4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
20 #include <linux/fdtable.h>
22 #include <linux/fsnotify.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/hash.h>
26 #include <linux/cache.h>
27 #include <linux/module.h>
28 #include <linux/mount.h>
29 #include <linux/file.h>
30 #include <asm/uaccess.h>
31 #include <linux/security.h>
32 #include <linux/seqlock.h>
33 #include <linux/swap.h>
34 #include <linux/bootmem.h>
38 int sysctl_vfs_cache_pressure __read_mostly = 100;
39 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
41 __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lock);
42 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
44 EXPORT_SYMBOL(dcache_lock);
46 static struct kmem_cache *dentry_cache __read_mostly;
48 #define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
51 * This is the single most critical data structure when it comes
52 * to the dcache: the hashtable for lookups. Somebody should try
53 * to make this good - I've just made it work.
55 * This hash-function tries to avoid losing too many bits of hash
56 * information, yet avoid using a prime hash-size or similar.
58 #define D_HASHBITS d_hash_shift
59 #define D_HASHMASK d_hash_mask
61 static unsigned int d_hash_mask __read_mostly;
62 static unsigned int d_hash_shift __read_mostly;
63 static struct hlist_head *dentry_hashtable __read_mostly;
65 /* Statistics gathering. */
66 struct dentry_stat_t dentry_stat = {
70 static void __d_free(struct dentry *dentry)
72 if (dname_external(dentry))
73 kfree(dentry->d_name.name);
74 kmem_cache_free(dentry_cache, dentry);
77 static void d_callback(struct rcu_head *head)
79 struct dentry * dentry = container_of(head, struct dentry, d_u.d_rcu);
84 * no dcache_lock, please. The caller must decrement dentry_stat.nr_dentry
87 static void d_free(struct dentry *dentry)
89 if (dentry->d_op && dentry->d_op->d_release)
90 dentry->d_op->d_release(dentry);
91 /* if dentry was never inserted into hash, immediate free is OK */
92 if (hlist_unhashed(&dentry->d_hash))
95 call_rcu(&dentry->d_u.d_rcu, d_callback);
99 * Release the dentry's inode, using the filesystem
100 * d_iput() operation if defined.
102 static void dentry_iput(struct dentry * dentry)
103 __releases(dentry->d_lock)
104 __releases(dcache_lock)
106 struct inode *inode = dentry->d_inode;
108 dentry->d_inode = NULL;
109 list_del_init(&dentry->d_alias);
110 spin_unlock(&dentry->d_lock);
111 spin_unlock(&dcache_lock);
113 fsnotify_inoderemove(inode);
114 if (dentry->d_op && dentry->d_op->d_iput)
115 dentry->d_op->d_iput(dentry, inode);
119 spin_unlock(&dentry->d_lock);
120 spin_unlock(&dcache_lock);
125 * dentry_lru_(add|add_tail|del|del_init) must be called with dcache_lock held.
127 static void dentry_lru_add(struct dentry *dentry)
129 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
130 dentry->d_sb->s_nr_dentry_unused++;
131 dentry_stat.nr_unused++;
134 static void dentry_lru_add_tail(struct dentry *dentry)
136 list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
137 dentry->d_sb->s_nr_dentry_unused++;
138 dentry_stat.nr_unused++;
141 static void dentry_lru_del(struct dentry *dentry)
143 if (!list_empty(&dentry->d_lru)) {
144 list_del(&dentry->d_lru);
145 dentry->d_sb->s_nr_dentry_unused--;
146 dentry_stat.nr_unused--;
150 static void dentry_lru_del_init(struct dentry *dentry)
152 if (likely(!list_empty(&dentry->d_lru))) {
153 list_del_init(&dentry->d_lru);
154 dentry->d_sb->s_nr_dentry_unused--;
155 dentry_stat.nr_unused--;
160 * d_kill - kill dentry and return parent
161 * @dentry: dentry to kill
163 * The dentry must already be unhashed and removed from the LRU.
165 * If this is the root of the dentry tree, return NULL.
167 static struct dentry *d_kill(struct dentry *dentry)
168 __releases(dentry->d_lock)
169 __releases(dcache_lock)
171 struct dentry *parent;
173 list_del(&dentry->d_u.d_child);
174 dentry_stat.nr_dentry--; /* For d_free, below */
175 /*drops the locks, at that point nobody can reach this dentry */
177 parent = dentry->d_parent;
179 return dentry == parent ? NULL : parent;
185 * This is complicated by the fact that we do not want to put
186 * dentries that are no longer on any hash chain on the unused
187 * list: we'd much rather just get rid of them immediately.
189 * However, that implies that we have to traverse the dentry
190 * tree upwards to the parents which might _also_ now be
191 * scheduled for deletion (it may have been only waiting for
192 * its last child to go away).
194 * This tail recursion is done by hand as we don't want to depend
195 * on the compiler to always get this right (gcc generally doesn't).
196 * Real recursion would eat up our stack space.
200 * dput - release a dentry
201 * @dentry: dentry to release
203 * Release a dentry. This will drop the usage count and if appropriate
204 * call the dentry unlink method as well as removing it from the queues and
205 * releasing its resources. If the parent dentries were scheduled for release
206 * they too may now get deleted.
208 * no dcache lock, please.
211 void dput(struct dentry *dentry)
217 if (atomic_read(&dentry->d_count) == 1)
219 if (!atomic_dec_and_lock(&dentry->d_count, &dcache_lock))
222 spin_lock(&dentry->d_lock);
223 if (atomic_read(&dentry->d_count)) {
224 spin_unlock(&dentry->d_lock);
225 spin_unlock(&dcache_lock);
230 * AV: ->d_delete() is _NOT_ allowed to block now.
232 if (dentry->d_op && dentry->d_op->d_delete) {
233 if (dentry->d_op->d_delete(dentry))
236 /* Unreachable? Get rid of it */
237 if (d_unhashed(dentry))
239 if (list_empty(&dentry->d_lru)) {
240 dentry->d_flags |= DCACHE_REFERENCED;
241 dentry_lru_add(dentry);
243 spin_unlock(&dentry->d_lock);
244 spin_unlock(&dcache_lock);
250 /* if dentry was on the d_lru list delete it from there */
251 dentry_lru_del(dentry);
252 dentry = d_kill(dentry);
258 * d_invalidate - invalidate a dentry
259 * @dentry: dentry to invalidate
261 * Try to invalidate the dentry if it turns out to be
262 * possible. If there are other dentries that can be
263 * reached through this one we can't delete it and we
264 * return -EBUSY. On success we return 0.
269 int d_invalidate(struct dentry * dentry)
272 * If it's already been dropped, return OK.
274 spin_lock(&dcache_lock);
275 if (d_unhashed(dentry)) {
276 spin_unlock(&dcache_lock);
280 * Check whether to do a partial shrink_dcache
281 * to get rid of unused child entries.
283 if (!list_empty(&dentry->d_subdirs)) {
284 spin_unlock(&dcache_lock);
285 shrink_dcache_parent(dentry);
286 spin_lock(&dcache_lock);
290 * Somebody else still using it?
292 * If it's a directory, we can't drop it
293 * for fear of somebody re-populating it
294 * with children (even though dropping it
295 * would make it unreachable from the root,
296 * we might still populate it if it was a
297 * working directory or similar).
299 spin_lock(&dentry->d_lock);
300 if (atomic_read(&dentry->d_count) > 1) {
301 if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
302 spin_unlock(&dentry->d_lock);
303 spin_unlock(&dcache_lock);
309 spin_unlock(&dentry->d_lock);
310 spin_unlock(&dcache_lock);
314 /* This should be called _only_ with dcache_lock held */
316 static inline struct dentry * __dget_locked(struct dentry *dentry)
318 atomic_inc(&dentry->d_count);
319 dentry_lru_del_init(dentry);
323 struct dentry * dget_locked(struct dentry *dentry)
325 return __dget_locked(dentry);
329 * d_find_alias - grab a hashed alias of inode
330 * @inode: inode in question
331 * @want_discon: flag, used by d_splice_alias, to request
332 * that only a DISCONNECTED alias be returned.
334 * If inode has a hashed alias, or is a directory and has any alias,
335 * acquire the reference to alias and return it. Otherwise return NULL.
336 * Notice that if inode is a directory there can be only one alias and
337 * it can be unhashed only if it has no children, or if it is the root
340 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
341 * any other hashed alias over that one unless @want_discon is set,
342 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
345 static struct dentry * __d_find_alias(struct inode *inode, int want_discon)
347 struct list_head *head, *next, *tmp;
348 struct dentry *alias, *discon_alias=NULL;
350 head = &inode->i_dentry;
351 next = inode->i_dentry.next;
352 while (next != head) {
356 alias = list_entry(tmp, struct dentry, d_alias);
357 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
358 if (IS_ROOT(alias) &&
359 (alias->d_flags & DCACHE_DISCONNECTED))
360 discon_alias = alias;
361 else if (!want_discon) {
362 __dget_locked(alias);
368 __dget_locked(discon_alias);
372 struct dentry * d_find_alias(struct inode *inode)
374 struct dentry *de = NULL;
376 if (!list_empty(&inode->i_dentry)) {
377 spin_lock(&dcache_lock);
378 de = __d_find_alias(inode, 0);
379 spin_unlock(&dcache_lock);
385 * Try to kill dentries associated with this inode.
386 * WARNING: you must own a reference to inode.
388 void d_prune_aliases(struct inode *inode)
390 struct dentry *dentry;
392 spin_lock(&dcache_lock);
393 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
394 spin_lock(&dentry->d_lock);
395 if (!atomic_read(&dentry->d_count)) {
396 __dget_locked(dentry);
398 spin_unlock(&dentry->d_lock);
399 spin_unlock(&dcache_lock);
403 spin_unlock(&dentry->d_lock);
405 spin_unlock(&dcache_lock);
409 * Throw away a dentry - free the inode, dput the parent. This requires that
410 * the LRU list has already been removed.
412 * Try to prune ancestors as well. This is necessary to prevent
413 * quadratic behavior of shrink_dcache_parent(), but is also expected
414 * to be beneficial in reducing dentry cache fragmentation.
416 static void prune_one_dentry(struct dentry * dentry)
417 __releases(dentry->d_lock)
418 __releases(dcache_lock)
419 __acquires(dcache_lock)
422 dentry = d_kill(dentry);
425 * Prune ancestors. Locking is simpler than in dput(),
426 * because dcache_lock needs to be taken anyway.
428 spin_lock(&dcache_lock);
430 if (!atomic_dec_and_lock(&dentry->d_count, &dentry->d_lock))
433 if (dentry->d_op && dentry->d_op->d_delete)
434 dentry->d_op->d_delete(dentry);
435 dentry_lru_del_init(dentry);
437 dentry = d_kill(dentry);
438 spin_lock(&dcache_lock);
443 * Shrink the dentry LRU on a given superblock.
444 * @sb : superblock to shrink dentry LRU.
445 * @count: If count is NULL, we prune all dentries on superblock.
446 * @flags: If flags is non-zero, we need to do special processing based on
447 * which flags are set. This means we don't need to maintain multiple
448 * similar copies of this loop.
450 static void __shrink_dcache_sb(struct super_block *sb, int *count, int flags)
452 LIST_HEAD(referenced);
454 struct dentry *dentry;
458 BUG_ON((flags & DCACHE_REFERENCED) && count == NULL);
459 spin_lock(&dcache_lock);
461 /* called from prune_dcache() and shrink_dcache_parent() */
465 list_splice_init(&sb->s_dentry_lru, &tmp);
467 while (!list_empty(&sb->s_dentry_lru)) {
468 dentry = list_entry(sb->s_dentry_lru.prev,
469 struct dentry, d_lru);
470 BUG_ON(dentry->d_sb != sb);
472 spin_lock(&dentry->d_lock);
474 * If we are honouring the DCACHE_REFERENCED flag and
475 * the dentry has this flag set, don't free it. Clear
476 * the flag and put it back on the LRU.
478 if ((flags & DCACHE_REFERENCED)
479 && (dentry->d_flags & DCACHE_REFERENCED)) {
480 dentry->d_flags &= ~DCACHE_REFERENCED;
481 list_move_tail(&dentry->d_lru, &referenced);
482 spin_unlock(&dentry->d_lock);
484 list_move_tail(&dentry->d_lru, &tmp);
485 spin_unlock(&dentry->d_lock);
492 while (!list_empty(&tmp)) {
493 dentry = list_entry(tmp.prev, struct dentry, d_lru);
494 dentry_lru_del_init(dentry);
495 spin_lock(&dentry->d_lock);
497 * We found an inuse dentry which was not removed from
498 * the LRU because of laziness during lookup. Do not free
499 * it - just keep it off the LRU list.
501 if (atomic_read(&dentry->d_count)) {
502 spin_unlock(&dentry->d_lock);
505 prune_one_dentry(dentry);
506 /* dentry->d_lock was dropped in prune_one_dentry() */
507 cond_resched_lock(&dcache_lock);
509 if (count == NULL && !list_empty(&sb->s_dentry_lru))
513 if (!list_empty(&referenced))
514 list_splice(&referenced, &sb->s_dentry_lru);
515 spin_unlock(&dcache_lock);
519 * prune_dcache - shrink the dcache
520 * @count: number of entries to try to free
522 * Shrink the dcache. This is done when we need more memory, or simply when we
523 * need to unmount something (at which point we need to unuse all dentries).
525 * This function may fail to free any resources if all the dentries are in use.
527 static void prune_dcache(int count)
529 struct super_block *sb;
531 int unused = dentry_stat.nr_unused;
535 if (unused == 0 || count == 0)
537 spin_lock(&dcache_lock);
542 prune_ratio = unused / count;
544 list_for_each_entry(sb, &super_blocks, s_list) {
545 if (sb->s_nr_dentry_unused == 0)
548 /* Now, we reclaim unused dentrins with fairness.
549 * We reclaim them same percentage from each superblock.
550 * We calculate number of dentries to scan on this sb
551 * as follows, but the implementation is arranged to avoid
553 * number of dentries to scan on this sb =
554 * count * (number of dentries on this sb /
555 * number of dentries in the machine)
557 spin_unlock(&sb_lock);
558 if (prune_ratio != 1)
559 w_count = (sb->s_nr_dentry_unused / prune_ratio) + 1;
561 w_count = sb->s_nr_dentry_unused;
564 * We need to be sure this filesystem isn't being unmounted,
565 * otherwise we could race with generic_shutdown_super(), and
566 * end up holding a reference to an inode while the filesystem
567 * is unmounted. So we try to get s_umount, and make sure
570 if (down_read_trylock(&sb->s_umount)) {
571 if ((sb->s_root != NULL) &&
572 (!list_empty(&sb->s_dentry_lru))) {
573 spin_unlock(&dcache_lock);
574 __shrink_dcache_sb(sb, &w_count,
577 spin_lock(&dcache_lock);
579 up_read(&sb->s_umount);
584 * restart only when sb is no longer on the list and
585 * we have more work to do.
587 if (__put_super_and_need_restart(sb) && count > 0) {
588 spin_unlock(&sb_lock);
592 spin_unlock(&sb_lock);
593 spin_unlock(&dcache_lock);
597 * shrink_dcache_sb - shrink dcache for a superblock
600 * Shrink the dcache for the specified super block. This
601 * is used to free the dcache before unmounting a file
604 void shrink_dcache_sb(struct super_block * sb)
606 __shrink_dcache_sb(sb, NULL, 0);
610 * destroy a single subtree of dentries for unmount
611 * - see the comments on shrink_dcache_for_umount() for a description of the
614 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
616 struct dentry *parent;
617 unsigned detached = 0;
619 BUG_ON(!IS_ROOT(dentry));
621 /* detach this root from the system */
622 spin_lock(&dcache_lock);
623 dentry_lru_del_init(dentry);
625 spin_unlock(&dcache_lock);
628 /* descend to the first leaf in the current subtree */
629 while (!list_empty(&dentry->d_subdirs)) {
632 /* this is a branch with children - detach all of them
633 * from the system in one go */
634 spin_lock(&dcache_lock);
635 list_for_each_entry(loop, &dentry->d_subdirs,
637 dentry_lru_del_init(loop);
639 cond_resched_lock(&dcache_lock);
641 spin_unlock(&dcache_lock);
643 /* move to the first child */
644 dentry = list_entry(dentry->d_subdirs.next,
645 struct dentry, d_u.d_child);
648 /* consume the dentries from this leaf up through its parents
649 * until we find one with children or run out altogether */
653 if (atomic_read(&dentry->d_count) != 0) {
655 "BUG: Dentry %p{i=%lx,n=%s}"
657 " [unmount of %s %s]\n",
660 dentry->d_inode->i_ino : 0UL,
662 atomic_read(&dentry->d_count),
663 dentry->d_sb->s_type->name,
668 parent = dentry->d_parent;
669 if (parent == dentry)
672 atomic_dec(&parent->d_count);
674 list_del(&dentry->d_u.d_child);
677 inode = dentry->d_inode;
679 dentry->d_inode = NULL;
680 list_del_init(&dentry->d_alias);
681 if (dentry->d_op && dentry->d_op->d_iput)
682 dentry->d_op->d_iput(dentry, inode);
689 /* finished when we fall off the top of the tree,
690 * otherwise we ascend to the parent and move to the
691 * next sibling if there is one */
697 } while (list_empty(&dentry->d_subdirs));
699 dentry = list_entry(dentry->d_subdirs.next,
700 struct dentry, d_u.d_child);
703 /* several dentries were freed, need to correct nr_dentry */
704 spin_lock(&dcache_lock);
705 dentry_stat.nr_dentry -= detached;
706 spin_unlock(&dcache_lock);
710 * destroy the dentries attached to a superblock on unmounting
711 * - we don't need to use dentry->d_lock, and only need dcache_lock when
712 * removing the dentry from the system lists and hashes because:
713 * - the superblock is detached from all mountings and open files, so the
714 * dentry trees will not be rearranged by the VFS
715 * - s_umount is write-locked, so the memory pressure shrinker will ignore
716 * any dentries belonging to this superblock that it comes across
717 * - the filesystem itself is no longer permitted to rearrange the dentries
720 void shrink_dcache_for_umount(struct super_block *sb)
722 struct dentry *dentry;
724 if (down_read_trylock(&sb->s_umount))
729 atomic_dec(&dentry->d_count);
730 shrink_dcache_for_umount_subtree(dentry);
732 while (!hlist_empty(&sb->s_anon)) {
733 dentry = hlist_entry(sb->s_anon.first, struct dentry, d_hash);
734 shrink_dcache_for_umount_subtree(dentry);
739 * Search for at least 1 mount point in the dentry's subdirs.
740 * We descend to the next level whenever the d_subdirs
741 * list is non-empty and continue searching.
745 * have_submounts - check for mounts over a dentry
746 * @parent: dentry to check.
748 * Return true if the parent or its subdirectories contain
752 int have_submounts(struct dentry *parent)
754 struct dentry *this_parent = parent;
755 struct list_head *next;
757 spin_lock(&dcache_lock);
758 if (d_mountpoint(parent))
761 next = this_parent->d_subdirs.next;
763 while (next != &this_parent->d_subdirs) {
764 struct list_head *tmp = next;
765 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
767 /* Have we found a mount point ? */
768 if (d_mountpoint(dentry))
770 if (!list_empty(&dentry->d_subdirs)) {
771 this_parent = dentry;
776 * All done at this level ... ascend and resume the search.
778 if (this_parent != parent) {
779 next = this_parent->d_u.d_child.next;
780 this_parent = this_parent->d_parent;
783 spin_unlock(&dcache_lock);
784 return 0; /* No mount points found in tree */
786 spin_unlock(&dcache_lock);
791 * Search the dentry child list for the specified parent,
792 * and move any unused dentries to the end of the unused
793 * list for prune_dcache(). We descend to the next level
794 * whenever the d_subdirs list is non-empty and continue
797 * It returns zero iff there are no unused children,
798 * otherwise it returns the number of children moved to
799 * the end of the unused list. This may not be the total
800 * number of unused children, because select_parent can
801 * drop the lock and return early due to latency
804 static int select_parent(struct dentry * parent)
806 struct dentry *this_parent = parent;
807 struct list_head *next;
810 spin_lock(&dcache_lock);
812 next = this_parent->d_subdirs.next;
814 while (next != &this_parent->d_subdirs) {
815 struct list_head *tmp = next;
816 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
819 dentry_lru_del_init(dentry);
821 * move only zero ref count dentries to the end
822 * of the unused list for prune_dcache
824 if (!atomic_read(&dentry->d_count)) {
825 dentry_lru_add_tail(dentry);
830 * We can return to the caller if we have found some (this
831 * ensures forward progress). We'll be coming back to find
834 if (found && need_resched())
838 * Descend a level if the d_subdirs list is non-empty.
840 if (!list_empty(&dentry->d_subdirs)) {
841 this_parent = dentry;
846 * All done at this level ... ascend and resume the search.
848 if (this_parent != parent) {
849 next = this_parent->d_u.d_child.next;
850 this_parent = this_parent->d_parent;
854 spin_unlock(&dcache_lock);
859 * shrink_dcache_parent - prune dcache
860 * @parent: parent of entries to prune
862 * Prune the dcache to remove unused children of the parent dentry.
865 void shrink_dcache_parent(struct dentry * parent)
867 struct super_block *sb = parent->d_sb;
870 while ((found = select_parent(parent)) != 0)
871 __shrink_dcache_sb(sb, &found, 0);
875 * Scan `nr' dentries and return the number which remain.
877 * We need to avoid reentering the filesystem if the caller is performing a
878 * GFP_NOFS allocation attempt. One example deadlock is:
880 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
881 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
882 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
884 * In this case we return -1 to tell the caller that we baled.
886 static int shrink_dcache_memory(int nr, gfp_t gfp_mask)
889 if (!(gfp_mask & __GFP_FS))
893 return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
896 static struct shrinker dcache_shrinker = {
897 .shrink = shrink_dcache_memory,
898 .seeks = DEFAULT_SEEKS,
902 * d_alloc - allocate a dcache entry
903 * @parent: parent of entry to allocate
904 * @name: qstr of the name
906 * Allocates a dentry. It returns %NULL if there is insufficient memory
907 * available. On a success the dentry is returned. The name passed in is
908 * copied and the copy passed in may be reused after this call.
911 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
913 struct dentry *dentry;
916 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
920 if (name->len > DNAME_INLINE_LEN-1) {
921 dname = kmalloc(name->len + 1, GFP_KERNEL);
923 kmem_cache_free(dentry_cache, dentry);
927 dname = dentry->d_iname;
929 dentry->d_name.name = dname;
931 dentry->d_name.len = name->len;
932 dentry->d_name.hash = name->hash;
933 memcpy(dname, name->name, name->len);
934 dname[name->len] = 0;
936 atomic_set(&dentry->d_count, 1);
937 dentry->d_flags = DCACHE_UNHASHED;
938 spin_lock_init(&dentry->d_lock);
939 dentry->d_inode = NULL;
940 dentry->d_parent = NULL;
943 dentry->d_fsdata = NULL;
944 dentry->d_mounted = 0;
945 #ifdef CONFIG_PROFILING
946 dentry->d_cookie = NULL;
948 INIT_HLIST_NODE(&dentry->d_hash);
949 INIT_LIST_HEAD(&dentry->d_lru);
950 INIT_LIST_HEAD(&dentry->d_subdirs);
951 INIT_LIST_HEAD(&dentry->d_alias);
954 dentry->d_parent = dget(parent);
955 dentry->d_sb = parent->d_sb;
957 INIT_LIST_HEAD(&dentry->d_u.d_child);
960 spin_lock(&dcache_lock);
962 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
963 dentry_stat.nr_dentry++;
964 spin_unlock(&dcache_lock);
969 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
974 q.len = strlen(name);
975 q.hash = full_name_hash(q.name, q.len);
976 return d_alloc(parent, &q);
980 * d_instantiate - fill in inode information for a dentry
981 * @entry: dentry to complete
982 * @inode: inode to attach to this dentry
984 * Fill in inode information in the entry.
986 * This turns negative dentries into productive full members
989 * NOTE! This assumes that the inode count has been incremented
990 * (or otherwise set) by the caller to indicate that it is now
991 * in use by the dcache.
994 void d_instantiate(struct dentry *entry, struct inode * inode)
996 BUG_ON(!list_empty(&entry->d_alias));
997 spin_lock(&dcache_lock);
999 list_add(&entry->d_alias, &inode->i_dentry);
1000 entry->d_inode = inode;
1001 fsnotify_d_instantiate(entry, inode);
1002 spin_unlock(&dcache_lock);
1003 security_d_instantiate(entry, inode);
1007 * d_instantiate_unique - instantiate a non-aliased dentry
1008 * @entry: dentry to instantiate
1009 * @inode: inode to attach to this dentry
1011 * Fill in inode information in the entry. On success, it returns NULL.
1012 * If an unhashed alias of "entry" already exists, then we return the
1013 * aliased dentry instead and drop one reference to inode.
1015 * Note that in order to avoid conflicts with rename() etc, the caller
1016 * had better be holding the parent directory semaphore.
1018 * This also assumes that the inode count has been incremented
1019 * (or otherwise set) by the caller to indicate that it is now
1020 * in use by the dcache.
1022 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1023 struct inode *inode)
1025 struct dentry *alias;
1026 int len = entry->d_name.len;
1027 const char *name = entry->d_name.name;
1028 unsigned int hash = entry->d_name.hash;
1031 entry->d_inode = NULL;
1035 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1036 struct qstr *qstr = &alias->d_name;
1038 if (qstr->hash != hash)
1040 if (alias->d_parent != entry->d_parent)
1042 if (qstr->len != len)
1044 if (memcmp(qstr->name, name, len))
1050 list_add(&entry->d_alias, &inode->i_dentry);
1051 entry->d_inode = inode;
1052 fsnotify_d_instantiate(entry, inode);
1056 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1058 struct dentry *result;
1060 BUG_ON(!list_empty(&entry->d_alias));
1062 spin_lock(&dcache_lock);
1063 result = __d_instantiate_unique(entry, inode);
1064 spin_unlock(&dcache_lock);
1067 security_d_instantiate(entry, inode);
1071 BUG_ON(!d_unhashed(result));
1076 EXPORT_SYMBOL(d_instantiate_unique);
1079 * d_alloc_root - allocate root dentry
1080 * @root_inode: inode to allocate the root for
1082 * Allocate a root ("/") dentry for the inode given. The inode is
1083 * instantiated and returned. %NULL is returned if there is insufficient
1084 * memory or the inode passed is %NULL.
1087 struct dentry * d_alloc_root(struct inode * root_inode)
1089 struct dentry *res = NULL;
1092 static const struct qstr name = { .name = "/", .len = 1 };
1094 res = d_alloc(NULL, &name);
1096 res->d_sb = root_inode->i_sb;
1097 res->d_parent = res;
1098 d_instantiate(res, root_inode);
1104 static inline struct hlist_head *d_hash(struct dentry *parent,
1107 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
1108 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
1109 return dentry_hashtable + (hash & D_HASHMASK);
1113 * d_alloc_anon - allocate an anonymous dentry
1114 * @inode: inode to allocate the dentry for
1116 * This is similar to d_alloc_root. It is used by filesystems when
1117 * creating a dentry for a given inode, often in the process of
1118 * mapping a filehandle to a dentry. The returned dentry may be
1119 * anonymous, or may have a full name (if the inode was already
1120 * in the cache). The file system may need to make further
1121 * efforts to connect this dentry into the dcache properly.
1123 * When called on a directory inode, we must ensure that
1124 * the inode only ever has one dentry. If a dentry is
1125 * found, that is returned instead of allocating a new one.
1127 * On successful return, the reference to the inode has been transferred
1128 * to the dentry. If %NULL is returned (indicating kmalloc failure),
1129 * the reference on the inode has not been released.
1132 struct dentry * d_alloc_anon(struct inode *inode)
1134 static const struct qstr anonstring = { .name = "" };
1138 if ((res = d_find_alias(inode))) {
1143 tmp = d_alloc(NULL, &anonstring);
1147 tmp->d_parent = tmp; /* make sure dput doesn't croak */
1149 spin_lock(&dcache_lock);
1150 res = __d_find_alias(inode, 0);
1152 /* attach a disconnected dentry */
1155 spin_lock(&res->d_lock);
1156 res->d_sb = inode->i_sb;
1157 res->d_parent = res;
1158 res->d_inode = inode;
1159 res->d_flags |= DCACHE_DISCONNECTED;
1160 res->d_flags &= ~DCACHE_UNHASHED;
1161 list_add(&res->d_alias, &inode->i_dentry);
1162 hlist_add_head(&res->d_hash, &inode->i_sb->s_anon);
1163 spin_unlock(&res->d_lock);
1165 inode = NULL; /* don't drop reference */
1167 spin_unlock(&dcache_lock);
1178 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1179 * @inode: the inode which may have a disconnected dentry
1180 * @dentry: a negative dentry which we want to point to the inode.
1182 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1183 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1184 * and return it, else simply d_add the inode to the dentry and return NULL.
1186 * This is needed in the lookup routine of any filesystem that is exportable
1187 * (via knfsd) so that we can build dcache paths to directories effectively.
1189 * If a dentry was found and moved, then it is returned. Otherwise NULL
1190 * is returned. This matches the expected return value of ->lookup.
1193 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1195 struct dentry *new = NULL;
1197 if (inode && S_ISDIR(inode->i_mode)) {
1198 spin_lock(&dcache_lock);
1199 new = __d_find_alias(inode, 1);
1201 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1202 fsnotify_d_instantiate(new, inode);
1203 spin_unlock(&dcache_lock);
1204 security_d_instantiate(new, inode);
1206 d_move(new, dentry);
1209 /* d_instantiate takes dcache_lock, so we do it by hand */
1210 list_add(&dentry->d_alias, &inode->i_dentry);
1211 dentry->d_inode = inode;
1212 fsnotify_d_instantiate(dentry, inode);
1213 spin_unlock(&dcache_lock);
1214 security_d_instantiate(dentry, inode);
1218 d_add(dentry, inode);
1224 * d_lookup - search for a dentry
1225 * @parent: parent dentry
1226 * @name: qstr of name we wish to find
1228 * Searches the children of the parent dentry for the name in question. If
1229 * the dentry is found its reference count is incremented and the dentry
1230 * is returned. The caller must use d_put to free the entry when it has
1231 * finished using it. %NULL is returned on failure.
1233 * __d_lookup is dcache_lock free. The hash list is protected using RCU.
1234 * Memory barriers are used while updating and doing lockless traversal.
1235 * To avoid races with d_move while rename is happening, d_lock is used.
1237 * Overflows in memcmp(), while d_move, are avoided by keeping the length
1238 * and name pointer in one structure pointed by d_qstr.
1240 * rcu_read_lock() and rcu_read_unlock() are used to disable preemption while
1241 * lookup is going on.
1243 * The dentry unused LRU is not updated even if lookup finds the required dentry
1244 * in there. It is updated in places such as prune_dcache, shrink_dcache_sb,
1245 * select_parent and __dget_locked. This laziness saves lookup from dcache_lock
1248 * d_lookup() is protected against the concurrent renames in some unrelated
1249 * directory using the seqlockt_t rename_lock.
1252 struct dentry * d_lookup(struct dentry * parent, struct qstr * name)
1254 struct dentry * dentry = NULL;
1258 seq = read_seqbegin(&rename_lock);
1259 dentry = __d_lookup(parent, name);
1262 } while (read_seqretry(&rename_lock, seq));
1266 struct dentry * __d_lookup(struct dentry * parent, struct qstr * name)
1268 unsigned int len = name->len;
1269 unsigned int hash = name->hash;
1270 const unsigned char *str = name->name;
1271 struct hlist_head *head = d_hash(parent,hash);
1272 struct dentry *found = NULL;
1273 struct hlist_node *node;
1274 struct dentry *dentry;
1278 hlist_for_each_entry_rcu(dentry, node, head, d_hash) {
1281 if (dentry->d_name.hash != hash)
1283 if (dentry->d_parent != parent)
1286 spin_lock(&dentry->d_lock);
1289 * Recheck the dentry after taking the lock - d_move may have
1290 * changed things. Don't bother checking the hash because we're
1291 * about to compare the whole name anyway.
1293 if (dentry->d_parent != parent)
1297 * It is safe to compare names since d_move() cannot
1298 * change the qstr (protected by d_lock).
1300 qstr = &dentry->d_name;
1301 if (parent->d_op && parent->d_op->d_compare) {
1302 if (parent->d_op->d_compare(parent, qstr, name))
1305 if (qstr->len != len)
1307 if (memcmp(qstr->name, str, len))
1311 if (!d_unhashed(dentry)) {
1312 atomic_inc(&dentry->d_count);
1315 spin_unlock(&dentry->d_lock);
1318 spin_unlock(&dentry->d_lock);
1326 * d_hash_and_lookup - hash the qstr then search for a dentry
1327 * @dir: Directory to search in
1328 * @name: qstr of name we wish to find
1330 * On hash failure or on lookup failure NULL is returned.
1332 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1334 struct dentry *dentry = NULL;
1337 * Check for a fs-specific hash function. Note that we must
1338 * calculate the standard hash first, as the d_op->d_hash()
1339 * routine may choose to leave the hash value unchanged.
1341 name->hash = full_name_hash(name->name, name->len);
1342 if (dir->d_op && dir->d_op->d_hash) {
1343 if (dir->d_op->d_hash(dir, name) < 0)
1346 dentry = d_lookup(dir, name);
1352 * d_validate - verify dentry provided from insecure source
1353 * @dentry: The dentry alleged to be valid child of @dparent
1354 * @dparent: The parent dentry (known to be valid)
1355 * @hash: Hash of the dentry
1356 * @len: Length of the name
1358 * An insecure source has sent us a dentry, here we verify it and dget() it.
1359 * This is used by ncpfs in its readdir implementation.
1360 * Zero is returned in the dentry is invalid.
1363 int d_validate(struct dentry *dentry, struct dentry *dparent)
1365 struct hlist_head *base;
1366 struct hlist_node *lhp;
1368 /* Check whether the ptr might be valid at all.. */
1369 if (!kmem_ptr_validate(dentry_cache, dentry))
1372 if (dentry->d_parent != dparent)
1375 spin_lock(&dcache_lock);
1376 base = d_hash(dparent, dentry->d_name.hash);
1377 hlist_for_each(lhp,base) {
1378 /* hlist_for_each_entry_rcu() not required for d_hash list
1379 * as it is parsed under dcache_lock
1381 if (dentry == hlist_entry(lhp, struct dentry, d_hash)) {
1382 __dget_locked(dentry);
1383 spin_unlock(&dcache_lock);
1387 spin_unlock(&dcache_lock);
1393 * When a file is deleted, we have two options:
1394 * - turn this dentry into a negative dentry
1395 * - unhash this dentry and free it.
1397 * Usually, we want to just turn this into
1398 * a negative dentry, but if anybody else is
1399 * currently using the dentry or the inode
1400 * we can't do that and we fall back on removing
1401 * it from the hash queues and waiting for
1402 * it to be deleted later when it has no users
1406 * d_delete - delete a dentry
1407 * @dentry: The dentry to delete
1409 * Turn the dentry into a negative dentry if possible, otherwise
1410 * remove it from the hash queues so it can be deleted later
1413 void d_delete(struct dentry * dentry)
1417 * Are we the only user?
1419 spin_lock(&dcache_lock);
1420 spin_lock(&dentry->d_lock);
1421 isdir = S_ISDIR(dentry->d_inode->i_mode);
1422 if (atomic_read(&dentry->d_count) == 1) {
1423 dentry_iput(dentry);
1424 fsnotify_nameremove(dentry, isdir);
1428 if (!d_unhashed(dentry))
1431 spin_unlock(&dentry->d_lock);
1432 spin_unlock(&dcache_lock);
1434 fsnotify_nameremove(dentry, isdir);
1437 static void __d_rehash(struct dentry * entry, struct hlist_head *list)
1440 entry->d_flags &= ~DCACHE_UNHASHED;
1441 hlist_add_head_rcu(&entry->d_hash, list);
1444 static void _d_rehash(struct dentry * entry)
1446 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
1450 * d_rehash - add an entry back to the hash
1451 * @entry: dentry to add to the hash
1453 * Adds a dentry to the hash according to its name.
1456 void d_rehash(struct dentry * entry)
1458 spin_lock(&dcache_lock);
1459 spin_lock(&entry->d_lock);
1461 spin_unlock(&entry->d_lock);
1462 spin_unlock(&dcache_lock);
1465 #define do_switch(x,y) do { \
1466 __typeof__ (x) __tmp = x; \
1467 x = y; y = __tmp; } while (0)
1470 * When switching names, the actual string doesn't strictly have to
1471 * be preserved in the target - because we're dropping the target
1472 * anyway. As such, we can just do a simple memcpy() to copy over
1473 * the new name before we switch.
1475 * Note that we have to be a lot more careful about getting the hash
1476 * switched - we have to switch the hash value properly even if it
1477 * then no longer matches the actual (corrupted) string of the target.
1478 * The hash value has to match the hash queue that the dentry is on..
1480 static void switch_names(struct dentry *dentry, struct dentry *target)
1482 if (dname_external(target)) {
1483 if (dname_external(dentry)) {
1485 * Both external: swap the pointers
1487 do_switch(target->d_name.name, dentry->d_name.name);
1490 * dentry:internal, target:external. Steal target's
1491 * storage and make target internal.
1493 memcpy(target->d_iname, dentry->d_name.name,
1494 dentry->d_name.len + 1);
1495 dentry->d_name.name = target->d_name.name;
1496 target->d_name.name = target->d_iname;
1499 if (dname_external(dentry)) {
1501 * dentry:external, target:internal. Give dentry's
1502 * storage to target and make dentry internal
1504 memcpy(dentry->d_iname, target->d_name.name,
1505 target->d_name.len + 1);
1506 target->d_name.name = dentry->d_name.name;
1507 dentry->d_name.name = dentry->d_iname;
1510 * Both are internal. Just copy target to dentry
1512 memcpy(dentry->d_iname, target->d_name.name,
1513 target->d_name.len + 1);
1519 * We cannibalize "target" when moving dentry on top of it,
1520 * because it's going to be thrown away anyway. We could be more
1521 * polite about it, though.
1523 * This forceful removal will result in ugly /proc output if
1524 * somebody holds a file open that got deleted due to a rename.
1525 * We could be nicer about the deleted file, and let it show
1526 * up under the name it had before it was deleted rather than
1527 * under the original name of the file that was moved on top of it.
1531 * d_move_locked - move a dentry
1532 * @dentry: entry to move
1533 * @target: new dentry
1535 * Update the dcache to reflect the move of a file name. Negative
1536 * dcache entries should not be moved in this way.
1538 static void d_move_locked(struct dentry * dentry, struct dentry * target)
1540 struct hlist_head *list;
1542 if (!dentry->d_inode)
1543 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
1545 write_seqlock(&rename_lock);
1547 * XXXX: do we really need to take target->d_lock?
1549 if (target < dentry) {
1550 spin_lock(&target->d_lock);
1551 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1553 spin_lock(&dentry->d_lock);
1554 spin_lock_nested(&target->d_lock, DENTRY_D_LOCK_NESTED);
1557 /* Move the dentry to the target hash queue, if on different bucket */
1558 if (d_unhashed(dentry))
1559 goto already_unhashed;
1561 hlist_del_rcu(&dentry->d_hash);
1564 list = d_hash(target->d_parent, target->d_name.hash);
1565 __d_rehash(dentry, list);
1567 /* Unhash the target: dput() will then get rid of it */
1570 list_del(&dentry->d_u.d_child);
1571 list_del(&target->d_u.d_child);
1573 /* Switch the names.. */
1574 switch_names(dentry, target);
1575 do_switch(dentry->d_name.len, target->d_name.len);
1576 do_switch(dentry->d_name.hash, target->d_name.hash);
1578 /* ... and switch the parents */
1579 if (IS_ROOT(dentry)) {
1580 dentry->d_parent = target->d_parent;
1581 target->d_parent = target;
1582 INIT_LIST_HEAD(&target->d_u.d_child);
1584 do_switch(dentry->d_parent, target->d_parent);
1586 /* And add them back to the (new) parent lists */
1587 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1590 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1591 spin_unlock(&target->d_lock);
1592 fsnotify_d_move(dentry);
1593 spin_unlock(&dentry->d_lock);
1594 write_sequnlock(&rename_lock);
1598 * d_move - move a dentry
1599 * @dentry: entry to move
1600 * @target: new dentry
1602 * Update the dcache to reflect the move of a file name. Negative
1603 * dcache entries should not be moved in this way.
1606 void d_move(struct dentry * dentry, struct dentry * target)
1608 spin_lock(&dcache_lock);
1609 d_move_locked(dentry, target);
1610 spin_unlock(&dcache_lock);
1614 * Helper that returns 1 if p1 is a parent of p2, else 0
1616 static int d_isparent(struct dentry *p1, struct dentry *p2)
1620 for (p = p2; p->d_parent != p; p = p->d_parent) {
1621 if (p->d_parent == p1)
1628 * This helper attempts to cope with remotely renamed directories
1630 * It assumes that the caller is already holding
1631 * dentry->d_parent->d_inode->i_mutex and the dcache_lock
1633 * Note: If ever the locking in lock_rename() changes, then please
1634 * remember to update this too...
1636 static struct dentry *__d_unalias(struct dentry *dentry, struct dentry *alias)
1637 __releases(dcache_lock)
1639 struct mutex *m1 = NULL, *m2 = NULL;
1642 /* If alias and dentry share a parent, then no extra locks required */
1643 if (alias->d_parent == dentry->d_parent)
1646 /* Check for loops */
1647 ret = ERR_PTR(-ELOOP);
1648 if (d_isparent(alias, dentry))
1651 /* See lock_rename() */
1652 ret = ERR_PTR(-EBUSY);
1653 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
1655 m1 = &dentry->d_sb->s_vfs_rename_mutex;
1656 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
1658 m2 = &alias->d_parent->d_inode->i_mutex;
1660 d_move_locked(alias, dentry);
1663 spin_unlock(&dcache_lock);
1672 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
1673 * named dentry in place of the dentry to be replaced.
1675 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
1677 struct dentry *dparent, *aparent;
1679 switch_names(dentry, anon);
1680 do_switch(dentry->d_name.len, anon->d_name.len);
1681 do_switch(dentry->d_name.hash, anon->d_name.hash);
1683 dparent = dentry->d_parent;
1684 aparent = anon->d_parent;
1686 dentry->d_parent = (aparent == anon) ? dentry : aparent;
1687 list_del(&dentry->d_u.d_child);
1688 if (!IS_ROOT(dentry))
1689 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1691 INIT_LIST_HEAD(&dentry->d_u.d_child);
1693 anon->d_parent = (dparent == dentry) ? anon : dparent;
1694 list_del(&anon->d_u.d_child);
1696 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
1698 INIT_LIST_HEAD(&anon->d_u.d_child);
1700 anon->d_flags &= ~DCACHE_DISCONNECTED;
1704 * d_materialise_unique - introduce an inode into the tree
1705 * @dentry: candidate dentry
1706 * @inode: inode to bind to the dentry, to which aliases may be attached
1708 * Introduces an dentry into the tree, substituting an extant disconnected
1709 * root directory alias in its place if there is one
1711 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
1713 struct dentry *actual;
1715 BUG_ON(!d_unhashed(dentry));
1717 spin_lock(&dcache_lock);
1721 dentry->d_inode = NULL;
1725 if (S_ISDIR(inode->i_mode)) {
1726 struct dentry *alias;
1728 /* Does an aliased dentry already exist? */
1729 alias = __d_find_alias(inode, 0);
1732 /* Is this an anonymous mountpoint that we could splice
1734 if (IS_ROOT(alias)) {
1735 spin_lock(&alias->d_lock);
1736 __d_materialise_dentry(dentry, alias);
1740 /* Nope, but we must(!) avoid directory aliasing */
1741 actual = __d_unalias(dentry, alias);
1748 /* Add a unique reference */
1749 actual = __d_instantiate_unique(dentry, inode);
1752 else if (unlikely(!d_unhashed(actual)))
1753 goto shouldnt_be_hashed;
1756 spin_lock(&actual->d_lock);
1759 spin_unlock(&actual->d_lock);
1760 spin_unlock(&dcache_lock);
1762 if (actual == dentry) {
1763 security_d_instantiate(dentry, inode);
1771 spin_unlock(&dcache_lock);
1775 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
1779 return -ENAMETOOLONG;
1781 memcpy(*buffer, str, namelen);
1785 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
1787 return prepend(buffer, buflen, name->name, name->len);
1791 * __d_path - return the path of a dentry
1792 * @path: the dentry/vfsmount to report
1793 * @root: root vfsmnt/dentry (may be modified by this function)
1794 * @buffer: buffer to return value in
1795 * @buflen: buffer length
1797 * Convert a dentry into an ASCII path name. If the entry has been deleted
1798 * the string " (deleted)" is appended. Note that this is ambiguous.
1800 * Returns the buffer or an error code if the path was too long.
1802 * "buflen" should be positive. Caller holds the dcache_lock.
1804 * If path is not reachable from the supplied root, then the value of
1805 * root is changed (without modifying refcounts).
1807 char *__d_path(const struct path *path, struct path *root,
1808 char *buffer, int buflen)
1810 struct dentry *dentry = path->dentry;
1811 struct vfsmount *vfsmnt = path->mnt;
1812 char *end = buffer + buflen;
1815 spin_lock(&vfsmount_lock);
1816 prepend(&end, &buflen, "\0", 1);
1817 if (!IS_ROOT(dentry) && d_unhashed(dentry) &&
1818 (prepend(&end, &buflen, " (deleted)", 10) != 0))
1828 struct dentry * parent;
1830 if (dentry == root->dentry && vfsmnt == root->mnt)
1832 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
1834 if (vfsmnt->mnt_parent == vfsmnt) {
1837 dentry = vfsmnt->mnt_mountpoint;
1838 vfsmnt = vfsmnt->mnt_parent;
1841 parent = dentry->d_parent;
1843 if ((prepend_name(&end, &buflen, &dentry->d_name) != 0) ||
1844 (prepend(&end, &buflen, "/", 1) != 0))
1851 spin_unlock(&vfsmount_lock);
1855 retval += 1; /* hit the slash */
1856 if (prepend_name(&retval, &buflen, &dentry->d_name) != 0)
1859 root->dentry = dentry;
1863 retval = ERR_PTR(-ENAMETOOLONG);
1868 * d_path - return the path of a dentry
1869 * @path: path to report
1870 * @buf: buffer to return value in
1871 * @buflen: buffer length
1873 * Convert a dentry into an ASCII path name. If the entry has been deleted
1874 * the string " (deleted)" is appended. Note that this is ambiguous.
1876 * Returns the buffer or an error code if the path was too long.
1878 * "buflen" should be positive.
1880 char *d_path(const struct path *path, char *buf, int buflen)
1887 * We have various synthetic filesystems that never get mounted. On
1888 * these filesystems dentries are never used for lookup purposes, and
1889 * thus don't need to be hashed. They also don't need a name until a
1890 * user wants to identify the object in /proc/pid/fd/. The little hack
1891 * below allows us to generate a name for these objects on demand:
1893 if (path->dentry->d_op && path->dentry->d_op->d_dname)
1894 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
1896 read_lock(¤t->fs->lock);
1897 root = current->fs->root;
1899 read_unlock(¤t->fs->lock);
1900 spin_lock(&dcache_lock);
1902 res = __d_path(path, &tmp, buf, buflen);
1903 spin_unlock(&dcache_lock);
1909 * Helper function for dentry_operations.d_dname() members
1911 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
1912 const char *fmt, ...)
1918 va_start(args, fmt);
1919 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
1922 if (sz > sizeof(temp) || sz > buflen)
1923 return ERR_PTR(-ENAMETOOLONG);
1925 buffer += buflen - sz;
1926 return memcpy(buffer, temp, sz);
1930 * Write full pathname from the root of the filesystem into the buffer.
1932 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
1934 char *end = buf + buflen;
1937 spin_lock(&dcache_lock);
1938 prepend(&end, &buflen, "\0", 1);
1939 if (!IS_ROOT(dentry) && d_unhashed(dentry) &&
1940 (prepend(&end, &buflen, "//deleted", 9) != 0))
1948 while (!IS_ROOT(dentry)) {
1949 struct dentry *parent = dentry->d_parent;
1952 if ((prepend_name(&end, &buflen, &dentry->d_name) != 0) ||
1953 (prepend(&end, &buflen, "/", 1) != 0))
1959 spin_unlock(&dcache_lock);
1962 spin_unlock(&dcache_lock);
1963 return ERR_PTR(-ENAMETOOLONG);
1967 * NOTE! The user-level library version returns a
1968 * character pointer. The kernel system call just
1969 * returns the length of the buffer filled (which
1970 * includes the ending '\0' character), or a negative
1971 * error value. So libc would do something like
1973 * char *getcwd(char * buf, size_t size)
1977 * retval = sys_getcwd(buf, size);
1984 asmlinkage long sys_getcwd(char __user *buf, unsigned long size)
1987 struct path pwd, root;
1988 char *page = (char *) __get_free_page(GFP_USER);
1993 read_lock(¤t->fs->lock);
1994 pwd = current->fs->pwd;
1996 root = current->fs->root;
1998 read_unlock(¤t->fs->lock);
2001 /* Has the current directory has been unlinked? */
2002 spin_lock(&dcache_lock);
2003 if (IS_ROOT(pwd.dentry) || !d_unhashed(pwd.dentry)) {
2005 struct path tmp = root;
2008 cwd = __d_path(&pwd, &tmp, page, PAGE_SIZE);
2009 spin_unlock(&dcache_lock);
2011 error = PTR_ERR(cwd);
2016 len = PAGE_SIZE + page - cwd;
2019 if (copy_to_user(buf, cwd, len))
2023 spin_unlock(&dcache_lock);
2028 free_page((unsigned long) page);
2033 * Test whether new_dentry is a subdirectory of old_dentry.
2035 * Trivially implemented using the dcache structure
2039 * is_subdir - is new dentry a subdirectory of old_dentry
2040 * @new_dentry: new dentry
2041 * @old_dentry: old dentry
2043 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2044 * Returns 0 otherwise.
2045 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2048 int is_subdir(struct dentry * new_dentry, struct dentry * old_dentry)
2051 struct dentry * saved = new_dentry;
2054 /* need rcu_readlock to protect against the d_parent trashing due to
2059 /* for restarting inner loop in case of seq retry */
2062 seq = read_seqbegin(&rename_lock);
2064 if (new_dentry != old_dentry) {
2065 struct dentry * parent = new_dentry->d_parent;
2066 if (parent == new_dentry)
2068 new_dentry = parent;
2074 } while (read_seqretry(&rename_lock, seq));
2080 void d_genocide(struct dentry *root)
2082 struct dentry *this_parent = root;
2083 struct list_head *next;
2085 spin_lock(&dcache_lock);
2087 next = this_parent->d_subdirs.next;
2089 while (next != &this_parent->d_subdirs) {
2090 struct list_head *tmp = next;
2091 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2093 if (d_unhashed(dentry)||!dentry->d_inode)
2095 if (!list_empty(&dentry->d_subdirs)) {
2096 this_parent = dentry;
2099 atomic_dec(&dentry->d_count);
2101 if (this_parent != root) {
2102 next = this_parent->d_u.d_child.next;
2103 atomic_dec(&this_parent->d_count);
2104 this_parent = this_parent->d_parent;
2107 spin_unlock(&dcache_lock);
2111 * find_inode_number - check for dentry with name
2112 * @dir: directory to check
2113 * @name: Name to find.
2115 * Check whether a dentry already exists for the given name,
2116 * and return the inode number if it has an inode. Otherwise
2119 * This routine is used to post-process directory listings for
2120 * filesystems using synthetic inode numbers, and is necessary
2121 * to keep getcwd() working.
2124 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2126 struct dentry * dentry;
2129 dentry = d_hash_and_lookup(dir, name);
2131 if (dentry->d_inode)
2132 ino = dentry->d_inode->i_ino;
2138 static __initdata unsigned long dhash_entries;
2139 static int __init set_dhash_entries(char *str)
2143 dhash_entries = simple_strtoul(str, &str, 0);
2146 __setup("dhash_entries=", set_dhash_entries);
2148 static void __init dcache_init_early(void)
2152 /* If hashes are distributed across NUMA nodes, defer
2153 * hash allocation until vmalloc space is available.
2159 alloc_large_system_hash("Dentry cache",
2160 sizeof(struct hlist_head),
2168 for (loop = 0; loop < (1 << d_hash_shift); loop++)
2169 INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2172 static void __init dcache_init(void)
2177 * A constructor could be added for stable state like the lists,
2178 * but it is probably not worth it because of the cache nature
2181 dentry_cache = KMEM_CACHE(dentry,
2182 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
2184 register_shrinker(&dcache_shrinker);
2186 /* Hash may have been set up in dcache_init_early */
2191 alloc_large_system_hash("Dentry cache",
2192 sizeof(struct hlist_head),
2200 for (loop = 0; loop < (1 << d_hash_shift); loop++)
2201 INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2204 /* SLAB cache for __getname() consumers */
2205 struct kmem_cache *names_cachep __read_mostly;
2207 /* SLAB cache for file structures */
2208 struct kmem_cache *filp_cachep __read_mostly;
2210 EXPORT_SYMBOL(d_genocide);
2212 void __init vfs_caches_init_early(void)
2214 dcache_init_early();
2218 void __init vfs_caches_init(unsigned long mempages)
2220 unsigned long reserve;
2222 /* Base hash sizes on available memory, with a reserve equal to
2223 150% of current kernel size */
2225 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
2226 mempages -= reserve;
2228 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
2229 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2231 filp_cachep = kmem_cache_create("filp", sizeof(struct file), 0,
2232 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2236 files_init(mempages);
2242 EXPORT_SYMBOL(d_alloc);
2243 EXPORT_SYMBOL(d_alloc_anon);
2244 EXPORT_SYMBOL(d_alloc_root);
2245 EXPORT_SYMBOL(d_delete);
2246 EXPORT_SYMBOL(d_find_alias);
2247 EXPORT_SYMBOL(d_instantiate);
2248 EXPORT_SYMBOL(d_invalidate);
2249 EXPORT_SYMBOL(d_lookup);
2250 EXPORT_SYMBOL(d_move);
2251 EXPORT_SYMBOL_GPL(d_materialise_unique);
2252 EXPORT_SYMBOL(d_path);
2253 EXPORT_SYMBOL(d_prune_aliases);
2254 EXPORT_SYMBOL(d_rehash);
2255 EXPORT_SYMBOL(d_splice_alias);
2256 EXPORT_SYMBOL(d_validate);
2257 EXPORT_SYMBOL(dget_locked);
2258 EXPORT_SYMBOL(dput);
2259 EXPORT_SYMBOL(find_inode_number);
2260 EXPORT_SYMBOL(have_submounts);
2261 EXPORT_SYMBOL(names_cachep);
2262 EXPORT_SYMBOL(shrink_dcache_parent);
2263 EXPORT_SYMBOL(shrink_dcache_sb);