2 * acpi-cpufreq.c - ACPI Processor P-States Driver ($Revision: 1.4 $)
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com>
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or (at
14 * your option) any later version.
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
21 * You should have received a copy of the GNU General Public License along
22 * with this program; if not, write to the Free Software Foundation, Inc.,
23 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
25 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/smp.h>
32 #include <linux/sched.h>
33 #include <linux/cpufreq.h>
34 #include <linux/compiler.h>
35 #include <linux/dmi.h>
36 #include <linux/ftrace.h>
38 #include <linux/acpi.h>
39 #include <acpi/processor.h>
43 #include <asm/processor.h>
44 #include <asm/cpufeature.h>
45 #include <asm/delay.h>
46 #include <asm/uaccess.h>
48 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "acpi-cpufreq", msg)
50 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
51 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
52 MODULE_LICENSE("GPL");
55 UNDEFINED_CAPABLE = 0,
56 SYSTEM_INTEL_MSR_CAPABLE,
60 #define INTEL_MSR_RANGE (0xffff)
61 #define CPUID_6_ECX_APERFMPERF_CAPABILITY (0x1)
63 struct acpi_cpufreq_data {
64 struct acpi_processor_performance *acpi_data;
65 struct cpufreq_frequency_table *freq_table;
66 unsigned int max_freq;
68 unsigned int cpu_feature;
71 static DEFINE_PER_CPU(struct acpi_cpufreq_data *, drv_data);
73 /* acpi_perf_data is a pointer to percpu data. */
74 static struct acpi_processor_performance *acpi_perf_data;
76 static struct cpufreq_driver acpi_cpufreq_driver;
78 static unsigned int acpi_pstate_strict;
80 static int check_est_cpu(unsigned int cpuid)
82 struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
84 if (cpu->x86_vendor != X86_VENDOR_INTEL ||
85 !cpu_has(cpu, X86_FEATURE_EST))
91 static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
93 struct acpi_processor_performance *perf;
96 perf = data->acpi_data;
98 for (i=0; i<perf->state_count; i++) {
99 if (value == perf->states[i].status)
100 return data->freq_table[i].frequency;
105 static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
108 struct acpi_processor_performance *perf;
110 msr &= INTEL_MSR_RANGE;
111 perf = data->acpi_data;
113 for (i=0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
114 if (msr == perf->states[data->freq_table[i].index].status)
115 return data->freq_table[i].frequency;
117 return data->freq_table[0].frequency;
120 static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
122 switch (data->cpu_feature) {
123 case SYSTEM_INTEL_MSR_CAPABLE:
124 return extract_msr(val, data);
125 case SYSTEM_IO_CAPABLE:
126 return extract_io(val, data);
153 static long do_drv_read(void *_cmd)
155 struct drv_cmd *cmd = _cmd;
159 case SYSTEM_INTEL_MSR_CAPABLE:
160 rdmsr(cmd->addr.msr.reg, cmd->val, h);
162 case SYSTEM_IO_CAPABLE:
163 acpi_os_read_port((acpi_io_address)cmd->addr.io.port,
165 (u32)cmd->addr.io.bit_width);
173 static long do_drv_write(void *_cmd)
175 struct drv_cmd *cmd = _cmd;
179 case SYSTEM_INTEL_MSR_CAPABLE:
180 rdmsr(cmd->addr.msr.reg, lo, hi);
181 lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE);
182 wrmsr(cmd->addr.msr.reg, lo, hi);
184 case SYSTEM_IO_CAPABLE:
185 acpi_os_write_port((acpi_io_address)cmd->addr.io.port,
187 (u32)cmd->addr.io.bit_width);
195 static void drv_read(struct drv_cmd *cmd)
199 work_on_cpu(cpumask_any(cmd->mask), do_drv_read, cmd);
202 static void drv_write(struct drv_cmd *cmd)
206 for_each_cpu(i, cmd->mask) {
207 work_on_cpu(i, do_drv_write, cmd);
211 static u32 get_cur_val(const struct cpumask *mask)
213 struct acpi_processor_performance *perf;
216 if (unlikely(cpumask_empty(mask)))
219 switch (per_cpu(drv_data, cpumask_first(mask))->cpu_feature) {
220 case SYSTEM_INTEL_MSR_CAPABLE:
221 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
222 cmd.addr.msr.reg = MSR_IA32_PERF_STATUS;
224 case SYSTEM_IO_CAPABLE:
225 cmd.type = SYSTEM_IO_CAPABLE;
226 perf = per_cpu(drv_data, cpumask_first(mask))->acpi_data;
227 cmd.addr.io.port = perf->control_register.address;
228 cmd.addr.io.bit_width = perf->control_register.bit_width;
234 if (unlikely(!alloc_cpumask_var(&cmd.mask, GFP_KERNEL)))
237 cpumask_copy(cmd.mask, mask);
241 free_cpumask_var(cmd.mask);
243 dprintk("get_cur_val = %u\n", cmd.val);
255 } aperf_cur, mperf_cur;
259 static long read_measured_perf_ctrs(void *_cur)
261 struct perf_cur *cur = _cur;
263 rdmsr(MSR_IA32_APERF, cur->aperf_cur.split.lo, cur->aperf_cur.split.hi);
264 rdmsr(MSR_IA32_MPERF, cur->mperf_cur.split.lo, cur->mperf_cur.split.hi);
266 wrmsr(MSR_IA32_APERF, 0, 0);
267 wrmsr(MSR_IA32_MPERF, 0, 0);
273 * Return the measured active (C0) frequency on this CPU since last call
276 * Return: Average CPU frequency in terms of max frequency (zero on error)
278 * We use IA32_MPERF and IA32_APERF MSRs to get the measured performance
279 * over a period of time, while CPU is in C0 state.
280 * IA32_MPERF counts at the rate of max advertised frequency
281 * IA32_APERF counts at the rate of actual CPU frequency
282 * Only IA32_APERF/IA32_MPERF ratio is architecturally defined and
283 * no meaning should be associated with absolute values of these MSRs.
285 static unsigned int get_measured_perf(struct cpufreq_policy *policy,
289 unsigned int perf_percent;
292 if (!work_on_cpu(cpu, read_measured_perf_ctrs, &cur))
297 * We dont want to do 64 bit divide with 32 bit kernel
298 * Get an approximate value. Return failure in case we cannot get
299 * an approximate value.
301 if (unlikely(cur.aperf_cur.split.hi || cur.mperf_cur.split.hi)) {
305 h = max_t(u32, cur.aperf_cur.split.hi, cur.mperf_cur.split.hi);
306 shift_count = fls(h);
308 cur.aperf_cur.whole >>= shift_count;
309 cur.mperf_cur.whole >>= shift_count;
312 if (((unsigned long)(-1) / 100) < cur.aperf_cur.split.lo) {
314 cur.aperf_cur.split.lo >>= shift_count;
315 cur.mperf_cur.split.lo >>= shift_count;
318 if (cur.aperf_cur.split.lo && cur.mperf_cur.split.lo)
319 perf_percent = (cur.aperf_cur.split.lo * 100) /
320 cur.mperf_cur.split.lo;
325 if (unlikely(((unsigned long)(-1) / 100) < cur.aperf_cur.whole)) {
327 cur.aperf_cur.whole >>= shift_count;
328 cur.mperf_cur.whole >>= shift_count;
331 if (cur.aperf_cur.whole && cur.mperf_cur.whole)
332 perf_percent = (cur.aperf_cur.whole * 100) /
339 retval = per_cpu(drv_data, policy->cpu)->max_freq * perf_percent / 100;
344 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
346 struct acpi_cpufreq_data *data = per_cpu(drv_data, cpu);
348 unsigned int cached_freq;
350 dprintk("get_cur_freq_on_cpu (%d)\n", cpu);
352 if (unlikely(data == NULL ||
353 data->acpi_data == NULL || data->freq_table == NULL)) {
357 cached_freq = data->freq_table[data->acpi_data->state].frequency;
358 freq = extract_freq(get_cur_val(cpumask_of(cpu)), data);
359 if (freq != cached_freq) {
361 * The dreaded BIOS frequency change behind our back.
362 * Force set the frequency on next target call.
367 dprintk("cur freq = %u\n", freq);
372 static unsigned int check_freqs(const cpumask_t *mask, unsigned int freq,
373 struct acpi_cpufreq_data *data)
375 unsigned int cur_freq;
378 for (i=0; i<100; i++) {
379 cur_freq = extract_freq(get_cur_val(mask), data);
380 if (cur_freq == freq)
387 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
388 unsigned int target_freq, unsigned int relation)
390 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
391 struct acpi_processor_performance *perf;
392 struct cpufreq_freqs freqs;
394 unsigned int next_state = 0; /* Index into freq_table */
395 unsigned int next_perf_state = 0; /* Index into perf table */
398 struct power_trace it;
400 dprintk("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
402 if (unlikely(data == NULL ||
403 data->acpi_data == NULL || data->freq_table == NULL)) {
407 if (unlikely(!alloc_cpumask_var(&cmd.mask, GFP_KERNEL)))
410 perf = data->acpi_data;
411 result = cpufreq_frequency_table_target(policy,
414 relation, &next_state);
415 if (unlikely(result)) {
420 next_perf_state = data->freq_table[next_state].index;
421 if (perf->state == next_perf_state) {
422 if (unlikely(data->resume)) {
423 dprintk("Called after resume, resetting to P%d\n",
427 dprintk("Already at target state (P%d)\n",
433 trace_power_mark(&it, POWER_PSTATE, next_perf_state);
435 switch (data->cpu_feature) {
436 case SYSTEM_INTEL_MSR_CAPABLE:
437 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
438 cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
439 cmd.val = (u32) perf->states[next_perf_state].control;
441 case SYSTEM_IO_CAPABLE:
442 cmd.type = SYSTEM_IO_CAPABLE;
443 cmd.addr.io.port = perf->control_register.address;
444 cmd.addr.io.bit_width = perf->control_register.bit_width;
445 cmd.val = (u32) perf->states[next_perf_state].control;
452 /* cpufreq holds the hotplug lock, so we are safe from here on */
453 if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
454 cpumask_and(cmd.mask, cpu_online_mask, policy->cpus);
456 cpumask_copy(cmd.mask, cpumask_of(policy->cpu));
458 freqs.old = perf->states[perf->state].core_frequency * 1000;
459 freqs.new = data->freq_table[next_state].frequency;
460 for_each_cpu(i, cmd.mask) {
462 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
467 if (acpi_pstate_strict) {
468 if (!check_freqs(cmd.mask, freqs.new, data)) {
469 dprintk("acpi_cpufreq_target failed (%d)\n",
476 for_each_cpu(i, cmd.mask) {
478 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
480 perf->state = next_perf_state;
483 free_cpumask_var(cmd.mask);
487 static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
489 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
491 dprintk("acpi_cpufreq_verify\n");
493 return cpufreq_frequency_table_verify(policy, data->freq_table);
497 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
499 struct acpi_processor_performance *perf = data->acpi_data;
502 /* search the closest match to cpu_khz */
505 unsigned long freqn = perf->states[0].core_frequency * 1000;
507 for (i=0; i<(perf->state_count-1); i++) {
509 freqn = perf->states[i+1].core_frequency * 1000;
510 if ((2 * cpu_khz) > (freqn + freq)) {
515 perf->state = perf->state_count-1;
518 /* assume CPU is at P0... */
520 return perf->states[0].core_frequency * 1000;
524 static void free_acpi_perf_data(void)
528 /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
529 for_each_possible_cpu(i)
530 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
532 free_percpu(acpi_perf_data);
536 * acpi_cpufreq_early_init - initialize ACPI P-States library
538 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
539 * in order to determine correct frequency and voltage pairings. We can
540 * do _PDC and _PSD and find out the processor dependency for the
541 * actual init that will happen later...
543 static int __init acpi_cpufreq_early_init(void)
546 dprintk("acpi_cpufreq_early_init\n");
548 acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
549 if (!acpi_perf_data) {
550 dprintk("Memory allocation error for acpi_perf_data.\n");
553 for_each_possible_cpu(i) {
554 if (!alloc_cpumask_var_node(
555 &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
556 GFP_KERNEL, cpu_to_node(i))) {
558 /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
559 free_acpi_perf_data();
564 /* Do initialization in ACPI core */
565 acpi_processor_preregister_performance(acpi_perf_data);
571 * Some BIOSes do SW_ANY coordination internally, either set it up in hw
572 * or do it in BIOS firmware and won't inform about it to OS. If not
573 * detected, this has a side effect of making CPU run at a different speed
574 * than OS intended it to run at. Detect it and handle it cleanly.
576 static int bios_with_sw_any_bug;
578 static int sw_any_bug_found(const struct dmi_system_id *d)
580 bios_with_sw_any_bug = 1;
584 static const struct dmi_system_id sw_any_bug_dmi_table[] = {
586 .callback = sw_any_bug_found,
587 .ident = "Supermicro Server X6DLP",
589 DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
590 DMI_MATCH(DMI_BIOS_VERSION, "080010"),
591 DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
598 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
601 unsigned int valid_states = 0;
602 unsigned int cpu = policy->cpu;
603 struct acpi_cpufreq_data *data;
604 unsigned int result = 0;
605 struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
606 struct acpi_processor_performance *perf;
608 dprintk("acpi_cpufreq_cpu_init\n");
610 data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
614 data->acpi_data = percpu_ptr(acpi_perf_data, cpu);
615 per_cpu(drv_data, cpu) = data;
617 if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
618 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
620 result = acpi_processor_register_performance(data->acpi_data, cpu);
624 perf = data->acpi_data;
625 policy->shared_type = perf->shared_type;
628 * Will let policy->cpus know about dependency only when software
629 * coordination is required.
631 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
632 policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
633 cpumask_copy(policy->cpus, perf->shared_cpu_map);
635 cpumask_copy(policy->related_cpus, perf->shared_cpu_map);
638 dmi_check_system(sw_any_bug_dmi_table);
639 if (bios_with_sw_any_bug && cpumask_weight(policy->cpus) == 1) {
640 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
641 cpumask_copy(policy->cpus, cpu_core_mask(cpu));
645 /* capability check */
646 if (perf->state_count <= 1) {
647 dprintk("No P-States\n");
652 if (perf->control_register.space_id != perf->status_register.space_id) {
657 switch (perf->control_register.space_id) {
658 case ACPI_ADR_SPACE_SYSTEM_IO:
659 dprintk("SYSTEM IO addr space\n");
660 data->cpu_feature = SYSTEM_IO_CAPABLE;
662 case ACPI_ADR_SPACE_FIXED_HARDWARE:
663 dprintk("HARDWARE addr space\n");
664 if (!check_est_cpu(cpu)) {
668 data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
671 dprintk("Unknown addr space %d\n",
672 (u32) (perf->control_register.space_id));
677 data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *
678 (perf->state_count+1), GFP_KERNEL);
679 if (!data->freq_table) {
684 /* detect transition latency */
685 policy->cpuinfo.transition_latency = 0;
686 for (i=0; i<perf->state_count; i++) {
687 if ((perf->states[i].transition_latency * 1000) >
688 policy->cpuinfo.transition_latency)
689 policy->cpuinfo.transition_latency =
690 perf->states[i].transition_latency * 1000;
693 data->max_freq = perf->states[0].core_frequency * 1000;
695 for (i=0; i<perf->state_count; i++) {
696 if (i>0 && perf->states[i].core_frequency >=
697 data->freq_table[valid_states-1].frequency / 1000)
700 data->freq_table[valid_states].index = i;
701 data->freq_table[valid_states].frequency =
702 perf->states[i].core_frequency * 1000;
705 data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
708 result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
712 switch (perf->control_register.space_id) {
713 case ACPI_ADR_SPACE_SYSTEM_IO:
714 /* Current speed is unknown and not detectable by IO port */
715 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
717 case ACPI_ADR_SPACE_FIXED_HARDWARE:
718 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
719 policy->cur = get_cur_freq_on_cpu(cpu);
725 /* notify BIOS that we exist */
726 acpi_processor_notify_smm(THIS_MODULE);
728 /* Check for APERF/MPERF support in hardware */
729 if (c->x86_vendor == X86_VENDOR_INTEL && c->cpuid_level >= 6) {
732 if (ecx & CPUID_6_ECX_APERFMPERF_CAPABILITY)
733 acpi_cpufreq_driver.getavg = get_measured_perf;
736 dprintk("CPU%u - ACPI performance management activated.\n", cpu);
737 for (i = 0; i < perf->state_count; i++)
738 dprintk(" %cP%d: %d MHz, %d mW, %d uS\n",
739 (i == perf->state ? '*' : ' '), i,
740 (u32) perf->states[i].core_frequency,
741 (u32) perf->states[i].power,
742 (u32) perf->states[i].transition_latency);
744 cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
747 * the first call to ->target() should result in us actually
748 * writing something to the appropriate registers.
755 kfree(data->freq_table);
757 acpi_processor_unregister_performance(perf, cpu);
760 per_cpu(drv_data, cpu) = NULL;
765 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
767 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
769 dprintk("acpi_cpufreq_cpu_exit\n");
772 cpufreq_frequency_table_put_attr(policy->cpu);
773 per_cpu(drv_data, policy->cpu) = NULL;
774 acpi_processor_unregister_performance(data->acpi_data,
782 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
784 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
786 dprintk("acpi_cpufreq_resume\n");
793 static struct freq_attr *acpi_cpufreq_attr[] = {
794 &cpufreq_freq_attr_scaling_available_freqs,
798 static struct cpufreq_driver acpi_cpufreq_driver = {
799 .verify = acpi_cpufreq_verify,
800 .target = acpi_cpufreq_target,
801 .init = acpi_cpufreq_cpu_init,
802 .exit = acpi_cpufreq_cpu_exit,
803 .resume = acpi_cpufreq_resume,
804 .name = "acpi-cpufreq",
805 .owner = THIS_MODULE,
806 .attr = acpi_cpufreq_attr,
809 static int __init acpi_cpufreq_init(void)
816 dprintk("acpi_cpufreq_init\n");
818 ret = acpi_cpufreq_early_init();
822 ret = cpufreq_register_driver(&acpi_cpufreq_driver);
824 free_acpi_perf_data();
829 static void __exit acpi_cpufreq_exit(void)
831 dprintk("acpi_cpufreq_exit\n");
833 cpufreq_unregister_driver(&acpi_cpufreq_driver);
835 free_percpu(acpi_perf_data);
838 module_param(acpi_pstate_strict, uint, 0644);
839 MODULE_PARM_DESC(acpi_pstate_strict,
840 "value 0 or non-zero. non-zero -> strict ACPI checks are "
841 "performed during frequency changes.");
843 late_initcall(acpi_cpufreq_init);
844 module_exit(acpi_cpufreq_exit);
846 MODULE_ALIAS("acpi");