dccp tfrc: Perform early loss detection
[linux-2.6] / net / dccp / ccids / lib / packet_history.c
1 /*
2  *  net/dccp/packet_history.c
3  *
4  *  Copyright (c) 2007   The University of Aberdeen, Scotland, UK
5  *  Copyright (c) 2005-7 The University of Waikato, Hamilton, New Zealand.
6  *
7  *  An implementation of the DCCP protocol
8  *
9  *  This code has been developed by the University of Waikato WAND
10  *  research group. For further information please see http://www.wand.net.nz/
11  *  or e-mail Ian McDonald - ian.mcdonald@jandi.co.nz
12  *
13  *  This code also uses code from Lulea University, rereleased as GPL by its
14  *  authors:
15  *  Copyright (c) 2003 Nils-Erik Mattsson, Joacim Haggmark, Magnus Erixzon
16  *
17  *  Changes to meet Linux coding standards, to make it meet latest ccid3 draft
18  *  and to make it work as a loadable module in the DCCP stack written by
19  *  Arnaldo Carvalho de Melo <acme@conectiva.com.br>.
20  *
21  *  Copyright (c) 2005 Arnaldo Carvalho de Melo <acme@conectiva.com.br>
22  *
23  *  This program is free software; you can redistribute it and/or modify
24  *  it under the terms of the GNU General Public License as published by
25  *  the Free Software Foundation; either version 2 of the License, or
26  *  (at your option) any later version.
27  *
28  *  This program is distributed in the hope that it will be useful,
29  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
30  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
31  *  GNU General Public License for more details.
32  *
33  *  You should have received a copy of the GNU General Public License
34  *  along with this program; if not, write to the Free Software
35  *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
36  */
37
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include "packet_history.h"
41 #include "../../dccp.h"
42
43 /*
44  * Transmitter History Routines
45  */
46 static struct kmem_cache *tfrc_tx_hist_slab;
47
48 int __init tfrc_tx_packet_history_init(void)
49 {
50         tfrc_tx_hist_slab = kmem_cache_create("tfrc_tx_hist",
51                                               sizeof(struct tfrc_tx_hist_entry),
52                                               0, SLAB_HWCACHE_ALIGN, NULL);
53         return tfrc_tx_hist_slab == NULL ? -ENOBUFS : 0;
54 }
55
56 void tfrc_tx_packet_history_exit(void)
57 {
58         if (tfrc_tx_hist_slab != NULL) {
59                 kmem_cache_destroy(tfrc_tx_hist_slab);
60                 tfrc_tx_hist_slab = NULL;
61         }
62 }
63
64 int tfrc_tx_hist_add(struct tfrc_tx_hist_entry **headp, u64 seqno)
65 {
66         struct tfrc_tx_hist_entry *entry = kmem_cache_alloc(tfrc_tx_hist_slab, gfp_any());
67
68         if (entry == NULL)
69                 return -ENOBUFS;
70         entry->seqno = seqno;
71         entry->stamp = ktime_get_real();
72         entry->next  = *headp;
73         *headp       = entry;
74         return 0;
75 }
76 EXPORT_SYMBOL_GPL(tfrc_tx_hist_add);
77
78 void tfrc_tx_hist_purge(struct tfrc_tx_hist_entry **headp)
79 {
80         struct tfrc_tx_hist_entry *head = *headp;
81
82         while (head != NULL) {
83                 struct tfrc_tx_hist_entry *next = head->next;
84
85                 kmem_cache_free(tfrc_tx_hist_slab, head);
86                 head = next;
87         }
88
89         *headp = NULL;
90 }
91 EXPORT_SYMBOL_GPL(tfrc_tx_hist_purge);
92
93 /*
94  *      Receiver History Routines
95  */
96 static struct kmem_cache *tfrc_rx_hist_slab;
97
98 int __init tfrc_rx_packet_history_init(void)
99 {
100         tfrc_rx_hist_slab = kmem_cache_create("tfrc_rxh_cache",
101                                               sizeof(struct tfrc_rx_hist_entry),
102                                               0, SLAB_HWCACHE_ALIGN, NULL);
103         return tfrc_rx_hist_slab == NULL ? -ENOBUFS : 0;
104 }
105
106 void tfrc_rx_packet_history_exit(void)
107 {
108         if (tfrc_rx_hist_slab != NULL) {
109                 kmem_cache_destroy(tfrc_rx_hist_slab);
110                 tfrc_rx_hist_slab = NULL;
111         }
112 }
113
114 static inline void tfrc_rx_hist_entry_from_skb(struct tfrc_rx_hist_entry *entry,
115                                                const struct sk_buff *skb,
116                                                const u64 ndp)
117 {
118         const struct dccp_hdr *dh = dccp_hdr(skb);
119
120         entry->tfrchrx_seqno = DCCP_SKB_CB(skb)->dccpd_seq;
121         entry->tfrchrx_ccval = dh->dccph_ccval;
122         entry->tfrchrx_type  = dh->dccph_type;
123         entry->tfrchrx_ndp   = ndp;
124         entry->tfrchrx_tstamp = ktime_get_real();
125 }
126
127 void tfrc_rx_hist_add_packet(struct tfrc_rx_hist *h,
128                              const struct sk_buff *skb,
129                              const u64 ndp)
130 {
131         struct tfrc_rx_hist_entry *entry = tfrc_rx_hist_last_rcv(h);
132
133         tfrc_rx_hist_entry_from_skb(entry, skb, ndp);
134 }
135 EXPORT_SYMBOL_GPL(tfrc_rx_hist_add_packet);
136
137 /* has the packet contained in skb been seen before? */
138 int tfrc_rx_hist_duplicate(struct tfrc_rx_hist *h, struct sk_buff *skb)
139 {
140         const u64 seq = DCCP_SKB_CB(skb)->dccpd_seq;
141         int i;
142
143         if (dccp_delta_seqno(tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno, seq) <= 0)
144                 return 1;
145
146         for (i = 1; i <= h->loss_count; i++)
147                 if (tfrc_rx_hist_entry(h, i)->tfrchrx_seqno == seq)
148                         return 1;
149
150         return 0;
151 }
152 EXPORT_SYMBOL_GPL(tfrc_rx_hist_duplicate);
153
154 static void tfrc_rx_hist_swap(struct tfrc_rx_hist *h, const u8 a, const u8 b)
155 {
156         const u8 idx_a = tfrc_rx_hist_index(h, a),
157                  idx_b = tfrc_rx_hist_index(h, b);
158         struct tfrc_rx_hist_entry *tmp = h->ring[idx_a];
159
160         h->ring[idx_a] = h->ring[idx_b];
161         h->ring[idx_b] = tmp;
162 }
163
164 /*
165  * Private helper functions for loss detection.
166  *
167  * In the descriptions, `Si' refers to the sequence number of entry number i,
168  * whose NDP count is `Ni' (lower case is used for variables).
169  * Note: All __xxx_loss functions expect that a test against duplicates has been
170  *       performed already: the seqno of the skb must not be less than the seqno
171  *       of loss_prev; and it must not equal that of any valid history entry.
172  */
173 static void __do_track_loss(struct tfrc_rx_hist *h, struct sk_buff *skb, u64 n1)
174 {
175         u64 s0 = tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno,
176             s1 = DCCP_SKB_CB(skb)->dccpd_seq;
177
178         if (!dccp_loss_free(s0, s1, n1)) {      /* gap between S0 and S1 */
179                 h->loss_count = 1;
180                 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 1), skb, n1);
181         }
182 }
183
184 static void __one_after_loss(struct tfrc_rx_hist *h, struct sk_buff *skb, u32 n2)
185 {
186         u64 s0 = tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno,
187             s1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_seqno,
188             s2 = DCCP_SKB_CB(skb)->dccpd_seq;
189
190         if (likely(dccp_delta_seqno(s1, s2) > 0)) {     /* S1  <  S2 */
191                 h->loss_count = 2;
192                 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 2), skb, n2);
193                 return;
194         }
195
196         /* S0  <  S2  <  S1 */
197
198         if (dccp_loss_free(s0, s2, n2)) {
199                 u64 n1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_ndp;
200
201                 if (dccp_loss_free(s2, s1, n1)) {
202                         /* hole is filled: S0, S2, and S1 are consecutive */
203                         h->loss_count = 0;
204                         h->loss_start = tfrc_rx_hist_index(h, 1);
205                 } else
206                         /* gap between S2 and S1: just update loss_prev */
207                         tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_loss_prev(h), skb, n2);
208
209         } else {        /* gap between S0 and S2 */
210                 /*
211                  * Reorder history to insert S2 between S0 and S1
212                  */
213                 tfrc_rx_hist_swap(h, 0, 3);
214                 h->loss_start = tfrc_rx_hist_index(h, 3);
215                 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 1), skb, n2);
216                 h->loss_count = 2;
217         }
218 }
219
220 /* return 1 if a new loss event has been identified */
221 static int __two_after_loss(struct tfrc_rx_hist *h, struct sk_buff *skb, u32 n3)
222 {
223         u64 s0 = tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno,
224             s1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_seqno,
225             s2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_seqno,
226             s3 = DCCP_SKB_CB(skb)->dccpd_seq;
227
228         if (likely(dccp_delta_seqno(s2, s3) > 0)) {     /* S2  <  S3 */
229                 h->loss_count = 3;
230                 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 3), skb, n3);
231                 return 1;
232         }
233
234         /* S3  <  S2 */
235
236         if (dccp_delta_seqno(s1, s3) > 0) {             /* S1  <  S3  <  S2 */
237                 /*
238                  * Reorder history to insert S3 between S1 and S2
239                  */
240                 tfrc_rx_hist_swap(h, 2, 3);
241                 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 2), skb, n3);
242                 h->loss_count = 3;
243                 return 1;
244         }
245
246         /* S0  <  S3  <  S1 */
247
248         if (dccp_loss_free(s0, s3, n3)) {
249                 u64 n1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_ndp;
250
251                 if (dccp_loss_free(s3, s1, n1)) {
252                         /* hole between S0 and S1 filled by S3 */
253                         u64 n2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_ndp;
254
255                         if (dccp_loss_free(s1, s2, n2)) {
256                                 /* entire hole filled by S0, S3, S1, S2 */
257                                 h->loss_start = tfrc_rx_hist_index(h, 2);
258                                 h->loss_count = 0;
259                         } else {
260                                 /* gap remains between S1 and S2 */
261                                 h->loss_start = tfrc_rx_hist_index(h, 1);
262                                 h->loss_count = 1;
263                         }
264
265                 } else /* gap exists between S3 and S1, loss_count stays at 2 */
266                         tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_loss_prev(h), skb, n3);
267
268                 return 0;
269         }
270
271         /*
272          * The remaining case:  S0  <  S3  <  S1  <  S2;  gap between S0 and S3
273          * Reorder history to insert S3 between S0 and S1.
274          */
275         tfrc_rx_hist_swap(h, 0, 3);
276         h->loss_start = tfrc_rx_hist_index(h, 3);
277         tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 1), skb, n3);
278         h->loss_count = 3;
279
280         return 1;
281 }
282
283 /* recycle RX history records to continue loss detection if necessary */
284 static void __three_after_loss(struct tfrc_rx_hist *h)
285 {
286         /*
287          * At this stage we know already that there is a gap between S0 and S1
288          * (since S0 was the highest sequence number received before detecting
289          * the loss). To recycle the loss record, it is thus only necessary to
290          * check for other possible gaps between S1/S2 and between S2/S3.
291          */
292         u64 s1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_seqno,
293             s2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_seqno,
294             s3 = tfrc_rx_hist_entry(h, 3)->tfrchrx_seqno;
295         u64 n2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_ndp,
296             n3 = tfrc_rx_hist_entry(h, 3)->tfrchrx_ndp;
297
298         if (dccp_loss_free(s1, s2, n2)) {
299
300                 if (dccp_loss_free(s2, s3, n3)) {
301                         /* no gap between S2 and S3: entire hole is filled */
302                         h->loss_start = tfrc_rx_hist_index(h, 3);
303                         h->loss_count = 0;
304                 } else {
305                         /* gap between S2 and S3 */
306                         h->loss_start = tfrc_rx_hist_index(h, 2);
307                         h->loss_count = 1;
308                 }
309
310         } else {        /* gap between S1 and S2 */
311                 h->loss_start = tfrc_rx_hist_index(h, 1);
312                 h->loss_count = 2;
313         }
314 }
315
316 /**
317  *  tfrc_rx_handle_loss  -  Loss detection and further processing
318  *  @h:             The non-empty RX history object
319  *  @lh:            Loss Intervals database to update
320  *  @skb:           Currently received packet
321  *  @ndp:           The NDP count belonging to @skb
322  *  @calc_first_li: Caller-dependent computation of first loss interval in @lh
323  *  @sk:            Used by @calc_first_li (see tfrc_lh_interval_add)
324  *  Chooses action according to pending loss, updates LI database when a new
325  *  loss was detected, and does required post-processing. Returns 1 when caller
326  *  should send feedback, 0 otherwise.
327  *  Since it also takes care of reordering during loss detection and updates the
328  *  records accordingly, the caller should not perform any more RX history
329  *  operations when loss_count is greater than 0 after calling this function.
330  */
331 int tfrc_rx_handle_loss(struct tfrc_rx_hist *h,
332                         struct tfrc_loss_hist *lh,
333                         struct sk_buff *skb, const u64 ndp,
334                         u32 (*calc_first_li)(struct sock *), struct sock *sk)
335 {
336         int is_new_loss = 0;
337
338         if (tfrc_rx_hist_duplicate(h, skb))
339                 return 0;
340
341         if (h->loss_count == 0) {
342                 __do_track_loss(h, skb, ndp);
343         } else if (h->loss_count == 1) {
344                 __one_after_loss(h, skb, ndp);
345         } else if (h->loss_count != 2) {
346                 DCCP_BUG("invalid loss_count %d", h->loss_count);
347         } else if (__two_after_loss(h, skb, ndp)) {
348                 /*
349                  * Update Loss Interval database and recycle RX records
350                  */
351                 is_new_loss = tfrc_lh_interval_add(lh, h, calc_first_li, sk);
352                 __three_after_loss(h);
353         }
354         return is_new_loss;
355 }
356 EXPORT_SYMBOL_GPL(tfrc_rx_handle_loss);
357
358 void tfrc_rx_hist_purge(struct tfrc_rx_hist *h)
359 {
360         int i;
361
362         for (i = 0; i <= TFRC_NDUPACK; ++i)
363                 if (h->ring[i] != NULL) {
364                         kmem_cache_free(tfrc_rx_hist_slab, h->ring[i]);
365                         h->ring[i] = NULL;
366                 }
367 }
368 EXPORT_SYMBOL_GPL(tfrc_rx_hist_purge);
369
370 static int tfrc_rx_hist_alloc(struct tfrc_rx_hist *h)
371 {
372         int i;
373
374         memset(h, 0, sizeof(*h));
375
376         for (i = 0; i <= TFRC_NDUPACK; i++) {
377                 h->ring[i] = kmem_cache_alloc(tfrc_rx_hist_slab, GFP_ATOMIC);
378                 if (h->ring[i] == NULL) {
379                         tfrc_rx_hist_purge(h);
380                         return -ENOBUFS;
381                 }
382         }
383         return 0;
384 }
385
386 int tfrc_rx_hist_init(struct tfrc_rx_hist *h, struct sock *sk)
387 {
388         if (tfrc_rx_hist_alloc(h))
389                 return -ENOBUFS;
390         /*
391          * Initialise first entry with GSR to start loss detection as early as
392          * possible. Code using this must not use any other fields. The entry
393          * will be overwritten once the CCID updates its received packets.
394          */
395         tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno = dccp_sk(sk)->dccps_gsr;
396         return 0;
397 }
398 EXPORT_SYMBOL_GPL(tfrc_rx_hist_init);
399
400 /**
401  * tfrc_rx_hist_rtt_last_s - reference entry to compute RTT samples against
402  */
403 static inline struct tfrc_rx_hist_entry *
404                         tfrc_rx_hist_rtt_last_s(const struct tfrc_rx_hist *h)
405 {
406         return h->ring[0];
407 }
408
409 /**
410  * tfrc_rx_hist_rtt_prev_s: previously suitable (wrt rtt_last_s) RTT-sampling entry
411  */
412 static inline struct tfrc_rx_hist_entry *
413                         tfrc_rx_hist_rtt_prev_s(const struct tfrc_rx_hist *h)
414 {
415         return h->ring[h->rtt_sample_prev];
416 }
417
418 /**
419  * tfrc_rx_hist_sample_rtt  -  Sample RTT from timestamp / CCVal
420  * Based on ideas presented in RFC 4342, 8.1. Returns 0 if it was not able
421  * to compute a sample with given data - calling function should check this.
422  */
423 u32 tfrc_rx_hist_sample_rtt(struct tfrc_rx_hist *h, const struct sk_buff *skb)
424 {
425         u32 sample = 0,
426             delta_v = SUB16(dccp_hdr(skb)->dccph_ccval,
427                             tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval);
428
429         if (delta_v < 1 || delta_v > 4) {       /* unsuitable CCVal delta */
430                 if (h->rtt_sample_prev == 2) {  /* previous candidate stored */
431                         sample = SUB16(tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_ccval,
432                                        tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval);
433                         if (sample)
434                                 sample = 4 / sample *
435                                          ktime_us_delta(tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_tstamp,
436                                                         tfrc_rx_hist_rtt_last_s(h)->tfrchrx_tstamp);
437                         else    /*
438                                  * FIXME: This condition is in principle not
439                                  * possible but occurs when CCID is used for
440                                  * two-way data traffic. I have tried to trace
441                                  * it, but the cause does not seem to be here.
442                                  */
443                                 DCCP_BUG("please report to dccp@vger.kernel.org"
444                                          " => prev = %u, last = %u",
445                                          tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_ccval,
446                                          tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval);
447                 } else if (delta_v < 1) {
448                         h->rtt_sample_prev = 1;
449                         goto keep_ref_for_next_time;
450                 }
451
452         } else if (delta_v == 4) /* optimal match */
453                 sample = ktime_to_us(net_timedelta(tfrc_rx_hist_rtt_last_s(h)->tfrchrx_tstamp));
454         else {                   /* suboptimal match */
455                 h->rtt_sample_prev = 2;
456                 goto keep_ref_for_next_time;
457         }
458
459         if (unlikely(sample > DCCP_SANE_RTT_MAX)) {
460                 DCCP_WARN("RTT sample %u too large, using max\n", sample);
461                 sample = DCCP_SANE_RTT_MAX;
462         }
463
464         h->rtt_sample_prev = 0;        /* use current entry as next reference */
465 keep_ref_for_next_time:
466
467         return sample;
468 }
469 EXPORT_SYMBOL_GPL(tfrc_rx_hist_sample_rtt);