2 * Implementation of the security services.
4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5 * James Morris <jmorris@redhat.com>
7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9 * Support for enhanced MLS infrastructure.
10 * Support for context based audit filters.
12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14 * Added conditional policy language extensions
16 * Updated: Hewlett-Packard <paul.moore@hp.com>
18 * Added support for NetLabel
20 * Updated: Chad Sellers <csellers@tresys.com>
22 * Added validation of kernel classes and permissions
24 * Copyright (C) 2006 Hewlett-Packard Development Company, L.P.
25 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
26 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
27 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
28 * This program is free software; you can redistribute it and/or modify
29 * it under the terms of the GNU General Public License as published by
30 * the Free Software Foundation, version 2.
32 #include <linux/kernel.h>
33 #include <linux/slab.h>
34 #include <linux/string.h>
35 #include <linux/spinlock.h>
36 #include <linux/rcupdate.h>
37 #include <linux/errno.h>
39 #include <linux/sched.h>
40 #include <linux/audit.h>
41 #include <linux/mutex.h>
42 #include <net/netlabel.h>
52 #include "conditional.h"
59 extern void selnl_notify_policyload(u32 seqno);
60 unsigned int policydb_loaded_version;
63 * This is declared in avc.c
65 extern const struct selinux_class_perm selinux_class_perm;
67 static DEFINE_RWLOCK(policy_rwlock);
68 #define POLICY_RDLOCK read_lock(&policy_rwlock)
69 #define POLICY_WRLOCK write_lock_irq(&policy_rwlock)
70 #define POLICY_RDUNLOCK read_unlock(&policy_rwlock)
71 #define POLICY_WRUNLOCK write_unlock_irq(&policy_rwlock)
73 static DEFINE_MUTEX(load_mutex);
74 #define LOAD_LOCK mutex_lock(&load_mutex)
75 #define LOAD_UNLOCK mutex_unlock(&load_mutex)
77 static struct sidtab sidtab;
78 struct policydb policydb;
79 int ss_initialized = 0;
82 * The largest sequence number that has been used when
83 * providing an access decision to the access vector cache.
84 * The sequence number only changes when a policy change
87 static u32 latest_granting = 0;
89 /* Forward declaration. */
90 static int context_struct_to_string(struct context *context, char **scontext,
94 * Return the boolean value of a constraint expression
95 * when it is applied to the specified source and target
98 * xcontext is a special beast... It is used by the validatetrans rules
99 * only. For these rules, scontext is the context before the transition,
100 * tcontext is the context after the transition, and xcontext is the context
101 * of the process performing the transition. All other callers of
102 * constraint_expr_eval should pass in NULL for xcontext.
104 static int constraint_expr_eval(struct context *scontext,
105 struct context *tcontext,
106 struct context *xcontext,
107 struct constraint_expr *cexpr)
111 struct role_datum *r1, *r2;
112 struct mls_level *l1, *l2;
113 struct constraint_expr *e;
114 int s[CEXPR_MAXDEPTH];
117 for (e = cexpr; e; e = e->next) {
118 switch (e->expr_type) {
134 if (sp == (CEXPR_MAXDEPTH-1))
138 val1 = scontext->user;
139 val2 = tcontext->user;
142 val1 = scontext->type;
143 val2 = tcontext->type;
146 val1 = scontext->role;
147 val2 = tcontext->role;
148 r1 = policydb.role_val_to_struct[val1 - 1];
149 r2 = policydb.role_val_to_struct[val2 - 1];
152 s[++sp] = ebitmap_get_bit(&r1->dominates,
156 s[++sp] = ebitmap_get_bit(&r2->dominates,
160 s[++sp] = ( !ebitmap_get_bit(&r1->dominates,
162 !ebitmap_get_bit(&r2->dominates,
170 l1 = &(scontext->range.level[0]);
171 l2 = &(tcontext->range.level[0]);
174 l1 = &(scontext->range.level[0]);
175 l2 = &(tcontext->range.level[1]);
178 l1 = &(scontext->range.level[1]);
179 l2 = &(tcontext->range.level[0]);
182 l1 = &(scontext->range.level[1]);
183 l2 = &(tcontext->range.level[1]);
186 l1 = &(scontext->range.level[0]);
187 l2 = &(scontext->range.level[1]);
190 l1 = &(tcontext->range.level[0]);
191 l2 = &(tcontext->range.level[1]);
196 s[++sp] = mls_level_eq(l1, l2);
199 s[++sp] = !mls_level_eq(l1, l2);
202 s[++sp] = mls_level_dom(l1, l2);
205 s[++sp] = mls_level_dom(l2, l1);
208 s[++sp] = mls_level_incomp(l2, l1);
222 s[++sp] = (val1 == val2);
225 s[++sp] = (val1 != val2);
233 if (sp == (CEXPR_MAXDEPTH-1))
236 if (e->attr & CEXPR_TARGET)
238 else if (e->attr & CEXPR_XTARGET) {
245 if (e->attr & CEXPR_USER)
247 else if (e->attr & CEXPR_ROLE)
249 else if (e->attr & CEXPR_TYPE)
258 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
261 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
279 * Compute access vectors based on a context structure pair for
280 * the permissions in a particular class.
282 static int context_struct_compute_av(struct context *scontext,
283 struct context *tcontext,
286 struct av_decision *avd)
288 struct constraint_node *constraint;
289 struct role_allow *ra;
290 struct avtab_key avkey;
291 struct avtab_node *node;
292 struct class_datum *tclass_datum;
293 struct ebitmap *sattr, *tattr;
294 struct ebitmap_node *snode, *tnode;
298 * Remap extended Netlink classes for old policy versions.
299 * Do this here rather than socket_type_to_security_class()
300 * in case a newer policy version is loaded, allowing sockets
301 * to remain in the correct class.
303 if (policydb_loaded_version < POLICYDB_VERSION_NLCLASS)
304 if (tclass >= SECCLASS_NETLINK_ROUTE_SOCKET &&
305 tclass <= SECCLASS_NETLINK_DNRT_SOCKET)
306 tclass = SECCLASS_NETLINK_SOCKET;
308 if (!tclass || tclass > policydb.p_classes.nprim) {
309 printk(KERN_ERR "security_compute_av: unrecognized class %d\n",
313 tclass_datum = policydb.class_val_to_struct[tclass - 1];
316 * Initialize the access vectors to the default values.
319 avd->decided = 0xffffffff;
321 avd->auditdeny = 0xffffffff;
322 avd->seqno = latest_granting;
325 * If a specific type enforcement rule was defined for
326 * this permission check, then use it.
328 avkey.target_class = tclass;
329 avkey.specified = AVTAB_AV;
330 sattr = &policydb.type_attr_map[scontext->type - 1];
331 tattr = &policydb.type_attr_map[tcontext->type - 1];
332 ebitmap_for_each_bit(sattr, snode, i) {
333 if (!ebitmap_node_get_bit(snode, i))
335 ebitmap_for_each_bit(tattr, tnode, j) {
336 if (!ebitmap_node_get_bit(tnode, j))
338 avkey.source_type = i + 1;
339 avkey.target_type = j + 1;
340 for (node = avtab_search_node(&policydb.te_avtab, &avkey);
342 node = avtab_search_node_next(node, avkey.specified)) {
343 if (node->key.specified == AVTAB_ALLOWED)
344 avd->allowed |= node->datum.data;
345 else if (node->key.specified == AVTAB_AUDITALLOW)
346 avd->auditallow |= node->datum.data;
347 else if (node->key.specified == AVTAB_AUDITDENY)
348 avd->auditdeny &= node->datum.data;
351 /* Check conditional av table for additional permissions */
352 cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
358 * Remove any permissions prohibited by a constraint (this includes
361 constraint = tclass_datum->constraints;
363 if ((constraint->permissions & (avd->allowed)) &&
364 !constraint_expr_eval(scontext, tcontext, NULL,
366 avd->allowed = (avd->allowed) & ~(constraint->permissions);
368 constraint = constraint->next;
372 * If checking process transition permission and the
373 * role is changing, then check the (current_role, new_role)
376 if (tclass == SECCLASS_PROCESS &&
377 (avd->allowed & (PROCESS__TRANSITION | PROCESS__DYNTRANSITION)) &&
378 scontext->role != tcontext->role) {
379 for (ra = policydb.role_allow; ra; ra = ra->next) {
380 if (scontext->role == ra->role &&
381 tcontext->role == ra->new_role)
385 avd->allowed = (avd->allowed) & ~(PROCESS__TRANSITION |
386 PROCESS__DYNTRANSITION);
392 static int security_validtrans_handle_fail(struct context *ocontext,
393 struct context *ncontext,
394 struct context *tcontext,
397 char *o = NULL, *n = NULL, *t = NULL;
398 u32 olen, nlen, tlen;
400 if (context_struct_to_string(ocontext, &o, &olen) < 0)
402 if (context_struct_to_string(ncontext, &n, &nlen) < 0)
404 if (context_struct_to_string(tcontext, &t, &tlen) < 0)
406 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
407 "security_validate_transition: denied for"
408 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
409 o, n, t, policydb.p_class_val_to_name[tclass-1]);
415 if (!selinux_enforcing)
420 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
423 struct context *ocontext;
424 struct context *ncontext;
425 struct context *tcontext;
426 struct class_datum *tclass_datum;
427 struct constraint_node *constraint;
436 * Remap extended Netlink classes for old policy versions.
437 * Do this here rather than socket_type_to_security_class()
438 * in case a newer policy version is loaded, allowing sockets
439 * to remain in the correct class.
441 if (policydb_loaded_version < POLICYDB_VERSION_NLCLASS)
442 if (tclass >= SECCLASS_NETLINK_ROUTE_SOCKET &&
443 tclass <= SECCLASS_NETLINK_DNRT_SOCKET)
444 tclass = SECCLASS_NETLINK_SOCKET;
446 if (!tclass || tclass > policydb.p_classes.nprim) {
447 printk(KERN_ERR "security_validate_transition: "
448 "unrecognized class %d\n", tclass);
452 tclass_datum = policydb.class_val_to_struct[tclass - 1];
454 ocontext = sidtab_search(&sidtab, oldsid);
456 printk(KERN_ERR "security_validate_transition: "
457 " unrecognized SID %d\n", oldsid);
462 ncontext = sidtab_search(&sidtab, newsid);
464 printk(KERN_ERR "security_validate_transition: "
465 " unrecognized SID %d\n", newsid);
470 tcontext = sidtab_search(&sidtab, tasksid);
472 printk(KERN_ERR "security_validate_transition: "
473 " unrecognized SID %d\n", tasksid);
478 constraint = tclass_datum->validatetrans;
480 if (!constraint_expr_eval(ocontext, ncontext, tcontext,
482 rc = security_validtrans_handle_fail(ocontext, ncontext,
486 constraint = constraint->next;
495 * security_compute_av - Compute access vector decisions.
496 * @ssid: source security identifier
497 * @tsid: target security identifier
498 * @tclass: target security class
499 * @requested: requested permissions
500 * @avd: access vector decisions
502 * Compute a set of access vector decisions based on the
503 * SID pair (@ssid, @tsid) for the permissions in @tclass.
504 * Return -%EINVAL if any of the parameters are invalid or %0
505 * if the access vector decisions were computed successfully.
507 int security_compute_av(u32 ssid,
511 struct av_decision *avd)
513 struct context *scontext = NULL, *tcontext = NULL;
516 if (!ss_initialized) {
517 avd->allowed = 0xffffffff;
518 avd->decided = 0xffffffff;
520 avd->auditdeny = 0xffffffff;
521 avd->seqno = latest_granting;
527 scontext = sidtab_search(&sidtab, ssid);
529 printk(KERN_ERR "security_compute_av: unrecognized SID %d\n",
534 tcontext = sidtab_search(&sidtab, tsid);
536 printk(KERN_ERR "security_compute_av: unrecognized SID %d\n",
542 rc = context_struct_compute_av(scontext, tcontext, tclass,
550 * Write the security context string representation of
551 * the context structure `context' into a dynamically
552 * allocated string of the correct size. Set `*scontext'
553 * to point to this string and set `*scontext_len' to
554 * the length of the string.
556 static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
563 /* Compute the size of the context. */
564 *scontext_len += strlen(policydb.p_user_val_to_name[context->user - 1]) + 1;
565 *scontext_len += strlen(policydb.p_role_val_to_name[context->role - 1]) + 1;
566 *scontext_len += strlen(policydb.p_type_val_to_name[context->type - 1]) + 1;
567 *scontext_len += mls_compute_context_len(context);
569 /* Allocate space for the context; caller must free this space. */
570 scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
574 *scontext = scontextp;
577 * Copy the user name, role name and type name into the context.
579 sprintf(scontextp, "%s:%s:%s",
580 policydb.p_user_val_to_name[context->user - 1],
581 policydb.p_role_val_to_name[context->role - 1],
582 policydb.p_type_val_to_name[context->type - 1]);
583 scontextp += strlen(policydb.p_user_val_to_name[context->user - 1]) +
584 1 + strlen(policydb.p_role_val_to_name[context->role - 1]) +
585 1 + strlen(policydb.p_type_val_to_name[context->type - 1]);
587 mls_sid_to_context(context, &scontextp);
594 #include "initial_sid_to_string.h"
596 const char *security_get_initial_sid_context(u32 sid)
598 if (unlikely(sid > SECINITSID_NUM))
600 return initial_sid_to_string[sid];
604 * security_sid_to_context - Obtain a context for a given SID.
605 * @sid: security identifier, SID
606 * @scontext: security context
607 * @scontext_len: length in bytes
609 * Write the string representation of the context associated with @sid
610 * into a dynamically allocated string of the correct size. Set @scontext
611 * to point to this string and set @scontext_len to the length of the string.
613 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
615 struct context *context;
621 if (!ss_initialized) {
622 if (sid <= SECINITSID_NUM) {
625 *scontext_len = strlen(initial_sid_to_string[sid]) + 1;
626 scontextp = kmalloc(*scontext_len,GFP_ATOMIC);
631 strcpy(scontextp, initial_sid_to_string[sid]);
632 *scontext = scontextp;
635 printk(KERN_ERR "security_sid_to_context: called before initial "
636 "load_policy on unknown SID %d\n", sid);
641 context = sidtab_search(&sidtab, sid);
643 printk(KERN_ERR "security_sid_to_context: unrecognized SID "
648 rc = context_struct_to_string(context, scontext, scontext_len);
656 static int security_context_to_sid_core(char *scontext, u32 scontext_len, u32 *sid, u32 def_sid)
659 struct context context;
660 struct role_datum *role;
661 struct type_datum *typdatum;
662 struct user_datum *usrdatum;
663 char *scontextp, *p, oldc;
666 if (!ss_initialized) {
669 for (i = 1; i < SECINITSID_NUM; i++) {
670 if (!strcmp(initial_sid_to_string[i], scontext)) {
675 *sid = SECINITSID_KERNEL;
680 /* Copy the string so that we can modify the copy as we parse it.
681 The string should already by null terminated, but we append a
682 null suffix to the copy to avoid problems with the existing
683 attr package, which doesn't view the null terminator as part
684 of the attribute value. */
685 scontext2 = kmalloc(scontext_len+1,GFP_KERNEL);
690 memcpy(scontext2, scontext, scontext_len);
691 scontext2[scontext_len] = 0;
693 context_init(&context);
698 /* Parse the security context. */
701 scontextp = (char *) scontext2;
703 /* Extract the user. */
705 while (*p && *p != ':')
713 usrdatum = hashtab_search(policydb.p_users.table, scontextp);
717 context.user = usrdatum->value;
721 while (*p && *p != ':')
729 role = hashtab_search(policydb.p_roles.table, scontextp);
732 context.role = role->value;
736 while (*p && *p != ':')
741 typdatum = hashtab_search(policydb.p_types.table, scontextp);
745 context.type = typdatum->value;
747 rc = mls_context_to_sid(oldc, &p, &context, &sidtab, def_sid);
751 if ((p - scontext2) < scontext_len) {
756 /* Check the validity of the new context. */
757 if (!policydb_context_isvalid(&policydb, &context)) {
761 /* Obtain the new sid. */
762 rc = sidtab_context_to_sid(&sidtab, &context, sid);
765 context_destroy(&context);
772 * security_context_to_sid - Obtain a SID for a given security context.
773 * @scontext: security context
774 * @scontext_len: length in bytes
775 * @sid: security identifier, SID
777 * Obtains a SID associated with the security context that
778 * has the string representation specified by @scontext.
779 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
780 * memory is available, or 0 on success.
782 int security_context_to_sid(char *scontext, u32 scontext_len, u32 *sid)
784 return security_context_to_sid_core(scontext, scontext_len,
789 * security_context_to_sid_default - Obtain a SID for a given security context,
790 * falling back to specified default if needed.
792 * @scontext: security context
793 * @scontext_len: length in bytes
794 * @sid: security identifier, SID
795 * @def_sid: default SID to assign on errror
797 * Obtains a SID associated with the security context that
798 * has the string representation specified by @scontext.
799 * The default SID is passed to the MLS layer to be used to allow
800 * kernel labeling of the MLS field if the MLS field is not present
801 * (for upgrading to MLS without full relabel).
802 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
803 * memory is available, or 0 on success.
805 int security_context_to_sid_default(char *scontext, u32 scontext_len, u32 *sid, u32 def_sid)
807 return security_context_to_sid_core(scontext, scontext_len,
811 static int compute_sid_handle_invalid_context(
812 struct context *scontext,
813 struct context *tcontext,
815 struct context *newcontext)
817 char *s = NULL, *t = NULL, *n = NULL;
818 u32 slen, tlen, nlen;
820 if (context_struct_to_string(scontext, &s, &slen) < 0)
822 if (context_struct_to_string(tcontext, &t, &tlen) < 0)
824 if (context_struct_to_string(newcontext, &n, &nlen) < 0)
826 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
827 "security_compute_sid: invalid context %s"
831 n, s, t, policydb.p_class_val_to_name[tclass-1]);
836 if (!selinux_enforcing)
841 static int security_compute_sid(u32 ssid,
847 struct context *scontext = NULL, *tcontext = NULL, newcontext;
848 struct role_trans *roletr = NULL;
849 struct avtab_key avkey;
850 struct avtab_datum *avdatum;
851 struct avtab_node *node;
854 if (!ss_initialized) {
856 case SECCLASS_PROCESS:
866 context_init(&newcontext);
870 scontext = sidtab_search(&sidtab, ssid);
872 printk(KERN_ERR "security_compute_sid: unrecognized SID %d\n",
877 tcontext = sidtab_search(&sidtab, tsid);
879 printk(KERN_ERR "security_compute_sid: unrecognized SID %d\n",
885 /* Set the user identity. */
887 case AVTAB_TRANSITION:
889 /* Use the process user identity. */
890 newcontext.user = scontext->user;
893 /* Use the related object owner. */
894 newcontext.user = tcontext->user;
898 /* Set the role and type to default values. */
900 case SECCLASS_PROCESS:
901 /* Use the current role and type of process. */
902 newcontext.role = scontext->role;
903 newcontext.type = scontext->type;
906 /* Use the well-defined object role. */
907 newcontext.role = OBJECT_R_VAL;
908 /* Use the type of the related object. */
909 newcontext.type = tcontext->type;
912 /* Look for a type transition/member/change rule. */
913 avkey.source_type = scontext->type;
914 avkey.target_type = tcontext->type;
915 avkey.target_class = tclass;
916 avkey.specified = specified;
917 avdatum = avtab_search(&policydb.te_avtab, &avkey);
919 /* If no permanent rule, also check for enabled conditional rules */
921 node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
922 for (; node != NULL; node = avtab_search_node_next(node, specified)) {
923 if (node->key.specified & AVTAB_ENABLED) {
924 avdatum = &node->datum;
931 /* Use the type from the type transition/member/change rule. */
932 newcontext.type = avdatum->data;
935 /* Check for class-specific changes. */
937 case SECCLASS_PROCESS:
938 if (specified & AVTAB_TRANSITION) {
939 /* Look for a role transition rule. */
940 for (roletr = policydb.role_tr; roletr;
941 roletr = roletr->next) {
942 if (roletr->role == scontext->role &&
943 roletr->type == tcontext->type) {
944 /* Use the role transition rule. */
945 newcontext.role = roletr->new_role;
955 /* Set the MLS attributes.
956 This is done last because it may allocate memory. */
957 rc = mls_compute_sid(scontext, tcontext, tclass, specified, &newcontext);
961 /* Check the validity of the context. */
962 if (!policydb_context_isvalid(&policydb, &newcontext)) {
963 rc = compute_sid_handle_invalid_context(scontext,
970 /* Obtain the sid for the context. */
971 rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
974 context_destroy(&newcontext);
980 * security_transition_sid - Compute the SID for a new subject/object.
981 * @ssid: source security identifier
982 * @tsid: target security identifier
983 * @tclass: target security class
984 * @out_sid: security identifier for new subject/object
986 * Compute a SID to use for labeling a new subject or object in the
987 * class @tclass based on a SID pair (@ssid, @tsid).
988 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
989 * if insufficient memory is available, or %0 if the new SID was
990 * computed successfully.
992 int security_transition_sid(u32 ssid,
997 return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION, out_sid);
1001 * security_member_sid - Compute the SID for member selection.
1002 * @ssid: source security identifier
1003 * @tsid: target security identifier
1004 * @tclass: target security class
1005 * @out_sid: security identifier for selected member
1007 * Compute a SID to use when selecting a member of a polyinstantiated
1008 * object of class @tclass based on a SID pair (@ssid, @tsid).
1009 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1010 * if insufficient memory is available, or %0 if the SID was
1011 * computed successfully.
1013 int security_member_sid(u32 ssid,
1018 return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, out_sid);
1022 * security_change_sid - Compute the SID for object relabeling.
1023 * @ssid: source security identifier
1024 * @tsid: target security identifier
1025 * @tclass: target security class
1026 * @out_sid: security identifier for selected member
1028 * Compute a SID to use for relabeling an object of class @tclass
1029 * based on a SID pair (@ssid, @tsid).
1030 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1031 * if insufficient memory is available, or %0 if the SID was
1032 * computed successfully.
1034 int security_change_sid(u32 ssid,
1039 return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, out_sid);
1043 * Verify that each kernel class that is defined in the
1046 static int validate_classes(struct policydb *p)
1049 struct class_datum *cladatum;
1050 struct perm_datum *perdatum;
1051 u32 nprim, tmp, common_pts_len, perm_val, pol_val;
1053 const struct selinux_class_perm *kdefs = &selinux_class_perm;
1054 const char *def_class, *def_perm, *pol_class;
1055 struct symtab *perms;
1057 for (i = 1; i < kdefs->cts_len; i++) {
1058 def_class = kdefs->class_to_string[i];
1061 if (i > p->p_classes.nprim) {
1063 "security: class %s not defined in policy\n",
1067 pol_class = p->p_class_val_to_name[i-1];
1068 if (strcmp(pol_class, def_class)) {
1070 "security: class %d is incorrect, found %s but should be %s\n",
1071 i, pol_class, def_class);
1075 for (i = 0; i < kdefs->av_pts_len; i++) {
1076 class_val = kdefs->av_perm_to_string[i].tclass;
1077 perm_val = kdefs->av_perm_to_string[i].value;
1078 def_perm = kdefs->av_perm_to_string[i].name;
1079 if (class_val > p->p_classes.nprim)
1081 pol_class = p->p_class_val_to_name[class_val-1];
1082 cladatum = hashtab_search(p->p_classes.table, pol_class);
1084 perms = &cladatum->permissions;
1085 nprim = 1 << (perms->nprim - 1);
1086 if (perm_val > nprim) {
1088 "security: permission %s in class %s not defined in policy\n",
1089 def_perm, pol_class);
1092 perdatum = hashtab_search(perms->table, def_perm);
1093 if (perdatum == NULL) {
1095 "security: permission %s in class %s not found in policy\n",
1096 def_perm, pol_class);
1099 pol_val = 1 << (perdatum->value - 1);
1100 if (pol_val != perm_val) {
1102 "security: permission %s in class %s has incorrect value\n",
1103 def_perm, pol_class);
1107 for (i = 0; i < kdefs->av_inherit_len; i++) {
1108 class_val = kdefs->av_inherit[i].tclass;
1109 if (class_val > p->p_classes.nprim)
1111 pol_class = p->p_class_val_to_name[class_val-1];
1112 cladatum = hashtab_search(p->p_classes.table, pol_class);
1114 if (!cladatum->comdatum) {
1116 "security: class %s should have an inherits clause but does not\n",
1120 tmp = kdefs->av_inherit[i].common_base;
1122 while (!(tmp & 0x01)) {
1126 perms = &cladatum->comdatum->permissions;
1127 for (j = 0; j < common_pts_len; j++) {
1128 def_perm = kdefs->av_inherit[i].common_pts[j];
1129 if (j >= perms->nprim) {
1131 "security: permission %s in class %s not defined in policy\n",
1132 def_perm, pol_class);
1135 perdatum = hashtab_search(perms->table, def_perm);
1136 if (perdatum == NULL) {
1138 "security: permission %s in class %s not found in policy\n",
1139 def_perm, pol_class);
1142 if (perdatum->value != j + 1) {
1144 "security: permission %s in class %s has incorrect value\n",
1145 def_perm, pol_class);
1153 /* Clone the SID into the new SID table. */
1154 static int clone_sid(u32 sid,
1155 struct context *context,
1158 struct sidtab *s = arg;
1160 return sidtab_insert(s, sid, context);
1163 static inline int convert_context_handle_invalid_context(struct context *context)
1167 if (selinux_enforcing) {
1173 context_struct_to_string(context, &s, &len);
1174 printk(KERN_ERR "security: context %s is invalid\n", s);
1180 struct convert_context_args {
1181 struct policydb *oldp;
1182 struct policydb *newp;
1186 * Convert the values in the security context
1187 * structure `c' from the values specified
1188 * in the policy `p->oldp' to the values specified
1189 * in the policy `p->newp'. Verify that the
1190 * context is valid under the new policy.
1192 static int convert_context(u32 key,
1196 struct convert_context_args *args;
1197 struct context oldc;
1198 struct role_datum *role;
1199 struct type_datum *typdatum;
1200 struct user_datum *usrdatum;
1207 rc = context_cpy(&oldc, c);
1213 /* Convert the user. */
1214 usrdatum = hashtab_search(args->newp->p_users.table,
1215 args->oldp->p_user_val_to_name[c->user - 1]);
1219 c->user = usrdatum->value;
1221 /* Convert the role. */
1222 role = hashtab_search(args->newp->p_roles.table,
1223 args->oldp->p_role_val_to_name[c->role - 1]);
1227 c->role = role->value;
1229 /* Convert the type. */
1230 typdatum = hashtab_search(args->newp->p_types.table,
1231 args->oldp->p_type_val_to_name[c->type - 1]);
1235 c->type = typdatum->value;
1237 rc = mls_convert_context(args->oldp, args->newp, c);
1241 /* Check the validity of the new context. */
1242 if (!policydb_context_isvalid(args->newp, c)) {
1243 rc = convert_context_handle_invalid_context(&oldc);
1248 context_destroy(&oldc);
1252 context_struct_to_string(&oldc, &s, &len);
1253 context_destroy(&oldc);
1254 printk(KERN_ERR "security: invalidating context %s\n", s);
1259 extern void selinux_complete_init(void);
1260 static int security_preserve_bools(struct policydb *p);
1263 * security_load_policy - Load a security policy configuration.
1264 * @data: binary policy data
1265 * @len: length of data in bytes
1267 * Load a new set of security policy configuration data,
1268 * validate it and convert the SID table as necessary.
1269 * This function will flush the access vector cache after
1270 * loading the new policy.
1272 int security_load_policy(void *data, size_t len)
1274 struct policydb oldpolicydb, newpolicydb;
1275 struct sidtab oldsidtab, newsidtab;
1276 struct convert_context_args args;
1279 struct policy_file file = { data, len }, *fp = &file;
1283 if (!ss_initialized) {
1285 if (policydb_read(&policydb, fp)) {
1287 avtab_cache_destroy();
1290 if (policydb_load_isids(&policydb, &sidtab)) {
1292 policydb_destroy(&policydb);
1293 avtab_cache_destroy();
1296 /* Verify that the kernel defined classes are correct. */
1297 if (validate_classes(&policydb)) {
1299 "security: the definition of a class is incorrect\n");
1301 sidtab_destroy(&sidtab);
1302 policydb_destroy(&policydb);
1303 avtab_cache_destroy();
1306 policydb_loaded_version = policydb.policyvers;
1308 seqno = ++latest_granting;
1310 selinux_complete_init();
1311 avc_ss_reset(seqno);
1312 selnl_notify_policyload(seqno);
1313 selinux_netlbl_cache_invalidate();
1314 selinux_xfrm_notify_policyload();
1319 sidtab_hash_eval(&sidtab, "sids");
1322 if (policydb_read(&newpolicydb, fp)) {
1327 sidtab_init(&newsidtab);
1329 /* Verify that the kernel defined classes are correct. */
1330 if (validate_classes(&newpolicydb)) {
1332 "security: the definition of a class is incorrect\n");
1337 rc = security_preserve_bools(&newpolicydb);
1339 printk(KERN_ERR "security: unable to preserve booleans\n");
1343 /* Clone the SID table. */
1344 sidtab_shutdown(&sidtab);
1345 if (sidtab_map(&sidtab, clone_sid, &newsidtab)) {
1350 /* Convert the internal representations of contexts
1351 in the new SID table and remove invalid SIDs. */
1352 args.oldp = &policydb;
1353 args.newp = &newpolicydb;
1354 sidtab_map_remove_on_error(&newsidtab, convert_context, &args);
1356 /* Save the old policydb and SID table to free later. */
1357 memcpy(&oldpolicydb, &policydb, sizeof policydb);
1358 sidtab_set(&oldsidtab, &sidtab);
1360 /* Install the new policydb and SID table. */
1362 memcpy(&policydb, &newpolicydb, sizeof policydb);
1363 sidtab_set(&sidtab, &newsidtab);
1364 seqno = ++latest_granting;
1365 policydb_loaded_version = policydb.policyvers;
1369 /* Free the old policydb and SID table. */
1370 policydb_destroy(&oldpolicydb);
1371 sidtab_destroy(&oldsidtab);
1373 avc_ss_reset(seqno);
1374 selnl_notify_policyload(seqno);
1375 selinux_netlbl_cache_invalidate();
1376 selinux_xfrm_notify_policyload();
1382 sidtab_destroy(&newsidtab);
1383 policydb_destroy(&newpolicydb);
1389 * security_port_sid - Obtain the SID for a port.
1390 * @domain: communication domain aka address family
1391 * @type: socket type
1392 * @protocol: protocol number
1393 * @port: port number
1394 * @out_sid: security identifier
1396 int security_port_sid(u16 domain,
1407 c = policydb.ocontexts[OCON_PORT];
1409 if (c->u.port.protocol == protocol &&
1410 c->u.port.low_port <= port &&
1411 c->u.port.high_port >= port)
1418 rc = sidtab_context_to_sid(&sidtab,
1424 *out_sid = c->sid[0];
1426 *out_sid = SECINITSID_PORT;
1435 * security_netif_sid - Obtain the SID for a network interface.
1436 * @name: interface name
1437 * @if_sid: interface SID
1438 * @msg_sid: default SID for received packets
1440 int security_netif_sid(char *name,
1449 c = policydb.ocontexts[OCON_NETIF];
1451 if (strcmp(name, c->u.name) == 0)
1457 if (!c->sid[0] || !c->sid[1]) {
1458 rc = sidtab_context_to_sid(&sidtab,
1463 rc = sidtab_context_to_sid(&sidtab,
1469 *if_sid = c->sid[0];
1470 *msg_sid = c->sid[1];
1472 *if_sid = SECINITSID_NETIF;
1473 *msg_sid = SECINITSID_NETMSG;
1481 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
1485 for(i = 0; i < 4; i++)
1486 if(addr[i] != (input[i] & mask[i])) {
1495 * security_node_sid - Obtain the SID for a node (host).
1496 * @domain: communication domain aka address family
1498 * @addrlen: address length in bytes
1499 * @out_sid: security identifier
1501 int security_node_sid(u16 domain,
1515 if (addrlen != sizeof(u32)) {
1520 addr = *((u32 *)addrp);
1522 c = policydb.ocontexts[OCON_NODE];
1524 if (c->u.node.addr == (addr & c->u.node.mask))
1532 if (addrlen != sizeof(u64) * 2) {
1536 c = policydb.ocontexts[OCON_NODE6];
1538 if (match_ipv6_addrmask(addrp, c->u.node6.addr,
1546 *out_sid = SECINITSID_NODE;
1552 rc = sidtab_context_to_sid(&sidtab,
1558 *out_sid = c->sid[0];
1560 *out_sid = SECINITSID_NODE;
1571 * security_get_user_sids - Obtain reachable SIDs for a user.
1572 * @fromsid: starting SID
1573 * @username: username
1574 * @sids: array of reachable SIDs for user
1575 * @nel: number of elements in @sids
1577 * Generate the set of SIDs for legal security contexts
1578 * for a given user that can be reached by @fromsid.
1579 * Set *@sids to point to a dynamically allocated
1580 * array containing the set of SIDs. Set *@nel to the
1581 * number of elements in the array.
1584 int security_get_user_sids(u32 fromsid,
1589 struct context *fromcon, usercon;
1590 u32 *mysids, *mysids2, sid;
1591 u32 mynel = 0, maxnel = SIDS_NEL;
1592 struct user_datum *user;
1593 struct role_datum *role;
1594 struct av_decision avd;
1595 struct ebitmap_node *rnode, *tnode;
1598 if (!ss_initialized) {
1606 fromcon = sidtab_search(&sidtab, fromsid);
1612 user = hashtab_search(policydb.p_users.table, username);
1617 usercon.user = user->value;
1619 mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
1625 ebitmap_for_each_bit(&user->roles, rnode, i) {
1626 if (!ebitmap_node_get_bit(rnode, i))
1628 role = policydb.role_val_to_struct[i];
1630 ebitmap_for_each_bit(&role->types, tnode, j) {
1631 if (!ebitmap_node_get_bit(tnode, j))
1635 if (mls_setup_user_range(fromcon, user, &usercon))
1638 rc = context_struct_compute_av(fromcon, &usercon,
1640 PROCESS__TRANSITION,
1642 if (rc || !(avd.allowed & PROCESS__TRANSITION))
1644 rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
1649 if (mynel < maxnel) {
1650 mysids[mynel++] = sid;
1653 mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
1659 memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
1662 mysids[mynel++] = sid;
1677 * security_genfs_sid - Obtain a SID for a file in a filesystem
1678 * @fstype: filesystem type
1679 * @path: path from root of mount
1680 * @sclass: file security class
1681 * @sid: SID for path
1683 * Obtain a SID to use for a file in a filesystem that
1684 * cannot support xattr or use a fixed labeling behavior like
1685 * transition SIDs or task SIDs.
1687 int security_genfs_sid(const char *fstype,
1693 struct genfs *genfs;
1695 int rc = 0, cmp = 0;
1699 for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
1700 cmp = strcmp(fstype, genfs->fstype);
1705 if (!genfs || cmp) {
1706 *sid = SECINITSID_UNLABELED;
1711 for (c = genfs->head; c; c = c->next) {
1712 len = strlen(c->u.name);
1713 if ((!c->v.sclass || sclass == c->v.sclass) &&
1714 (strncmp(c->u.name, path, len) == 0))
1719 *sid = SECINITSID_UNLABELED;
1725 rc = sidtab_context_to_sid(&sidtab,
1739 * security_fs_use - Determine how to handle labeling for a filesystem.
1740 * @fstype: filesystem type
1741 * @behavior: labeling behavior
1742 * @sid: SID for filesystem (superblock)
1744 int security_fs_use(
1746 unsigned int *behavior,
1754 c = policydb.ocontexts[OCON_FSUSE];
1756 if (strcmp(fstype, c->u.name) == 0)
1762 *behavior = c->v.behavior;
1764 rc = sidtab_context_to_sid(&sidtab,
1772 rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
1774 *behavior = SECURITY_FS_USE_NONE;
1777 *behavior = SECURITY_FS_USE_GENFS;
1786 int security_get_bools(int *len, char ***names, int **values)
1788 int i, rc = -ENOMEM;
1794 *len = policydb.p_bools.nprim;
1800 *names = kcalloc(*len, sizeof(char*), GFP_ATOMIC);
1804 *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
1808 for (i = 0; i < *len; i++) {
1810 (*values)[i] = policydb.bool_val_to_struct[i]->state;
1811 name_len = strlen(policydb.p_bool_val_to_name[i]) + 1;
1812 (*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
1815 strncpy((*names)[i], policydb.p_bool_val_to_name[i], name_len);
1816 (*names)[i][name_len - 1] = 0;
1824 for (i = 0; i < *len; i++)
1832 int security_set_bools(int len, int *values)
1835 int lenp, seqno = 0;
1836 struct cond_node *cur;
1840 lenp = policydb.p_bools.nprim;
1846 for (i = 0; i < len; i++) {
1847 if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
1848 audit_log(current->audit_context, GFP_ATOMIC,
1849 AUDIT_MAC_CONFIG_CHANGE,
1850 "bool=%s val=%d old_val=%d auid=%u",
1851 policydb.p_bool_val_to_name[i],
1853 policydb.bool_val_to_struct[i]->state,
1854 audit_get_loginuid(current->audit_context));
1857 policydb.bool_val_to_struct[i]->state = 1;
1859 policydb.bool_val_to_struct[i]->state = 0;
1863 for (cur = policydb.cond_list; cur != NULL; cur = cur->next) {
1864 rc = evaluate_cond_node(&policydb, cur);
1869 seqno = ++latest_granting;
1874 avc_ss_reset(seqno);
1875 selnl_notify_policyload(seqno);
1876 selinux_xfrm_notify_policyload();
1881 int security_get_bool_value(int bool)
1888 len = policydb.p_bools.nprim;
1894 rc = policydb.bool_val_to_struct[bool]->state;
1900 static int security_preserve_bools(struct policydb *p)
1902 int rc, nbools = 0, *bvalues = NULL, i;
1903 char **bnames = NULL;
1904 struct cond_bool_datum *booldatum;
1905 struct cond_node *cur;
1907 rc = security_get_bools(&nbools, &bnames, &bvalues);
1910 for (i = 0; i < nbools; i++) {
1911 booldatum = hashtab_search(p->p_bools.table, bnames[i]);
1913 booldatum->state = bvalues[i];
1915 for (cur = p->cond_list; cur != NULL; cur = cur->next) {
1916 rc = evaluate_cond_node(p, cur);
1923 for (i = 0; i < nbools; i++)
1932 * security_sid_mls_copy() - computes a new sid based on the given
1933 * sid and the mls portion of mls_sid.
1935 int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
1937 struct context *context1;
1938 struct context *context2;
1939 struct context newcon;
1944 if (!ss_initialized || !selinux_mls_enabled) {
1949 context_init(&newcon);
1952 context1 = sidtab_search(&sidtab, sid);
1954 printk(KERN_ERR "security_sid_mls_copy: unrecognized SID "
1960 context2 = sidtab_search(&sidtab, mls_sid);
1962 printk(KERN_ERR "security_sid_mls_copy: unrecognized SID "
1968 newcon.user = context1->user;
1969 newcon.role = context1->role;
1970 newcon.type = context1->type;
1971 rc = mls_context_cpy(&newcon, context2);
1975 /* Check the validity of the new context. */
1976 if (!policydb_context_isvalid(&policydb, &newcon)) {
1977 rc = convert_context_handle_invalid_context(&newcon);
1982 rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
1986 if (!context_struct_to_string(&newcon, &s, &len)) {
1987 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1988 "security_sid_mls_copy: invalid context %s", s);
1994 context_destroy(&newcon);
1999 struct selinux_audit_rule {
2001 struct context au_ctxt;
2004 void selinux_audit_rule_free(struct selinux_audit_rule *rule)
2007 context_destroy(&rule->au_ctxt);
2012 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr,
2013 struct selinux_audit_rule **rule)
2015 struct selinux_audit_rule *tmprule;
2016 struct role_datum *roledatum;
2017 struct type_datum *typedatum;
2018 struct user_datum *userdatum;
2023 if (!ss_initialized)
2027 case AUDIT_SUBJ_USER:
2028 case AUDIT_SUBJ_ROLE:
2029 case AUDIT_SUBJ_TYPE:
2030 case AUDIT_OBJ_USER:
2031 case AUDIT_OBJ_ROLE:
2032 case AUDIT_OBJ_TYPE:
2033 /* only 'equals' and 'not equals' fit user, role, and type */
2034 if (op != AUDIT_EQUAL && op != AUDIT_NOT_EQUAL)
2037 case AUDIT_SUBJ_SEN:
2038 case AUDIT_SUBJ_CLR:
2039 case AUDIT_OBJ_LEV_LOW:
2040 case AUDIT_OBJ_LEV_HIGH:
2041 /* we do not allow a range, indicated by the presense of '-' */
2042 if (strchr(rulestr, '-'))
2046 /* only the above fields are valid */
2050 tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
2054 context_init(&tmprule->au_ctxt);
2058 tmprule->au_seqno = latest_granting;
2061 case AUDIT_SUBJ_USER:
2062 case AUDIT_OBJ_USER:
2063 userdatum = hashtab_search(policydb.p_users.table, rulestr);
2067 tmprule->au_ctxt.user = userdatum->value;
2069 case AUDIT_SUBJ_ROLE:
2070 case AUDIT_OBJ_ROLE:
2071 roledatum = hashtab_search(policydb.p_roles.table, rulestr);
2075 tmprule->au_ctxt.role = roledatum->value;
2077 case AUDIT_SUBJ_TYPE:
2078 case AUDIT_OBJ_TYPE:
2079 typedatum = hashtab_search(policydb.p_types.table, rulestr);
2083 tmprule->au_ctxt.type = typedatum->value;
2085 case AUDIT_SUBJ_SEN:
2086 case AUDIT_SUBJ_CLR:
2087 case AUDIT_OBJ_LEV_LOW:
2088 case AUDIT_OBJ_LEV_HIGH:
2089 rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
2096 selinux_audit_rule_free(tmprule);
2105 int selinux_audit_rule_match(u32 sid, u32 field, u32 op,
2106 struct selinux_audit_rule *rule,
2107 struct audit_context *actx)
2109 struct context *ctxt;
2110 struct mls_level *level;
2114 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2115 "selinux_audit_rule_match: missing rule\n");
2121 if (rule->au_seqno < latest_granting) {
2122 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2123 "selinux_audit_rule_match: stale rule\n");
2128 ctxt = sidtab_search(&sidtab, sid);
2130 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2131 "selinux_audit_rule_match: unrecognized SID %d\n",
2137 /* a field/op pair that is not caught here will simply fall through
2140 case AUDIT_SUBJ_USER:
2141 case AUDIT_OBJ_USER:
2144 match = (ctxt->user == rule->au_ctxt.user);
2146 case AUDIT_NOT_EQUAL:
2147 match = (ctxt->user != rule->au_ctxt.user);
2151 case AUDIT_SUBJ_ROLE:
2152 case AUDIT_OBJ_ROLE:
2155 match = (ctxt->role == rule->au_ctxt.role);
2157 case AUDIT_NOT_EQUAL:
2158 match = (ctxt->role != rule->au_ctxt.role);
2162 case AUDIT_SUBJ_TYPE:
2163 case AUDIT_OBJ_TYPE:
2166 match = (ctxt->type == rule->au_ctxt.type);
2168 case AUDIT_NOT_EQUAL:
2169 match = (ctxt->type != rule->au_ctxt.type);
2173 case AUDIT_SUBJ_SEN:
2174 case AUDIT_SUBJ_CLR:
2175 case AUDIT_OBJ_LEV_LOW:
2176 case AUDIT_OBJ_LEV_HIGH:
2177 level = ((field == AUDIT_SUBJ_SEN ||
2178 field == AUDIT_OBJ_LEV_LOW) ?
2179 &ctxt->range.level[0] : &ctxt->range.level[1]);
2182 match = mls_level_eq(&rule->au_ctxt.range.level[0],
2185 case AUDIT_NOT_EQUAL:
2186 match = !mls_level_eq(&rule->au_ctxt.range.level[0],
2189 case AUDIT_LESS_THAN:
2190 match = (mls_level_dom(&rule->au_ctxt.range.level[0],
2192 !mls_level_eq(&rule->au_ctxt.range.level[0],
2195 case AUDIT_LESS_THAN_OR_EQUAL:
2196 match = mls_level_dom(&rule->au_ctxt.range.level[0],
2199 case AUDIT_GREATER_THAN:
2200 match = (mls_level_dom(level,
2201 &rule->au_ctxt.range.level[0]) &&
2202 !mls_level_eq(level,
2203 &rule->au_ctxt.range.level[0]));
2205 case AUDIT_GREATER_THAN_OR_EQUAL:
2206 match = mls_level_dom(level,
2207 &rule->au_ctxt.range.level[0]);
2217 static int (*aurule_callback)(void) = NULL;
2219 static int aurule_avc_callback(u32 event, u32 ssid, u32 tsid,
2220 u16 class, u32 perms, u32 *retained)
2224 if (event == AVC_CALLBACK_RESET && aurule_callback)
2225 err = aurule_callback();
2229 static int __init aurule_init(void)
2233 err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET,
2234 SECSID_NULL, SECSID_NULL, SECCLASS_NULL, 0);
2236 panic("avc_add_callback() failed, error %d\n", err);
2240 __initcall(aurule_init);
2242 void selinux_audit_set_callback(int (*callback)(void))
2244 aurule_callback = callback;
2247 #ifdef CONFIG_NETLABEL
2249 * NetLabel cache structure
2251 #define NETLBL_CACHE(x) ((struct selinux_netlbl_cache *)(x))
2252 #define NETLBL_CACHE_T_NONE 0
2253 #define NETLBL_CACHE_T_SID 1
2254 #define NETLBL_CACHE_T_MLS 2
2255 struct selinux_netlbl_cache {
2259 struct mls_range mls_label;
2264 * security_netlbl_cache_free - Free the NetLabel cached data
2265 * @data: the data to free
2268 * This function is intended to be used as the free() callback inside the
2269 * netlbl_lsm_cache structure.
2272 static void security_netlbl_cache_free(const void *data)
2274 struct selinux_netlbl_cache *cache;
2279 cache = NETLBL_CACHE(data);
2280 switch (cache->type) {
2281 case NETLBL_CACHE_T_MLS:
2282 ebitmap_destroy(&cache->data.mls_label.level[0].cat);
2289 * security_netlbl_cache_add - Add an entry to the NetLabel cache
2290 * @secattr: the NetLabel packet security attributes
2291 * @ctx: the SELinux context
2294 * Attempt to cache the context in @ctx, which was derived from the packet in
2295 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has
2296 * already been initialized.
2299 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
2300 struct context *ctx)
2302 struct selinux_netlbl_cache *cache = NULL;
2304 secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
2305 if (secattr->cache == NULL)
2308 cache = kzalloc(sizeof(*cache), GFP_ATOMIC);
2312 cache->type = NETLBL_CACHE_T_MLS;
2313 if (ebitmap_cpy(&cache->data.mls_label.level[0].cat,
2314 &ctx->range.level[0].cat) != 0)
2316 cache->data.mls_label.level[1].cat.highbit =
2317 cache->data.mls_label.level[0].cat.highbit;
2318 cache->data.mls_label.level[1].cat.node =
2319 cache->data.mls_label.level[0].cat.node;
2320 cache->data.mls_label.level[0].sens = ctx->range.level[0].sens;
2321 cache->data.mls_label.level[1].sens = ctx->range.level[0].sens;
2323 secattr->cache->free = security_netlbl_cache_free;
2324 secattr->cache->data = (void *)cache;
2325 secattr->flags |= NETLBL_SECATTR_CACHE;
2329 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
2330 * @secattr: the NetLabel packet security attributes
2331 * @base_sid: the SELinux SID to use as a context for MLS only attributes
2332 * @sid: the SELinux SID
2335 * Convert the given NetLabel security attributes in @secattr into a
2336 * SELinux SID. If the @secattr field does not contain a full SELinux
2337 * SID/context then use the context in @base_sid as the foundation. If
2338 * possibile the 'cache' field of @secattr is set and the CACHE flag is set;
2339 * this is to allow the @secattr to be used by NetLabel to cache the secattr to
2340 * SID conversion for future lookups. Returns zero on success, negative
2341 * values on failure.
2344 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
2349 struct context *ctx;
2350 struct context ctx_new;
2351 struct selinux_netlbl_cache *cache;
2353 if (!ss_initialized) {
2360 if (secattr->flags & NETLBL_SECATTR_CACHE) {
2361 cache = NETLBL_CACHE(secattr->cache->data);
2362 switch (cache->type) {
2363 case NETLBL_CACHE_T_SID:
2364 *sid = cache->data.sid;
2367 case NETLBL_CACHE_T_MLS:
2368 ctx = sidtab_search(&sidtab, base_sid);
2370 goto netlbl_secattr_to_sid_return;
2372 ctx_new.user = ctx->user;
2373 ctx_new.role = ctx->role;
2374 ctx_new.type = ctx->type;
2375 ctx_new.range.level[0].sens =
2376 cache->data.mls_label.level[0].sens;
2377 ctx_new.range.level[0].cat.highbit =
2378 cache->data.mls_label.level[0].cat.highbit;
2379 ctx_new.range.level[0].cat.node =
2380 cache->data.mls_label.level[0].cat.node;
2381 ctx_new.range.level[1].sens =
2382 cache->data.mls_label.level[1].sens;
2383 ctx_new.range.level[1].cat.highbit =
2384 cache->data.mls_label.level[1].cat.highbit;
2385 ctx_new.range.level[1].cat.node =
2386 cache->data.mls_label.level[1].cat.node;
2388 rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
2391 goto netlbl_secattr_to_sid_return;
2393 } else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
2394 ctx = sidtab_search(&sidtab, base_sid);
2396 goto netlbl_secattr_to_sid_return;
2398 ctx_new.user = ctx->user;
2399 ctx_new.role = ctx->role;
2400 ctx_new.type = ctx->type;
2401 mls_import_netlbl_lvl(&ctx_new, secattr);
2402 if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
2403 if (ebitmap_netlbl_import(&ctx_new.range.level[0].cat,
2404 secattr->mls_cat) != 0)
2405 goto netlbl_secattr_to_sid_return;
2406 ctx_new.range.level[1].cat.highbit =
2407 ctx_new.range.level[0].cat.highbit;
2408 ctx_new.range.level[1].cat.node =
2409 ctx_new.range.level[0].cat.node;
2411 ebitmap_init(&ctx_new.range.level[0].cat);
2412 ebitmap_init(&ctx_new.range.level[1].cat);
2414 if (mls_context_isvalid(&policydb, &ctx_new) != 1)
2415 goto netlbl_secattr_to_sid_return_cleanup;
2417 rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
2419 goto netlbl_secattr_to_sid_return_cleanup;
2421 security_netlbl_cache_add(secattr, &ctx_new);
2423 ebitmap_destroy(&ctx_new.range.level[0].cat);
2429 netlbl_secattr_to_sid_return:
2432 netlbl_secattr_to_sid_return_cleanup:
2433 ebitmap_destroy(&ctx_new.range.level[0].cat);
2434 goto netlbl_secattr_to_sid_return;
2438 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
2439 * @sid: the SELinux SID
2440 * @secattr: the NetLabel packet security attributes
2443 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
2444 * Returns zero on success, negative values on failure.
2447 int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
2450 struct context *ctx;
2452 netlbl_secattr_init(secattr);
2454 if (!ss_initialized)
2458 ctx = sidtab_search(&sidtab, sid);
2460 goto netlbl_sid_to_secattr_failure;
2461 secattr->domain = kstrdup(policydb.p_type_val_to_name[ctx->type - 1],
2463 secattr->flags |= NETLBL_SECATTR_DOMAIN;
2464 mls_export_netlbl_lvl(ctx, secattr);
2465 rc = mls_export_netlbl_cat(ctx, secattr);
2467 goto netlbl_sid_to_secattr_failure;
2472 netlbl_sid_to_secattr_failure:
2474 netlbl_secattr_destroy(secattr);
2477 #endif /* CONFIG_NETLABEL */