Merge branch 'linus' into core/rcu
[linux-2.6] / drivers / net / e1000e / ich8lan.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2008 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /*
30  * 82562G-2 10/100 Network Connection
31  * 82562GT 10/100 Network Connection
32  * 82562GT-2 10/100 Network Connection
33  * 82562V 10/100 Network Connection
34  * 82562V-2 10/100 Network Connection
35  * 82566DC-2 Gigabit Network Connection
36  * 82566DC Gigabit Network Connection
37  * 82566DM-2 Gigabit Network Connection
38  * 82566DM Gigabit Network Connection
39  * 82566MC Gigabit Network Connection
40  * 82566MM Gigabit Network Connection
41  * 82567LM Gigabit Network Connection
42  * 82567LF Gigabit Network Connection
43  * 82567LM-2 Gigabit Network Connection
44  * 82567LF-2 Gigabit Network Connection
45  * 82567V-2 Gigabit Network Connection
46  * 82567LF-3 Gigabit Network Connection
47  * 82567LM-3 Gigabit Network Connection
48  * 82567LM-4 Gigabit Network Connection
49  */
50
51 #include <linux/netdevice.h>
52 #include <linux/ethtool.h>
53 #include <linux/delay.h>
54 #include <linux/pci.h>
55
56 #include "e1000.h"
57
58 #define ICH_FLASH_GFPREG                0x0000
59 #define ICH_FLASH_HSFSTS                0x0004
60 #define ICH_FLASH_HSFCTL                0x0006
61 #define ICH_FLASH_FADDR                 0x0008
62 #define ICH_FLASH_FDATA0                0x0010
63 #define ICH_FLASH_PR0                   0x0074
64
65 #define ICH_FLASH_READ_COMMAND_TIMEOUT  500
66 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
67 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
68 #define ICH_FLASH_LINEAR_ADDR_MASK      0x00FFFFFF
69 #define ICH_FLASH_CYCLE_REPEAT_COUNT    10
70
71 #define ICH_CYCLE_READ                  0
72 #define ICH_CYCLE_WRITE                 2
73 #define ICH_CYCLE_ERASE                 3
74
75 #define FLASH_GFPREG_BASE_MASK          0x1FFF
76 #define FLASH_SECTOR_ADDR_SHIFT         12
77
78 #define ICH_FLASH_SEG_SIZE_256          256
79 #define ICH_FLASH_SEG_SIZE_4K           4096
80 #define ICH_FLASH_SEG_SIZE_8K           8192
81 #define ICH_FLASH_SEG_SIZE_64K          65536
82
83
84 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
85
86 #define E1000_ICH_MNG_IAMT_MODE         0x2
87
88 #define ID_LED_DEFAULT_ICH8LAN  ((ID_LED_DEF1_DEF2 << 12) | \
89                                  (ID_LED_DEF1_OFF2 <<  8) | \
90                                  (ID_LED_DEF1_ON2  <<  4) | \
91                                  (ID_LED_DEF1_DEF2))
92
93 #define E1000_ICH_NVM_SIG_WORD          0x13
94 #define E1000_ICH_NVM_SIG_MASK          0xC000
95
96 #define E1000_ICH8_LAN_INIT_TIMEOUT     1500
97
98 #define E1000_FEXTNVM_SW_CONFIG         1
99 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
100
101 #define PCIE_ICH8_SNOOP_ALL             PCIE_NO_SNOOP_ALL
102
103 #define E1000_ICH_RAR_ENTRIES           7
104
105 #define PHY_PAGE_SHIFT 5
106 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
107                            ((reg) & MAX_PHY_REG_ADDRESS))
108 #define IGP3_KMRN_DIAG  PHY_REG(770, 19) /* KMRN Diagnostic */
109 #define IGP3_VR_CTRL    PHY_REG(776, 18) /* Voltage Regulator Control */
110
111 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS    0x0002
112 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
113 #define IGP3_VR_CTRL_MODE_SHUTDOWN      0x0200
114
115 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
116 /* Offset 04h HSFSTS */
117 union ich8_hws_flash_status {
118         struct ich8_hsfsts {
119                 u16 flcdone    :1; /* bit 0 Flash Cycle Done */
120                 u16 flcerr     :1; /* bit 1 Flash Cycle Error */
121                 u16 dael       :1; /* bit 2 Direct Access error Log */
122                 u16 berasesz   :2; /* bit 4:3 Sector Erase Size */
123                 u16 flcinprog  :1; /* bit 5 flash cycle in Progress */
124                 u16 reserved1  :2; /* bit 13:6 Reserved */
125                 u16 reserved2  :6; /* bit 13:6 Reserved */
126                 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
127                 u16 flockdn    :1; /* bit 15 Flash Config Lock-Down */
128         } hsf_status;
129         u16 regval;
130 };
131
132 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
133 /* Offset 06h FLCTL */
134 union ich8_hws_flash_ctrl {
135         struct ich8_hsflctl {
136                 u16 flcgo      :1;   /* 0 Flash Cycle Go */
137                 u16 flcycle    :2;   /* 2:1 Flash Cycle */
138                 u16 reserved   :5;   /* 7:3 Reserved  */
139                 u16 fldbcount  :2;   /* 9:8 Flash Data Byte Count */
140                 u16 flockdn    :6;   /* 15:10 Reserved */
141         } hsf_ctrl;
142         u16 regval;
143 };
144
145 /* ICH Flash Region Access Permissions */
146 union ich8_hws_flash_regacc {
147         struct ich8_flracc {
148                 u32 grra      :8; /* 0:7 GbE region Read Access */
149                 u32 grwa      :8; /* 8:15 GbE region Write Access */
150                 u32 gmrag     :8; /* 23:16 GbE Master Read Access Grant */
151                 u32 gmwag     :8; /* 31:24 GbE Master Write Access Grant */
152         } hsf_flregacc;
153         u16 regval;
154 };
155
156 /* ICH Flash Protected Region */
157 union ich8_flash_protected_range {
158         struct ich8_pr {
159                 u32 base:13;     /* 0:12 Protected Range Base */
160                 u32 reserved1:2; /* 13:14 Reserved */
161                 u32 rpe:1;       /* 15 Read Protection Enable */
162                 u32 limit:13;    /* 16:28 Protected Range Limit */
163                 u32 reserved2:2; /* 29:30 Reserved */
164                 u32 wpe:1;       /* 31 Write Protection Enable */
165         } range;
166         u32 regval;
167 };
168
169 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
170 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
171 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
172 static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw);
173 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
174 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
175                                                 u32 offset, u8 byte);
176 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
177                                          u8 *data);
178 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
179                                          u16 *data);
180 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
181                                          u8 size, u16 *data);
182 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
183 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
184 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
185
186 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
187 {
188         return readw(hw->flash_address + reg);
189 }
190
191 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
192 {
193         return readl(hw->flash_address + reg);
194 }
195
196 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
197 {
198         writew(val, hw->flash_address + reg);
199 }
200
201 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
202 {
203         writel(val, hw->flash_address + reg);
204 }
205
206 #define er16flash(reg)          __er16flash(hw, (reg))
207 #define er32flash(reg)          __er32flash(hw, (reg))
208 #define ew16flash(reg,val)      __ew16flash(hw, (reg), (val))
209 #define ew32flash(reg,val)      __ew32flash(hw, (reg), (val))
210
211 /**
212  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
213  *  @hw: pointer to the HW structure
214  *
215  *  Initialize family-specific PHY parameters and function pointers.
216  **/
217 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
218 {
219         struct e1000_phy_info *phy = &hw->phy;
220         s32 ret_val;
221         u16 i = 0;
222
223         phy->addr                       = 1;
224         phy->reset_delay_us             = 100;
225
226         /*
227          * We may need to do this twice - once for IGP and if that fails,
228          * we'll set BM func pointers and try again
229          */
230         ret_val = e1000e_determine_phy_address(hw);
231         if (ret_val) {
232                 hw->phy.ops.write_phy_reg = e1000e_write_phy_reg_bm;
233                 hw->phy.ops.read_phy_reg  = e1000e_read_phy_reg_bm;
234                 ret_val = e1000e_determine_phy_address(hw);
235                 if (ret_val)
236                         return ret_val;
237         }
238
239         phy->id = 0;
240         while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
241                (i++ < 100)) {
242                 msleep(1);
243                 ret_val = e1000e_get_phy_id(hw);
244                 if (ret_val)
245                         return ret_val;
246         }
247
248         /* Verify phy id */
249         switch (phy->id) {
250         case IGP03E1000_E_PHY_ID:
251                 phy->type = e1000_phy_igp_3;
252                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
253                 break;
254         case IFE_E_PHY_ID:
255         case IFE_PLUS_E_PHY_ID:
256         case IFE_C_E_PHY_ID:
257                 phy->type = e1000_phy_ife;
258                 phy->autoneg_mask = E1000_ALL_NOT_GIG;
259                 break;
260         case BME1000_E_PHY_ID:
261                 phy->type = e1000_phy_bm;
262                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
263                 hw->phy.ops.read_phy_reg = e1000e_read_phy_reg_bm;
264                 hw->phy.ops.write_phy_reg = e1000e_write_phy_reg_bm;
265                 hw->phy.ops.commit_phy = e1000e_phy_sw_reset;
266                 break;
267         default:
268                 return -E1000_ERR_PHY;
269                 break;
270         }
271
272         return 0;
273 }
274
275 /**
276  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
277  *  @hw: pointer to the HW structure
278  *
279  *  Initialize family-specific NVM parameters and function
280  *  pointers.
281  **/
282 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
283 {
284         struct e1000_nvm_info *nvm = &hw->nvm;
285         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
286         u32 gfpreg;
287         u32 sector_base_addr;
288         u32 sector_end_addr;
289         u16 i;
290
291         /* Can't read flash registers if the register set isn't mapped. */
292         if (!hw->flash_address) {
293                 hw_dbg(hw, "ERROR: Flash registers not mapped\n");
294                 return -E1000_ERR_CONFIG;
295         }
296
297         nvm->type = e1000_nvm_flash_sw;
298
299         gfpreg = er32flash(ICH_FLASH_GFPREG);
300
301         /*
302          * sector_X_addr is a "sector"-aligned address (4096 bytes)
303          * Add 1 to sector_end_addr since this sector is included in
304          * the overall size.
305          */
306         sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
307         sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
308
309         /* flash_base_addr is byte-aligned */
310         nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
311
312         /*
313          * find total size of the NVM, then cut in half since the total
314          * size represents two separate NVM banks.
315          */
316         nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
317                                 << FLASH_SECTOR_ADDR_SHIFT;
318         nvm->flash_bank_size /= 2;
319         /* Adjust to word count */
320         nvm->flash_bank_size /= sizeof(u16);
321
322         nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
323
324         /* Clear shadow ram */
325         for (i = 0; i < nvm->word_size; i++) {
326                 dev_spec->shadow_ram[i].modified = 0;
327                 dev_spec->shadow_ram[i].value    = 0xFFFF;
328         }
329
330         return 0;
331 }
332
333 /**
334  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
335  *  @hw: pointer to the HW structure
336  *
337  *  Initialize family-specific MAC parameters and function
338  *  pointers.
339  **/
340 static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
341 {
342         struct e1000_hw *hw = &adapter->hw;
343         struct e1000_mac_info *mac = &hw->mac;
344
345         /* Set media type function pointer */
346         hw->phy.media_type = e1000_media_type_copper;
347
348         /* Set mta register count */
349         mac->mta_reg_count = 32;
350         /* Set rar entry count */
351         mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
352         if (mac->type == e1000_ich8lan)
353                 mac->rar_entry_count--;
354         /* Set if manageability features are enabled. */
355         mac->arc_subsystem_valid = 1;
356
357         /* Enable PCS Lock-loss workaround for ICH8 */
358         if (mac->type == e1000_ich8lan)
359                 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, 1);
360
361         return 0;
362 }
363
364 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
365 {
366         struct e1000_hw *hw = &adapter->hw;
367         s32 rc;
368
369         rc = e1000_init_mac_params_ich8lan(adapter);
370         if (rc)
371                 return rc;
372
373         rc = e1000_init_nvm_params_ich8lan(hw);
374         if (rc)
375                 return rc;
376
377         rc = e1000_init_phy_params_ich8lan(hw);
378         if (rc)
379                 return rc;
380
381         if ((adapter->hw.mac.type == e1000_ich8lan) &&
382             (adapter->hw.phy.type == e1000_phy_igp_3))
383                 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
384
385         return 0;
386 }
387
388 static DEFINE_MUTEX(nvm_mutex);
389 static pid_t nvm_owner = -1;
390
391 /**
392  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
393  *  @hw: pointer to the HW structure
394  *
395  *  Acquires the software control flag for performing NVM and PHY
396  *  operations.  This is a function pointer entry point only called by
397  *  read/write routines for the PHY and NVM parts.
398  **/
399 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
400 {
401         u32 extcnf_ctrl;
402         u32 timeout = PHY_CFG_TIMEOUT;
403
404         might_sleep();
405
406         if (!mutex_trylock(&nvm_mutex)) {
407                 WARN(1, KERN_ERR "e1000e mutex contention. Owned by pid %d\n",
408                      nvm_owner);
409                 mutex_lock(&nvm_mutex);
410         }
411         nvm_owner = current->pid;
412
413         while (timeout) {
414                 extcnf_ctrl = er32(EXTCNF_CTRL);
415                 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
416                 ew32(EXTCNF_CTRL, extcnf_ctrl);
417
418                 extcnf_ctrl = er32(EXTCNF_CTRL);
419                 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
420                         break;
421                 mdelay(1);
422                 timeout--;
423         }
424
425         if (!timeout) {
426                 hw_dbg(hw, "FW or HW has locked the resource for too long.\n");
427                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
428                 ew32(EXTCNF_CTRL, extcnf_ctrl);
429                 nvm_owner = -1;
430                 mutex_unlock(&nvm_mutex);
431                 return -E1000_ERR_CONFIG;
432         }
433
434         return 0;
435 }
436
437 /**
438  *  e1000_release_swflag_ich8lan - Release software control flag
439  *  @hw: pointer to the HW structure
440  *
441  *  Releases the software control flag for performing NVM and PHY operations.
442  *  This is a function pointer entry point only called by read/write
443  *  routines for the PHY and NVM parts.
444  **/
445 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
446 {
447         u32 extcnf_ctrl;
448
449         extcnf_ctrl = er32(EXTCNF_CTRL);
450         extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
451         ew32(EXTCNF_CTRL, extcnf_ctrl);
452
453         nvm_owner = -1;
454         mutex_unlock(&nvm_mutex);
455 }
456
457 /**
458  *  e1000_check_mng_mode_ich8lan - Checks management mode
459  *  @hw: pointer to the HW structure
460  *
461  *  This checks if the adapter has manageability enabled.
462  *  This is a function pointer entry point only called by read/write
463  *  routines for the PHY and NVM parts.
464  **/
465 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
466 {
467         u32 fwsm = er32(FWSM);
468
469         return (fwsm & E1000_FWSM_MODE_MASK) ==
470                 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
471 }
472
473 /**
474  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
475  *  @hw: pointer to the HW structure
476  *
477  *  Checks if firmware is blocking the reset of the PHY.
478  *  This is a function pointer entry point only called by
479  *  reset routines.
480  **/
481 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
482 {
483         u32 fwsm;
484
485         fwsm = er32(FWSM);
486
487         return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
488 }
489
490 /**
491  *  e1000_phy_force_speed_duplex_ich8lan - Force PHY speed & duplex
492  *  @hw: pointer to the HW structure
493  *
494  *  Forces the speed and duplex settings of the PHY.
495  *  This is a function pointer entry point only called by
496  *  PHY setup routines.
497  **/
498 static s32 e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw *hw)
499 {
500         struct e1000_phy_info *phy = &hw->phy;
501         s32 ret_val;
502         u16 data;
503         bool link;
504
505         if (phy->type != e1000_phy_ife) {
506                 ret_val = e1000e_phy_force_speed_duplex_igp(hw);
507                 return ret_val;
508         }
509
510         ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
511         if (ret_val)
512                 return ret_val;
513
514         e1000e_phy_force_speed_duplex_setup(hw, &data);
515
516         ret_val = e1e_wphy(hw, PHY_CONTROL, data);
517         if (ret_val)
518                 return ret_val;
519
520         /* Disable MDI-X support for 10/100 */
521         ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
522         if (ret_val)
523                 return ret_val;
524
525         data &= ~IFE_PMC_AUTO_MDIX;
526         data &= ~IFE_PMC_FORCE_MDIX;
527
528         ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
529         if (ret_val)
530                 return ret_val;
531
532         hw_dbg(hw, "IFE PMC: %X\n", data);
533
534         udelay(1);
535
536         if (phy->autoneg_wait_to_complete) {
537                 hw_dbg(hw, "Waiting for forced speed/duplex link on IFE phy.\n");
538
539                 ret_val = e1000e_phy_has_link_generic(hw,
540                                                      PHY_FORCE_LIMIT,
541                                                      100000,
542                                                      &link);
543                 if (ret_val)
544                         return ret_val;
545
546                 if (!link)
547                         hw_dbg(hw, "Link taking longer than expected.\n");
548
549                 /* Try once more */
550                 ret_val = e1000e_phy_has_link_generic(hw,
551                                                      PHY_FORCE_LIMIT,
552                                                      100000,
553                                                      &link);
554                 if (ret_val)
555                         return ret_val;
556         }
557
558         return 0;
559 }
560
561 /**
562  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
563  *  @hw: pointer to the HW structure
564  *
565  *  Resets the PHY
566  *  This is a function pointer entry point called by drivers
567  *  or other shared routines.
568  **/
569 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
570 {
571         struct e1000_phy_info *phy = &hw->phy;
572         u32 i;
573         u32 data, cnf_size, cnf_base_addr, sw_cfg_mask;
574         s32 ret_val;
575         u16 loop = E1000_ICH8_LAN_INIT_TIMEOUT;
576         u16 word_addr, reg_data, reg_addr, phy_page = 0;
577
578         ret_val = e1000e_phy_hw_reset_generic(hw);
579         if (ret_val)
580                 return ret_val;
581
582         /*
583          * Initialize the PHY from the NVM on ICH platforms.  This
584          * is needed due to an issue where the NVM configuration is
585          * not properly autoloaded after power transitions.
586          * Therefore, after each PHY reset, we will load the
587          * configuration data out of the NVM manually.
588          */
589         if (hw->mac.type == e1000_ich8lan && phy->type == e1000_phy_igp_3) {
590                 struct e1000_adapter *adapter = hw->adapter;
591
592                 /* Check if SW needs configure the PHY */
593                 if ((adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M_AMT) ||
594                     (adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M))
595                         sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
596                 else
597                         sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
598
599                 data = er32(FEXTNVM);
600                 if (!(data & sw_cfg_mask))
601                         return 0;
602
603                 /* Wait for basic configuration completes before proceeding*/
604                 do {
605                         data = er32(STATUS);
606                         data &= E1000_STATUS_LAN_INIT_DONE;
607                         udelay(100);
608                 } while ((!data) && --loop);
609
610                 /*
611                  * If basic configuration is incomplete before the above loop
612                  * count reaches 0, loading the configuration from NVM will
613                  * leave the PHY in a bad state possibly resulting in no link.
614                  */
615                 if (loop == 0) {
616                         hw_dbg(hw, "LAN_INIT_DONE not set, increase timeout\n");
617                 }
618
619                 /* Clear the Init Done bit for the next init event */
620                 data = er32(STATUS);
621                 data &= ~E1000_STATUS_LAN_INIT_DONE;
622                 ew32(STATUS, data);
623
624                 /*
625                  * Make sure HW does not configure LCD from PHY
626                  * extended configuration before SW configuration
627                  */
628                 data = er32(EXTCNF_CTRL);
629                 if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
630                         return 0;
631
632                 cnf_size = er32(EXTCNF_SIZE);
633                 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
634                 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
635                 if (!cnf_size)
636                         return 0;
637
638                 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
639                 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
640
641                 /* Configure LCD from extended configuration region. */
642
643                 /* cnf_base_addr is in DWORD */
644                 word_addr = (u16)(cnf_base_addr << 1);
645
646                 for (i = 0; i < cnf_size; i++) {
647                         ret_val = e1000_read_nvm(hw,
648                                                 (word_addr + i * 2),
649                                                 1,
650                                                 &reg_data);
651                         if (ret_val)
652                                 return ret_val;
653
654                         ret_val = e1000_read_nvm(hw,
655                                                 (word_addr + i * 2 + 1),
656                                                 1,
657                                                 &reg_addr);
658                         if (ret_val)
659                                 return ret_val;
660
661                         /* Save off the PHY page for future writes. */
662                         if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
663                                 phy_page = reg_data;
664                                 continue;
665                         }
666
667                         reg_addr |= phy_page;
668
669                         ret_val = e1e_wphy(hw, (u32)reg_addr, reg_data);
670                         if (ret_val)
671                                 return ret_val;
672                 }
673         }
674
675         return 0;
676 }
677
678 /**
679  *  e1000_get_phy_info_ife_ich8lan - Retrieves various IFE PHY states
680  *  @hw: pointer to the HW structure
681  *
682  *  Populates "phy" structure with various feature states.
683  *  This function is only called by other family-specific
684  *  routines.
685  **/
686 static s32 e1000_get_phy_info_ife_ich8lan(struct e1000_hw *hw)
687 {
688         struct e1000_phy_info *phy = &hw->phy;
689         s32 ret_val;
690         u16 data;
691         bool link;
692
693         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
694         if (ret_val)
695                 return ret_val;
696
697         if (!link) {
698                 hw_dbg(hw, "Phy info is only valid if link is up\n");
699                 return -E1000_ERR_CONFIG;
700         }
701
702         ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
703         if (ret_val)
704                 return ret_val;
705         phy->polarity_correction = (!(data & IFE_PSC_AUTO_POLARITY_DISABLE));
706
707         if (phy->polarity_correction) {
708                 ret_val = e1000_check_polarity_ife_ich8lan(hw);
709                 if (ret_val)
710                         return ret_val;
711         } else {
712                 /* Polarity is forced */
713                 phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
714                                       ? e1000_rev_polarity_reversed
715                                       : e1000_rev_polarity_normal;
716         }
717
718         ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
719         if (ret_val)
720                 return ret_val;
721
722         phy->is_mdix = (data & IFE_PMC_MDIX_STATUS);
723
724         /* The following parameters are undefined for 10/100 operation. */
725         phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
726         phy->local_rx = e1000_1000t_rx_status_undefined;
727         phy->remote_rx = e1000_1000t_rx_status_undefined;
728
729         return 0;
730 }
731
732 /**
733  *  e1000_get_phy_info_ich8lan - Calls appropriate PHY type get_phy_info
734  *  @hw: pointer to the HW structure
735  *
736  *  Wrapper for calling the get_phy_info routines for the appropriate phy type.
737  *  This is a function pointer entry point called by drivers
738  *  or other shared routines.
739  **/
740 static s32 e1000_get_phy_info_ich8lan(struct e1000_hw *hw)
741 {
742         switch (hw->phy.type) {
743         case e1000_phy_ife:
744                 return e1000_get_phy_info_ife_ich8lan(hw);
745                 break;
746         case e1000_phy_igp_3:
747         case e1000_phy_bm:
748                 return e1000e_get_phy_info_igp(hw);
749                 break;
750         default:
751                 break;
752         }
753
754         return -E1000_ERR_PHY_TYPE;
755 }
756
757 /**
758  *  e1000_check_polarity_ife_ich8lan - Check cable polarity for IFE PHY
759  *  @hw: pointer to the HW structure
760  *
761  *  Polarity is determined on the polarity reversal feature being enabled.
762  *  This function is only called by other family-specific
763  *  routines.
764  **/
765 static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw)
766 {
767         struct e1000_phy_info *phy = &hw->phy;
768         s32 ret_val;
769         u16 phy_data, offset, mask;
770
771         /*
772          * Polarity is determined based on the reversal feature being enabled.
773          */
774         if (phy->polarity_correction) {
775                 offset  = IFE_PHY_EXTENDED_STATUS_CONTROL;
776                 mask    = IFE_PESC_POLARITY_REVERSED;
777         } else {
778                 offset  = IFE_PHY_SPECIAL_CONTROL;
779                 mask    = IFE_PSC_FORCE_POLARITY;
780         }
781
782         ret_val = e1e_rphy(hw, offset, &phy_data);
783
784         if (!ret_val)
785                 phy->cable_polarity = (phy_data & mask)
786                                       ? e1000_rev_polarity_reversed
787                                       : e1000_rev_polarity_normal;
788
789         return ret_val;
790 }
791
792 /**
793  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
794  *  @hw: pointer to the HW structure
795  *  @active: TRUE to enable LPLU, FALSE to disable
796  *
797  *  Sets the LPLU D0 state according to the active flag.  When
798  *  activating LPLU this function also disables smart speed
799  *  and vice versa.  LPLU will not be activated unless the
800  *  device autonegotiation advertisement meets standards of
801  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
802  *  This is a function pointer entry point only called by
803  *  PHY setup routines.
804  **/
805 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
806 {
807         struct e1000_phy_info *phy = &hw->phy;
808         u32 phy_ctrl;
809         s32 ret_val = 0;
810         u16 data;
811
812         if (phy->type == e1000_phy_ife)
813                 return ret_val;
814
815         phy_ctrl = er32(PHY_CTRL);
816
817         if (active) {
818                 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
819                 ew32(PHY_CTRL, phy_ctrl);
820
821                 /*
822                  * Call gig speed drop workaround on LPLU before accessing
823                  * any PHY registers
824                  */
825                 if ((hw->mac.type == e1000_ich8lan) &&
826                     (hw->phy.type == e1000_phy_igp_3))
827                         e1000e_gig_downshift_workaround_ich8lan(hw);
828
829                 /* When LPLU is enabled, we should disable SmartSpeed */
830                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
831                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
832                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
833                 if (ret_val)
834                         return ret_val;
835         } else {
836                 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
837                 ew32(PHY_CTRL, phy_ctrl);
838
839                 /*
840                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
841                  * during Dx states where the power conservation is most
842                  * important.  During driver activity we should enable
843                  * SmartSpeed, so performance is maintained.
844                  */
845                 if (phy->smart_speed == e1000_smart_speed_on) {
846                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
847                                            &data);
848                         if (ret_val)
849                                 return ret_val;
850
851                         data |= IGP01E1000_PSCFR_SMART_SPEED;
852                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
853                                            data);
854                         if (ret_val)
855                                 return ret_val;
856                 } else if (phy->smart_speed == e1000_smart_speed_off) {
857                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
858                                            &data);
859                         if (ret_val)
860                                 return ret_val;
861
862                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
863                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
864                                            data);
865                         if (ret_val)
866                                 return ret_val;
867                 }
868         }
869
870         return 0;
871 }
872
873 /**
874  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
875  *  @hw: pointer to the HW structure
876  *  @active: TRUE to enable LPLU, FALSE to disable
877  *
878  *  Sets the LPLU D3 state according to the active flag.  When
879  *  activating LPLU this function also disables smart speed
880  *  and vice versa.  LPLU will not be activated unless the
881  *  device autonegotiation advertisement meets standards of
882  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
883  *  This is a function pointer entry point only called by
884  *  PHY setup routines.
885  **/
886 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
887 {
888         struct e1000_phy_info *phy = &hw->phy;
889         u32 phy_ctrl;
890         s32 ret_val;
891         u16 data;
892
893         phy_ctrl = er32(PHY_CTRL);
894
895         if (!active) {
896                 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
897                 ew32(PHY_CTRL, phy_ctrl);
898                 /*
899                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
900                  * during Dx states where the power conservation is most
901                  * important.  During driver activity we should enable
902                  * SmartSpeed, so performance is maintained.
903                  */
904                 if (phy->smart_speed == e1000_smart_speed_on) {
905                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
906                                            &data);
907                         if (ret_val)
908                                 return ret_val;
909
910                         data |= IGP01E1000_PSCFR_SMART_SPEED;
911                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
912                                            data);
913                         if (ret_val)
914                                 return ret_val;
915                 } else if (phy->smart_speed == e1000_smart_speed_off) {
916                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
917                                            &data);
918                         if (ret_val)
919                                 return ret_val;
920
921                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
922                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
923                                            data);
924                         if (ret_val)
925                                 return ret_val;
926                 }
927         } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
928                    (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
929                    (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
930                 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
931                 ew32(PHY_CTRL, phy_ctrl);
932
933                 /*
934                  * Call gig speed drop workaround on LPLU before accessing
935                  * any PHY registers
936                  */
937                 if ((hw->mac.type == e1000_ich8lan) &&
938                     (hw->phy.type == e1000_phy_igp_3))
939                         e1000e_gig_downshift_workaround_ich8lan(hw);
940
941                 /* When LPLU is enabled, we should disable SmartSpeed */
942                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
943                 if (ret_val)
944                         return ret_val;
945
946                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
947                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
948         }
949
950         return 0;
951 }
952
953 /**
954  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
955  *  @hw: pointer to the HW structure
956  *  @bank:  pointer to the variable that returns the active bank
957  *
958  *  Reads signature byte from the NVM using the flash access registers.
959  **/
960 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
961 {
962         struct e1000_nvm_info *nvm = &hw->nvm;
963         /* flash bank size is in words */
964         u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
965         u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
966         u8 bank_high_byte = 0;
967
968         if (hw->mac.type != e1000_ich10lan) {
969                 if (er32(EECD) & E1000_EECD_SEC1VAL)
970                         *bank = 1;
971                 else
972                         *bank = 0;
973         } else {
974                 /*
975                  * Make sure the signature for bank 0 is valid,
976                  * if not check for bank1
977                  */
978                 e1000_read_flash_byte_ich8lan(hw, act_offset, &bank_high_byte);
979                 if ((bank_high_byte & 0xC0) == 0x80) {
980                         *bank = 0;
981                 } else {
982                         /*
983                          * find if segment 1 is valid by verifying
984                          * bit 15:14 = 10b in word 0x13
985                          */
986                         e1000_read_flash_byte_ich8lan(hw,
987                                                       act_offset + bank1_offset,
988                                                       &bank_high_byte);
989
990                         /* bank1 has a valid signature equivalent to SEC1V */
991                         if ((bank_high_byte & 0xC0) == 0x80) {
992                                 *bank = 1;
993                         } else {
994                                 hw_dbg(hw, "ERROR: EEPROM not present\n");
995                                 return -E1000_ERR_NVM;
996                         }
997                 }
998         }
999
1000         return 0;
1001 }
1002
1003 /**
1004  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
1005  *  @hw: pointer to the HW structure
1006  *  @offset: The offset (in bytes) of the word(s) to read.
1007  *  @words: Size of data to read in words
1008  *  @data: Pointer to the word(s) to read at offset.
1009  *
1010  *  Reads a word(s) from the NVM using the flash access registers.
1011  **/
1012 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1013                                   u16 *data)
1014 {
1015         struct e1000_nvm_info *nvm = &hw->nvm;
1016         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1017         u32 act_offset;
1018         s32 ret_val;
1019         u32 bank = 0;
1020         u16 i, word;
1021
1022         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1023             (words == 0)) {
1024                 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
1025                 return -E1000_ERR_NVM;
1026         }
1027
1028         ret_val = e1000_acquire_swflag_ich8lan(hw);
1029         if (ret_val)
1030                 return ret_val;
1031
1032         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
1033         if (ret_val)
1034                 return ret_val;
1035
1036         act_offset = (bank) ? nvm->flash_bank_size : 0;
1037         act_offset += offset;
1038
1039         for (i = 0; i < words; i++) {
1040                 if ((dev_spec->shadow_ram) &&
1041                     (dev_spec->shadow_ram[offset+i].modified)) {
1042                         data[i] = dev_spec->shadow_ram[offset+i].value;
1043                 } else {
1044                         ret_val = e1000_read_flash_word_ich8lan(hw,
1045                                                                 act_offset + i,
1046                                                                 &word);
1047                         if (ret_val)
1048                                 break;
1049                         data[i] = word;
1050                 }
1051         }
1052
1053         e1000_release_swflag_ich8lan(hw);
1054
1055         return ret_val;
1056 }
1057
1058 /**
1059  *  e1000_flash_cycle_init_ich8lan - Initialize flash
1060  *  @hw: pointer to the HW structure
1061  *
1062  *  This function does initial flash setup so that a new read/write/erase cycle
1063  *  can be started.
1064  **/
1065 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
1066 {
1067         union ich8_hws_flash_status hsfsts;
1068         s32 ret_val = -E1000_ERR_NVM;
1069         s32 i = 0;
1070
1071         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1072
1073         /* Check if the flash descriptor is valid */
1074         if (hsfsts.hsf_status.fldesvalid == 0) {
1075                 hw_dbg(hw, "Flash descriptor invalid.  "
1076                          "SW Sequencing must be used.");
1077                 return -E1000_ERR_NVM;
1078         }
1079
1080         /* Clear FCERR and DAEL in hw status by writing 1 */
1081         hsfsts.hsf_status.flcerr = 1;
1082         hsfsts.hsf_status.dael = 1;
1083
1084         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1085
1086         /*
1087          * Either we should have a hardware SPI cycle in progress
1088          * bit to check against, in order to start a new cycle or
1089          * FDONE bit should be changed in the hardware so that it
1090          * is 1 after hardware reset, which can then be used as an
1091          * indication whether a cycle is in progress or has been
1092          * completed.
1093          */
1094
1095         if (hsfsts.hsf_status.flcinprog == 0) {
1096                 /*
1097                  * There is no cycle running at present,
1098                  * so we can start a cycle
1099                  * Begin by setting Flash Cycle Done.
1100                  */
1101                 hsfsts.hsf_status.flcdone = 1;
1102                 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1103                 ret_val = 0;
1104         } else {
1105                 /*
1106                  * otherwise poll for sometime so the current
1107                  * cycle has a chance to end before giving up.
1108                  */
1109                 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
1110                         hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
1111                         if (hsfsts.hsf_status.flcinprog == 0) {
1112                                 ret_val = 0;
1113                                 break;
1114                         }
1115                         udelay(1);
1116                 }
1117                 if (ret_val == 0) {
1118                         /*
1119                          * Successful in waiting for previous cycle to timeout,
1120                          * now set the Flash Cycle Done.
1121                          */
1122                         hsfsts.hsf_status.flcdone = 1;
1123                         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1124                 } else {
1125                         hw_dbg(hw, "Flash controller busy, cannot get access");
1126                 }
1127         }
1128
1129         return ret_val;
1130 }
1131
1132 /**
1133  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
1134  *  @hw: pointer to the HW structure
1135  *  @timeout: maximum time to wait for completion
1136  *
1137  *  This function starts a flash cycle and waits for its completion.
1138  **/
1139 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
1140 {
1141         union ich8_hws_flash_ctrl hsflctl;
1142         union ich8_hws_flash_status hsfsts;
1143         s32 ret_val = -E1000_ERR_NVM;
1144         u32 i = 0;
1145
1146         /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
1147         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1148         hsflctl.hsf_ctrl.flcgo = 1;
1149         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1150
1151         /* wait till FDONE bit is set to 1 */
1152         do {
1153                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1154                 if (hsfsts.hsf_status.flcdone == 1)
1155                         break;
1156                 udelay(1);
1157         } while (i++ < timeout);
1158
1159         if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
1160                 return 0;
1161
1162         return ret_val;
1163 }
1164
1165 /**
1166  *  e1000_read_flash_word_ich8lan - Read word from flash
1167  *  @hw: pointer to the HW structure
1168  *  @offset: offset to data location
1169  *  @data: pointer to the location for storing the data
1170  *
1171  *  Reads the flash word at offset into data.  Offset is converted
1172  *  to bytes before read.
1173  **/
1174 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
1175                                          u16 *data)
1176 {
1177         /* Must convert offset into bytes. */
1178         offset <<= 1;
1179
1180         return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
1181 }
1182
1183 /**
1184  *  e1000_read_flash_byte_ich8lan - Read byte from flash
1185  *  @hw: pointer to the HW structure
1186  *  @offset: The offset of the byte to read.
1187  *  @data: Pointer to a byte to store the value read.
1188  *
1189  *  Reads a single byte from the NVM using the flash access registers.
1190  **/
1191 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
1192                                          u8 *data)
1193 {
1194         s32 ret_val;
1195         u16 word = 0;
1196
1197         ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
1198         if (ret_val)
1199                 return ret_val;
1200
1201         *data = (u8)word;
1202
1203         return 0;
1204 }
1205
1206 /**
1207  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
1208  *  @hw: pointer to the HW structure
1209  *  @offset: The offset (in bytes) of the byte or word to read.
1210  *  @size: Size of data to read, 1=byte 2=word
1211  *  @data: Pointer to the word to store the value read.
1212  *
1213  *  Reads a byte or word from the NVM using the flash access registers.
1214  **/
1215 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
1216                                          u8 size, u16 *data)
1217 {
1218         union ich8_hws_flash_status hsfsts;
1219         union ich8_hws_flash_ctrl hsflctl;
1220         u32 flash_linear_addr;
1221         u32 flash_data = 0;
1222         s32 ret_val = -E1000_ERR_NVM;
1223         u8 count = 0;
1224
1225         if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
1226                 return -E1000_ERR_NVM;
1227
1228         flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
1229                             hw->nvm.flash_base_addr;
1230
1231         do {
1232                 udelay(1);
1233                 /* Steps */
1234                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1235                 if (ret_val != 0)
1236                         break;
1237
1238                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1239                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1240                 hsflctl.hsf_ctrl.fldbcount = size - 1;
1241                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
1242                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1243
1244                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1245
1246                 ret_val = e1000_flash_cycle_ich8lan(hw,
1247                                                 ICH_FLASH_READ_COMMAND_TIMEOUT);
1248
1249                 /*
1250                  * Check if FCERR is set to 1, if set to 1, clear it
1251                  * and try the whole sequence a few more times, else
1252                  * read in (shift in) the Flash Data0, the order is
1253                  * least significant byte first msb to lsb
1254                  */
1255                 if (ret_val == 0) {
1256                         flash_data = er32flash(ICH_FLASH_FDATA0);
1257                         if (size == 1) {
1258                                 *data = (u8)(flash_data & 0x000000FF);
1259                         } else if (size == 2) {
1260                                 *data = (u16)(flash_data & 0x0000FFFF);
1261                         }
1262                         break;
1263                 } else {
1264                         /*
1265                          * If we've gotten here, then things are probably
1266                          * completely hosed, but if the error condition is
1267                          * detected, it won't hurt to give it another try...
1268                          * ICH_FLASH_CYCLE_REPEAT_COUNT times.
1269                          */
1270                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1271                         if (hsfsts.hsf_status.flcerr == 1) {
1272                                 /* Repeat for some time before giving up. */
1273                                 continue;
1274                         } else if (hsfsts.hsf_status.flcdone == 0) {
1275                                 hw_dbg(hw, "Timeout error - flash cycle "
1276                                          "did not complete.");
1277                                 break;
1278                         }
1279                 }
1280         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
1281
1282         return ret_val;
1283 }
1284
1285 /**
1286  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
1287  *  @hw: pointer to the HW structure
1288  *  @offset: The offset (in bytes) of the word(s) to write.
1289  *  @words: Size of data to write in words
1290  *  @data: Pointer to the word(s) to write at offset.
1291  *
1292  *  Writes a byte or word to the NVM using the flash access registers.
1293  **/
1294 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1295                                    u16 *data)
1296 {
1297         struct e1000_nvm_info *nvm = &hw->nvm;
1298         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1299         s32 ret_val;
1300         u16 i;
1301
1302         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1303             (words == 0)) {
1304                 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
1305                 return -E1000_ERR_NVM;
1306         }
1307
1308         ret_val = e1000_acquire_swflag_ich8lan(hw);
1309         if (ret_val)
1310                 return ret_val;
1311
1312         for (i = 0; i < words; i++) {
1313                 dev_spec->shadow_ram[offset+i].modified = 1;
1314                 dev_spec->shadow_ram[offset+i].value = data[i];
1315         }
1316
1317         e1000_release_swflag_ich8lan(hw);
1318
1319         return 0;
1320 }
1321
1322 /**
1323  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
1324  *  @hw: pointer to the HW structure
1325  *
1326  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
1327  *  which writes the checksum to the shadow ram.  The changes in the shadow
1328  *  ram are then committed to the EEPROM by processing each bank at a time
1329  *  checking for the modified bit and writing only the pending changes.
1330  *  After a successful commit, the shadow ram is cleared and is ready for
1331  *  future writes.
1332  **/
1333 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
1334 {
1335         struct e1000_nvm_info *nvm = &hw->nvm;
1336         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1337         u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
1338         s32 ret_val;
1339         u16 data;
1340
1341         ret_val = e1000e_update_nvm_checksum_generic(hw);
1342         if (ret_val)
1343                 return ret_val;
1344
1345         if (nvm->type != e1000_nvm_flash_sw)
1346                 return ret_val;
1347
1348         ret_val = e1000_acquire_swflag_ich8lan(hw);
1349         if (ret_val)
1350                 return ret_val;
1351
1352         /*
1353          * We're writing to the opposite bank so if we're on bank 1,
1354          * write to bank 0 etc.  We also need to erase the segment that
1355          * is going to be written
1356          */
1357         ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
1358         if (ret_val)
1359                 return ret_val;
1360
1361         if (bank == 0) {
1362                 new_bank_offset = nvm->flash_bank_size;
1363                 old_bank_offset = 0;
1364                 e1000_erase_flash_bank_ich8lan(hw, 1);
1365         } else {
1366                 old_bank_offset = nvm->flash_bank_size;
1367                 new_bank_offset = 0;
1368                 e1000_erase_flash_bank_ich8lan(hw, 0);
1369         }
1370
1371         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
1372                 /*
1373                  * Determine whether to write the value stored
1374                  * in the other NVM bank or a modified value stored
1375                  * in the shadow RAM
1376                  */
1377                 if (dev_spec->shadow_ram[i].modified) {
1378                         data = dev_spec->shadow_ram[i].value;
1379                 } else {
1380                         e1000_read_flash_word_ich8lan(hw,
1381                                                       i + old_bank_offset,
1382                                                       &data);
1383                 }
1384
1385                 /*
1386                  * If the word is 0x13, then make sure the signature bits
1387                  * (15:14) are 11b until the commit has completed.
1388                  * This will allow us to write 10b which indicates the
1389                  * signature is valid.  We want to do this after the write
1390                  * has completed so that we don't mark the segment valid
1391                  * while the write is still in progress
1392                  */
1393                 if (i == E1000_ICH_NVM_SIG_WORD)
1394                         data |= E1000_ICH_NVM_SIG_MASK;
1395
1396                 /* Convert offset to bytes. */
1397                 act_offset = (i + new_bank_offset) << 1;
1398
1399                 udelay(100);
1400                 /* Write the bytes to the new bank. */
1401                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1402                                                                act_offset,
1403                                                                (u8)data);
1404                 if (ret_val)
1405                         break;
1406
1407                 udelay(100);
1408                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1409                                                           act_offset + 1,
1410                                                           (u8)(data >> 8));
1411                 if (ret_val)
1412                         break;
1413         }
1414
1415         /*
1416          * Don't bother writing the segment valid bits if sector
1417          * programming failed.
1418          */
1419         if (ret_val) {
1420                 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
1421                 hw_dbg(hw, "Flash commit failed.\n");
1422                 e1000_release_swflag_ich8lan(hw);
1423                 return ret_val;
1424         }
1425
1426         /*
1427          * Finally validate the new segment by setting bit 15:14
1428          * to 10b in word 0x13 , this can be done without an
1429          * erase as well since these bits are 11 to start with
1430          * and we need to change bit 14 to 0b
1431          */
1432         act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
1433         e1000_read_flash_word_ich8lan(hw, act_offset, &data);
1434         data &= 0xBFFF;
1435         ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1436                                                        act_offset * 2 + 1,
1437                                                        (u8)(data >> 8));
1438         if (ret_val) {
1439                 e1000_release_swflag_ich8lan(hw);
1440                 return ret_val;
1441         }
1442
1443         /*
1444          * And invalidate the previously valid segment by setting
1445          * its signature word (0x13) high_byte to 0b. This can be
1446          * done without an erase because flash erase sets all bits
1447          * to 1's. We can write 1's to 0's without an erase
1448          */
1449         act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
1450         ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
1451         if (ret_val) {
1452                 e1000_release_swflag_ich8lan(hw);
1453                 return ret_val;
1454         }
1455
1456         /* Great!  Everything worked, we can now clear the cached entries. */
1457         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
1458                 dev_spec->shadow_ram[i].modified = 0;
1459                 dev_spec->shadow_ram[i].value = 0xFFFF;
1460         }
1461
1462         e1000_release_swflag_ich8lan(hw);
1463
1464         /*
1465          * Reload the EEPROM, or else modifications will not appear
1466          * until after the next adapter reset.
1467          */
1468         e1000e_reload_nvm(hw);
1469         msleep(10);
1470
1471         return ret_val;
1472 }
1473
1474 /**
1475  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
1476  *  @hw: pointer to the HW structure
1477  *
1478  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
1479  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
1480  *  calculated, in which case we need to calculate the checksum and set bit 6.
1481  **/
1482 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
1483 {
1484         s32 ret_val;
1485         u16 data;
1486
1487         /*
1488          * Read 0x19 and check bit 6.  If this bit is 0, the checksum
1489          * needs to be fixed.  This bit is an indication that the NVM
1490          * was prepared by OEM software and did not calculate the
1491          * checksum...a likely scenario.
1492          */
1493         ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
1494         if (ret_val)
1495                 return ret_val;
1496
1497         if ((data & 0x40) == 0) {
1498                 data |= 0x40;
1499                 ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
1500                 if (ret_val)
1501                         return ret_val;
1502                 ret_val = e1000e_update_nvm_checksum(hw);
1503                 if (ret_val)
1504                         return ret_val;
1505         }
1506
1507         return e1000e_validate_nvm_checksum_generic(hw);
1508 }
1509
1510 /**
1511  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
1512  *  @hw: pointer to the HW structure
1513  *
1514  *  To prevent malicious write/erase of the NVM, set it to be read-only
1515  *  so that the hardware ignores all write/erase cycles of the NVM via
1516  *  the flash control registers.  The shadow-ram copy of the NVM will
1517  *  still be updated, however any updates to this copy will not stick
1518  *  across driver reloads.
1519  **/
1520 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
1521 {
1522         union ich8_flash_protected_range pr0;
1523         union ich8_hws_flash_status hsfsts;
1524         u32 gfpreg;
1525         s32 ret_val;
1526
1527         ret_val = e1000_acquire_swflag_ich8lan(hw);
1528         if (ret_val)
1529                 return;
1530
1531         gfpreg = er32flash(ICH_FLASH_GFPREG);
1532
1533         /* Write-protect GbE Sector of NVM */
1534         pr0.regval = er32flash(ICH_FLASH_PR0);
1535         pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
1536         pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
1537         pr0.range.wpe = true;
1538         ew32flash(ICH_FLASH_PR0, pr0.regval);
1539
1540         /*
1541          * Lock down a subset of GbE Flash Control Registers, e.g.
1542          * PR0 to prevent the write-protection from being lifted.
1543          * Once FLOCKDN is set, the registers protected by it cannot
1544          * be written until FLOCKDN is cleared by a hardware reset.
1545          */
1546         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1547         hsfsts.hsf_status.flockdn = true;
1548         ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1549
1550         e1000_release_swflag_ich8lan(hw);
1551 }
1552
1553 /**
1554  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
1555  *  @hw: pointer to the HW structure
1556  *  @offset: The offset (in bytes) of the byte/word to read.
1557  *  @size: Size of data to read, 1=byte 2=word
1558  *  @data: The byte(s) to write to the NVM.
1559  *
1560  *  Writes one/two bytes to the NVM using the flash access registers.
1561  **/
1562 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
1563                                           u8 size, u16 data)
1564 {
1565         union ich8_hws_flash_status hsfsts;
1566         union ich8_hws_flash_ctrl hsflctl;
1567         u32 flash_linear_addr;
1568         u32 flash_data = 0;
1569         s32 ret_val;
1570         u8 count = 0;
1571
1572         if (size < 1 || size > 2 || data > size * 0xff ||
1573             offset > ICH_FLASH_LINEAR_ADDR_MASK)
1574                 return -E1000_ERR_NVM;
1575
1576         flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
1577                             hw->nvm.flash_base_addr;
1578
1579         do {
1580                 udelay(1);
1581                 /* Steps */
1582                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1583                 if (ret_val)
1584                         break;
1585
1586                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1587                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1588                 hsflctl.hsf_ctrl.fldbcount = size -1;
1589                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
1590                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1591
1592                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1593
1594                 if (size == 1)
1595                         flash_data = (u32)data & 0x00FF;
1596                 else
1597                         flash_data = (u32)data;
1598
1599                 ew32flash(ICH_FLASH_FDATA0, flash_data);
1600
1601                 /*
1602                  * check if FCERR is set to 1 , if set to 1, clear it
1603                  * and try the whole sequence a few more times else done
1604                  */
1605                 ret_val = e1000_flash_cycle_ich8lan(hw,
1606                                                ICH_FLASH_WRITE_COMMAND_TIMEOUT);
1607                 if (!ret_val)
1608                         break;
1609
1610                 /*
1611                  * If we're here, then things are most likely
1612                  * completely hosed, but if the error condition
1613                  * is detected, it won't hurt to give it another
1614                  * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
1615                  */
1616                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1617                 if (hsfsts.hsf_status.flcerr == 1)
1618                         /* Repeat for some time before giving up. */
1619                         continue;
1620                 if (hsfsts.hsf_status.flcdone == 0) {
1621                         hw_dbg(hw, "Timeout error - flash cycle "
1622                                  "did not complete.");
1623                         break;
1624                 }
1625         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
1626
1627         return ret_val;
1628 }
1629
1630 /**
1631  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
1632  *  @hw: pointer to the HW structure
1633  *  @offset: The index of the byte to read.
1634  *  @data: The byte to write to the NVM.
1635  *
1636  *  Writes a single byte to the NVM using the flash access registers.
1637  **/
1638 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
1639                                           u8 data)
1640 {
1641         u16 word = (u16)data;
1642
1643         return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
1644 }
1645
1646 /**
1647  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
1648  *  @hw: pointer to the HW structure
1649  *  @offset: The offset of the byte to write.
1650  *  @byte: The byte to write to the NVM.
1651  *
1652  *  Writes a single byte to the NVM using the flash access registers.
1653  *  Goes through a retry algorithm before giving up.
1654  **/
1655 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
1656                                                 u32 offset, u8 byte)
1657 {
1658         s32 ret_val;
1659         u16 program_retries;
1660
1661         ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
1662         if (!ret_val)
1663                 return ret_val;
1664
1665         for (program_retries = 0; program_retries < 100; program_retries++) {
1666                 hw_dbg(hw, "Retrying Byte %2.2X at offset %u\n", byte, offset);
1667                 udelay(100);
1668                 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
1669                 if (!ret_val)
1670                         break;
1671         }
1672         if (program_retries == 100)
1673                 return -E1000_ERR_NVM;
1674
1675         return 0;
1676 }
1677
1678 /**
1679  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
1680  *  @hw: pointer to the HW structure
1681  *  @bank: 0 for first bank, 1 for second bank, etc.
1682  *
1683  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
1684  *  bank N is 4096 * N + flash_reg_addr.
1685  **/
1686 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
1687 {
1688         struct e1000_nvm_info *nvm = &hw->nvm;
1689         union ich8_hws_flash_status hsfsts;
1690         union ich8_hws_flash_ctrl hsflctl;
1691         u32 flash_linear_addr;
1692         /* bank size is in 16bit words - adjust to bytes */
1693         u32 flash_bank_size = nvm->flash_bank_size * 2;
1694         s32 ret_val;
1695         s32 count = 0;
1696         s32 iteration;
1697         s32 sector_size;
1698         s32 j;
1699
1700         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1701
1702         /*
1703          * Determine HW Sector size: Read BERASE bits of hw flash status
1704          * register
1705          * 00: The Hw sector is 256 bytes, hence we need to erase 16
1706          *     consecutive sectors.  The start index for the nth Hw sector
1707          *     can be calculated as = bank * 4096 + n * 256
1708          * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
1709          *     The start index for the nth Hw sector can be calculated
1710          *     as = bank * 4096
1711          * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
1712          *     (ich9 only, otherwise error condition)
1713          * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
1714          */
1715         switch (hsfsts.hsf_status.berasesz) {
1716         case 0:
1717                 /* Hw sector size 256 */
1718                 sector_size = ICH_FLASH_SEG_SIZE_256;
1719                 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
1720                 break;
1721         case 1:
1722                 sector_size = ICH_FLASH_SEG_SIZE_4K;
1723                 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_4K;
1724                 break;
1725         case 2:
1726                 if (hw->mac.type == e1000_ich9lan) {
1727                         sector_size = ICH_FLASH_SEG_SIZE_8K;
1728                         iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_8K;
1729                 } else {
1730                         return -E1000_ERR_NVM;
1731                 }
1732                 break;
1733         case 3:
1734                 sector_size = ICH_FLASH_SEG_SIZE_64K;
1735                 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_64K;
1736                 break;
1737         default:
1738                 return -E1000_ERR_NVM;
1739         }
1740
1741         /* Start with the base address, then add the sector offset. */
1742         flash_linear_addr = hw->nvm.flash_base_addr;
1743         flash_linear_addr += (bank) ? (sector_size * iteration) : 0;
1744
1745         for (j = 0; j < iteration ; j++) {
1746                 do {
1747                         /* Steps */
1748                         ret_val = e1000_flash_cycle_init_ich8lan(hw);
1749                         if (ret_val)
1750                                 return ret_val;
1751
1752                         /*
1753                          * Write a value 11 (block Erase) in Flash
1754                          * Cycle field in hw flash control
1755                          */
1756                         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1757                         hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
1758                         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1759
1760                         /*
1761                          * Write the last 24 bits of an index within the
1762                          * block into Flash Linear address field in Flash
1763                          * Address.
1764                          */
1765                         flash_linear_addr += (j * sector_size);
1766                         ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1767
1768                         ret_val = e1000_flash_cycle_ich8lan(hw,
1769                                                ICH_FLASH_ERASE_COMMAND_TIMEOUT);
1770                         if (ret_val == 0)
1771                                 break;
1772
1773                         /*
1774                          * Check if FCERR is set to 1.  If 1,
1775                          * clear it and try the whole sequence
1776                          * a few more times else Done
1777                          */
1778                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1779                         if (hsfsts.hsf_status.flcerr == 1)
1780                                 /* repeat for some time before giving up */
1781                                 continue;
1782                         else if (hsfsts.hsf_status.flcdone == 0)
1783                                 return ret_val;
1784                 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
1785         }
1786
1787         return 0;
1788 }
1789
1790 /**
1791  *  e1000_valid_led_default_ich8lan - Set the default LED settings
1792  *  @hw: pointer to the HW structure
1793  *  @data: Pointer to the LED settings
1794  *
1795  *  Reads the LED default settings from the NVM to data.  If the NVM LED
1796  *  settings is all 0's or F's, set the LED default to a valid LED default
1797  *  setting.
1798  **/
1799 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
1800 {
1801         s32 ret_val;
1802
1803         ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1804         if (ret_val) {
1805                 hw_dbg(hw, "NVM Read Error\n");
1806                 return ret_val;
1807         }
1808
1809         if (*data == ID_LED_RESERVED_0000 ||
1810             *data == ID_LED_RESERVED_FFFF)
1811                 *data = ID_LED_DEFAULT_ICH8LAN;
1812
1813         return 0;
1814 }
1815
1816 /**
1817  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
1818  *  @hw: pointer to the HW structure
1819  *
1820  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
1821  *  register, so the the bus width is hard coded.
1822  **/
1823 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
1824 {
1825         struct e1000_bus_info *bus = &hw->bus;
1826         s32 ret_val;
1827
1828         ret_val = e1000e_get_bus_info_pcie(hw);
1829
1830         /*
1831          * ICH devices are "PCI Express"-ish.  They have
1832          * a configuration space, but do not contain
1833          * PCI Express Capability registers, so bus width
1834          * must be hardcoded.
1835          */
1836         if (bus->width == e1000_bus_width_unknown)
1837                 bus->width = e1000_bus_width_pcie_x1;
1838
1839         return ret_val;
1840 }
1841
1842 /**
1843  *  e1000_reset_hw_ich8lan - Reset the hardware
1844  *  @hw: pointer to the HW structure
1845  *
1846  *  Does a full reset of the hardware which includes a reset of the PHY and
1847  *  MAC.
1848  **/
1849 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
1850 {
1851         u32 ctrl, icr, kab;
1852         s32 ret_val;
1853
1854         /*
1855          * Prevent the PCI-E bus from sticking if there is no TLP connection
1856          * on the last TLP read/write transaction when MAC is reset.
1857          */
1858         ret_val = e1000e_disable_pcie_master(hw);
1859         if (ret_val) {
1860                 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
1861         }
1862
1863         hw_dbg(hw, "Masking off all interrupts\n");
1864         ew32(IMC, 0xffffffff);
1865
1866         /*
1867          * Disable the Transmit and Receive units.  Then delay to allow
1868          * any pending transactions to complete before we hit the MAC
1869          * with the global reset.
1870          */
1871         ew32(RCTL, 0);
1872         ew32(TCTL, E1000_TCTL_PSP);
1873         e1e_flush();
1874
1875         msleep(10);
1876
1877         /* Workaround for ICH8 bit corruption issue in FIFO memory */
1878         if (hw->mac.type == e1000_ich8lan) {
1879                 /* Set Tx and Rx buffer allocation to 8k apiece. */
1880                 ew32(PBA, E1000_PBA_8K);
1881                 /* Set Packet Buffer Size to 16k. */
1882                 ew32(PBS, E1000_PBS_16K);
1883         }
1884
1885         ctrl = er32(CTRL);
1886
1887         if (!e1000_check_reset_block(hw)) {
1888                 /*
1889                  * PHY HW reset requires MAC CORE reset at the same
1890                  * time to make sure the interface between MAC and the
1891                  * external PHY is reset.
1892                  */
1893                 ctrl |= E1000_CTRL_PHY_RST;
1894         }
1895         ret_val = e1000_acquire_swflag_ich8lan(hw);
1896         /* Whether or not the swflag was acquired, we need to reset the part */
1897         hw_dbg(hw, "Issuing a global reset to ich8lan");
1898         ew32(CTRL, (ctrl | E1000_CTRL_RST));
1899         msleep(20);
1900
1901         if (!ret_val) {
1902                 /* release the swflag because it is not reset by
1903                  * hardware reset
1904                  */
1905                 e1000_release_swflag_ich8lan(hw);
1906         }
1907
1908         ret_val = e1000e_get_auto_rd_done(hw);
1909         if (ret_val) {
1910                 /*
1911                  * When auto config read does not complete, do not
1912                  * return with an error. This can happen in situations
1913                  * where there is no eeprom and prevents getting link.
1914                  */
1915                 hw_dbg(hw, "Auto Read Done did not complete\n");
1916         }
1917
1918         ew32(IMC, 0xffffffff);
1919         icr = er32(ICR);
1920
1921         kab = er32(KABGTXD);
1922         kab |= E1000_KABGTXD_BGSQLBIAS;
1923         ew32(KABGTXD, kab);
1924
1925         return ret_val;
1926 }
1927
1928 /**
1929  *  e1000_init_hw_ich8lan - Initialize the hardware
1930  *  @hw: pointer to the HW structure
1931  *
1932  *  Prepares the hardware for transmit and receive by doing the following:
1933  *   - initialize hardware bits
1934  *   - initialize LED identification
1935  *   - setup receive address registers
1936  *   - setup flow control
1937  *   - setup transmit descriptors
1938  *   - clear statistics
1939  **/
1940 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
1941 {
1942         struct e1000_mac_info *mac = &hw->mac;
1943         u32 ctrl_ext, txdctl, snoop;
1944         s32 ret_val;
1945         u16 i;
1946
1947         e1000_initialize_hw_bits_ich8lan(hw);
1948
1949         /* Initialize identification LED */
1950         ret_val = e1000e_id_led_init(hw);
1951         if (ret_val) {
1952                 hw_dbg(hw, "Error initializing identification LED\n");
1953                 return ret_val;
1954         }
1955
1956         /* Setup the receive address. */
1957         e1000e_init_rx_addrs(hw, mac->rar_entry_count);
1958
1959         /* Zero out the Multicast HASH table */
1960         hw_dbg(hw, "Zeroing the MTA\n");
1961         for (i = 0; i < mac->mta_reg_count; i++)
1962                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
1963
1964         /* Setup link and flow control */
1965         ret_val = e1000_setup_link_ich8lan(hw);
1966
1967         /* Set the transmit descriptor write-back policy for both queues */
1968         txdctl = er32(TXDCTL(0));
1969         txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
1970                  E1000_TXDCTL_FULL_TX_DESC_WB;
1971         txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
1972                  E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
1973         ew32(TXDCTL(0), txdctl);
1974         txdctl = er32(TXDCTL(1));
1975         txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
1976                  E1000_TXDCTL_FULL_TX_DESC_WB;
1977         txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
1978                  E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
1979         ew32(TXDCTL(1), txdctl);
1980
1981         /*
1982          * ICH8 has opposite polarity of no_snoop bits.
1983          * By default, we should use snoop behavior.
1984          */
1985         if (mac->type == e1000_ich8lan)
1986                 snoop = PCIE_ICH8_SNOOP_ALL;
1987         else
1988                 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
1989         e1000e_set_pcie_no_snoop(hw, snoop);
1990
1991         ctrl_ext = er32(CTRL_EXT);
1992         ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
1993         ew32(CTRL_EXT, ctrl_ext);
1994
1995         /*
1996          * Clear all of the statistics registers (clear on read).  It is
1997          * important that we do this after we have tried to establish link
1998          * because the symbol error count will increment wildly if there
1999          * is no link.
2000          */
2001         e1000_clear_hw_cntrs_ich8lan(hw);
2002
2003         return 0;
2004 }
2005 /**
2006  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
2007  *  @hw: pointer to the HW structure
2008  *
2009  *  Sets/Clears required hardware bits necessary for correctly setting up the
2010  *  hardware for transmit and receive.
2011  **/
2012 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
2013 {
2014         u32 reg;
2015
2016         /* Extended Device Control */
2017         reg = er32(CTRL_EXT);
2018         reg |= (1 << 22);
2019         ew32(CTRL_EXT, reg);
2020
2021         /* Transmit Descriptor Control 0 */
2022         reg = er32(TXDCTL(0));
2023         reg |= (1 << 22);
2024         ew32(TXDCTL(0), reg);
2025
2026         /* Transmit Descriptor Control 1 */
2027         reg = er32(TXDCTL(1));
2028         reg |= (1 << 22);
2029         ew32(TXDCTL(1), reg);
2030
2031         /* Transmit Arbitration Control 0 */
2032         reg = er32(TARC(0));
2033         if (hw->mac.type == e1000_ich8lan)
2034                 reg |= (1 << 28) | (1 << 29);
2035         reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
2036         ew32(TARC(0), reg);
2037
2038         /* Transmit Arbitration Control 1 */
2039         reg = er32(TARC(1));
2040         if (er32(TCTL) & E1000_TCTL_MULR)
2041                 reg &= ~(1 << 28);
2042         else
2043                 reg |= (1 << 28);
2044         reg |= (1 << 24) | (1 << 26) | (1 << 30);
2045         ew32(TARC(1), reg);
2046
2047         /* Device Status */
2048         if (hw->mac.type == e1000_ich8lan) {
2049                 reg = er32(STATUS);
2050                 reg &= ~(1 << 31);
2051                 ew32(STATUS, reg);
2052         }
2053 }
2054
2055 /**
2056  *  e1000_setup_link_ich8lan - Setup flow control and link settings
2057  *  @hw: pointer to the HW structure
2058  *
2059  *  Determines which flow control settings to use, then configures flow
2060  *  control.  Calls the appropriate media-specific link configuration
2061  *  function.  Assuming the adapter has a valid link partner, a valid link
2062  *  should be established.  Assumes the hardware has previously been reset
2063  *  and the transmitter and receiver are not enabled.
2064  **/
2065 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
2066 {
2067         s32 ret_val;
2068
2069         if (e1000_check_reset_block(hw))
2070                 return 0;
2071
2072         /*
2073          * ICH parts do not have a word in the NVM to determine
2074          * the default flow control setting, so we explicitly
2075          * set it to full.
2076          */
2077         if (hw->fc.type == e1000_fc_default)
2078                 hw->fc.type = e1000_fc_full;
2079
2080         hw->fc.original_type = hw->fc.type;
2081
2082         hw_dbg(hw, "After fix-ups FlowControl is now = %x\n", hw->fc.type);
2083
2084         /* Continue to configure the copper link. */
2085         ret_val = e1000_setup_copper_link_ich8lan(hw);
2086         if (ret_val)
2087                 return ret_val;
2088
2089         ew32(FCTTV, hw->fc.pause_time);
2090
2091         return e1000e_set_fc_watermarks(hw);
2092 }
2093
2094 /**
2095  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
2096  *  @hw: pointer to the HW structure
2097  *
2098  *  Configures the kumeran interface to the PHY to wait the appropriate time
2099  *  when polling the PHY, then call the generic setup_copper_link to finish
2100  *  configuring the copper link.
2101  **/
2102 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
2103 {
2104         u32 ctrl;
2105         s32 ret_val;
2106         u16 reg_data;
2107
2108         ctrl = er32(CTRL);
2109         ctrl |= E1000_CTRL_SLU;
2110         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2111         ew32(CTRL, ctrl);
2112
2113         /*
2114          * Set the mac to wait the maximum time between each iteration
2115          * and increase the max iterations when polling the phy;
2116          * this fixes erroneous timeouts at 10Mbps.
2117          */
2118         ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
2119         if (ret_val)
2120                 return ret_val;
2121         ret_val = e1000e_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
2122         if (ret_val)
2123                 return ret_val;
2124         reg_data |= 0x3F;
2125         ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
2126         if (ret_val)
2127                 return ret_val;
2128
2129         if (hw->phy.type == e1000_phy_igp_3) {
2130                 ret_val = e1000e_copper_link_setup_igp(hw);
2131                 if (ret_val)
2132                         return ret_val;
2133         } else if (hw->phy.type == e1000_phy_bm) {
2134                 ret_val = e1000e_copper_link_setup_m88(hw);
2135                 if (ret_val)
2136                         return ret_val;
2137         }
2138
2139         if (hw->phy.type == e1000_phy_ife) {
2140                 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
2141                 if (ret_val)
2142                         return ret_val;
2143
2144                 reg_data &= ~IFE_PMC_AUTO_MDIX;
2145
2146                 switch (hw->phy.mdix) {
2147                 case 1:
2148                         reg_data &= ~IFE_PMC_FORCE_MDIX;
2149                         break;
2150                 case 2:
2151                         reg_data |= IFE_PMC_FORCE_MDIX;
2152                         break;
2153                 case 0:
2154                 default:
2155                         reg_data |= IFE_PMC_AUTO_MDIX;
2156                         break;
2157                 }
2158                 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
2159                 if (ret_val)
2160                         return ret_val;
2161         }
2162         return e1000e_setup_copper_link(hw);
2163 }
2164
2165 /**
2166  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
2167  *  @hw: pointer to the HW structure
2168  *  @speed: pointer to store current link speed
2169  *  @duplex: pointer to store the current link duplex
2170  *
2171  *  Calls the generic get_speed_and_duplex to retrieve the current link
2172  *  information and then calls the Kumeran lock loss workaround for links at
2173  *  gigabit speeds.
2174  **/
2175 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
2176                                           u16 *duplex)
2177 {
2178         s32 ret_val;
2179
2180         ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
2181         if (ret_val)
2182                 return ret_val;
2183
2184         if ((hw->mac.type == e1000_ich8lan) &&
2185             (hw->phy.type == e1000_phy_igp_3) &&
2186             (*speed == SPEED_1000)) {
2187                 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
2188         }
2189
2190         return ret_val;
2191 }
2192
2193 /**
2194  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
2195  *  @hw: pointer to the HW structure
2196  *
2197  *  Work-around for 82566 Kumeran PCS lock loss:
2198  *  On link status change (i.e. PCI reset, speed change) and link is up and
2199  *  speed is gigabit-
2200  *    0) if workaround is optionally disabled do nothing
2201  *    1) wait 1ms for Kumeran link to come up
2202  *    2) check Kumeran Diagnostic register PCS lock loss bit
2203  *    3) if not set the link is locked (all is good), otherwise...
2204  *    4) reset the PHY
2205  *    5) repeat up to 10 times
2206  *  Note: this is only called for IGP3 copper when speed is 1gb.
2207  **/
2208 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
2209 {
2210         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2211         u32 phy_ctrl;
2212         s32 ret_val;
2213         u16 i, data;
2214         bool link;
2215
2216         if (!dev_spec->kmrn_lock_loss_workaround_enabled)
2217                 return 0;
2218
2219         /*
2220          * Make sure link is up before proceeding.  If not just return.
2221          * Attempting this while link is negotiating fouled up link
2222          * stability
2223          */
2224         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2225         if (!link)
2226                 return 0;
2227
2228         for (i = 0; i < 10; i++) {
2229                 /* read once to clear */
2230                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
2231                 if (ret_val)
2232                         return ret_val;
2233                 /* and again to get new status */
2234                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
2235                 if (ret_val)
2236                         return ret_val;
2237
2238                 /* check for PCS lock */
2239                 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
2240                         return 0;
2241
2242                 /* Issue PHY reset */
2243                 e1000_phy_hw_reset(hw);
2244                 mdelay(5);
2245         }
2246         /* Disable GigE link negotiation */
2247         phy_ctrl = er32(PHY_CTRL);
2248         phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
2249                      E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
2250         ew32(PHY_CTRL, phy_ctrl);
2251
2252         /*
2253          * Call gig speed drop workaround on Gig disable before accessing
2254          * any PHY registers
2255          */
2256         e1000e_gig_downshift_workaround_ich8lan(hw);
2257
2258         /* unable to acquire PCS lock */
2259         return -E1000_ERR_PHY;
2260 }
2261
2262 /**
2263  *  e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
2264  *  @hw: pointer to the HW structure
2265  *  @state: boolean value used to set the current Kumeran workaround state
2266  *
2267  *  If ICH8, set the current Kumeran workaround state (enabled - TRUE
2268  *  /disabled - FALSE).
2269  **/
2270 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
2271                                                  bool state)
2272 {
2273         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2274
2275         if (hw->mac.type != e1000_ich8lan) {
2276                 hw_dbg(hw, "Workaround applies to ICH8 only.\n");
2277                 return;
2278         }
2279
2280         dev_spec->kmrn_lock_loss_workaround_enabled = state;
2281 }
2282
2283 /**
2284  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
2285  *  @hw: pointer to the HW structure
2286  *
2287  *  Workaround for 82566 power-down on D3 entry:
2288  *    1) disable gigabit link
2289  *    2) write VR power-down enable
2290  *    3) read it back
2291  *  Continue if successful, else issue LCD reset and repeat
2292  **/
2293 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
2294 {
2295         u32 reg;
2296         u16 data;
2297         u8  retry = 0;
2298
2299         if (hw->phy.type != e1000_phy_igp_3)
2300                 return;
2301
2302         /* Try the workaround twice (if needed) */
2303         do {
2304                 /* Disable link */
2305                 reg = er32(PHY_CTRL);
2306                 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
2307                         E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
2308                 ew32(PHY_CTRL, reg);
2309
2310                 /*
2311                  * Call gig speed drop workaround on Gig disable before
2312                  * accessing any PHY registers
2313                  */
2314                 if (hw->mac.type == e1000_ich8lan)
2315                         e1000e_gig_downshift_workaround_ich8lan(hw);
2316
2317                 /* Write VR power-down enable */
2318                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
2319                 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
2320                 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
2321
2322                 /* Read it back and test */
2323                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
2324                 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
2325                 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
2326                         break;
2327
2328                 /* Issue PHY reset and repeat at most one more time */
2329                 reg = er32(CTRL);
2330                 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
2331                 retry++;
2332         } while (retry);
2333 }
2334
2335 /**
2336  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
2337  *  @hw: pointer to the HW structure
2338  *
2339  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
2340  *  LPLU, Gig disable, MDIC PHY reset):
2341  *    1) Set Kumeran Near-end loopback
2342  *    2) Clear Kumeran Near-end loopback
2343  *  Should only be called for ICH8[m] devices with IGP_3 Phy.
2344  **/
2345 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
2346 {
2347         s32 ret_val;
2348         u16 reg_data;
2349
2350         if ((hw->mac.type != e1000_ich8lan) ||
2351             (hw->phy.type != e1000_phy_igp_3))
2352                 return;
2353
2354         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2355                                       &reg_data);
2356         if (ret_val)
2357                 return;
2358         reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
2359         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2360                                        reg_data);
2361         if (ret_val)
2362                 return;
2363         reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
2364         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2365                                        reg_data);
2366 }
2367
2368 /**
2369  *  e1000e_disable_gig_wol_ich8lan - disable gig during WoL
2370  *  @hw: pointer to the HW structure
2371  *
2372  *  During S0 to Sx transition, it is possible the link remains at gig
2373  *  instead of negotiating to a lower speed.  Before going to Sx, set
2374  *  'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
2375  *  to a lower speed.
2376  *
2377  *  Should only be called for ICH9 and ICH10 devices.
2378  **/
2379 void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw)
2380 {
2381         u32 phy_ctrl;
2382
2383         if ((hw->mac.type == e1000_ich10lan) ||
2384             (hw->mac.type == e1000_ich9lan)) {
2385                 phy_ctrl = er32(PHY_CTRL);
2386                 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU |
2387                             E1000_PHY_CTRL_GBE_DISABLE;
2388                 ew32(PHY_CTRL, phy_ctrl);
2389         }
2390
2391         return;
2392 }
2393
2394 /**
2395  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
2396  *  @hw: pointer to the HW structure
2397  *
2398  *  Return the LED back to the default configuration.
2399  **/
2400 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
2401 {
2402         if (hw->phy.type == e1000_phy_ife)
2403                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
2404
2405         ew32(LEDCTL, hw->mac.ledctl_default);
2406         return 0;
2407 }
2408
2409 /**
2410  *  e1000_led_on_ich8lan - Turn LEDs on
2411  *  @hw: pointer to the HW structure
2412  *
2413  *  Turn on the LEDs.
2414  **/
2415 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
2416 {
2417         if (hw->phy.type == e1000_phy_ife)
2418                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
2419                                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
2420
2421         ew32(LEDCTL, hw->mac.ledctl_mode2);
2422         return 0;
2423 }
2424
2425 /**
2426  *  e1000_led_off_ich8lan - Turn LEDs off
2427  *  @hw: pointer to the HW structure
2428  *
2429  *  Turn off the LEDs.
2430  **/
2431 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
2432 {
2433         if (hw->phy.type == e1000_phy_ife)
2434                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
2435                                (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
2436
2437         ew32(LEDCTL, hw->mac.ledctl_mode1);
2438         return 0;
2439 }
2440
2441 /**
2442  *  e1000_get_cfg_done_ich8lan - Read config done bit
2443  *  @hw: pointer to the HW structure
2444  *
2445  *  Read the management control register for the config done bit for
2446  *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
2447  *  to read the config done bit, so an error is *ONLY* logged and returns
2448  *  E1000_SUCCESS.  If we were to return with error, EEPROM-less silicon
2449  *  would not be able to be reset or change link.
2450  **/
2451 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
2452 {
2453         u32 bank = 0;
2454
2455         e1000e_get_cfg_done(hw);
2456
2457         /* If EEPROM is not marked present, init the IGP 3 PHY manually */
2458         if (hw->mac.type != e1000_ich10lan) {
2459                 if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
2460                     (hw->phy.type == e1000_phy_igp_3)) {
2461                         e1000e_phy_init_script_igp3(hw);
2462                 }
2463         } else {
2464                 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
2465                         /* Maybe we should do a basic PHY config */
2466                         hw_dbg(hw, "EEPROM not present\n");
2467                         return -E1000_ERR_CONFIG;
2468                 }
2469         }
2470
2471         return 0;
2472 }
2473
2474 /**
2475  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
2476  *  @hw: pointer to the HW structure
2477  *
2478  *  Clears hardware counters specific to the silicon family and calls
2479  *  clear_hw_cntrs_generic to clear all general purpose counters.
2480  **/
2481 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
2482 {
2483         u32 temp;
2484
2485         e1000e_clear_hw_cntrs_base(hw);
2486
2487         temp = er32(ALGNERRC);
2488         temp = er32(RXERRC);
2489         temp = er32(TNCRS);
2490         temp = er32(CEXTERR);
2491         temp = er32(TSCTC);
2492         temp = er32(TSCTFC);
2493
2494         temp = er32(MGTPRC);
2495         temp = er32(MGTPDC);
2496         temp = er32(MGTPTC);
2497
2498         temp = er32(IAC);
2499         temp = er32(ICRXOC);
2500
2501 }
2502
2503 static struct e1000_mac_operations ich8_mac_ops = {
2504         .check_mng_mode         = e1000_check_mng_mode_ich8lan,
2505         .check_for_link         = e1000e_check_for_copper_link,
2506         .cleanup_led            = e1000_cleanup_led_ich8lan,
2507         .clear_hw_cntrs         = e1000_clear_hw_cntrs_ich8lan,
2508         .get_bus_info           = e1000_get_bus_info_ich8lan,
2509         .get_link_up_info       = e1000_get_link_up_info_ich8lan,
2510         .led_on                 = e1000_led_on_ich8lan,
2511         .led_off                = e1000_led_off_ich8lan,
2512         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
2513         .reset_hw               = e1000_reset_hw_ich8lan,
2514         .init_hw                = e1000_init_hw_ich8lan,
2515         .setup_link             = e1000_setup_link_ich8lan,
2516         .setup_physical_interface= e1000_setup_copper_link_ich8lan,
2517 };
2518
2519 static struct e1000_phy_operations ich8_phy_ops = {
2520         .acquire_phy            = e1000_acquire_swflag_ich8lan,
2521         .check_reset_block      = e1000_check_reset_block_ich8lan,
2522         .commit_phy             = NULL,
2523         .force_speed_duplex     = e1000_phy_force_speed_duplex_ich8lan,
2524         .get_cfg_done           = e1000_get_cfg_done_ich8lan,
2525         .get_cable_length       = e1000e_get_cable_length_igp_2,
2526         .get_phy_info           = e1000_get_phy_info_ich8lan,
2527         .read_phy_reg           = e1000e_read_phy_reg_igp,
2528         .release_phy            = e1000_release_swflag_ich8lan,
2529         .reset_phy              = e1000_phy_hw_reset_ich8lan,
2530         .set_d0_lplu_state      = e1000_set_d0_lplu_state_ich8lan,
2531         .set_d3_lplu_state      = e1000_set_d3_lplu_state_ich8lan,
2532         .write_phy_reg          = e1000e_write_phy_reg_igp,
2533 };
2534
2535 static struct e1000_nvm_operations ich8_nvm_ops = {
2536         .acquire_nvm            = e1000_acquire_swflag_ich8lan,
2537         .read_nvm               = e1000_read_nvm_ich8lan,
2538         .release_nvm            = e1000_release_swflag_ich8lan,
2539         .update_nvm             = e1000_update_nvm_checksum_ich8lan,
2540         .valid_led_default      = e1000_valid_led_default_ich8lan,
2541         .validate_nvm           = e1000_validate_nvm_checksum_ich8lan,
2542         .write_nvm              = e1000_write_nvm_ich8lan,
2543 };
2544
2545 struct e1000_info e1000_ich8_info = {
2546         .mac                    = e1000_ich8lan,
2547         .flags                  = FLAG_HAS_WOL
2548                                   | FLAG_IS_ICH
2549                                   | FLAG_RX_CSUM_ENABLED
2550                                   | FLAG_HAS_CTRLEXT_ON_LOAD
2551                                   | FLAG_HAS_AMT
2552                                   | FLAG_HAS_FLASH
2553                                   | FLAG_APME_IN_WUC,
2554         .pba                    = 8,
2555         .get_variants           = e1000_get_variants_ich8lan,
2556         .mac_ops                = &ich8_mac_ops,
2557         .phy_ops                = &ich8_phy_ops,
2558         .nvm_ops                = &ich8_nvm_ops,
2559 };
2560
2561 struct e1000_info e1000_ich9_info = {
2562         .mac                    = e1000_ich9lan,
2563         .flags                  = FLAG_HAS_JUMBO_FRAMES
2564                                   | FLAG_IS_ICH
2565                                   | FLAG_HAS_WOL
2566                                   | FLAG_RX_CSUM_ENABLED
2567                                   | FLAG_HAS_CTRLEXT_ON_LOAD
2568                                   | FLAG_HAS_AMT
2569                                   | FLAG_HAS_ERT
2570                                   | FLAG_HAS_FLASH
2571                                   | FLAG_APME_IN_WUC,
2572         .pba                    = 10,
2573         .get_variants           = e1000_get_variants_ich8lan,
2574         .mac_ops                = &ich8_mac_ops,
2575         .phy_ops                = &ich8_phy_ops,
2576         .nvm_ops                = &ich8_nvm_ops,
2577 };
2578
2579 struct e1000_info e1000_ich10_info = {
2580         .mac                    = e1000_ich10lan,
2581         .flags                  = FLAG_HAS_JUMBO_FRAMES
2582                                   | FLAG_IS_ICH
2583                                   | FLAG_HAS_WOL
2584                                   | FLAG_RX_CSUM_ENABLED
2585                                   | FLAG_HAS_CTRLEXT_ON_LOAD
2586                                   | FLAG_HAS_AMT
2587                                   | FLAG_HAS_ERT
2588                                   | FLAG_HAS_FLASH
2589                                   | FLAG_APME_IN_WUC,
2590         .pba                    = 10,
2591         .get_variants           = e1000_get_variants_ich8lan,
2592         .mac_ops                = &ich8_mac_ops,
2593         .phy_ops                = &ich8_phy_ops,
2594         .nvm_ops                = &ich8_nvm_ops,
2595 };