2 * linux/drivers/block/cfq-iosched.c
4 * CFQ, or complete fairness queueing, disk scheduler.
6 * Based on ideas from a previously unfinished io
7 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
9 * Copyright (C) 2003 Jens Axboe <axboe@suse.de>
11 #include <linux/kernel.h>
13 #include <linux/blkdev.h>
14 #include <linux/elevator.h>
15 #include <linux/bio.h>
16 #include <linux/config.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/init.h>
20 #include <linux/compiler.h>
21 #include <linux/hash.h>
22 #include <linux/rbtree.h>
23 #include <linux/mempool.h>
25 static unsigned long max_elapsed_crq;
26 static unsigned long max_elapsed_dispatch;
31 static int cfq_quantum = 4; /* max queue in one round of service */
32 static int cfq_queued = 8; /* minimum rq allocate limit per-queue*/
33 static int cfq_service = HZ; /* period over which service is avg */
34 static int cfq_fifo_expire_r = HZ / 2; /* fifo timeout for sync requests */
35 static int cfq_fifo_expire_w = 5 * HZ; /* fifo timeout for async requests */
36 static int cfq_fifo_rate = HZ / 8; /* fifo expiry rate */
37 static int cfq_back_max = 16 * 1024; /* maximum backwards seek, in KiB */
38 static int cfq_back_penalty = 2; /* penalty of a backwards seek */
41 * for the hash of cfqq inside the cfqd
43 #define CFQ_QHASH_SHIFT 6
44 #define CFQ_QHASH_ENTRIES (1 << CFQ_QHASH_SHIFT)
45 #define list_entry_qhash(entry) hlist_entry((entry), struct cfq_queue, cfq_hash)
48 * for the hash of crq inside the cfqq
50 #define CFQ_MHASH_SHIFT 6
51 #define CFQ_MHASH_BLOCK(sec) ((sec) >> 3)
52 #define CFQ_MHASH_ENTRIES (1 << CFQ_MHASH_SHIFT)
53 #define CFQ_MHASH_FN(sec) hash_long(CFQ_MHASH_BLOCK(sec), CFQ_MHASH_SHIFT)
54 #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors)
55 #define list_entry_hash(ptr) hlist_entry((ptr), struct cfq_rq, hash)
57 #define list_entry_cfqq(ptr) list_entry((ptr), struct cfq_queue, cfq_list)
59 #define RQ_DATA(rq) (rq)->elevator_private
65 #define RB_EMPTY(node) ((node)->rb_node == NULL)
66 #define RB_CLEAR_COLOR(node) (node)->rb_color = RB_NONE
67 #define RB_CLEAR(node) do { \
68 (node)->rb_parent = NULL; \
69 RB_CLEAR_COLOR((node)); \
70 (node)->rb_right = NULL; \
71 (node)->rb_left = NULL; \
73 #define RB_CLEAR_ROOT(root) ((root)->rb_node = NULL)
74 #define ON_RB(node) ((node)->rb_color != RB_NONE)
75 #define rb_entry_crq(node) rb_entry((node), struct cfq_rq, rb_node)
76 #define rq_rb_key(rq) (rq)->sector
79 * threshold for switching off non-tag accounting
81 #define CFQ_MAX_TAG (4)
84 * sort key types and names
94 static char *cfq_key_types[] = { "pgid", "tgid", "uid", "gid", NULL };
96 static kmem_cache_t *crq_pool;
97 static kmem_cache_t *cfq_pool;
98 static kmem_cache_t *cfq_ioc_pool;
101 struct list_head rr_list;
102 struct list_head empty_list;
104 struct hlist_head *cfq_hash;
105 struct hlist_head *crq_hash;
107 /* queues on rr_list (ie they have pending requests */
108 unsigned int busy_queues;
110 unsigned int max_queued;
118 request_queue_t *queue;
120 sector_t last_sector;
125 * tunables, see top of file
127 unsigned int cfq_quantum;
128 unsigned int cfq_queued;
129 unsigned int cfq_fifo_expire_r;
130 unsigned int cfq_fifo_expire_w;
131 unsigned int cfq_fifo_batch_expire;
132 unsigned int cfq_back_penalty;
133 unsigned int cfq_back_max;
134 unsigned int find_best_crq;
136 unsigned int cfq_tagged;
140 /* reference count */
142 /* parent cfq_data */
143 struct cfq_data *cfqd;
144 /* hash of mergeable requests */
145 struct hlist_node cfq_hash;
148 /* whether queue is on rr (or empty) list */
150 /* on either rr or empty list of cfqd */
151 struct list_head cfq_list;
152 /* sorted list of pending requests */
153 struct rb_root sort_list;
154 /* if fifo isn't expired, next request to serve */
155 struct cfq_rq *next_crq;
156 /* requests queued in sort_list */
158 /* currently allocated requests */
160 /* fifo list of requests in sort_list */
161 struct list_head fifo[2];
162 /* last time fifo expired */
163 unsigned long last_fifo_expire;
167 unsigned long service_start;
168 unsigned long service_used;
170 unsigned int max_rate;
172 /* number of requests that have been handed to the driver */
174 /* number of currently allocated requests */
179 struct rb_node rb_node;
181 struct request *request;
182 struct hlist_node hash;
184 struct cfq_queue *cfq_queue;
185 struct cfq_io_context *io_context;
187 unsigned long service_start;
188 unsigned long queue_start;
190 unsigned int in_flight : 1;
191 unsigned int accounted : 1;
192 unsigned int is_sync : 1;
193 unsigned int is_write : 1;
196 static struct cfq_queue *cfq_find_cfq_hash(struct cfq_data *, unsigned long);
197 static void cfq_dispatch_sort(request_queue_t *, struct cfq_rq *);
198 static void cfq_update_next_crq(struct cfq_rq *);
199 static void cfq_put_cfqd(struct cfq_data *cfqd);
202 * what the fairness is based on (ie how processes are grouped and
205 static inline unsigned long
206 cfq_hash_key(struct cfq_data *cfqd, struct task_struct *tsk)
209 * optimize this so that ->key_type is the offset into the struct
211 switch (cfqd->key_type) {
213 return process_group(tsk);
225 * lots of deadline iosched dupes, can be abstracted later...
227 static inline void cfq_del_crq_hash(struct cfq_rq *crq)
229 hlist_del_init(&crq->hash);
232 static void cfq_remove_merge_hints(request_queue_t *q, struct cfq_rq *crq)
234 cfq_del_crq_hash(crq);
236 if (q->last_merge == crq->request)
237 q->last_merge = NULL;
239 cfq_update_next_crq(crq);
242 static inline void cfq_add_crq_hash(struct cfq_data *cfqd, struct cfq_rq *crq)
244 const int hash_idx = CFQ_MHASH_FN(rq_hash_key(crq->request));
246 BUG_ON(!hlist_unhashed(&crq->hash));
248 hlist_add_head(&crq->hash, &cfqd->crq_hash[hash_idx]);
251 static struct request *cfq_find_rq_hash(struct cfq_data *cfqd, sector_t offset)
253 struct hlist_head *hash_list = &cfqd->crq_hash[CFQ_MHASH_FN(offset)];
254 struct hlist_node *entry, *next;
256 hlist_for_each_safe(entry, next, hash_list) {
257 struct cfq_rq *crq = list_entry_hash(entry);
258 struct request *__rq = crq->request;
260 BUG_ON(hlist_unhashed(&crq->hash));
262 if (!rq_mergeable(__rq)) {
263 cfq_del_crq_hash(crq);
267 if (rq_hash_key(__rq) == offset)
275 * Lifted from AS - choose which of crq1 and crq2 that is best served now.
276 * We choose the request that is closest to the head right now. Distance
277 * behind the head are penalized and only allowed to a certain extent.
279 static struct cfq_rq *
280 cfq_choose_req(struct cfq_data *cfqd, struct cfq_rq *crq1, struct cfq_rq *crq2)
282 sector_t last, s1, s2, d1 = 0, d2 = 0;
283 int r1_wrap = 0, r2_wrap = 0; /* requests are behind the disk head */
284 unsigned long back_max;
286 if (crq1 == NULL || crq1 == crq2)
291 s1 = crq1->request->sector;
292 s2 = crq2->request->sector;
294 last = cfqd->last_sector;
297 if (!list_empty(&cfqd->queue->queue_head)) {
298 struct list_head *entry = &cfqd->queue->queue_head;
299 unsigned long distance = ~0UL;
302 while ((entry = entry->prev) != &cfqd->queue->queue_head) {
303 rq = list_entry_rq(entry);
305 if (blk_barrier_rq(rq))
308 if (distance < abs(s1 - rq->sector + rq->nr_sectors)) {
309 distance = abs(s1 - rq->sector +rq->nr_sectors);
310 last = rq->sector + rq->nr_sectors;
312 if (distance < abs(s2 - rq->sector + rq->nr_sectors)) {
313 distance = abs(s2 - rq->sector +rq->nr_sectors);
314 last = rq->sector + rq->nr_sectors;
321 * by definition, 1KiB is 2 sectors
323 back_max = cfqd->cfq_back_max * 2;
326 * Strict one way elevator _except_ in the case where we allow
327 * short backward seeks which are biased as twice the cost of a
328 * similar forward seek.
332 else if (s1 + back_max >= last)
333 d1 = (last - s1) * cfqd->cfq_back_penalty;
339 else if (s2 + back_max >= last)
340 d2 = (last - s2) * cfqd->cfq_back_penalty;
344 /* Found required data */
345 if (!r1_wrap && r2_wrap)
347 else if (!r2_wrap && r1_wrap)
349 else if (r1_wrap && r2_wrap) {
350 /* both behind the head */
357 /* Both requests in front of the head */
371 * would be nice to take fifo expire time into account as well
373 static struct cfq_rq *
374 cfq_find_next_crq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
377 struct cfq_rq *crq_next = NULL, *crq_prev = NULL;
378 struct rb_node *rbnext, *rbprev;
380 if (!ON_RB(&last->rb_node))
383 if ((rbnext = rb_next(&last->rb_node)) == NULL)
384 rbnext = rb_first(&cfqq->sort_list);
386 rbprev = rb_prev(&last->rb_node);
389 crq_prev = rb_entry_crq(rbprev);
391 crq_next = rb_entry_crq(rbnext);
393 return cfq_choose_req(cfqd, crq_next, crq_prev);
396 static void cfq_update_next_crq(struct cfq_rq *crq)
398 struct cfq_queue *cfqq = crq->cfq_queue;
400 if (cfqq->next_crq == crq)
401 cfqq->next_crq = cfq_find_next_crq(cfqq->cfqd, cfqq, crq);
404 static int cfq_check_sort_rr_list(struct cfq_queue *cfqq)
406 struct list_head *head = &cfqq->cfqd->rr_list;
407 struct list_head *next, *prev;
410 * list might still be ordered
412 next = cfqq->cfq_list.next;
414 struct cfq_queue *cnext = list_entry_cfqq(next);
416 if (cfqq->service_used > cnext->service_used)
420 prev = cfqq->cfq_list.prev;
422 struct cfq_queue *cprev = list_entry_cfqq(prev);
424 if (cfqq->service_used < cprev->service_used)
431 static void cfq_sort_rr_list(struct cfq_queue *cfqq, int new_queue)
433 struct list_head *entry = &cfqq->cfqd->rr_list;
437 if (!new_queue && !cfq_check_sort_rr_list(cfqq))
440 list_del(&cfqq->cfq_list);
443 * sort by our mean service_used, sub-sort by in-flight requests
445 while ((entry = entry->prev) != &cfqq->cfqd->rr_list) {
446 struct cfq_queue *__cfqq = list_entry_cfqq(entry);
448 if (cfqq->service_used > __cfqq->service_used)
450 else if (cfqq->service_used == __cfqq->service_used) {
451 struct list_head *prv;
453 while ((prv = entry->prev) != &cfqq->cfqd->rr_list) {
454 __cfqq = list_entry_cfqq(prv);
456 WARN_ON(__cfqq->service_used > cfqq->service_used);
457 if (cfqq->service_used != __cfqq->service_used)
459 if (cfqq->in_flight > __cfqq->in_flight)
467 list_add(&cfqq->cfq_list, entry);
471 * add to busy list of queues for service, trying to be fair in ordering
472 * the pending list according to requests serviced
475 cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
478 * it's currently on the empty list
483 if (time_after(jiffies, cfqq->service_start + cfq_service))
484 cfqq->service_used >>= 3;
486 cfq_sort_rr_list(cfqq, 1);
490 cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
492 list_move(&cfqq->cfq_list, &cfqd->empty_list);
495 BUG_ON(!cfqd->busy_queues);
500 * rb tree support functions
502 static inline void cfq_del_crq_rb(struct cfq_rq *crq)
504 struct cfq_queue *cfqq = crq->cfq_queue;
506 if (ON_RB(&crq->rb_node)) {
507 struct cfq_data *cfqd = cfqq->cfqd;
509 BUG_ON(!cfqq->queued[crq->is_sync]);
511 cfq_update_next_crq(crq);
513 cfqq->queued[crq->is_sync]--;
514 rb_erase(&crq->rb_node, &cfqq->sort_list);
515 RB_CLEAR_COLOR(&crq->rb_node);
517 if (RB_EMPTY(&cfqq->sort_list) && cfqq->on_rr)
518 cfq_del_cfqq_rr(cfqd, cfqq);
522 static struct cfq_rq *
523 __cfq_add_crq_rb(struct cfq_rq *crq)
525 struct rb_node **p = &crq->cfq_queue->sort_list.rb_node;
526 struct rb_node *parent = NULL;
527 struct cfq_rq *__crq;
531 __crq = rb_entry_crq(parent);
533 if (crq->rb_key < __crq->rb_key)
535 else if (crq->rb_key > __crq->rb_key)
541 rb_link_node(&crq->rb_node, parent, p);
545 static void cfq_add_crq_rb(struct cfq_rq *crq)
547 struct cfq_queue *cfqq = crq->cfq_queue;
548 struct cfq_data *cfqd = cfqq->cfqd;
549 struct request *rq = crq->request;
550 struct cfq_rq *__alias;
552 crq->rb_key = rq_rb_key(rq);
553 cfqq->queued[crq->is_sync]++;
556 * looks a little odd, but the first insert might return an alias.
557 * if that happens, put the alias on the dispatch list
559 while ((__alias = __cfq_add_crq_rb(crq)) != NULL)
560 cfq_dispatch_sort(cfqd->queue, __alias);
562 rb_insert_color(&crq->rb_node, &cfqq->sort_list);
565 cfq_add_cfqq_rr(cfqd, cfqq);
568 * check if this request is a better next-serve candidate
570 cfqq->next_crq = cfq_choose_req(cfqd, cfqq->next_crq, crq);
574 cfq_reposition_crq_rb(struct cfq_queue *cfqq, struct cfq_rq *crq)
576 if (ON_RB(&crq->rb_node)) {
577 rb_erase(&crq->rb_node, &cfqq->sort_list);
578 cfqq->queued[crq->is_sync]--;
584 static struct request *
585 cfq_find_rq_rb(struct cfq_data *cfqd, sector_t sector)
587 const unsigned long key = cfq_hash_key(cfqd, current);
588 struct cfq_queue *cfqq = cfq_find_cfq_hash(cfqd, key);
594 n = cfqq->sort_list.rb_node;
596 struct cfq_rq *crq = rb_entry_crq(n);
598 if (sector < crq->rb_key)
600 else if (sector > crq->rb_key)
610 static void cfq_deactivate_request(request_queue_t *q, struct request *rq)
612 struct cfq_rq *crq = RQ_DATA(rq);
615 struct cfq_queue *cfqq = crq->cfq_queue;
617 if (cfqq->cfqd->cfq_tagged) {
618 cfqq->service_used--;
619 cfq_sort_rr_list(cfqq, 0);
622 if (crq->accounted) {
624 cfqq->cfqd->rq_in_driver--;
630 * make sure the service time gets corrected on reissue of this request
632 static void cfq_requeue_request(request_queue_t *q, struct request *rq)
634 cfq_deactivate_request(q, rq);
635 list_add(&rq->queuelist, &q->queue_head);
638 static void cfq_remove_request(request_queue_t *q, struct request *rq)
640 struct cfq_rq *crq = RQ_DATA(rq);
643 cfq_remove_merge_hints(q, crq);
644 list_del_init(&rq->queuelist);
652 cfq_merge(request_queue_t *q, struct request **req, struct bio *bio)
654 struct cfq_data *cfqd = q->elevator->elevator_data;
655 struct request *__rq;
658 ret = elv_try_last_merge(q, bio);
659 if (ret != ELEVATOR_NO_MERGE) {
660 __rq = q->last_merge;
664 __rq = cfq_find_rq_hash(cfqd, bio->bi_sector);
666 BUG_ON(__rq->sector + __rq->nr_sectors != bio->bi_sector);
668 if (elv_rq_merge_ok(__rq, bio)) {
669 ret = ELEVATOR_BACK_MERGE;
674 __rq = cfq_find_rq_rb(cfqd, bio->bi_sector + bio_sectors(bio));
676 if (elv_rq_merge_ok(__rq, bio)) {
677 ret = ELEVATOR_FRONT_MERGE;
682 return ELEVATOR_NO_MERGE;
684 q->last_merge = __rq;
690 static void cfq_merged_request(request_queue_t *q, struct request *req)
692 struct cfq_data *cfqd = q->elevator->elevator_data;
693 struct cfq_rq *crq = RQ_DATA(req);
695 cfq_del_crq_hash(crq);
696 cfq_add_crq_hash(cfqd, crq);
698 if (ON_RB(&crq->rb_node) && (rq_rb_key(req) != crq->rb_key)) {
699 struct cfq_queue *cfqq = crq->cfq_queue;
701 cfq_update_next_crq(crq);
702 cfq_reposition_crq_rb(cfqq, crq);
709 cfq_merged_requests(request_queue_t *q, struct request *rq,
710 struct request *next)
712 struct cfq_rq *crq = RQ_DATA(rq);
713 struct cfq_rq *cnext = RQ_DATA(next);
715 cfq_merged_request(q, rq);
717 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist)) {
718 if (time_before(cnext->queue_start, crq->queue_start)) {
719 list_move(&rq->queuelist, &next->queuelist);
720 crq->queue_start = cnext->queue_start;
724 cfq_update_next_crq(cnext);
725 cfq_remove_request(q, next);
729 * we dispatch cfqd->cfq_quantum requests in total from the rr_list queues,
730 * this function sector sorts the selected request to minimize seeks. we start
731 * at cfqd->last_sector, not 0.
733 static void cfq_dispatch_sort(request_queue_t *q, struct cfq_rq *crq)
735 struct cfq_data *cfqd = q->elevator->elevator_data;
736 struct cfq_queue *cfqq = crq->cfq_queue;
737 struct list_head *head = &q->queue_head, *entry = head;
738 struct request *__rq;
742 cfq_remove_merge_hints(q, crq);
743 list_del(&crq->request->queuelist);
745 last = cfqd->last_sector;
746 while ((entry = entry->prev) != head) {
747 __rq = list_entry_rq(entry);
749 if (blk_barrier_rq(crq->request))
751 if (!blk_fs_request(crq->request))
754 if (crq->request->sector > __rq->sector)
756 if (__rq->sector > last && crq->request->sector < last) {
757 last = crq->request->sector;
762 cfqd->last_sector = last;
765 list_add(&crq->request->queuelist, entry);
769 * return expired entry, or NULL to just start from scratch in rbtree
771 static inline struct cfq_rq *cfq_check_fifo(struct cfq_queue *cfqq)
773 struct cfq_data *cfqd = cfqq->cfqd;
774 const int reads = !list_empty(&cfqq->fifo[0]);
775 const int writes = !list_empty(&cfqq->fifo[1]);
776 unsigned long now = jiffies;
779 if (time_before(now, cfqq->last_fifo_expire + cfqd->cfq_fifo_batch_expire))
782 crq = RQ_DATA(list_entry(cfqq->fifo[0].next, struct request, queuelist));
783 if (reads && time_after(now, crq->queue_start + cfqd->cfq_fifo_expire_r)) {
784 cfqq->last_fifo_expire = now;
788 crq = RQ_DATA(list_entry(cfqq->fifo[1].next, struct request, queuelist));
789 if (writes && time_after(now, crq->queue_start + cfqd->cfq_fifo_expire_w)) {
790 cfqq->last_fifo_expire = now;
798 * dispatch a single request from given queue
801 cfq_dispatch_request(request_queue_t *q, struct cfq_data *cfqd,
802 struct cfq_queue *cfqq)
807 * follow expired path, else get first next available
809 if ((crq = cfq_check_fifo(cfqq)) == NULL) {
810 if (cfqd->find_best_crq)
811 crq = cfqq->next_crq;
813 crq = rb_entry_crq(rb_first(&cfqq->sort_list));
816 cfqd->last_sector = crq->request->sector + crq->request->nr_sectors;
819 * finally, insert request into driver list
821 cfq_dispatch_sort(q, crq);
824 static int cfq_dispatch_requests(request_queue_t *q, int max_dispatch)
826 struct cfq_data *cfqd = q->elevator->elevator_data;
827 struct cfq_queue *cfqq;
828 struct list_head *entry, *tmp;
829 int queued, busy_queues, first_round;
831 if (list_empty(&cfqd->rr_list))
838 list_for_each_safe(entry, tmp, &cfqd->rr_list) {
839 cfqq = list_entry_cfqq(entry);
841 BUG_ON(RB_EMPTY(&cfqq->sort_list));
844 * first round of queueing, only select from queues that
845 * don't already have io in-flight
847 if (first_round && cfqq->in_flight)
850 cfq_dispatch_request(q, cfqd, cfqq);
852 if (!RB_EMPTY(&cfqq->sort_list))
858 if ((queued < max_dispatch) && (busy_queues || first_round)) {
866 static inline void cfq_account_dispatch(struct cfq_rq *crq)
868 struct cfq_queue *cfqq = crq->cfq_queue;
869 struct cfq_data *cfqd = cfqq->cfqd;
870 unsigned long now, elapsed;
872 if (!blk_fs_request(crq->request))
876 * accounted bit is necessary since some drivers will call
877 * elv_next_request() many times for the same request (eg ide)
883 if (cfqq->service_start == ~0UL)
884 cfqq->service_start = now;
887 * on drives with tagged command queueing, command turn-around time
888 * doesn't necessarily reflect the time spent processing this very
889 * command inside the drive. so do the accounting differently there,
890 * by just sorting on the number of requests
892 if (cfqd->cfq_tagged) {
893 if (time_after(now, cfqq->service_start + cfq_service)) {
894 cfqq->service_start = now;
895 cfqq->service_used /= 10;
898 cfqq->service_used++;
899 cfq_sort_rr_list(cfqq, 0);
902 elapsed = now - crq->queue_start;
903 if (elapsed > max_elapsed_dispatch)
904 max_elapsed_dispatch = elapsed;
907 crq->service_start = now;
909 if (++cfqd->rq_in_driver >= CFQ_MAX_TAG && !cfqd->cfq_tagged) {
910 cfqq->cfqd->cfq_tagged = 1;
911 printk("cfq: depth %d reached, tagging now on\n", CFQ_MAX_TAG);
916 cfq_account_completion(struct cfq_queue *cfqq, struct cfq_rq *crq)
918 struct cfq_data *cfqd = cfqq->cfqd;
923 WARN_ON(!cfqd->rq_in_driver);
924 cfqd->rq_in_driver--;
926 if (!cfqd->cfq_tagged) {
927 unsigned long now = jiffies;
928 unsigned long duration = now - crq->service_start;
930 if (time_after(now, cfqq->service_start + cfq_service)) {
931 cfqq->service_start = now;
932 cfqq->service_used >>= 3;
935 cfqq->service_used += duration;
936 cfq_sort_rr_list(cfqq, 0);
938 if (duration > max_elapsed_crq)
939 max_elapsed_crq = duration;
943 static struct request *cfq_next_request(request_queue_t *q)
945 struct cfq_data *cfqd = q->elevator->elevator_data;
948 if (!list_empty(&q->queue_head)) {
951 rq = list_entry_rq(q->queue_head.next);
953 if ((crq = RQ_DATA(rq)) != NULL) {
954 cfq_remove_merge_hints(q, crq);
955 cfq_account_dispatch(crq);
961 if (cfq_dispatch_requests(q, cfqd->cfq_quantum))
968 * task holds one reference to the queue, dropped when task exits. each crq
969 * in-flight on this queue also holds a reference, dropped when crq is freed.
971 * queue lock must be held here.
973 static void cfq_put_queue(struct cfq_queue *cfqq)
975 BUG_ON(!atomic_read(&cfqq->ref));
977 if (!atomic_dec_and_test(&cfqq->ref))
980 BUG_ON(rb_first(&cfqq->sort_list));
983 cfq_put_cfqd(cfqq->cfqd);
986 * it's on the empty list and still hashed
988 list_del(&cfqq->cfq_list);
989 hlist_del(&cfqq->cfq_hash);
990 kmem_cache_free(cfq_pool, cfqq);
993 static inline struct cfq_queue *
994 __cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned long key, const int hashval)
996 struct hlist_head *hash_list = &cfqd->cfq_hash[hashval];
997 struct hlist_node *entry, *next;
999 hlist_for_each_safe(entry, next, hash_list) {
1000 struct cfq_queue *__cfqq = list_entry_qhash(entry);
1002 if (__cfqq->key == key)
1009 static struct cfq_queue *
1010 cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned long key)
1012 return __cfq_find_cfq_hash(cfqd, key, hash_long(key, CFQ_QHASH_SHIFT));
1016 cfq_rehash_cfqq(struct cfq_data *cfqd, struct cfq_queue **cfqq,
1017 struct cfq_io_context *cic)
1019 unsigned long hashkey = cfq_hash_key(cfqd, current);
1020 unsigned long hashval = hash_long(hashkey, CFQ_QHASH_SHIFT);
1021 struct cfq_queue *__cfqq;
1022 unsigned long flags;
1024 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1026 hlist_del(&(*cfqq)->cfq_hash);
1028 __cfqq = __cfq_find_cfq_hash(cfqd, hashkey, hashval);
1029 if (!__cfqq || __cfqq == *cfqq) {
1031 hlist_add_head(&__cfqq->cfq_hash, &cfqd->cfq_hash[hashval]);
1032 __cfqq->key_type = cfqd->key_type;
1034 atomic_inc(&__cfqq->ref);
1036 cfq_put_queue(*cfqq);
1041 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1044 static void cfq_free_io_context(struct cfq_io_context *cic)
1046 kmem_cache_free(cfq_ioc_pool, cic);
1050 * locking hierarchy is: io_context lock -> queue locks
1052 static void cfq_exit_io_context(struct cfq_io_context *cic)
1054 struct cfq_queue *cfqq = cic->cfqq;
1055 struct list_head *entry = &cic->list;
1057 unsigned long flags;
1060 * put the reference this task is holding to the various queues
1062 spin_lock_irqsave(&cic->ioc->lock, flags);
1063 while ((entry = cic->list.next) != &cic->list) {
1064 struct cfq_io_context *__cic;
1066 __cic = list_entry(entry, struct cfq_io_context, list);
1069 q = __cic->cfqq->cfqd->queue;
1070 spin_lock(q->queue_lock);
1071 cfq_put_queue(__cic->cfqq);
1072 spin_unlock(q->queue_lock);
1075 q = cfqq->cfqd->queue;
1076 spin_lock(q->queue_lock);
1077 cfq_put_queue(cfqq);
1078 spin_unlock(q->queue_lock);
1081 spin_unlock_irqrestore(&cic->ioc->lock, flags);
1084 static struct cfq_io_context *cfq_alloc_io_context(int gfp_flags)
1086 struct cfq_io_context *cic = kmem_cache_alloc(cfq_ioc_pool, gfp_flags);
1089 cic->dtor = cfq_free_io_context;
1090 cic->exit = cfq_exit_io_context;
1091 INIT_LIST_HEAD(&cic->list);
1099 * Setup general io context and cfq io context. There can be several cfq
1100 * io contexts per general io context, if this process is doing io to more
1101 * than one device managed by cfq. Note that caller is holding a reference to
1102 * cfqq, so we don't need to worry about it disappearing
1104 static struct cfq_io_context *
1105 cfq_get_io_context(struct cfq_queue **cfqq, int gfp_flags)
1107 struct cfq_data *cfqd = (*cfqq)->cfqd;
1108 struct cfq_queue *__cfqq = *cfqq;
1109 struct cfq_io_context *cic;
1110 struct io_context *ioc;
1112 might_sleep_if(gfp_flags & __GFP_WAIT);
1114 ioc = get_io_context(gfp_flags);
1118 if ((cic = ioc->cic) == NULL) {
1119 cic = cfq_alloc_io_context(gfp_flags);
1127 atomic_inc(&__cfqq->ref);
1129 struct cfq_io_context *__cic;
1130 unsigned long flags;
1133 * since the first cic on the list is actually the head
1134 * itself, need to check this here or we'll duplicate an
1135 * cic per ioc for no reason
1137 if (cic->cfqq == __cfqq)
1141 * cic exists, check if we already are there. linear search
1142 * should be ok here, the list will usually not be more than
1143 * 1 or a few entries long
1145 spin_lock_irqsave(&ioc->lock, flags);
1146 list_for_each_entry(__cic, &cic->list, list) {
1148 * this process is already holding a reference to
1149 * this queue, so no need to get one more
1151 if (__cic->cfqq == __cfqq) {
1153 spin_unlock_irqrestore(&ioc->lock, flags);
1157 spin_unlock_irqrestore(&ioc->lock, flags);
1160 * nope, process doesn't have a cic assoicated with this
1161 * cfqq yet. get a new one and add to list
1163 __cic = cfq_alloc_io_context(gfp_flags);
1168 __cic->cfqq = __cfqq;
1169 atomic_inc(&__cfqq->ref);
1170 spin_lock_irqsave(&ioc->lock, flags);
1171 list_add(&__cic->list, &cic->list);
1172 spin_unlock_irqrestore(&ioc->lock, flags);
1180 * if key_type has been changed on the fly, we lazily rehash
1181 * each queue at lookup time
1183 if ((*cfqq)->key_type != cfqd->key_type)
1184 cfq_rehash_cfqq(cfqd, cfqq, cic);
1188 put_io_context(ioc);
1192 static struct cfq_queue *
1193 __cfq_get_queue(struct cfq_data *cfqd, unsigned long key, int gfp_mask)
1195 const int hashval = hash_long(key, CFQ_QHASH_SHIFT);
1196 struct cfq_queue *cfqq, *new_cfqq = NULL;
1199 cfqq = __cfq_find_cfq_hash(cfqd, key, hashval);
1206 spin_unlock_irq(cfqd->queue->queue_lock);
1207 new_cfqq = kmem_cache_alloc(cfq_pool, gfp_mask);
1208 spin_lock_irq(cfqd->queue->queue_lock);
1210 if (!new_cfqq && !(gfp_mask & __GFP_WAIT))
1216 memset(cfqq, 0, sizeof(*cfqq));
1218 INIT_HLIST_NODE(&cfqq->cfq_hash);
1219 INIT_LIST_HEAD(&cfqq->cfq_list);
1220 RB_CLEAR_ROOT(&cfqq->sort_list);
1221 INIT_LIST_HEAD(&cfqq->fifo[0]);
1222 INIT_LIST_HEAD(&cfqq->fifo[1]);
1225 hlist_add_head(&cfqq->cfq_hash, &cfqd->cfq_hash[hashval]);
1226 atomic_set(&cfqq->ref, 0);
1228 atomic_inc(&cfqd->ref);
1229 cfqq->key_type = cfqd->key_type;
1230 cfqq->service_start = ~0UL;
1234 kmem_cache_free(cfq_pool, new_cfqq);
1236 atomic_inc(&cfqq->ref);
1238 WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1242 static void cfq_enqueue(struct cfq_data *cfqd, struct cfq_rq *crq)
1245 if (rq_data_dir(crq->request) == READ || current->flags & PF_SYNCWRITE)
1248 cfq_add_crq_rb(crq);
1249 crq->queue_start = jiffies;
1251 list_add_tail(&crq->request->queuelist, &crq->cfq_queue->fifo[crq->is_sync]);
1255 cfq_insert_request(request_queue_t *q, struct request *rq, int where)
1257 struct cfq_data *cfqd = q->elevator->elevator_data;
1258 struct cfq_rq *crq = RQ_DATA(rq);
1261 case ELEVATOR_INSERT_BACK:
1262 while (cfq_dispatch_requests(q, cfqd->cfq_quantum))
1264 list_add_tail(&rq->queuelist, &q->queue_head);
1266 case ELEVATOR_INSERT_FRONT:
1267 list_add(&rq->queuelist, &q->queue_head);
1269 case ELEVATOR_INSERT_SORT:
1270 BUG_ON(!blk_fs_request(rq));
1271 cfq_enqueue(cfqd, crq);
1274 printk("%s: bad insert point %d\n", __FUNCTION__,where);
1278 if (rq_mergeable(rq)) {
1279 cfq_add_crq_hash(cfqd, crq);
1286 static int cfq_queue_empty(request_queue_t *q)
1288 struct cfq_data *cfqd = q->elevator->elevator_data;
1290 return list_empty(&q->queue_head) && list_empty(&cfqd->rr_list);
1293 static void cfq_completed_request(request_queue_t *q, struct request *rq)
1295 struct cfq_rq *crq = RQ_DATA(rq);
1296 struct cfq_queue *cfqq;
1298 if (unlikely(!blk_fs_request(rq)))
1301 cfqq = crq->cfq_queue;
1303 if (crq->in_flight) {
1304 WARN_ON(!cfqq->in_flight);
1308 cfq_account_completion(cfqq, crq);
1311 static struct request *
1312 cfq_former_request(request_queue_t *q, struct request *rq)
1314 struct cfq_rq *crq = RQ_DATA(rq);
1315 struct rb_node *rbprev = rb_prev(&crq->rb_node);
1318 return rb_entry_crq(rbprev)->request;
1323 static struct request *
1324 cfq_latter_request(request_queue_t *q, struct request *rq)
1326 struct cfq_rq *crq = RQ_DATA(rq);
1327 struct rb_node *rbnext = rb_next(&crq->rb_node);
1330 return rb_entry_crq(rbnext)->request;
1335 static int cfq_may_queue(request_queue_t *q, int rw)
1337 struct cfq_data *cfqd = q->elevator->elevator_data;
1338 struct cfq_queue *cfqq;
1339 int ret = ELV_MQUEUE_MAY;
1341 if (current->flags & PF_MEMALLOC)
1342 return ELV_MQUEUE_MAY;
1344 cfqq = cfq_find_cfq_hash(cfqd, cfq_hash_key(cfqd, current));
1346 int limit = cfqd->max_queued;
1348 if (cfqq->allocated[rw] < cfqd->cfq_queued)
1349 return ELV_MQUEUE_MUST;
1351 if (cfqd->busy_queues)
1352 limit = q->nr_requests / cfqd->busy_queues;
1354 if (limit < cfqd->cfq_queued)
1355 limit = cfqd->cfq_queued;
1356 else if (limit > cfqd->max_queued)
1357 limit = cfqd->max_queued;
1359 if (cfqq->allocated[rw] >= limit) {
1360 if (limit > cfqq->alloc_limit[rw])
1361 cfqq->alloc_limit[rw] = limit;
1363 ret = ELV_MQUEUE_NO;
1370 static void cfq_check_waiters(request_queue_t *q, struct cfq_queue *cfqq)
1372 struct request_list *rl = &q->rq;
1373 const int write = waitqueue_active(&rl->wait[WRITE]);
1374 const int read = waitqueue_active(&rl->wait[READ]);
1376 if (read && cfqq->allocated[READ] < cfqq->alloc_limit[READ])
1377 wake_up(&rl->wait[READ]);
1378 if (write && cfqq->allocated[WRITE] < cfqq->alloc_limit[WRITE])
1379 wake_up(&rl->wait[WRITE]);
1383 * queue lock held here
1385 static void cfq_put_request(request_queue_t *q, struct request *rq)
1387 struct cfq_data *cfqd = q->elevator->elevator_data;
1388 struct cfq_rq *crq = RQ_DATA(rq);
1391 struct cfq_queue *cfqq = crq->cfq_queue;
1393 BUG_ON(q->last_merge == rq);
1394 BUG_ON(!hlist_unhashed(&crq->hash));
1396 if (crq->io_context)
1397 put_io_context(crq->io_context->ioc);
1399 BUG_ON(!cfqq->allocated[crq->is_write]);
1400 cfqq->allocated[crq->is_write]--;
1402 mempool_free(crq, cfqd->crq_pool);
1403 rq->elevator_private = NULL;
1406 cfq_check_waiters(q, cfqq);
1407 cfq_put_queue(cfqq);
1412 * Allocate cfq data structures associated with this request. A queue and
1414 static int cfq_set_request(request_queue_t *q, struct request *rq, int gfp_mask)
1416 struct cfq_data *cfqd = q->elevator->elevator_data;
1417 struct cfq_io_context *cic;
1418 const int rw = rq_data_dir(rq);
1419 struct cfq_queue *cfqq, *saved_cfqq;
1421 unsigned long flags;
1423 might_sleep_if(gfp_mask & __GFP_WAIT);
1425 spin_lock_irqsave(q->queue_lock, flags);
1427 cfqq = __cfq_get_queue(cfqd, cfq_hash_key(cfqd, current), gfp_mask);
1432 if (cfqq->allocated[rw] >= cfqd->max_queued)
1435 cfqq->allocated[rw]++;
1436 spin_unlock_irqrestore(q->queue_lock, flags);
1439 * if hashing type has changed, the cfq_queue might change here.
1442 cic = cfq_get_io_context(&cfqq, gfp_mask);
1447 * repeat allocation checks on queue change
1449 if (unlikely(saved_cfqq != cfqq)) {
1450 spin_lock_irqsave(q->queue_lock, flags);
1451 saved_cfqq->allocated[rw]--;
1455 crq = mempool_alloc(cfqd->crq_pool, gfp_mask);
1457 RB_CLEAR(&crq->rb_node);
1460 INIT_HLIST_NODE(&crq->hash);
1461 crq->cfq_queue = cfqq;
1462 crq->io_context = cic;
1463 crq->service_start = crq->queue_start = 0;
1464 crq->in_flight = crq->accounted = crq->is_sync = 0;
1466 rq->elevator_private = crq;
1467 cfqq->alloc_limit[rw] = 0;
1471 put_io_context(cic->ioc);
1473 spin_lock_irqsave(q->queue_lock, flags);
1474 cfqq->allocated[rw]--;
1475 cfq_put_queue(cfqq);
1477 spin_unlock_irqrestore(q->queue_lock, flags);
1481 static void cfq_put_cfqd(struct cfq_data *cfqd)
1483 request_queue_t *q = cfqd->queue;
1485 if (!atomic_dec_and_test(&cfqd->ref))
1490 mempool_destroy(cfqd->crq_pool);
1491 kfree(cfqd->crq_hash);
1492 kfree(cfqd->cfq_hash);
1496 static void cfq_exit_queue(elevator_t *e)
1498 cfq_put_cfqd(e->elevator_data);
1501 static int cfq_init_queue(request_queue_t *q, elevator_t *e)
1503 struct cfq_data *cfqd;
1506 cfqd = kmalloc(sizeof(*cfqd), GFP_KERNEL);
1510 memset(cfqd, 0, sizeof(*cfqd));
1511 INIT_LIST_HEAD(&cfqd->rr_list);
1512 INIT_LIST_HEAD(&cfqd->empty_list);
1514 cfqd->crq_hash = kmalloc(sizeof(struct hlist_head) * CFQ_MHASH_ENTRIES, GFP_KERNEL);
1515 if (!cfqd->crq_hash)
1518 cfqd->cfq_hash = kmalloc(sizeof(struct hlist_head) * CFQ_QHASH_ENTRIES, GFP_KERNEL);
1519 if (!cfqd->cfq_hash)
1522 cfqd->crq_pool = mempool_create(BLKDEV_MIN_RQ, mempool_alloc_slab, mempool_free_slab, crq_pool);
1523 if (!cfqd->crq_pool)
1526 for (i = 0; i < CFQ_MHASH_ENTRIES; i++)
1527 INIT_HLIST_HEAD(&cfqd->crq_hash[i]);
1528 for (i = 0; i < CFQ_QHASH_ENTRIES; i++)
1529 INIT_HLIST_HEAD(&cfqd->cfq_hash[i]);
1531 e->elevator_data = cfqd;
1534 atomic_inc(&q->refcnt);
1537 * just set it to some high value, we want anyone to be able to queue
1538 * some requests. fairness is handled differently
1540 q->nr_requests = 1024;
1541 cfqd->max_queued = q->nr_requests / 16;
1542 q->nr_batching = cfq_queued;
1543 cfqd->key_type = CFQ_KEY_TGID;
1544 cfqd->find_best_crq = 1;
1545 atomic_set(&cfqd->ref, 1);
1547 cfqd->cfq_queued = cfq_queued;
1548 cfqd->cfq_quantum = cfq_quantum;
1549 cfqd->cfq_fifo_expire_r = cfq_fifo_expire_r;
1550 cfqd->cfq_fifo_expire_w = cfq_fifo_expire_w;
1551 cfqd->cfq_fifo_batch_expire = cfq_fifo_rate;
1552 cfqd->cfq_back_max = cfq_back_max;
1553 cfqd->cfq_back_penalty = cfq_back_penalty;
1557 kfree(cfqd->cfq_hash);
1559 kfree(cfqd->crq_hash);
1565 static void cfq_slab_kill(void)
1568 kmem_cache_destroy(crq_pool);
1570 kmem_cache_destroy(cfq_pool);
1572 kmem_cache_destroy(cfq_ioc_pool);
1575 static int __init cfq_slab_setup(void)
1577 crq_pool = kmem_cache_create("crq_pool", sizeof(struct cfq_rq), 0, 0,
1582 cfq_pool = kmem_cache_create("cfq_pool", sizeof(struct cfq_queue), 0, 0,
1587 cfq_ioc_pool = kmem_cache_create("cfq_ioc_pool",
1588 sizeof(struct cfq_io_context), 0, 0, NULL, NULL);
1600 * sysfs parts below -->
1602 struct cfq_fs_entry {
1603 struct attribute attr;
1604 ssize_t (*show)(struct cfq_data *, char *);
1605 ssize_t (*store)(struct cfq_data *, const char *, size_t);
1609 cfq_var_show(unsigned int var, char *page)
1611 return sprintf(page, "%d\n", var);
1615 cfq_var_store(unsigned int *var, const char *page, size_t count)
1617 char *p = (char *) page;
1619 *var = simple_strtoul(p, &p, 10);
1624 cfq_clear_elapsed(struct cfq_data *cfqd, const char *page, size_t count)
1626 max_elapsed_dispatch = max_elapsed_crq = 0;
1631 cfq_set_key_type(struct cfq_data *cfqd, const char *page, size_t count)
1633 spin_lock_irq(cfqd->queue->queue_lock);
1634 if (!strncmp(page, "pgid", 4))
1635 cfqd->key_type = CFQ_KEY_PGID;
1636 else if (!strncmp(page, "tgid", 4))
1637 cfqd->key_type = CFQ_KEY_TGID;
1638 else if (!strncmp(page, "uid", 3))
1639 cfqd->key_type = CFQ_KEY_UID;
1640 else if (!strncmp(page, "gid", 3))
1641 cfqd->key_type = CFQ_KEY_GID;
1642 spin_unlock_irq(cfqd->queue->queue_lock);
1647 cfq_read_key_type(struct cfq_data *cfqd, char *page)
1652 for (i = CFQ_KEY_PGID; i < CFQ_KEY_LAST; i++) {
1653 if (cfqd->key_type == i)
1654 len += sprintf(page+len, "[%s] ", cfq_key_types[i]);
1656 len += sprintf(page+len, "%s ", cfq_key_types[i]);
1658 len += sprintf(page+len, "\n");
1662 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
1663 static ssize_t __FUNC(struct cfq_data *cfqd, char *page) \
1665 unsigned int __data = __VAR; \
1667 __data = jiffies_to_msecs(__data); \
1668 return cfq_var_show(__data, (page)); \
1670 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
1671 SHOW_FUNCTION(cfq_queued_show, cfqd->cfq_queued, 0);
1672 SHOW_FUNCTION(cfq_fifo_expire_r_show, cfqd->cfq_fifo_expire_r, 1);
1673 SHOW_FUNCTION(cfq_fifo_expire_w_show, cfqd->cfq_fifo_expire_w, 1);
1674 SHOW_FUNCTION(cfq_fifo_batch_expire_show, cfqd->cfq_fifo_batch_expire, 1);
1675 SHOW_FUNCTION(cfq_find_best_show, cfqd->find_best_crq, 0);
1676 SHOW_FUNCTION(cfq_back_max_show, cfqd->cfq_back_max, 0);
1677 SHOW_FUNCTION(cfq_back_penalty_show, cfqd->cfq_back_penalty, 0);
1678 #undef SHOW_FUNCTION
1680 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
1681 static ssize_t __FUNC(struct cfq_data *cfqd, const char *page, size_t count) \
1683 unsigned int __data; \
1684 int ret = cfq_var_store(&__data, (page), count); \
1685 if (__data < (MIN)) \
1687 else if (__data > (MAX)) \
1690 *(__PTR) = msecs_to_jiffies(__data); \
1692 *(__PTR) = __data; \
1695 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
1696 STORE_FUNCTION(cfq_queued_store, &cfqd->cfq_queued, 1, UINT_MAX, 0);
1697 STORE_FUNCTION(cfq_fifo_expire_r_store, &cfqd->cfq_fifo_expire_r, 1, UINT_MAX, 1);
1698 STORE_FUNCTION(cfq_fifo_expire_w_store, &cfqd->cfq_fifo_expire_w, 1, UINT_MAX, 1);
1699 STORE_FUNCTION(cfq_fifo_batch_expire_store, &cfqd->cfq_fifo_batch_expire, 0, UINT_MAX, 1);
1700 STORE_FUNCTION(cfq_find_best_store, &cfqd->find_best_crq, 0, 1, 0);
1701 STORE_FUNCTION(cfq_back_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
1702 STORE_FUNCTION(cfq_back_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
1703 #undef STORE_FUNCTION
1705 static struct cfq_fs_entry cfq_quantum_entry = {
1706 .attr = {.name = "quantum", .mode = S_IRUGO | S_IWUSR },
1707 .show = cfq_quantum_show,
1708 .store = cfq_quantum_store,
1710 static struct cfq_fs_entry cfq_queued_entry = {
1711 .attr = {.name = "queued", .mode = S_IRUGO | S_IWUSR },
1712 .show = cfq_queued_show,
1713 .store = cfq_queued_store,
1715 static struct cfq_fs_entry cfq_fifo_expire_r_entry = {
1716 .attr = {.name = "fifo_expire_sync", .mode = S_IRUGO | S_IWUSR },
1717 .show = cfq_fifo_expire_r_show,
1718 .store = cfq_fifo_expire_r_store,
1720 static struct cfq_fs_entry cfq_fifo_expire_w_entry = {
1721 .attr = {.name = "fifo_expire_async", .mode = S_IRUGO | S_IWUSR },
1722 .show = cfq_fifo_expire_w_show,
1723 .store = cfq_fifo_expire_w_store,
1725 static struct cfq_fs_entry cfq_fifo_batch_expire_entry = {
1726 .attr = {.name = "fifo_batch_expire", .mode = S_IRUGO | S_IWUSR },
1727 .show = cfq_fifo_batch_expire_show,
1728 .store = cfq_fifo_batch_expire_store,
1730 static struct cfq_fs_entry cfq_find_best_entry = {
1731 .attr = {.name = "find_best_crq", .mode = S_IRUGO | S_IWUSR },
1732 .show = cfq_find_best_show,
1733 .store = cfq_find_best_store,
1735 static struct cfq_fs_entry cfq_back_max_entry = {
1736 .attr = {.name = "back_seek_max", .mode = S_IRUGO | S_IWUSR },
1737 .show = cfq_back_max_show,
1738 .store = cfq_back_max_store,
1740 static struct cfq_fs_entry cfq_back_penalty_entry = {
1741 .attr = {.name = "back_seek_penalty", .mode = S_IRUGO | S_IWUSR },
1742 .show = cfq_back_penalty_show,
1743 .store = cfq_back_penalty_store,
1745 static struct cfq_fs_entry cfq_clear_elapsed_entry = {
1746 .attr = {.name = "clear_elapsed", .mode = S_IWUSR },
1747 .store = cfq_clear_elapsed,
1749 static struct cfq_fs_entry cfq_key_type_entry = {
1750 .attr = {.name = "key_type", .mode = S_IRUGO | S_IWUSR },
1751 .show = cfq_read_key_type,
1752 .store = cfq_set_key_type,
1755 static struct attribute *default_attrs[] = {
1756 &cfq_quantum_entry.attr,
1757 &cfq_queued_entry.attr,
1758 &cfq_fifo_expire_r_entry.attr,
1759 &cfq_fifo_expire_w_entry.attr,
1760 &cfq_fifo_batch_expire_entry.attr,
1761 &cfq_key_type_entry.attr,
1762 &cfq_find_best_entry.attr,
1763 &cfq_back_max_entry.attr,
1764 &cfq_back_penalty_entry.attr,
1765 &cfq_clear_elapsed_entry.attr,
1769 #define to_cfq(atr) container_of((atr), struct cfq_fs_entry, attr)
1772 cfq_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1774 elevator_t *e = container_of(kobj, elevator_t, kobj);
1775 struct cfq_fs_entry *entry = to_cfq(attr);
1780 return entry->show(e->elevator_data, page);
1784 cfq_attr_store(struct kobject *kobj, struct attribute *attr,
1785 const char *page, size_t length)
1787 elevator_t *e = container_of(kobj, elevator_t, kobj);
1788 struct cfq_fs_entry *entry = to_cfq(attr);
1793 return entry->store(e->elevator_data, page, length);
1796 static struct sysfs_ops cfq_sysfs_ops = {
1797 .show = cfq_attr_show,
1798 .store = cfq_attr_store,
1801 static struct kobj_type cfq_ktype = {
1802 .sysfs_ops = &cfq_sysfs_ops,
1803 .default_attrs = default_attrs,
1806 static struct elevator_type iosched_cfq = {
1808 .elevator_merge_fn = cfq_merge,
1809 .elevator_merged_fn = cfq_merged_request,
1810 .elevator_merge_req_fn = cfq_merged_requests,
1811 .elevator_next_req_fn = cfq_next_request,
1812 .elevator_add_req_fn = cfq_insert_request,
1813 .elevator_remove_req_fn = cfq_remove_request,
1814 .elevator_requeue_req_fn = cfq_requeue_request,
1815 .elevator_deactivate_req_fn = cfq_deactivate_request,
1816 .elevator_queue_empty_fn = cfq_queue_empty,
1817 .elevator_completed_req_fn = cfq_completed_request,
1818 .elevator_former_req_fn = cfq_former_request,
1819 .elevator_latter_req_fn = cfq_latter_request,
1820 .elevator_set_req_fn = cfq_set_request,
1821 .elevator_put_req_fn = cfq_put_request,
1822 .elevator_may_queue_fn = cfq_may_queue,
1823 .elevator_init_fn = cfq_init_queue,
1824 .elevator_exit_fn = cfq_exit_queue,
1826 .elevator_ktype = &cfq_ktype,
1827 .elevator_name = "cfq",
1828 .elevator_owner = THIS_MODULE,
1831 static int __init cfq_init(void)
1835 if (cfq_slab_setup())
1838 ret = elv_register(&iosched_cfq);
1840 __module_get(THIS_MODULE);
1848 static void __exit cfq_exit(void)
1851 elv_unregister(&iosched_cfq);
1854 module_init(cfq_init);
1855 module_exit(cfq_exit);
1857 MODULE_AUTHOR("Jens Axboe");
1858 MODULE_LICENSE("GPL");
1859 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");