned long zone_start_pfn, 
926         unsigned long *zholes_size);
927 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
928 /*
929  * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
930  * zones, allocate the backing mem_map and account for memory holes in a more
931  * architecture independent manner. This is a substitute for creating the
932  * zone_sizes[] and zholes_size[] arrays and passing them to
933  * free_area_init_node()
934  *
935  * An architecture is expected to register range of page frames backed by
936  * physical memory with add_active_range() before calling
937  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
938  * usage, an architecture is expected to do something like
939  *
940  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
941  *                                                       max_highmem_pfn};
942  * for_each_valid_physical_page_range()
943  *      add_active_range(node_id, start_pfn, end_pfn)
944  * free_area_init_nodes(max_zone_pfns);
945  *
946  * If the architecture guarantees that there are no holes in the ranges
947  * registered with add_active_range(), free_bootmem_active_regions()
948  * will call free_bootmem_node() for each registered physical page range.
949  * Similarly sparse_memory_present_with_active_regions() calls
950  * memory_present() for each range when SPARSEMEM is enabled.
951  *
952  * See mm/page_alloc.c for more information on each function exposed by
953  * CONFIG_ARCH_POPULATES_NODE_MAP
954  */
955 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
956 extern void add_active_range(unsigned int nid, unsigned long start_pfn,
957                                         unsigned long end_pfn);
958 extern void shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
959                                                 unsigned long new_end_pfn);
960 extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn,
961                                         unsigned long end_pfn);
962 extern void remove_all_active_ranges(void);
963 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
964                                                 unsigned long end_pfn);
965 extern void get_pfn_range_for_nid(unsigned int nid,
966                         unsigned long *start_pfn, unsigned long *end_pfn);
967 extern unsigned long find_min_pfn_with_active_regions(void);
968 extern unsigned long find_max_pfn_with_active_regions(void);
969 extern void free_bootmem_with_active_regions(int nid,
970                                                 unsigned long max_low_pfn);
971 extern void sparse_memory_present_with_active_regions(int nid);
972 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
973 extern int early_pfn_to_nid(unsigned long pfn);
974 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
975 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
976 extern void set_dma_reserve(unsigned long new_dma_reserve);
977 extern void memmap_init_zone(unsigned long, int, unsigned long,
978                                 unsigned long, enum memmap_context);
979 extern void setup_per_zone_pages_min(void);
980 extern void mem_init(void);
981 extern void show_mem(void);
982 extern void si_meminfo(struct sysinfo * val);
983 extern void si_meminfo_node(struct sysinfo *val, int nid);
984
985 #ifdef CONFIG_NUMA
986 extern void setup_per_cpu_pageset(void);
987 #else
988 static inline void setup_per_cpu_pageset(void) {}
989 #endif
990
991 /* prio_tree.c */
992 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
993 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
994 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
995 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
996         struct prio_tree_iter *iter);
997
998 #define vma_prio_tree_foreach(vma, iter, root, begin, end)      \
999         for (prio_tree_iter_init(iter, root, begin, end), vma = NULL;   \
1000                 (vma = vma_prio_tree_next(vma, iter)); )
1001
1002 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1003                                         struct list_head *list)
1004 {
1005         vma->shared.vm_set.parent = NULL;
1006         list_add_tail(&vma->shared.vm_set.list, list);
1007 }
1008
1009 /* mmap.c */
1010 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1011 extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
1012         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1013 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1014         struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1015         unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1016         struct mempolicy *);
1017 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1018 extern int split_vma(struct mm_struct *,
1019         struct vm_area_struct *, unsigned long addr, int new_below);
1020 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1021 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1022         struct rb_node **, struct rb_node *);
1023 extern void unlink_file_vma(struct vm_area_struct *);
1024 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1025         unsigned long addr, unsigned long len, pgoff_t pgoff);
1026 extern void exit_mmap(struct mm_struct *);
1027 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1028 extern int install_special_mapping(struct mm_struct *mm,
1029                                    unsigned long addr, unsigned long len,
1030                                    unsigned long flags, struct page **pages);
1031
1032 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1033
1034 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1035         unsigned long len, unsigned long prot,
1036         unsigned long flag, unsigned long pgoff);
1037 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1038         unsigned long len, unsigned long flags,
1039         unsigned int vm_flags, unsigned long pgoff,
1040         int accountable);
1041
1042 static inline unsigned long do_mmap(struct file *file, unsigned long addr,
1043         unsigned long len, unsigned long prot,
1044         unsigned long flag, unsigned long offset)
1045 {
1046         unsigned long ret = -EINVAL;
1047         if ((offset + PAGE_ALIGN(len)) < offset)
1048                 goto out;
1049         if (!(offset & ~PAGE_MASK))
1050                 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1051 out:
1052         return ret;
1053 }
1054
1055 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1056
1057 extern unsigned long do_brk(unsigned long, unsigned long);
1058
1059 /* filemap.c */
1060 extern unsigned long page_unuse(struct page *);
1061 extern void truncate_inode_pages(struct address_space *, loff_t);
1062 extern void truncate_inode_pages_range(struct address_space *,
1063                                        loff_t lstart, loff_t lend);
1064
1065 /* generic vm_area_ops exported for stackable file systems */
1066 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1067
1068 /* mm/page-writeback.c */
1069 int write_one_page(struct page *page, int wait);
1070
1071 /* readahead.c */
1072 #define VM_MAX_READAHEAD        128     /* kbytes */
1073 #define VM_MIN_READAHEAD        16      /* kbytes (includes current page) */
1074
1075 int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
1076                         pgoff_t offset, unsigned long nr_to_read);
1077 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1078                         pgoff_t offset, unsigned long nr_to_read);
1079
1080 void page_cache_sync_readahead(struct address_space *mapping,
1081                                struct file_ra_state *ra,
1082                                struct file *filp,
1083                                pgoff_t offset,
1084                                unsigned long size);
1085
1086 void page_cache_async_readahead(struct address_space *mapping,
1087                                 struct file_ra_state *ra,
1088                                 struct file *filp,
1089                                 struct page *pg,
1090                                 pgoff_t offset,
1091                                 unsigned long size);
1092
1093 unsigned long max_sane_readahead(unsigned long nr);
1094
1095 /* Do stack extension */
1096 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1097 #ifdef CONFIG_IA64
1098 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1099 #endif
1100 extern int expand_stack_downwards(struct vm_area_struct *vma,
1101                                   unsigned long address);
1102
1103 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1104 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1105 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1106                                              struct vm_area_struct **pprev);
1107
1108 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1109    NULL if none.  Assume start_addr < end_addr. */
1110 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1111 {
1112         struct vm_area_struct * vma = find_vma(mm,start_addr);
1113
1114         if (vma && end_addr <= vma->vm_start)
1115                 vma = NULL;
1116         return vma;
1117 }
1118
1119 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1120 {
1121         return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1122 }
1123
1124 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1125 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1126 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1127                         unsigned long pfn, unsigned long size, pgprot_t);
1128 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1129 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1130                         unsigned long pfn);
1131
1132 struct page *follow_page(struct vm_area_struct *, unsigned long address,
1133                         unsigned int foll_flags);
1134 #define FOLL_WRITE      0x01    /* check pte is writable */
1135 #define FOLL_TOUCH      0x02    /* mark page accessed */
1136 #define FOLL_GET        0x04    /* do get_page on page */
1137 #define FOLL_ANON       0x08    /* give ZERO_PAGE if no pgtable */
1138
1139 typedef int (*pte_fn_t)(pte_t *pte, struct page *pmd_page, unsigned long addr,
1140                         void *data);
1141 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1142                                unsigned long size, pte_fn_t fn, void *data);
1143
1144 #ifdef CONFIG_PROC_FS
1145 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1146 #else
1147 static inline void vm_stat_account(struct mm_struct *mm,
1148                         unsigned long flags, struct file *file, long pages)
1149 {
1150 }
1151 #endif /* CONFIG_PROC_FS */
1152
1153 #ifdef CONFIG_DEBUG_PAGEALLOC
1154 extern int debug_pagealloc_enabled;
1155
1156 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1157
1158 static inline void enable_debug_pagealloc(void)
1159 {
1160         debug_pagealloc_enabled = 1;
1161 }
1162 #else
1163 static inline void
1164 kernel_map_pages(struct page *page, int numpages, int enable) {}
1165 static inline void enable_debug_pagealloc(void)
1166 {
1167 }
1168 #endif
1169
1170 extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
1171 #ifdef  __HAVE_ARCH_GATE_AREA
1172 int in_gate_area_no_task(unsigned long addr);
1173 int in_gate_area(struct task_struct *task, unsigned long addr);
1174 #else
1175 int in_gate_area_no_task(unsigned long addr);
1176 #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1177 #endif  /* __HAVE_ARCH_GATE_AREA */
1178
1179 int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *,
1180                                         void __user *, size_t *, loff_t *);
1181 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
1182                         unsigned long lru_pages);
1183 void drop_pagecache(void);
1184 void drop_slab(void);
1185
1186 #ifndef CONFIG_MMU
1187 #define randomize_va_space 0
1188 #else
1189 extern int randomize_va_space;
1190 #endif
1191
1192 const char * arch_vma_name(struct vm_area_struct *vma);
1193 void print_vma_addr(char *prefix, unsigned long rip);
1194
1195 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1196 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1197 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1198 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1199 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1200 void *vmemmap_alloc_block(unsigned long size, int node);
1201 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1202 int vmemmap_populate_basepages(struct page *start_page,
1203                                                 unsigned long pages, int node);
1204 int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
1205
1206 #endif /* __KERNEL__ */
1207 #endif /* _LINUX_MM_H */