Merge branch 'master' into upstream
[linux-2.6] / drivers / net / e1000 / e1000_ethtool.c
1 /*******************************************************************************
2
3   
4   Copyright(c) 1999 - 2006 Intel Corporation. All rights reserved.
5   
6   This program is free software; you can redistribute it and/or modify it 
7   under the terms of the GNU General Public License as published by the Free 
8   Software Foundation; either version 2 of the License, or (at your option) 
9   any later version.
10   
11   This program is distributed in the hope that it will be useful, but WITHOUT 
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
14   more details.
15   
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc., 59 
18   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
19   
20   The full GNU General Public License is included in this distribution in the
21   file called LICENSE.
22   
23   Contact Information:
24   Linux NICS <linux.nics@intel.com>
25   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
26   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27
28 *******************************************************************************/
29
30 /* ethtool support for e1000 */
31
32 #include "e1000.h"
33
34 #include <asm/uaccess.h>
35
36 struct e1000_stats {
37         char stat_string[ETH_GSTRING_LEN];
38         int sizeof_stat;
39         int stat_offset;
40 };
41
42 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
43                       offsetof(struct e1000_adapter, m)
44 static const struct e1000_stats e1000_gstrings_stats[] = {
45         { "rx_packets", E1000_STAT(net_stats.rx_packets) },
46         { "tx_packets", E1000_STAT(net_stats.tx_packets) },
47         { "rx_bytes", E1000_STAT(net_stats.rx_bytes) },
48         { "tx_bytes", E1000_STAT(net_stats.tx_bytes) },
49         { "rx_errors", E1000_STAT(net_stats.rx_errors) },
50         { "tx_errors", E1000_STAT(net_stats.tx_errors) },
51         { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
52         { "multicast", E1000_STAT(net_stats.multicast) },
53         { "collisions", E1000_STAT(net_stats.collisions) },
54         { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
55         { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
56         { "rx_crc_errors", E1000_STAT(net_stats.rx_crc_errors) },
57         { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
58         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
59         { "rx_missed_errors", E1000_STAT(net_stats.rx_missed_errors) },
60         { "tx_aborted_errors", E1000_STAT(net_stats.tx_aborted_errors) },
61         { "tx_carrier_errors", E1000_STAT(net_stats.tx_carrier_errors) },
62         { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
63         { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
64         { "tx_window_errors", E1000_STAT(net_stats.tx_window_errors) },
65         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
66         { "tx_deferred_ok", E1000_STAT(stats.dc) },
67         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
68         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
69         { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
70         { "rx_long_length_errors", E1000_STAT(stats.roc) },
71         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
72         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
73         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
74         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
75         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
76         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
77         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
78         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
79         { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
80         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
81         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
82         { "rx_header_split", E1000_STAT(rx_hdr_split) },
83         { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
84 };
85
86 #define E1000_QUEUE_STATS_LEN 0
87 #define E1000_GLOBAL_STATS_LEN  \
88         sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
89 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
90 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
91         "Register test  (offline)", "Eeprom test    (offline)",
92         "Interrupt test (offline)", "Loopback test  (offline)",
93         "Link test   (on/offline)"
94 };
95 #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
96
97 static int
98 e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
99 {
100         struct e1000_adapter *adapter = netdev_priv(netdev);
101         struct e1000_hw *hw = &adapter->hw;
102
103         if (hw->media_type == e1000_media_type_copper) {
104
105                 ecmd->supported = (SUPPORTED_10baseT_Half |
106                                    SUPPORTED_10baseT_Full |
107                                    SUPPORTED_100baseT_Half |
108                                    SUPPORTED_100baseT_Full |
109                                    SUPPORTED_1000baseT_Full|
110                                    SUPPORTED_Autoneg |
111                                    SUPPORTED_TP);
112
113                 ecmd->advertising = ADVERTISED_TP;
114
115                 if (hw->autoneg == 1) {
116                         ecmd->advertising |= ADVERTISED_Autoneg;
117
118                         /* the e1000 autoneg seems to match ethtool nicely */
119
120                         ecmd->advertising |= hw->autoneg_advertised;
121                 }
122
123                 ecmd->port = PORT_TP;
124                 ecmd->phy_address = hw->phy_addr;
125
126                 if (hw->mac_type == e1000_82543)
127                         ecmd->transceiver = XCVR_EXTERNAL;
128                 else
129                         ecmd->transceiver = XCVR_INTERNAL;
130
131         } else {
132                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
133                                      SUPPORTED_FIBRE |
134                                      SUPPORTED_Autoneg);
135
136                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
137                                      ADVERTISED_FIBRE |
138                                      ADVERTISED_Autoneg);
139
140                 ecmd->port = PORT_FIBRE;
141
142                 if (hw->mac_type >= e1000_82545)
143                         ecmd->transceiver = XCVR_INTERNAL;
144                 else
145                         ecmd->transceiver = XCVR_EXTERNAL;
146         }
147
148         if (netif_carrier_ok(adapter->netdev)) {
149
150                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
151                                                    &adapter->link_duplex);
152                 ecmd->speed = adapter->link_speed;
153
154                 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
155                  *          and HALF_DUPLEX != DUPLEX_HALF */
156
157                 if (adapter->link_duplex == FULL_DUPLEX)
158                         ecmd->duplex = DUPLEX_FULL;
159                 else
160                         ecmd->duplex = DUPLEX_HALF;
161         } else {
162                 ecmd->speed = -1;
163                 ecmd->duplex = -1;
164         }
165
166         ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
167                          hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
168         return 0;
169 }
170
171 static int
172 e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
173 {
174         struct e1000_adapter *adapter = netdev_priv(netdev);
175         struct e1000_hw *hw = &adapter->hw;
176
177         /* When SoL/IDER sessions are active, autoneg/speed/duplex
178          * cannot be changed */
179         if (e1000_check_phy_reset_block(hw)) {
180                 DPRINTK(DRV, ERR, "Cannot change link characteristics "
181                         "when SoL/IDER is active.\n");
182                 return -EINVAL;
183         }
184
185         if (ecmd->autoneg == AUTONEG_ENABLE) {
186                 hw->autoneg = 1;
187                 if (hw->media_type == e1000_media_type_fiber)
188                         hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
189                                      ADVERTISED_FIBRE |
190                                      ADVERTISED_Autoneg;
191                 else
192                         hw->autoneg_advertised = ADVERTISED_10baseT_Half |
193                                                   ADVERTISED_10baseT_Full |
194                                                   ADVERTISED_100baseT_Half |
195                                                   ADVERTISED_100baseT_Full |
196                                                   ADVERTISED_1000baseT_Full|
197                                                   ADVERTISED_Autoneg |
198                                                   ADVERTISED_TP;
199                 ecmd->advertising = hw->autoneg_advertised;
200         } else
201                 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex))
202                         return -EINVAL;
203
204         /* reset the link */
205
206         if (netif_running(adapter->netdev)) {
207                 e1000_down(adapter);
208                 e1000_reset(adapter);
209                 e1000_up(adapter);
210         } else
211                 e1000_reset(adapter);
212
213         return 0;
214 }
215
216 static void
217 e1000_get_pauseparam(struct net_device *netdev,
218                      struct ethtool_pauseparam *pause)
219 {
220         struct e1000_adapter *adapter = netdev_priv(netdev);
221         struct e1000_hw *hw = &adapter->hw;
222
223         pause->autoneg =
224                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
225
226         if (hw->fc == e1000_fc_rx_pause)
227                 pause->rx_pause = 1;
228         else if (hw->fc == e1000_fc_tx_pause)
229                 pause->tx_pause = 1;
230         else if (hw->fc == e1000_fc_full) {
231                 pause->rx_pause = 1;
232                 pause->tx_pause = 1;
233         }
234 }
235
236 static int
237 e1000_set_pauseparam(struct net_device *netdev,
238                      struct ethtool_pauseparam *pause)
239 {
240         struct e1000_adapter *adapter = netdev_priv(netdev);
241         struct e1000_hw *hw = &adapter->hw;
242
243         adapter->fc_autoneg = pause->autoneg;
244
245         if (pause->rx_pause && pause->tx_pause)
246                 hw->fc = e1000_fc_full;
247         else if (pause->rx_pause && !pause->tx_pause)
248                 hw->fc = e1000_fc_rx_pause;
249         else if (!pause->rx_pause && pause->tx_pause)
250                 hw->fc = e1000_fc_tx_pause;
251         else if (!pause->rx_pause && !pause->tx_pause)
252                 hw->fc = e1000_fc_none;
253
254         hw->original_fc = hw->fc;
255
256         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
257                 if (netif_running(adapter->netdev)) {
258                         e1000_down(adapter);
259                         e1000_up(adapter);
260                 } else
261                         e1000_reset(adapter);
262         } else
263                 return ((hw->media_type == e1000_media_type_fiber) ?
264                         e1000_setup_link(hw) : e1000_force_mac_fc(hw));
265
266         return 0;
267 }
268
269 static uint32_t
270 e1000_get_rx_csum(struct net_device *netdev)
271 {
272         struct e1000_adapter *adapter = netdev_priv(netdev);
273         return adapter->rx_csum;
274 }
275
276 static int
277 e1000_set_rx_csum(struct net_device *netdev, uint32_t data)
278 {
279         struct e1000_adapter *adapter = netdev_priv(netdev);
280         adapter->rx_csum = data;
281
282         if (netif_running(netdev)) {
283                 e1000_down(adapter);
284                 e1000_up(adapter);
285         } else
286                 e1000_reset(adapter);
287         return 0;
288 }
289
290 static uint32_t
291 e1000_get_tx_csum(struct net_device *netdev)
292 {
293         return (netdev->features & NETIF_F_HW_CSUM) != 0;
294 }
295
296 static int
297 e1000_set_tx_csum(struct net_device *netdev, uint32_t data)
298 {
299         struct e1000_adapter *adapter = netdev_priv(netdev);
300
301         if (adapter->hw.mac_type < e1000_82543) {
302                 if (!data)
303                         return -EINVAL;
304                 return 0;
305         }
306
307         if (data)
308                 netdev->features |= NETIF_F_HW_CSUM;
309         else
310                 netdev->features &= ~NETIF_F_HW_CSUM;
311
312         return 0;
313 }
314
315 #ifdef NETIF_F_TSO
316 static int
317 e1000_set_tso(struct net_device *netdev, uint32_t data)
318 {
319         struct e1000_adapter *adapter = netdev_priv(netdev);
320         if ((adapter->hw.mac_type < e1000_82544) ||
321             (adapter->hw.mac_type == e1000_82547))
322                 return data ? -EINVAL : 0;
323
324         if (data)
325                 netdev->features |= NETIF_F_TSO;
326         else
327                 netdev->features &= ~NETIF_F_TSO;
328
329         DPRINTK(PROBE, INFO, "TSO is %s\n", data ? "Enabled" : "Disabled");
330         adapter->tso_force = TRUE;
331         return 0;
332 }
333 #endif /* NETIF_F_TSO */
334
335 static uint32_t
336 e1000_get_msglevel(struct net_device *netdev)
337 {
338         struct e1000_adapter *adapter = netdev_priv(netdev);
339         return adapter->msg_enable;
340 }
341
342 static void
343 e1000_set_msglevel(struct net_device *netdev, uint32_t data)
344 {
345         struct e1000_adapter *adapter = netdev_priv(netdev);
346         adapter->msg_enable = data;
347 }
348
349 static int
350 e1000_get_regs_len(struct net_device *netdev)
351 {
352 #define E1000_REGS_LEN 32
353         return E1000_REGS_LEN * sizeof(uint32_t);
354 }
355
356 static void
357 e1000_get_regs(struct net_device *netdev,
358                struct ethtool_regs *regs, void *p)
359 {
360         struct e1000_adapter *adapter = netdev_priv(netdev);
361         struct e1000_hw *hw = &adapter->hw;
362         uint32_t *regs_buff = p;
363         uint16_t phy_data;
364
365         memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t));
366
367         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
368
369         regs_buff[0]  = E1000_READ_REG(hw, CTRL);
370         regs_buff[1]  = E1000_READ_REG(hw, STATUS);
371
372         regs_buff[2]  = E1000_READ_REG(hw, RCTL);
373         regs_buff[3]  = E1000_READ_REG(hw, RDLEN);
374         regs_buff[4]  = E1000_READ_REG(hw, RDH);
375         regs_buff[5]  = E1000_READ_REG(hw, RDT);
376         regs_buff[6]  = E1000_READ_REG(hw, RDTR);
377
378         regs_buff[7]  = E1000_READ_REG(hw, TCTL);
379         regs_buff[8]  = E1000_READ_REG(hw, TDLEN);
380         regs_buff[9]  = E1000_READ_REG(hw, TDH);
381         regs_buff[10] = E1000_READ_REG(hw, TDT);
382         regs_buff[11] = E1000_READ_REG(hw, TIDV);
383
384         regs_buff[12] = adapter->hw.phy_type;  /* PHY type (IGP=1, M88=0) */
385         if (hw->phy_type == e1000_phy_igp) {
386                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
387                                     IGP01E1000_PHY_AGC_A);
388                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
389                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
390                 regs_buff[13] = (uint32_t)phy_data; /* cable length */
391                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
392                                     IGP01E1000_PHY_AGC_B);
393                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
394                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
395                 regs_buff[14] = (uint32_t)phy_data; /* cable length */
396                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
397                                     IGP01E1000_PHY_AGC_C);
398                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
399                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
400                 regs_buff[15] = (uint32_t)phy_data; /* cable length */
401                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
402                                     IGP01E1000_PHY_AGC_D);
403                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
404                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
405                 regs_buff[16] = (uint32_t)phy_data; /* cable length */
406                 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
407                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
408                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
409                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
410                 regs_buff[18] = (uint32_t)phy_data; /* cable polarity */
411                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
412                                     IGP01E1000_PHY_PCS_INIT_REG);
413                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
414                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
415                 regs_buff[19] = (uint32_t)phy_data; /* cable polarity */
416                 regs_buff[20] = 0; /* polarity correction enabled (always) */
417                 regs_buff[22] = 0; /* phy receive errors (unavailable) */
418                 regs_buff[23] = regs_buff[18]; /* mdix mode */
419                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
420         } else {
421                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
422                 regs_buff[13] = (uint32_t)phy_data; /* cable length */
423                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
424                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
425                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
426                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
427                 regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */
428                 regs_buff[18] = regs_buff[13]; /* cable polarity */
429                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
430                 regs_buff[20] = regs_buff[17]; /* polarity correction */
431                 /* phy receive errors */
432                 regs_buff[22] = adapter->phy_stats.receive_errors;
433                 regs_buff[23] = regs_buff[13]; /* mdix mode */
434         }
435         regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
436         e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
437         regs_buff[24] = (uint32_t)phy_data;  /* phy local receiver status */
438         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
439         if (hw->mac_type >= e1000_82540 &&
440            hw->media_type == e1000_media_type_copper) {
441                 regs_buff[26] = E1000_READ_REG(hw, MANC);
442         }
443 }
444
445 static int
446 e1000_get_eeprom_len(struct net_device *netdev)
447 {
448         struct e1000_adapter *adapter = netdev_priv(netdev);
449         return adapter->hw.eeprom.word_size * 2;
450 }
451
452 static int
453 e1000_get_eeprom(struct net_device *netdev,
454                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
455 {
456         struct e1000_adapter *adapter = netdev_priv(netdev);
457         struct e1000_hw *hw = &adapter->hw;
458         uint16_t *eeprom_buff;
459         int first_word, last_word;
460         int ret_val = 0;
461         uint16_t i;
462
463         if (eeprom->len == 0)
464                 return -EINVAL;
465
466         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
467
468         first_word = eeprom->offset >> 1;
469         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
470
471         eeprom_buff = kmalloc(sizeof(uint16_t) *
472                         (last_word - first_word + 1), GFP_KERNEL);
473         if (!eeprom_buff)
474                 return -ENOMEM;
475
476         if (hw->eeprom.type == e1000_eeprom_spi)
477                 ret_val = e1000_read_eeprom(hw, first_word,
478                                             last_word - first_word + 1,
479                                             eeprom_buff);
480         else {
481                 for (i = 0; i < last_word - first_word + 1; i++)
482                         if ((ret_val = e1000_read_eeprom(hw, first_word + i, 1,
483                                                         &eeprom_buff[i])))
484                                 break;
485         }
486
487         /* Device's eeprom is always little-endian, word addressable */
488         for (i = 0; i < last_word - first_word + 1; i++)
489                 le16_to_cpus(&eeprom_buff[i]);
490
491         memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1),
492                         eeprom->len);
493         kfree(eeprom_buff);
494
495         return ret_val;
496 }
497
498 static int
499 e1000_set_eeprom(struct net_device *netdev,
500                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
501 {
502         struct e1000_adapter *adapter = netdev_priv(netdev);
503         struct e1000_hw *hw = &adapter->hw;
504         uint16_t *eeprom_buff;
505         void *ptr;
506         int max_len, first_word, last_word, ret_val = 0;
507         uint16_t i;
508
509         if (eeprom->len == 0)
510                 return -EOPNOTSUPP;
511
512         if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
513                 return -EFAULT;
514
515         max_len = hw->eeprom.word_size * 2;
516
517         first_word = eeprom->offset >> 1;
518         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
519         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
520         if (!eeprom_buff)
521                 return -ENOMEM;
522
523         ptr = (void *)eeprom_buff;
524
525         if (eeprom->offset & 1) {
526                 /* need read/modify/write of first changed EEPROM word */
527                 /* only the second byte of the word is being modified */
528                 ret_val = e1000_read_eeprom(hw, first_word, 1,
529                                             &eeprom_buff[0]);
530                 ptr++;
531         }
532         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
533                 /* need read/modify/write of last changed EEPROM word */
534                 /* only the first byte of the word is being modified */
535                 ret_val = e1000_read_eeprom(hw, last_word, 1,
536                                   &eeprom_buff[last_word - first_word]);
537         }
538
539         /* Device's eeprom is always little-endian, word addressable */
540         for (i = 0; i < last_word - first_word + 1; i++)
541                 le16_to_cpus(&eeprom_buff[i]);
542
543         memcpy(ptr, bytes, eeprom->len);
544
545         for (i = 0; i < last_word - first_word + 1; i++)
546                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
547
548         ret_val = e1000_write_eeprom(hw, first_word,
549                                      last_word - first_word + 1, eeprom_buff);
550
551         /* Update the checksum over the first part of the EEPROM if needed
552          * and flush shadow RAM for 82573 conrollers */
553         if ((ret_val == 0) && ((first_word <= EEPROM_CHECKSUM_REG) ||
554                                 (hw->mac_type == e1000_82573)))
555                 e1000_update_eeprom_checksum(hw);
556
557         kfree(eeprom_buff);
558         return ret_val;
559 }
560
561 static void
562 e1000_get_drvinfo(struct net_device *netdev,
563                        struct ethtool_drvinfo *drvinfo)
564 {
565         struct e1000_adapter *adapter = netdev_priv(netdev);
566         char firmware_version[32];
567         uint16_t eeprom_data;
568
569         strncpy(drvinfo->driver,  e1000_driver_name, 32);
570         strncpy(drvinfo->version, e1000_driver_version, 32);
571
572         /* EEPROM image version # is reported as firmware version # for
573          * 8257{1|2|3} controllers */
574         e1000_read_eeprom(&adapter->hw, 5, 1, &eeprom_data);
575         switch (adapter->hw.mac_type) {
576         case e1000_82571:
577         case e1000_82572:
578         case e1000_82573:
579         case e1000_80003es2lan:
580                 sprintf(firmware_version, "%d.%d-%d",
581                         (eeprom_data & 0xF000) >> 12,
582                         (eeprom_data & 0x0FF0) >> 4,
583                         eeprom_data & 0x000F);
584                 break;
585         default:
586                 sprintf(firmware_version, "N/A");
587         }
588
589         strncpy(drvinfo->fw_version, firmware_version, 32);
590         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
591         drvinfo->n_stats = E1000_STATS_LEN;
592         drvinfo->testinfo_len = E1000_TEST_LEN;
593         drvinfo->regdump_len = e1000_get_regs_len(netdev);
594         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
595 }
596
597 static void
598 e1000_get_ringparam(struct net_device *netdev,
599                     struct ethtool_ringparam *ring)
600 {
601         struct e1000_adapter *adapter = netdev_priv(netdev);
602         e1000_mac_type mac_type = adapter->hw.mac_type;
603         struct e1000_tx_ring *txdr = adapter->tx_ring;
604         struct e1000_rx_ring *rxdr = adapter->rx_ring;
605
606         ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
607                 E1000_MAX_82544_RXD;
608         ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
609                 E1000_MAX_82544_TXD;
610         ring->rx_mini_max_pending = 0;
611         ring->rx_jumbo_max_pending = 0;
612         ring->rx_pending = rxdr->count;
613         ring->tx_pending = txdr->count;
614         ring->rx_mini_pending = 0;
615         ring->rx_jumbo_pending = 0;
616 }
617
618 static int
619 e1000_set_ringparam(struct net_device *netdev,
620                     struct ethtool_ringparam *ring)
621 {
622         struct e1000_adapter *adapter = netdev_priv(netdev);
623         e1000_mac_type mac_type = adapter->hw.mac_type;
624         struct e1000_tx_ring *txdr, *tx_old, *tx_new;
625         struct e1000_rx_ring *rxdr, *rx_old, *rx_new;
626         int i, err, tx_ring_size, rx_ring_size;
627
628         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
629                 return -EINVAL;
630
631         tx_ring_size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
632         rx_ring_size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
633
634         if (netif_running(adapter->netdev))
635                 e1000_down(adapter);
636
637         tx_old = adapter->tx_ring;
638         rx_old = adapter->rx_ring;
639
640         adapter->tx_ring = kmalloc(tx_ring_size, GFP_KERNEL);
641         if (!adapter->tx_ring) {
642                 err = -ENOMEM;
643                 goto err_setup_rx;
644         }
645         memset(adapter->tx_ring, 0, tx_ring_size);
646
647         adapter->rx_ring = kmalloc(rx_ring_size, GFP_KERNEL);
648         if (!adapter->rx_ring) {
649                 kfree(adapter->tx_ring);
650                 err = -ENOMEM;
651                 goto err_setup_rx;
652         }
653         memset(adapter->rx_ring, 0, rx_ring_size);
654
655         txdr = adapter->tx_ring;
656         rxdr = adapter->rx_ring;
657
658         rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD);
659         rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ?
660                 E1000_MAX_RXD : E1000_MAX_82544_RXD));
661         E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
662
663         txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD);
664         txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ?
665                 E1000_MAX_TXD : E1000_MAX_82544_TXD));
666         E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
667
668         for (i = 0; i < adapter->num_tx_queues; i++)
669                 txdr[i].count = txdr->count;
670         for (i = 0; i < adapter->num_rx_queues; i++)
671                 rxdr[i].count = rxdr->count;
672
673         if (netif_running(adapter->netdev)) {
674                 /* Try to get new resources before deleting old */
675                 if ((err = e1000_setup_all_rx_resources(adapter)))
676                         goto err_setup_rx;
677                 if ((err = e1000_setup_all_tx_resources(adapter)))
678                         goto err_setup_tx;
679
680                 /* save the new, restore the old in order to free it,
681                  * then restore the new back again */
682
683                 rx_new = adapter->rx_ring;
684                 tx_new = adapter->tx_ring;
685                 adapter->rx_ring = rx_old;
686                 adapter->tx_ring = tx_old;
687                 e1000_free_all_rx_resources(adapter);
688                 e1000_free_all_tx_resources(adapter);
689                 kfree(tx_old);
690                 kfree(rx_old);
691                 adapter->rx_ring = rx_new;
692                 adapter->tx_ring = tx_new;
693                 if ((err = e1000_up(adapter)))
694                         return err;
695         }
696
697         return 0;
698 err_setup_tx:
699         e1000_free_all_rx_resources(adapter);
700 err_setup_rx:
701         adapter->rx_ring = rx_old;
702         adapter->tx_ring = tx_old;
703         e1000_up(adapter);
704         return err;
705 }
706
707 #define REG_PATTERN_TEST(R, M, W)                                              \
708 {                                                                              \
709         uint32_t pat, value;                                                   \
710         uint32_t test[] =                                                      \
711                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};              \
712         for (pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) {              \
713                 E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W));             \
714                 value = E1000_READ_REG(&adapter->hw, R);                       \
715                 if (value != (test[pat] & W & M)) {                             \
716                         DPRINTK(DRV, ERR, "pattern test reg %04X failed: got " \
717                                 "0x%08X expected 0x%08X\n",                    \
718                                 E1000_##R, value, (test[pat] & W & M));        \
719                         *data = (adapter->hw.mac_type < e1000_82543) ?         \
720                                 E1000_82542_##R : E1000_##R;                   \
721                         return 1;                                              \
722                 }                                                              \
723         }                                                                      \
724 }
725
726 #define REG_SET_AND_CHECK(R, M, W)                                             \
727 {                                                                              \
728         uint32_t value;                                                        \
729         E1000_WRITE_REG(&adapter->hw, R, W & M);                               \
730         value = E1000_READ_REG(&adapter->hw, R);                               \
731         if ((W & M) != (value & M)) {                                          \
732                 DPRINTK(DRV, ERR, "set/check reg %04X test failed: got 0x%08X "\
733                         "expected 0x%08X\n", E1000_##R, (value & M), (W & M)); \
734                 *data = (adapter->hw.mac_type < e1000_82543) ?                 \
735                         E1000_82542_##R : E1000_##R;                           \
736                 return 1;                                                      \
737         }                                                                      \
738 }
739
740 static int
741 e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
742 {
743         uint32_t value, before, after;
744         uint32_t i, toggle;
745
746         /* The status register is Read Only, so a write should fail.
747          * Some bits that get toggled are ignored.
748          */
749         switch (adapter->hw.mac_type) {
750         /* there are several bits on newer hardware that are r/w */
751         case e1000_82571:
752         case e1000_82572:
753         case e1000_80003es2lan:
754                 toggle = 0x7FFFF3FF;
755                 break;
756         case e1000_82573:
757                 toggle = 0x7FFFF033;
758                 break;
759         default:
760                 toggle = 0xFFFFF833;
761                 break;
762         }
763
764         before = E1000_READ_REG(&adapter->hw, STATUS);
765         value = (E1000_READ_REG(&adapter->hw, STATUS) & toggle);
766         E1000_WRITE_REG(&adapter->hw, STATUS, toggle);
767         after = E1000_READ_REG(&adapter->hw, STATUS) & toggle;
768         if (value != after) {
769                 DPRINTK(DRV, ERR, "failed STATUS register test got: "
770                         "0x%08X expected: 0x%08X\n", after, value);
771                 *data = 1;
772                 return 1;
773         }
774         /* restore previous status */
775         E1000_WRITE_REG(&adapter->hw, STATUS, before);
776
777         REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
778         REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
779         REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
780         REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
781         REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
782         REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
783         REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
784         REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
785         REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
786         REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
787         REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
788         REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
789         REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
790         REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
791
792         REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
793         REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0x003FFFFB);
794         REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
795
796         if (adapter->hw.mac_type >= e1000_82543) {
797
798                 REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0xFFFFFFFF);
799                 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
800                 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
801                 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
802                 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
803
804                 for (i = 0; i < E1000_RAR_ENTRIES; i++) {
805                         REG_PATTERN_TEST(RA + ((i << 1) << 2), 0xFFFFFFFF,
806                                          0xFFFFFFFF);
807                         REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
808                                          0xFFFFFFFF);
809                 }
810
811         } else {
812
813                 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
814                 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
815                 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
816                 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
817
818         }
819
820         for (i = 0; i < E1000_MC_TBL_SIZE; i++)
821                 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
822
823         *data = 0;
824         return 0;
825 }
826
827 static int
828 e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data)
829 {
830         uint16_t temp;
831         uint16_t checksum = 0;
832         uint16_t i;
833
834         *data = 0;
835         /* Read and add up the contents of the EEPROM */
836         for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
837                 if ((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) {
838                         *data = 1;
839                         break;
840                 }
841                 checksum += temp;
842         }
843
844         /* If Checksum is not Correct return error else test passed */
845         if ((checksum != (uint16_t) EEPROM_SUM) && !(*data))
846                 *data = 2;
847
848         return *data;
849 }
850
851 static irqreturn_t
852 e1000_test_intr(int irq,
853                 void *data,
854                 struct pt_regs *regs)
855 {
856         struct net_device *netdev = (struct net_device *) data;
857         struct e1000_adapter *adapter = netdev_priv(netdev);
858
859         adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR);
860
861         return IRQ_HANDLED;
862 }
863
864 static int
865 e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
866 {
867         struct net_device *netdev = adapter->netdev;
868         uint32_t mask, i=0, shared_int = TRUE;
869         uint32_t irq = adapter->pdev->irq;
870
871         *data = 0;
872
873         /* Hook up test interrupt handler just for this test */
874         if (!request_irq(irq, &e1000_test_intr, 0, netdev->name, netdev)) {
875                 shared_int = FALSE;
876         } else if (request_irq(irq, &e1000_test_intr, SA_SHIRQ,
877                               netdev->name, netdev)){
878                 *data = 1;
879                 return -1;
880         }
881
882         /* Disable all the interrupts */
883         E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
884         msec_delay(10);
885
886         /* Test each interrupt */
887         for (; i < 10; i++) {
888
889                 /* Interrupt to test */
890                 mask = 1 << i;
891
892                 if (!shared_int) {
893                         /* Disable the interrupt to be reported in
894                          * the cause register and then force the same
895                          * interrupt and see if one gets posted.  If
896                          * an interrupt was posted to the bus, the
897                          * test failed.
898                          */
899                         adapter->test_icr = 0;
900                         E1000_WRITE_REG(&adapter->hw, IMC, mask);
901                         E1000_WRITE_REG(&adapter->hw, ICS, mask);
902                         msec_delay(10);
903
904                         if (adapter->test_icr & mask) {
905                                 *data = 3;
906                                 break;
907                         }
908                 }
909
910                 /* Enable the interrupt to be reported in
911                  * the cause register and then force the same
912                  * interrupt and see if one gets posted.  If
913                  * an interrupt was not posted to the bus, the
914                  * test failed.
915                  */
916                 adapter->test_icr = 0;
917                 E1000_WRITE_REG(&adapter->hw, IMS, mask);
918                 E1000_WRITE_REG(&adapter->hw, ICS, mask);
919                 msec_delay(10);
920
921                 if (!(adapter->test_icr & mask)) {
922                         *data = 4;
923                         break;
924                 }
925
926                 if (!shared_int) {
927                         /* Disable the other interrupts to be reported in
928                          * the cause register and then force the other
929                          * interrupts and see if any get posted.  If
930                          * an interrupt was posted to the bus, the
931                          * test failed.
932                          */
933                         adapter->test_icr = 0;
934                         E1000_WRITE_REG(&adapter->hw, IMC, ~mask & 0x00007FFF);
935                         E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF);
936                         msec_delay(10);
937
938                         if (adapter->test_icr) {
939                                 *data = 5;
940                                 break;
941                         }
942                 }
943         }
944
945         /* Disable all the interrupts */
946         E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
947         msec_delay(10);
948
949         /* Unhook test interrupt handler */
950         free_irq(irq, netdev);
951
952         return *data;
953 }
954
955 static void
956 e1000_free_desc_rings(struct e1000_adapter *adapter)
957 {
958         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
959         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
960         struct pci_dev *pdev = adapter->pdev;
961         int i;
962
963         if (txdr->desc && txdr->buffer_info) {
964                 for (i = 0; i < txdr->count; i++) {
965                         if (txdr->buffer_info[i].dma)
966                                 pci_unmap_single(pdev, txdr->buffer_info[i].dma,
967                                                  txdr->buffer_info[i].length,
968                                                  PCI_DMA_TODEVICE);
969                         if (txdr->buffer_info[i].skb)
970                                 dev_kfree_skb(txdr->buffer_info[i].skb);
971                 }
972         }
973
974         if (rxdr->desc && rxdr->buffer_info) {
975                 for (i = 0; i < rxdr->count; i++) {
976                         if (rxdr->buffer_info[i].dma)
977                                 pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
978                                                  rxdr->buffer_info[i].length,
979                                                  PCI_DMA_FROMDEVICE);
980                         if (rxdr->buffer_info[i].skb)
981                                 dev_kfree_skb(rxdr->buffer_info[i].skb);
982                 }
983         }
984
985         if (txdr->desc) {
986                 pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
987                 txdr->desc = NULL;
988         }
989         if (rxdr->desc) {
990                 pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
991                 rxdr->desc = NULL;
992         }
993
994         kfree(txdr->buffer_info);
995         txdr->buffer_info = NULL;
996         kfree(rxdr->buffer_info);
997         rxdr->buffer_info = NULL;
998
999         return;
1000 }
1001
1002 static int
1003 e1000_setup_desc_rings(struct e1000_adapter *adapter)
1004 {
1005         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1006         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1007         struct pci_dev *pdev = adapter->pdev;
1008         uint32_t rctl;
1009         int size, i, ret_val;
1010
1011         /* Setup Tx descriptor ring and Tx buffers */
1012
1013         if (!txdr->count)
1014                 txdr->count = E1000_DEFAULT_TXD;
1015
1016         size = txdr->count * sizeof(struct e1000_buffer);
1017         if (!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
1018                 ret_val = 1;
1019                 goto err_nomem;
1020         }
1021         memset(txdr->buffer_info, 0, size);
1022
1023         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1024         E1000_ROUNDUP(txdr->size, 4096);
1025         if (!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) {
1026                 ret_val = 2;
1027                 goto err_nomem;
1028         }
1029         memset(txdr->desc, 0, txdr->size);
1030         txdr->next_to_use = txdr->next_to_clean = 0;
1031
1032         E1000_WRITE_REG(&adapter->hw, TDBAL,
1033                         ((uint64_t) txdr->dma & 0x00000000FFFFFFFF));
1034         E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32));
1035         E1000_WRITE_REG(&adapter->hw, TDLEN,
1036                         txdr->count * sizeof(struct e1000_tx_desc));
1037         E1000_WRITE_REG(&adapter->hw, TDH, 0);
1038         E1000_WRITE_REG(&adapter->hw, TDT, 0);
1039         E1000_WRITE_REG(&adapter->hw, TCTL,
1040                         E1000_TCTL_PSP | E1000_TCTL_EN |
1041                         E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1042                         E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1043
1044         for (i = 0; i < txdr->count; i++) {
1045                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1046                 struct sk_buff *skb;
1047                 unsigned int size = 1024;
1048
1049                 if (!(skb = alloc_skb(size, GFP_KERNEL))) {
1050                         ret_val = 3;
1051                         goto err_nomem;
1052                 }
1053                 skb_put(skb, size);
1054                 txdr->buffer_info[i].skb = skb;
1055                 txdr->buffer_info[i].length = skb->len;
1056                 txdr->buffer_info[i].dma =
1057                         pci_map_single(pdev, skb->data, skb->len,
1058                                        PCI_DMA_TODEVICE);
1059                 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1060                 tx_desc->lower.data = cpu_to_le32(skb->len);
1061                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1062                                                    E1000_TXD_CMD_IFCS |
1063                                                    E1000_TXD_CMD_RPS);
1064                 tx_desc->upper.data = 0;
1065         }
1066
1067         /* Setup Rx descriptor ring and Rx buffers */
1068
1069         if (!rxdr->count)
1070                 rxdr->count = E1000_DEFAULT_RXD;
1071
1072         size = rxdr->count * sizeof(struct e1000_buffer);
1073         if (!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
1074                 ret_val = 4;
1075                 goto err_nomem;
1076         }
1077         memset(rxdr->buffer_info, 0, size);
1078
1079         rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1080         if (!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) {
1081                 ret_val = 5;
1082                 goto err_nomem;
1083         }
1084         memset(rxdr->desc, 0, rxdr->size);
1085         rxdr->next_to_use = rxdr->next_to_clean = 0;
1086
1087         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1088         E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
1089         E1000_WRITE_REG(&adapter->hw, RDBAL,
1090                         ((uint64_t) rxdr->dma & 0xFFFFFFFF));
1091         E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32));
1092         E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size);
1093         E1000_WRITE_REG(&adapter->hw, RDH, 0);
1094         E1000_WRITE_REG(&adapter->hw, RDT, 0);
1095         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1096                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1097                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1098         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1099
1100         for (i = 0; i < rxdr->count; i++) {
1101                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1102                 struct sk_buff *skb;
1103
1104                 if (!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN,
1105                                 GFP_KERNEL))) {
1106                         ret_val = 6;
1107                         goto err_nomem;
1108                 }
1109                 skb_reserve(skb, NET_IP_ALIGN);
1110                 rxdr->buffer_info[i].skb = skb;
1111                 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1112                 rxdr->buffer_info[i].dma =
1113                         pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
1114                                        PCI_DMA_FROMDEVICE);
1115                 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1116                 memset(skb->data, 0x00, skb->len);
1117         }
1118
1119         return 0;
1120
1121 err_nomem:
1122         e1000_free_desc_rings(adapter);
1123         return ret_val;
1124 }
1125
1126 static void
1127 e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1128 {
1129         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1130         e1000_write_phy_reg(&adapter->hw, 29, 0x001F);
1131         e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC);
1132         e1000_write_phy_reg(&adapter->hw, 29, 0x001A);
1133         e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0);
1134 }
1135
1136 static void
1137 e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1138 {
1139         uint16_t phy_reg;
1140
1141         /* Because we reset the PHY above, we need to re-force TX_CLK in the
1142          * Extended PHY Specific Control Register to 25MHz clock.  This
1143          * value defaults back to a 2.5MHz clock when the PHY is reset.
1144          */
1145         e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1146         phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1147         e1000_write_phy_reg(&adapter->hw,
1148                 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1149
1150         /* In addition, because of the s/w reset above, we need to enable
1151          * CRS on TX.  This must be set for both full and half duplex
1152          * operation.
1153          */
1154         e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1155         phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1156         e1000_write_phy_reg(&adapter->hw,
1157                 M88E1000_PHY_SPEC_CTRL, phy_reg);
1158 }
1159
1160 static int
1161 e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1162 {
1163         uint32_t ctrl_reg;
1164         uint16_t phy_reg;
1165
1166         /* Setup the Device Control Register for PHY loopback test. */
1167
1168         ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1169         ctrl_reg |= (E1000_CTRL_ILOS |          /* Invert Loss-Of-Signal */
1170                      E1000_CTRL_FRCSPD |        /* Set the Force Speed Bit */
1171                      E1000_CTRL_FRCDPX |        /* Set the Force Duplex Bit */
1172                      E1000_CTRL_SPD_1000 |      /* Force Speed to 1000 */
1173                      E1000_CTRL_FD);            /* Force Duplex to FULL */
1174
1175         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1176
1177         /* Read the PHY Specific Control Register (0x10) */
1178         e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1179
1180         /* Clear Auto-Crossover bits in PHY Specific Control Register
1181          * (bits 6:5).
1182          */
1183         phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1184         e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1185
1186         /* Perform software reset on the PHY */
1187         e1000_phy_reset(&adapter->hw);
1188
1189         /* Have to setup TX_CLK and TX_CRS after software reset */
1190         e1000_phy_reset_clk_and_crs(adapter);
1191
1192         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100);
1193
1194         /* Wait for reset to complete. */
1195         udelay(500);
1196
1197         /* Have to setup TX_CLK and TX_CRS after software reset */
1198         e1000_phy_reset_clk_and_crs(adapter);
1199
1200         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1201         e1000_phy_disable_receiver(adapter);
1202
1203         /* Set the loopback bit in the PHY control register. */
1204         e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1205         phy_reg |= MII_CR_LOOPBACK;
1206         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1207
1208         /* Setup TX_CLK and TX_CRS one more time. */
1209         e1000_phy_reset_clk_and_crs(adapter);
1210
1211         /* Check Phy Configuration */
1212         e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1213         if (phy_reg != 0x4100)
1214                  return 9;
1215
1216         e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1217         if (phy_reg != 0x0070)
1218                 return 10;
1219
1220         e1000_read_phy_reg(&adapter->hw, 29, &phy_reg);
1221         if (phy_reg != 0x001A)
1222                 return 11;
1223
1224         return 0;
1225 }
1226
1227 static int
1228 e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1229 {
1230         uint32_t ctrl_reg = 0;
1231         uint32_t stat_reg = 0;
1232
1233         adapter->hw.autoneg = FALSE;
1234
1235         if (adapter->hw.phy_type == e1000_phy_m88) {
1236                 /* Auto-MDI/MDIX Off */
1237                 e1000_write_phy_reg(&adapter->hw,
1238                                     M88E1000_PHY_SPEC_CTRL, 0x0808);
1239                 /* reset to update Auto-MDI/MDIX */
1240                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140);
1241                 /* autoneg off */
1242                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140);
1243         } else if (adapter->hw.phy_type == e1000_phy_gg82563) {
1244                 e1000_write_phy_reg(&adapter->hw,
1245                                     GG82563_PHY_KMRN_MODE_CTRL,
1246                                     0x1CE);
1247         }
1248         /* force 1000, set loopback */
1249         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
1250
1251         /* Now set up the MAC to the same speed/duplex as the PHY. */
1252         ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1253         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1254         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1255                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1256                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1257                      E1000_CTRL_FD);     /* Force Duplex to FULL */
1258
1259         if (adapter->hw.media_type == e1000_media_type_copper &&
1260            adapter->hw.phy_type == e1000_phy_m88) {
1261                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1262         } else {
1263                 /* Set the ILOS bit on the fiber Nic is half
1264                  * duplex link is detected. */
1265                 stat_reg = E1000_READ_REG(&adapter->hw, STATUS);
1266                 if ((stat_reg & E1000_STATUS_FD) == 0)
1267                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1268         }
1269
1270         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1271
1272         /* Disable the receiver on the PHY so when a cable is plugged in, the
1273          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1274          */
1275         if (adapter->hw.phy_type == e1000_phy_m88)
1276                 e1000_phy_disable_receiver(adapter);
1277
1278         udelay(500);
1279
1280         return 0;
1281 }
1282
1283 static int
1284 e1000_set_phy_loopback(struct e1000_adapter *adapter)
1285 {
1286         uint16_t phy_reg = 0;
1287         uint16_t count = 0;
1288
1289         switch (adapter->hw.mac_type) {
1290         case e1000_82543:
1291                 if (adapter->hw.media_type == e1000_media_type_copper) {
1292                         /* Attempt to setup Loopback mode on Non-integrated PHY.
1293                          * Some PHY registers get corrupted at random, so
1294                          * attempt this 10 times.
1295                          */
1296                         while (e1000_nonintegrated_phy_loopback(adapter) &&
1297                               count++ < 10);
1298                         if (count < 11)
1299                                 return 0;
1300                 }
1301                 break;
1302
1303         case e1000_82544:
1304         case e1000_82540:
1305         case e1000_82545:
1306         case e1000_82545_rev_3:
1307         case e1000_82546:
1308         case e1000_82546_rev_3:
1309         case e1000_82541:
1310         case e1000_82541_rev_2:
1311         case e1000_82547:
1312         case e1000_82547_rev_2:
1313         case e1000_82571:
1314         case e1000_82572:
1315         case e1000_82573:
1316         case e1000_80003es2lan:
1317                 return e1000_integrated_phy_loopback(adapter);
1318                 break;
1319
1320         default:
1321                 /* Default PHY loopback work is to read the MII
1322                  * control register and assert bit 14 (loopback mode).
1323                  */
1324                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1325                 phy_reg |= MII_CR_LOOPBACK;
1326                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1327                 return 0;
1328                 break;
1329         }
1330
1331         return 8;
1332 }
1333
1334 static int
1335 e1000_setup_loopback_test(struct e1000_adapter *adapter)
1336 {
1337         struct e1000_hw *hw = &adapter->hw;
1338         uint32_t rctl;
1339
1340         if (hw->media_type == e1000_media_type_fiber ||
1341             hw->media_type == e1000_media_type_internal_serdes) {
1342                 switch (hw->mac_type) {
1343                 case e1000_82545:
1344                 case e1000_82546:
1345                 case e1000_82545_rev_3:
1346                 case e1000_82546_rev_3:
1347                         return e1000_set_phy_loopback(adapter);
1348                         break;
1349                 case e1000_82571:
1350                 case e1000_82572:
1351 #define E1000_SERDES_LB_ON 0x410
1352                         e1000_set_phy_loopback(adapter);
1353                         E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_ON);
1354                         msec_delay(10);
1355                         return 0;
1356                         break;
1357                 default:
1358                         rctl = E1000_READ_REG(hw, RCTL);
1359                         rctl |= E1000_RCTL_LBM_TCVR;
1360                         E1000_WRITE_REG(hw, RCTL, rctl);
1361                         return 0;
1362                 }
1363         } else if (hw->media_type == e1000_media_type_copper)
1364                 return e1000_set_phy_loopback(adapter);
1365
1366         return 7;
1367 }
1368
1369 static void
1370 e1000_loopback_cleanup(struct e1000_adapter *adapter)
1371 {
1372         struct e1000_hw *hw = &adapter->hw;
1373         uint32_t rctl;
1374         uint16_t phy_reg;
1375
1376         rctl = E1000_READ_REG(hw, RCTL);
1377         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1378         E1000_WRITE_REG(hw, RCTL, rctl);
1379
1380         switch (hw->mac_type) {
1381         case e1000_82571:
1382         case e1000_82572:
1383                 if (hw->media_type == e1000_media_type_fiber ||
1384                     hw->media_type == e1000_media_type_internal_serdes) {
1385 #define E1000_SERDES_LB_OFF 0x400
1386                         E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_OFF);
1387                         msec_delay(10);
1388                         break;
1389                 }
1390                 /* Fall Through */
1391         case e1000_82545:
1392         case e1000_82546:
1393         case e1000_82545_rev_3:
1394         case e1000_82546_rev_3:
1395         default:
1396                 hw->autoneg = TRUE;
1397                 if (hw->phy_type == e1000_phy_gg82563) {
1398                         e1000_write_phy_reg(hw,
1399                                             GG82563_PHY_KMRN_MODE_CTRL,
1400                                             0x180);
1401                 }
1402                 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1403                 if (phy_reg & MII_CR_LOOPBACK) {
1404                         phy_reg &= ~MII_CR_LOOPBACK;
1405                         e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1406                         e1000_phy_reset(hw);
1407                 }
1408                 break;
1409         }
1410 }
1411
1412 static void
1413 e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1414 {
1415         memset(skb->data, 0xFF, frame_size);
1416         frame_size &= ~1;
1417         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1418         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1419         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1420 }
1421
1422 static int
1423 e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1424 {
1425         frame_size &= ~1;
1426         if (*(skb->data + 3) == 0xFF) {
1427                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1428                    (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1429                         return 0;
1430                 }
1431         }
1432         return 13;
1433 }
1434
1435 static int
1436 e1000_run_loopback_test(struct e1000_adapter *adapter)
1437 {
1438         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1439         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1440         struct pci_dev *pdev = adapter->pdev;
1441         int i, j, k, l, lc, good_cnt, ret_val=0;
1442         unsigned long time;
1443
1444         E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1);
1445
1446         /* Calculate the loop count based on the largest descriptor ring
1447          * The idea is to wrap the largest ring a number of times using 64
1448          * send/receive pairs during each loop
1449          */
1450
1451         if (rxdr->count <= txdr->count)
1452                 lc = ((txdr->count / 64) * 2) + 1;
1453         else
1454                 lc = ((rxdr->count / 64) * 2) + 1;
1455
1456         k = l = 0;
1457         for (j = 0; j <= lc; j++) { /* loop count loop */
1458                 for (i = 0; i < 64; i++) { /* send the packets */
1459                         e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1460                                         1024);
1461                         pci_dma_sync_single_for_device(pdev,
1462                                         txdr->buffer_info[k].dma,
1463                                         txdr->buffer_info[k].length,
1464                                         PCI_DMA_TODEVICE);
1465                         if (unlikely(++k == txdr->count)) k = 0;
1466                 }
1467                 E1000_WRITE_REG(&adapter->hw, TDT, k);
1468                 msec_delay(200);
1469                 time = jiffies; /* set the start time for the receive */
1470                 good_cnt = 0;
1471                 do { /* receive the sent packets */
1472                         pci_dma_sync_single_for_cpu(pdev,
1473                                         rxdr->buffer_info[l].dma,
1474                                         rxdr->buffer_info[l].length,
1475                                         PCI_DMA_FROMDEVICE);
1476
1477                         ret_val = e1000_check_lbtest_frame(
1478                                         rxdr->buffer_info[l].skb,
1479                                         1024);
1480                         if (!ret_val)
1481                                 good_cnt++;
1482                         if (unlikely(++l == rxdr->count)) l = 0;
1483                         /* time + 20 msecs (200 msecs on 2.4) is more than
1484                          * enough time to complete the receives, if it's
1485                          * exceeded, break and error off
1486                          */
1487                 } while (good_cnt < 64 && jiffies < (time + 20));
1488                 if (good_cnt != 64) {
1489                         ret_val = 13; /* ret_val is the same as mis-compare */
1490                         break;
1491                 }
1492                 if (jiffies >= (time + 2)) {
1493                         ret_val = 14; /* error code for time out error */
1494                         break;
1495                 }
1496         } /* end loop count loop */
1497         return ret_val;
1498 }
1499
1500 static int
1501 e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data)
1502 {
1503         /* PHY loopback cannot be performed if SoL/IDER
1504          * sessions are active */
1505         if (e1000_check_phy_reset_block(&adapter->hw)) {
1506                 DPRINTK(DRV, ERR, "Cannot do PHY loopback test "
1507                         "when SoL/IDER is active.\n");
1508                 *data = 0;
1509                 goto out;
1510         }
1511
1512         if ((*data = e1000_setup_desc_rings(adapter)))
1513                 goto out;
1514         if ((*data = e1000_setup_loopback_test(adapter)))
1515                 goto err_loopback;
1516         *data = e1000_run_loopback_test(adapter);
1517         e1000_loopback_cleanup(adapter);
1518
1519 err_loopback:
1520         e1000_free_desc_rings(adapter);
1521 out:
1522         return *data;
1523 }
1524
1525 static int
1526 e1000_link_test(struct e1000_adapter *adapter, uint64_t *data)
1527 {
1528         *data = 0;
1529         if (adapter->hw.media_type == e1000_media_type_internal_serdes) {
1530                 int i = 0;
1531                 adapter->hw.serdes_link_down = TRUE;
1532
1533                 /* On some blade server designs, link establishment
1534                  * could take as long as 2-3 minutes */
1535                 do {
1536                         e1000_check_for_link(&adapter->hw);
1537                         if (adapter->hw.serdes_link_down == FALSE)
1538                                 return *data;
1539                         msec_delay(20);
1540                 } while (i++ < 3750);
1541
1542                 *data = 1;
1543         } else {
1544                 e1000_check_for_link(&adapter->hw);
1545                 if (adapter->hw.autoneg)  /* if auto_neg is set wait for it */
1546                         msec_delay(4000);
1547
1548                 if (!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
1549                         *data = 1;
1550                 }
1551         }
1552         return *data;
1553 }
1554
1555 static int
1556 e1000_diag_test_count(struct net_device *netdev)
1557 {
1558         return E1000_TEST_LEN;
1559 }
1560
1561 static void
1562 e1000_diag_test(struct net_device *netdev,
1563                    struct ethtool_test *eth_test, uint64_t *data)
1564 {
1565         struct e1000_adapter *adapter = netdev_priv(netdev);
1566         boolean_t if_running = netif_running(netdev);
1567
1568         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1569                 /* Offline tests */
1570
1571                 /* save speed, duplex, autoneg settings */
1572                 uint16_t autoneg_advertised = adapter->hw.autoneg_advertised;
1573                 uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex;
1574                 uint8_t autoneg = adapter->hw.autoneg;
1575
1576                 /* Link test performed before hardware reset so autoneg doesn't
1577                  * interfere with test result */
1578                 if (e1000_link_test(adapter, &data[4]))
1579                         eth_test->flags |= ETH_TEST_FL_FAILED;
1580
1581                 if (if_running)
1582                         e1000_down(adapter);
1583                 else
1584                         e1000_reset(adapter);
1585
1586                 if (e1000_reg_test(adapter, &data[0]))
1587                         eth_test->flags |= ETH_TEST_FL_FAILED;
1588
1589                 e1000_reset(adapter);
1590                 if (e1000_eeprom_test(adapter, &data[1]))
1591                         eth_test->flags |= ETH_TEST_FL_FAILED;
1592
1593                 e1000_reset(adapter);
1594                 if (e1000_intr_test(adapter, &data[2]))
1595                         eth_test->flags |= ETH_TEST_FL_FAILED;
1596
1597                 e1000_reset(adapter);
1598                 if (e1000_loopback_test(adapter, &data[3]))
1599                         eth_test->flags |= ETH_TEST_FL_FAILED;
1600
1601                 /* restore speed, duplex, autoneg settings */
1602                 adapter->hw.autoneg_advertised = autoneg_advertised;
1603                 adapter->hw.forced_speed_duplex = forced_speed_duplex;
1604                 adapter->hw.autoneg = autoneg;
1605
1606                 e1000_reset(adapter);
1607                 if (if_running)
1608                         e1000_up(adapter);
1609         } else {
1610                 /* Online tests */
1611                 if (e1000_link_test(adapter, &data[4]))
1612                         eth_test->flags |= ETH_TEST_FL_FAILED;
1613
1614                 /* Offline tests aren't run; pass by default */
1615                 data[0] = 0;
1616                 data[1] = 0;
1617                 data[2] = 0;
1618                 data[3] = 0;
1619         }
1620         msleep_interruptible(4 * 1000);
1621 }
1622
1623 static void
1624 e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1625 {
1626         struct e1000_adapter *adapter = netdev_priv(netdev);
1627         struct e1000_hw *hw = &adapter->hw;
1628
1629         switch (adapter->hw.device_id) {
1630         case E1000_DEV_ID_82542:
1631         case E1000_DEV_ID_82543GC_FIBER:
1632         case E1000_DEV_ID_82543GC_COPPER:
1633         case E1000_DEV_ID_82544EI_FIBER:
1634         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1635         case E1000_DEV_ID_82545EM_FIBER:
1636         case E1000_DEV_ID_82545EM_COPPER:
1637         case E1000_DEV_ID_82546GB_QUAD_COPPER:
1638                 wol->supported = 0;
1639                 wol->wolopts   = 0;
1640                 return;
1641
1642         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1643                 /* device id 10B5 port-A supports wol */
1644                 if (!adapter->ksp3_port_a) {
1645                         wol->supported = 0;
1646                         return;
1647                 }
1648                 /* KSP3 does not suppport UCAST wake-ups for any interface */
1649                 wol->supported = WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC;
1650
1651                 if (adapter->wol & E1000_WUFC_EX)
1652                         DPRINTK(DRV, ERR, "Interface does not support "
1653                         "directed (unicast) frame wake-up packets\n");
1654                 wol->wolopts = 0;
1655                 goto do_defaults;
1656
1657         case E1000_DEV_ID_82546EB_FIBER:
1658         case E1000_DEV_ID_82546GB_FIBER:
1659         case E1000_DEV_ID_82571EB_FIBER:
1660                 /* Wake events only supported on port A for dual fiber */
1661                 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) {
1662                         wol->supported = 0;
1663                         wol->wolopts   = 0;
1664                         return;
1665                 }
1666                 /* Fall Through */
1667
1668         default:
1669                 wol->supported = WAKE_UCAST | WAKE_MCAST |
1670                                  WAKE_BCAST | WAKE_MAGIC;
1671                 wol->wolopts = 0;
1672
1673 do_defaults:
1674                 if (adapter->wol & E1000_WUFC_EX)
1675                         wol->wolopts |= WAKE_UCAST;
1676                 if (adapter->wol & E1000_WUFC_MC)
1677                         wol->wolopts |= WAKE_MCAST;
1678                 if (adapter->wol & E1000_WUFC_BC)
1679                         wol->wolopts |= WAKE_BCAST;
1680                 if (adapter->wol & E1000_WUFC_MAG)
1681                         wol->wolopts |= WAKE_MAGIC;
1682                 return;
1683         }
1684 }
1685
1686 static int
1687 e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1688 {
1689         struct e1000_adapter *adapter = netdev_priv(netdev);
1690         struct e1000_hw *hw = &adapter->hw;
1691
1692         switch (adapter->hw.device_id) {
1693         case E1000_DEV_ID_82542:
1694         case E1000_DEV_ID_82543GC_FIBER:
1695         case E1000_DEV_ID_82543GC_COPPER:
1696         case E1000_DEV_ID_82544EI_FIBER:
1697         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1698         case E1000_DEV_ID_82546GB_QUAD_COPPER:
1699         case E1000_DEV_ID_82545EM_FIBER:
1700         case E1000_DEV_ID_82545EM_COPPER:
1701                 return wol->wolopts ? -EOPNOTSUPP : 0;
1702
1703         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1704                 /* device id 10B5 port-A supports wol */
1705                 if (!adapter->ksp3_port_a)
1706                         return wol->wolopts ? -EOPNOTSUPP : 0;
1707
1708                 if (wol->wolopts & WAKE_UCAST) {
1709                         DPRINTK(DRV, ERR, "Interface does not support "
1710                         "directed (unicast) frame wake-up packets\n");
1711                         return -EOPNOTSUPP;
1712                 }
1713
1714         case E1000_DEV_ID_82546EB_FIBER:
1715         case E1000_DEV_ID_82546GB_FIBER:
1716         case E1000_DEV_ID_82571EB_FIBER:
1717                 /* Wake events only supported on port A for dual fiber */
1718                 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1719                         return wol->wolopts ? -EOPNOTSUPP : 0;
1720                 /* Fall Through */
1721
1722         default:
1723                 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1724                         return -EOPNOTSUPP;
1725
1726                 adapter->wol = 0;
1727
1728                 if (wol->wolopts & WAKE_UCAST)
1729                         adapter->wol |= E1000_WUFC_EX;
1730                 if (wol->wolopts & WAKE_MCAST)
1731                         adapter->wol |= E1000_WUFC_MC;
1732                 if (wol->wolopts & WAKE_BCAST)
1733                         adapter->wol |= E1000_WUFC_BC;
1734                 if (wol->wolopts & WAKE_MAGIC)
1735                         adapter->wol |= E1000_WUFC_MAG;
1736         }
1737
1738         return 0;
1739 }
1740
1741 /* toggle LED 4 times per second = 2 "blinks" per second */
1742 #define E1000_ID_INTERVAL       (HZ/4)
1743
1744 /* bit defines for adapter->led_status */
1745 #define E1000_LED_ON            0
1746
1747 static void
1748 e1000_led_blink_callback(unsigned long data)
1749 {
1750         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1751
1752         if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1753                 e1000_led_off(&adapter->hw);
1754         else
1755                 e1000_led_on(&adapter->hw);
1756
1757         mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1758 }
1759
1760 static int
1761 e1000_phys_id(struct net_device *netdev, uint32_t data)
1762 {
1763         struct e1000_adapter *adapter = netdev_priv(netdev);
1764
1765         if (!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ))
1766                 data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ);
1767
1768         if (adapter->hw.mac_type < e1000_82571) {
1769                 if (!adapter->blink_timer.function) {
1770                         init_timer(&adapter->blink_timer);
1771                         adapter->blink_timer.function = e1000_led_blink_callback;
1772                         adapter->blink_timer.data = (unsigned long) adapter;
1773                 }
1774                 e1000_setup_led(&adapter->hw);
1775                 mod_timer(&adapter->blink_timer, jiffies);
1776                 msleep_interruptible(data * 1000);
1777                 del_timer_sync(&adapter->blink_timer);
1778         } else if (adapter->hw.mac_type < e1000_82573) {
1779                 E1000_WRITE_REG(&adapter->hw, LEDCTL,
1780                         (E1000_LEDCTL_LED2_BLINK_RATE |
1781                          E1000_LEDCTL_LED0_BLINK | E1000_LEDCTL_LED2_BLINK |
1782                          (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) |
1783                          (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED0_MODE_SHIFT) |
1784                          (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED1_MODE_SHIFT)));
1785                 msleep_interruptible(data * 1000);
1786         } else {
1787                 E1000_WRITE_REG(&adapter->hw, LEDCTL,
1788                         (E1000_LEDCTL_LED2_BLINK_RATE |
1789                          E1000_LEDCTL_LED1_BLINK | E1000_LEDCTL_LED2_BLINK |
1790                          (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) |
1791                          (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED1_MODE_SHIFT) |
1792                          (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED0_MODE_SHIFT)));
1793                 msleep_interruptible(data * 1000);
1794         }
1795
1796         e1000_led_off(&adapter->hw);
1797         clear_bit(E1000_LED_ON, &adapter->led_status);
1798         e1000_cleanup_led(&adapter->hw);
1799
1800         return 0;
1801 }
1802
1803 static int
1804 e1000_nway_reset(struct net_device *netdev)
1805 {
1806         struct e1000_adapter *adapter = netdev_priv(netdev);
1807         if (netif_running(netdev)) {
1808                 e1000_down(adapter);
1809                 e1000_up(adapter);
1810         }
1811         return 0;
1812 }
1813
1814 static int
1815 e1000_get_stats_count(struct net_device *netdev)
1816 {
1817         return E1000_STATS_LEN;
1818 }
1819
1820 static void
1821 e1000_get_ethtool_stats(struct net_device *netdev,
1822                 struct ethtool_stats *stats, uint64_t *data)
1823 {
1824         struct e1000_adapter *adapter = netdev_priv(netdev);
1825         int i;
1826
1827         e1000_update_stats(adapter);
1828         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1829                 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
1830                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1831                         sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
1832         }
1833 /*      BUG_ON(i != E1000_STATS_LEN); */
1834 }
1835
1836 static void
1837 e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
1838 {
1839         uint8_t *p = data;
1840         int i;
1841
1842         switch (stringset) {
1843         case ETH_SS_TEST:
1844                 memcpy(data, *e1000_gstrings_test,
1845                         E1000_TEST_LEN*ETH_GSTRING_LEN);
1846                 break;
1847         case ETH_SS_STATS:
1848                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1849                         memcpy(p, e1000_gstrings_stats[i].stat_string,
1850                                ETH_GSTRING_LEN);
1851                         p += ETH_GSTRING_LEN;
1852                 }
1853 /*              BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1854                 break;
1855         }
1856 }
1857
1858 static struct ethtool_ops e1000_ethtool_ops = {
1859         .get_settings           = e1000_get_settings,
1860         .set_settings           = e1000_set_settings,
1861         .get_drvinfo            = e1000_get_drvinfo,
1862         .get_regs_len           = e1000_get_regs_len,
1863         .get_regs               = e1000_get_regs,
1864         .get_wol                = e1000_get_wol,
1865         .set_wol                = e1000_set_wol,
1866         .get_msglevel           = e1000_get_msglevel,
1867         .set_msglevel           = e1000_set_msglevel,
1868         .nway_reset             = e1000_nway_reset,
1869         .get_link               = ethtool_op_get_link,
1870         .get_eeprom_len         = e1000_get_eeprom_len,
1871         .get_eeprom             = e1000_get_eeprom,
1872         .set_eeprom             = e1000_set_eeprom,
1873         .get_ringparam          = e1000_get_ringparam,
1874         .set_ringparam          = e1000_set_ringparam,
1875         .get_pauseparam         = e1000_get_pauseparam,
1876         .set_pauseparam         = e1000_set_pauseparam,
1877         .get_rx_csum            = e1000_get_rx_csum,
1878         .set_rx_csum            = e1000_set_rx_csum,
1879         .get_tx_csum            = e1000_get_tx_csum,
1880         .set_tx_csum            = e1000_set_tx_csum,
1881         .get_sg                 = ethtool_op_get_sg,
1882         .set_sg                 = ethtool_op_set_sg,
1883 #ifdef NETIF_F_TSO
1884         .get_tso                = ethtool_op_get_tso,
1885         .set_tso                = e1000_set_tso,
1886 #endif
1887         .self_test_count        = e1000_diag_test_count,
1888         .self_test              = e1000_diag_test,
1889         .get_strings            = e1000_get_strings,
1890         .phys_id                = e1000_phys_id,
1891         .get_stats_count        = e1000_get_stats_count,
1892         .get_ethtool_stats      = e1000_get_ethtool_stats,
1893         .get_perm_addr          = ethtool_op_get_perm_addr,
1894 };
1895
1896 void e1000_set_ethtool_ops(struct net_device *netdev)
1897 {
1898         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1899 }