x86: Add EFER descriptions for FFXSR
[linux-2.6] / block / blk.h
1 #ifndef BLK_INTERNAL_H
2 #define BLK_INTERNAL_H
3
4 /* Amount of time in which a process may batch requests */
5 #define BLK_BATCH_TIME  (HZ/50UL)
6
7 /* Number of requests a "batching" process may submit */
8 #define BLK_BATCH_REQ   32
9
10 extern struct kmem_cache *blk_requestq_cachep;
11 extern struct kobj_type blk_queue_ktype;
12
13 void init_request_from_bio(struct request *req, struct bio *bio);
14 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
15                         struct bio *bio);
16 void __blk_queue_free_tags(struct request_queue *q);
17
18 void blk_unplug_work(struct work_struct *work);
19 void blk_unplug_timeout(unsigned long data);
20 void blk_rq_timed_out_timer(unsigned long data);
21 void blk_delete_timer(struct request *);
22 void blk_add_timer(struct request *);
23 void __generic_unplug_device(struct request_queue *);
24
25 /*
26  * Internal atomic flags for request handling
27  */
28 enum rq_atomic_flags {
29         REQ_ATOM_COMPLETE = 0,
30 };
31
32 /*
33  * EH timer and IO completion will both attempt to 'grab' the request, make
34  * sure that only one of them suceeds
35  */
36 static inline int blk_mark_rq_complete(struct request *rq)
37 {
38         return test_and_set_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
39 }
40
41 static inline void blk_clear_rq_complete(struct request *rq)
42 {
43         clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
44 }
45
46 #ifdef CONFIG_FAIL_IO_TIMEOUT
47 int blk_should_fake_timeout(struct request_queue *);
48 ssize_t part_timeout_show(struct device *, struct device_attribute *, char *);
49 ssize_t part_timeout_store(struct device *, struct device_attribute *,
50                                 const char *, size_t);
51 #else
52 static inline int blk_should_fake_timeout(struct request_queue *q)
53 {
54         return 0;
55 }
56 #endif
57
58 struct io_context *current_io_context(gfp_t gfp_flags, int node);
59
60 int ll_back_merge_fn(struct request_queue *q, struct request *req,
61                      struct bio *bio);
62 int ll_front_merge_fn(struct request_queue *q, struct request *req, 
63                       struct bio *bio);
64 int attempt_back_merge(struct request_queue *q, struct request *rq);
65 int attempt_front_merge(struct request_queue *q, struct request *rq);
66 void blk_recalc_rq_segments(struct request *rq);
67 void blk_recalc_rq_sectors(struct request *rq, int nsect);
68
69 void blk_queue_congestion_threshold(struct request_queue *q);
70
71 int blk_dev_init(void);
72
73 /*
74  * Return the threshold (number of used requests) at which the queue is
75  * considered to be congested.  It include a little hysteresis to keep the
76  * context switch rate down.
77  */
78 static inline int queue_congestion_on_threshold(struct request_queue *q)
79 {
80         return q->nr_congestion_on;
81 }
82
83 /*
84  * The threshold at which a queue is considered to be uncongested
85  */
86 static inline int queue_congestion_off_threshold(struct request_queue *q)
87 {
88         return q->nr_congestion_off;
89 }
90
91 #if defined(CONFIG_BLK_DEV_INTEGRITY)
92
93 #define rq_for_each_integrity_segment(bvl, _rq, _iter)          \
94         __rq_for_each_bio(_iter.bio, _rq)                       \
95                 bip_for_each_vec(bvl, _iter.bio->bi_integrity, _iter.i)
96
97 #endif /* BLK_DEV_INTEGRITY */
98
99 static inline int blk_cpu_to_group(int cpu)
100 {
101 #ifdef CONFIG_SCHED_MC
102         const struct cpumask *mask = cpu_coregroup_mask(cpu);
103         return cpumask_first(mask);
104 #elif defined(CONFIG_SCHED_SMT)
105         return first_cpu(per_cpu(cpu_sibling_map, cpu));
106 #else
107         return cpu;
108 #endif
109 }
110
111 static inline int blk_do_io_stat(struct request_queue *q)
112 {
113         if (q)
114                 return blk_queue_io_stat(q);
115
116         return 0;
117 }
118
119 #endif