1 #include "amd64_edac.h"
3 static struct edac_pci_ctl_info *amd64_ctl_pci;
5 static int report_gart_errors;
6 module_param(report_gart_errors, int, 0644);
9 * Set by command line parameter. If BIOS has enabled the ECC, this override is
10 * cleared to prevent re-enabling the hardware by this driver.
12 static int ecc_enable_override;
13 module_param(ecc_enable_override, int, 0644);
15 /* Lookup table for all possible MC control instances */
17 static struct mem_ctl_info *mci_lookup[MAX_NUMNODES];
18 static struct amd64_pvt *pvt_lookup[MAX_NUMNODES];
21 * Memory scrubber control interface. For K8, memory scrubbing is handled by
22 * hardware and can involve L2 cache, dcache as well as the main memory. With
23 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
26 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
27 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
28 * bytes/sec for the setting.
30 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
31 * other archs, we might not have access to the caches directly.
35 * scan the scrub rate mapping table for a close or matching bandwidth value to
36 * issue. If requested is too big, then use last maximum value found.
38 static int amd64_search_set_scrub_rate(struct pci_dev *ctl, u32 new_bw,
45 * map the configured rate (new_bw) to a value specific to the AMD64
46 * memory controller and apply to register. Search for the first
47 * bandwidth entry that is greater or equal than the setting requested
48 * and program that. If at last entry, turn off DRAM scrubbing.
50 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
52 * skip scrub rates which aren't recommended
53 * (see F10 BKDG, F3x58)
55 if (scrubrates[i].scrubval < min_scrubrate)
58 if (scrubrates[i].bandwidth <= new_bw)
62 * if no suitable bandwidth found, turn off DRAM scrubbing
63 * entirely by falling back to the last element in the
68 scrubval = scrubrates[i].scrubval;
70 edac_printk(KERN_DEBUG, EDAC_MC,
71 "Setting scrub rate bandwidth: %u\n",
72 scrubrates[i].bandwidth);
74 edac_printk(KERN_DEBUG, EDAC_MC, "Turning scrubbing off.\n");
76 pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
81 static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 *bandwidth)
83 struct amd64_pvt *pvt = mci->pvt_info;
84 u32 min_scrubrate = 0x0;
86 switch (boot_cpu_data.x86) {
88 min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
91 min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
94 min_scrubrate = F11_MIN_SCRUB_RATE_BITS;
98 amd64_printk(KERN_ERR, "Unsupported family!\n");
101 return amd64_search_set_scrub_rate(pvt->misc_f3_ctl, *bandwidth,
105 static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
107 struct amd64_pvt *pvt = mci->pvt_info;
109 int status = -1, i, ret = 0;
111 ret = pci_read_config_dword(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval);
113 debugf0("Reading K8_SCRCTRL failed\n");
115 scrubval = scrubval & 0x001F;
117 edac_printk(KERN_DEBUG, EDAC_MC,
118 "pci-read, sdram scrub control value: %d \n", scrubval);
120 for (i = 0; ARRAY_SIZE(scrubrates); i++) {
121 if (scrubrates[i].scrubval == scrubval) {
122 *bw = scrubrates[i].bandwidth;
131 /* Map from a CSROW entry to the mask entry that operates on it */
132 static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
134 return csrow >> (pvt->num_dcsm >> 3);
137 /* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
138 static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
141 return pvt->dcsb0[csrow];
143 return pvt->dcsb1[csrow];
147 * Return the 'mask' address the i'th CS entry. This function is needed because
148 * there number of DCSM registers on Rev E and prior vs Rev F and later is
151 static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
154 return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
156 return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
161 * In *base and *limit, pass back the full 40-bit base and limit physical
162 * addresses for the node given by node_id. This information is obtained from
163 * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
164 * base and limit addresses are of type SysAddr, as defined at the start of
165 * section 3.4.4 (p. 70). They are the lowest and highest physical addresses
166 * in the address range they represent.
168 static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
169 u64 *base, u64 *limit)
171 *base = pvt->dram_base[node_id];
172 *limit = pvt->dram_limit[node_id];
176 * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
179 static int amd64_base_limit_match(struct amd64_pvt *pvt,
180 u64 sys_addr, int node_id)
182 u64 base, limit, addr;
184 amd64_get_base_and_limit(pvt, node_id, &base, &limit);
186 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
187 * all ones if the most significant implemented address bit is 1.
188 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
189 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
190 * Application Programming.
192 addr = sys_addr & 0x000000ffffffffffull;
194 return (addr >= base) && (addr <= limit);
198 * Attempt to map a SysAddr to a node. On success, return a pointer to the
199 * mem_ctl_info structure for the node that the SysAddr maps to.
201 * On failure, return NULL.
203 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
206 struct amd64_pvt *pvt;
211 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
212 * 3.4.4.2) registers to map the SysAddr to a node ID.
217 * The value of this field should be the same for all DRAM Base
218 * registers. Therefore we arbitrarily choose to read it from the
219 * register for node 0.
221 intlv_en = pvt->dram_IntlvEn[0];
224 for (node_id = 0; ; ) {
225 if (amd64_base_limit_match(pvt, sys_addr, node_id))
228 if (++node_id >= DRAM_REG_COUNT)
234 if (unlikely((intlv_en != (0x01 << 8)) &&
235 (intlv_en != (0x03 << 8)) &&
236 (intlv_en != (0x07 << 8)))) {
237 amd64_printk(KERN_WARNING, "junk value of 0x%x extracted from "
238 "IntlvEn field of DRAM Base Register for node 0: "
239 "This probably indicates a BIOS bug.\n", intlv_en);
243 bits = (((u32) sys_addr) >> 12) & intlv_en;
245 for (node_id = 0; ; ) {
246 if ((pvt->dram_limit[node_id] & intlv_en) == bits)
247 break; /* intlv_sel field matches */
249 if (++node_id >= DRAM_REG_COUNT)
253 /* sanity test for sys_addr */
254 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
255 amd64_printk(KERN_WARNING,
256 "%s(): sys_addr 0x%lx falls outside base/limit "
257 "address range for node %d with node interleaving "
258 "enabled.\n", __func__, (unsigned long)sys_addr,
264 return edac_mc_find(node_id);
267 debugf2("sys_addr 0x%lx doesn't match any node\n",
268 (unsigned long)sys_addr);
274 * Extract the DRAM CS base address from selected csrow register.
276 static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
278 return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
283 * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
285 static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
287 u64 dcsm_bits, other_bits;
290 /* Extract bits from DRAM CS Mask. */
291 dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
293 other_bits = pvt->dcsm_mask;
294 other_bits = ~(other_bits << pvt->dcs_shift);
297 * The extracted bits from DCSM belong in the spaces represented by
298 * the cleared bits in other_bits.
300 mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
306 * @input_addr is an InputAddr associated with the node given by mci. Return the
307 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
309 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
311 struct amd64_pvt *pvt;
318 * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
319 * base/mask register pair, test the condition shown near the start of
320 * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
322 for (csrow = 0; csrow < CHIPSELECT_COUNT; csrow++) {
324 /* This DRAM chip select is disabled on this node */
325 if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
328 base = base_from_dct_base(pvt, csrow);
329 mask = ~mask_from_dct_mask(pvt, csrow);
331 if ((input_addr & mask) == (base & mask)) {
332 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
333 (unsigned long)input_addr, csrow,
340 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
341 (unsigned long)input_addr, pvt->mc_node_id);
347 * Return the base value defined by the DRAM Base register for the node
348 * represented by mci. This function returns the full 40-bit value despite the
349 * fact that the register only stores bits 39-24 of the value. See section
350 * 3.4.4.1 (BKDG #26094, K8, revA-E)
352 static inline u64 get_dram_base(struct mem_ctl_info *mci)
354 struct amd64_pvt *pvt = mci->pvt_info;
356 return pvt->dram_base[pvt->mc_node_id];
360 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
361 * for the node represented by mci. Info is passed back in *hole_base,
362 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
363 * info is invalid. Info may be invalid for either of the following reasons:
365 * - The revision of the node is not E or greater. In this case, the DRAM Hole
366 * Address Register does not exist.
368 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
369 * indicating that its contents are not valid.
371 * The values passed back in *hole_base, *hole_offset, and *hole_size are
372 * complete 32-bit values despite the fact that the bitfields in the DHAR
373 * only represent bits 31-24 of the base and offset values.
375 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
376 u64 *hole_offset, u64 *hole_size)
378 struct amd64_pvt *pvt = mci->pvt_info;
381 /* only revE and later have the DRAM Hole Address Register */
382 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < OPTERON_CPU_REV_E) {
383 debugf1(" revision %d for node %d does not support DHAR\n",
384 pvt->ext_model, pvt->mc_node_id);
388 /* only valid for Fam10h */
389 if (boot_cpu_data.x86 == 0x10 &&
390 (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
391 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
395 if ((pvt->dhar & DHAR_VALID) == 0) {
396 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
401 /* This node has Memory Hoisting */
403 /* +------------------+--------------------+--------------------+-----
404 * | memory | DRAM hole | relocated |
405 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
407 * | | | [0x100000000, |
408 * | | | (0x100000000+ |
409 * | | | (0xffffffff-x))] |
410 * +------------------+--------------------+--------------------+-----
412 * Above is a diagram of physical memory showing the DRAM hole and the
413 * relocated addresses from the DRAM hole. As shown, the DRAM hole
414 * starts at address x (the base address) and extends through address
415 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
416 * addresses in the hole so that they start at 0x100000000.
419 base = dhar_base(pvt->dhar);
422 *hole_size = (0x1ull << 32) - base;
424 if (boot_cpu_data.x86 > 0xf)
425 *hole_offset = f10_dhar_offset(pvt->dhar);
427 *hole_offset = k8_dhar_offset(pvt->dhar);
429 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
430 pvt->mc_node_id, (unsigned long)*hole_base,
431 (unsigned long)*hole_offset, (unsigned long)*hole_size);
435 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
438 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
439 * assumed that sys_addr maps to the node given by mci.
441 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
442 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
443 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
444 * then it is also involved in translating a SysAddr to a DramAddr. Sections
445 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
446 * These parts of the documentation are unclear. I interpret them as follows:
448 * When node n receives a SysAddr, it processes the SysAddr as follows:
450 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
451 * Limit registers for node n. If the SysAddr is not within the range
452 * specified by the base and limit values, then node n ignores the Sysaddr
453 * (since it does not map to node n). Otherwise continue to step 2 below.
455 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
456 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
457 * the range of relocated addresses (starting at 0x100000000) from the DRAM
458 * hole. If not, skip to step 3 below. Else get the value of the
459 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
460 * offset defined by this value from the SysAddr.
462 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
463 * Base register for node n. To obtain the DramAddr, subtract the base
464 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
466 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
468 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
471 dram_base = get_dram_base(mci);
473 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
476 if ((sys_addr >= (1ull << 32)) &&
477 (sys_addr < ((1ull << 32) + hole_size))) {
478 /* use DHAR to translate SysAddr to DramAddr */
479 dram_addr = sys_addr - hole_offset;
481 debugf2("using DHAR to translate SysAddr 0x%lx to "
483 (unsigned long)sys_addr,
484 (unsigned long)dram_addr);
491 * Translate the SysAddr to a DramAddr as shown near the start of
492 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
493 * only deals with 40-bit values. Therefore we discard bits 63-40 of
494 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
495 * discard are all 1s. Otherwise the bits we discard are all 0s. See
496 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
497 * Programmer's Manual Volume 1 Application Programming.
499 dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
501 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
502 "DramAddr 0x%lx\n", (unsigned long)sys_addr,
503 (unsigned long)dram_addr);
508 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
509 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
510 * for node interleaving.
512 static int num_node_interleave_bits(unsigned intlv_en)
514 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
517 BUG_ON(intlv_en > 7);
518 n = intlv_shift_table[intlv_en];
522 /* Translate the DramAddr given by @dram_addr to an InputAddr. */
523 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
525 struct amd64_pvt *pvt;
532 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
533 * concerning translating a DramAddr to an InputAddr.
535 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
536 input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
539 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
540 intlv_shift, (unsigned long)dram_addr,
541 (unsigned long)input_addr);
547 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
548 * assumed that @sys_addr maps to the node given by mci.
550 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
555 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
557 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
558 (unsigned long)sys_addr, (unsigned long)input_addr);
565 * @input_addr is an InputAddr associated with the node represented by mci.
566 * Translate @input_addr to a DramAddr and return the result.
568 static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
570 struct amd64_pvt *pvt;
571 int node_id, intlv_shift;
576 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
577 * shows how to translate a DramAddr to an InputAddr. Here we reverse
578 * this procedure. When translating from a DramAddr to an InputAddr, the
579 * bits used for node interleaving are discarded. Here we recover these
580 * bits from the IntlvSel field of the DRAM Limit register (section
581 * 3.4.4.2) for the node that input_addr is associated with.
584 node_id = pvt->mc_node_id;
585 BUG_ON((node_id < 0) || (node_id > 7));
587 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
589 if (intlv_shift == 0) {
590 debugf1(" InputAddr 0x%lx translates to DramAddr of "
591 "same value\n", (unsigned long)input_addr);
596 bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
597 (input_addr & 0xfff);
599 intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
600 dram_addr = bits + (intlv_sel << 12);
602 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
603 "(%d node interleave bits)\n", (unsigned long)input_addr,
604 (unsigned long)dram_addr, intlv_shift);
610 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
611 * @dram_addr to a SysAddr.
613 static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
615 struct amd64_pvt *pvt = mci->pvt_info;
616 u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
619 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
622 if ((dram_addr >= hole_base) &&
623 (dram_addr < (hole_base + hole_size))) {
624 sys_addr = dram_addr + hole_offset;
626 debugf1("using DHAR to translate DramAddr 0x%lx to "
627 "SysAddr 0x%lx\n", (unsigned long)dram_addr,
628 (unsigned long)sys_addr);
634 amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
635 sys_addr = dram_addr + base;
638 * The sys_addr we have computed up to this point is a 40-bit value
639 * because the k8 deals with 40-bit values. However, the value we are
640 * supposed to return is a full 64-bit physical address. The AMD
641 * x86-64 architecture specifies that the most significant implemented
642 * address bit through bit 63 of a physical address must be either all
643 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
644 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
645 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
648 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
650 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
651 pvt->mc_node_id, (unsigned long)dram_addr,
652 (unsigned long)sys_addr);
658 * @input_addr is an InputAddr associated with the node given by mci. Translate
659 * @input_addr to a SysAddr.
661 static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
664 return dram_addr_to_sys_addr(mci,
665 input_addr_to_dram_addr(mci, input_addr));
669 * Find the minimum and maximum InputAddr values that map to the given @csrow.
670 * Pass back these values in *input_addr_min and *input_addr_max.
672 static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
673 u64 *input_addr_min, u64 *input_addr_max)
675 struct amd64_pvt *pvt;
679 BUG_ON((csrow < 0) || (csrow >= CHIPSELECT_COUNT));
681 base = base_from_dct_base(pvt, csrow);
682 mask = mask_from_dct_mask(pvt, csrow);
684 *input_addr_min = base & ~mask;
685 *input_addr_max = base | mask | pvt->dcs_mask_notused;
689 * Extract error address from MCA NB Address Low (section 3.6.4.5) and MCA NB
690 * Address High (section 3.6.4.6) register values and return the result. Address
691 * is located in the info structure (nbeah and nbeal), the encoding is device
694 static u64 extract_error_address(struct mem_ctl_info *mci,
695 struct amd64_error_info_regs *info)
697 struct amd64_pvt *pvt = mci->pvt_info;
699 return pvt->ops->get_error_address(mci, info);
703 /* Map the Error address to a PAGE and PAGE OFFSET. */
704 static inline void error_address_to_page_and_offset(u64 error_address,
705 u32 *page, u32 *offset)
707 *page = (u32) (error_address >> PAGE_SHIFT);
708 *offset = ((u32) error_address) & ~PAGE_MASK;
712 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
713 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
714 * of a node that detected an ECC memory error. mci represents the node that
715 * the error address maps to (possibly different from the node that detected
716 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
719 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
723 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
726 amd64_mc_printk(mci, KERN_ERR,
727 "Failed to translate InputAddr to csrow for "
728 "address 0x%lx\n", (unsigned long)sys_addr);
732 static int get_channel_from_ecc_syndrome(unsigned short syndrome);
734 static void amd64_cpu_display_info(struct amd64_pvt *pvt)
736 if (boot_cpu_data.x86 == 0x11)
737 edac_printk(KERN_DEBUG, EDAC_MC, "F11h CPU detected\n");
738 else if (boot_cpu_data.x86 == 0x10)
739 edac_printk(KERN_DEBUG, EDAC_MC, "F10h CPU detected\n");
740 else if (boot_cpu_data.x86 == 0xf)
741 edac_printk(KERN_DEBUG, EDAC_MC, "%s detected\n",
742 (pvt->ext_model >= OPTERON_CPU_REV_F) ?
743 "Rev F or later" : "Rev E or earlier");
745 /* we'll hardly ever ever get here */
746 edac_printk(KERN_ERR, EDAC_MC, "Unknown cpu!\n");
750 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
753 static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
756 enum dev_type edac_cap = EDAC_NONE;
758 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= OPTERON_CPU_REV_F)
762 if (pvt->dclr0 >> BIT(bit))
763 edac_cap = EDAC_FLAG_SECDED;
769 static void f10_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt,
772 /* Display and decode various NB registers for debug purposes. */
773 static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
777 debugf1(" nbcap:0x%8.08x DctDualCap=%s DualNode=%s 8-Node=%s\n",
779 (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "True" : "False",
780 (pvt->nbcap & K8_NBCAP_DUAL_NODE) ? "True" : "False",
781 (pvt->nbcap & K8_NBCAP_8_NODE) ? "True" : "False");
782 debugf1(" ECC Capable=%s ChipKill Capable=%s\n",
783 (pvt->nbcap & K8_NBCAP_SECDED) ? "True" : "False",
784 (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "True" : "False");
785 debugf1(" DramCfg0-low=0x%08x DIMM-ECC=%s Parity=%s Width=%s\n",
787 (pvt->dclr0 & BIT(19)) ? "Enabled" : "Disabled",
788 (pvt->dclr0 & BIT(8)) ? "Enabled" : "Disabled",
789 (pvt->dclr0 & BIT(11)) ? "128b" : "64b");
790 debugf1(" DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s DIMM Type=%s\n",
791 (pvt->dclr0 & BIT(12)) ? "Y" : "N",
792 (pvt->dclr0 & BIT(13)) ? "Y" : "N",
793 (pvt->dclr0 & BIT(14)) ? "Y" : "N",
794 (pvt->dclr0 & BIT(15)) ? "Y" : "N",
795 (pvt->dclr0 & BIT(16)) ? "UN-Buffered" : "Buffered");
798 debugf1(" online-spare: 0x%8.08x\n", pvt->online_spare);
800 if (boot_cpu_data.x86 == 0xf) {
801 debugf1(" dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n",
802 pvt->dhar, dhar_base(pvt->dhar),
803 k8_dhar_offset(pvt->dhar));
804 debugf1(" DramHoleValid=%s\n",
805 (pvt->dhar & DHAR_VALID) ? "True" : "False");
807 debugf1(" dbam-dkt: 0x%8.08x\n", pvt->dbam0);
809 /* everything below this point is Fam10h and above */
813 debugf1(" dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n",
814 pvt->dhar, dhar_base(pvt->dhar),
815 f10_dhar_offset(pvt->dhar));
816 debugf1(" DramMemHoistValid=%s DramHoleValid=%s\n",
817 (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) ?
819 (pvt->dhar & DHAR_VALID) ?
823 /* Only if NOT ganged does dcl1 have valid info */
824 if (!dct_ganging_enabled(pvt)) {
825 debugf1(" DramCfg1-low=0x%08x DIMM-ECC=%s Parity=%s "
826 "Width=%s\n", pvt->dclr1,
827 (pvt->dclr1 & BIT(19)) ? "Enabled" : "Disabled",
828 (pvt->dclr1 & BIT(8)) ? "Enabled" : "Disabled",
829 (pvt->dclr1 & BIT(11)) ? "128b" : "64b");
830 debugf1(" DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s "
832 (pvt->dclr1 & BIT(12)) ? "Y" : "N",
833 (pvt->dclr1 & BIT(13)) ? "Y" : "N",
834 (pvt->dclr1 & BIT(14)) ? "Y" : "N",
835 (pvt->dclr1 & BIT(15)) ? "Y" : "N",
836 (pvt->dclr1 & BIT(16)) ? "UN-Buffered" : "Buffered");
840 * Determine if ganged and then dump memory sizes for first controller,
841 * and if NOT ganged dump info for 2nd controller.
843 ganged = dct_ganging_enabled(pvt);
845 f10_debug_display_dimm_sizes(0, pvt, ganged);
848 f10_debug_display_dimm_sizes(1, pvt, ganged);
851 /* Read in both of DBAM registers */
852 static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
858 err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dbam0);
862 if (boot_cpu_data.x86 >= 0x10) {
864 err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dbam1);
871 debugf0("Error reading F2x%03x.\n", reg);
875 * NOTE: CPU Revision Dependent code: Rev E and Rev F
877 * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
878 * set the shift factor for the DCSB and DCSM values.
880 * ->dcs_mask_notused, RevE:
882 * To find the max InputAddr for the csrow, start with the base address and set
883 * all bits that are "don't care" bits in the test at the start of section
886 * The "don't care" bits are all set bits in the mask and all bits in the gaps
887 * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
888 * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
891 * ->dcs_mask_notused, RevF and later:
893 * To find the max InputAddr for the csrow, start with the base address and set
894 * all bits that are "don't care" bits in the test at the start of NPT section
897 * The "don't care" bits are all set bits in the mask and all bits in the gaps
898 * between bit ranges [36:27] and [21:13].
900 * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
901 * which are all bits in the above-mentioned gaps.
903 static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
905 if (pvt->ext_model >= OPTERON_CPU_REV_F) {
906 pvt->dcsb_base = REV_F_F1Xh_DCSB_BASE_BITS;
907 pvt->dcsm_mask = REV_F_F1Xh_DCSM_MASK_BITS;
908 pvt->dcs_mask_notused = REV_F_F1Xh_DCS_NOTUSED_BITS;
909 pvt->dcs_shift = REV_F_F1Xh_DCS_SHIFT;
911 switch (boot_cpu_data.x86) {
913 pvt->num_dcsm = REV_F_DCSM_COUNT;
917 pvt->num_dcsm = F10_DCSM_COUNT;
921 pvt->num_dcsm = F11_DCSM_COUNT;
925 amd64_printk(KERN_ERR, "Unsupported family!\n");
929 pvt->dcsb_base = REV_E_DCSB_BASE_BITS;
930 pvt->dcsm_mask = REV_E_DCSM_MASK_BITS;
931 pvt->dcs_mask_notused = REV_E_DCS_NOTUSED_BITS;
932 pvt->dcs_shift = REV_E_DCS_SHIFT;
933 pvt->num_dcsm = REV_E_DCSM_COUNT;
938 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
940 static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
942 int cs, reg, err = 0;
944 amd64_set_dct_base_and_mask(pvt);
946 for (cs = 0; cs < CHIPSELECT_COUNT; cs++) {
947 reg = K8_DCSB0 + (cs * 4);
948 err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
951 debugf0("Reading K8_DCSB0[%d] failed\n", cs);
953 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
954 cs, pvt->dcsb0[cs], reg);
956 /* If DCT are NOT ganged, then read in DCT1's base */
957 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
958 reg = F10_DCSB1 + (cs * 4);
959 err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
962 debugf0("Reading F10_DCSB1[%d] failed\n", cs);
964 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
965 cs, pvt->dcsb1[cs], reg);
971 for (cs = 0; cs < pvt->num_dcsm; cs++) {
972 reg = K8_DCSB0 + (cs * 4);
973 err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
976 debugf0("Reading K8_DCSM0 failed\n");
978 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
979 cs, pvt->dcsm0[cs], reg);
981 /* If DCT are NOT ganged, then read in DCT1's mask */
982 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
983 reg = F10_DCSM1 + (cs * 4);
984 err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
987 debugf0("Reading F10_DCSM1[%d] failed\n", cs);
989 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
990 cs, pvt->dcsm1[cs], reg);
996 static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt)
1000 if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= OPTERON_CPU_REV_F) {
1001 /* Rev F and later */
1002 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
1004 /* Rev E and earlier */
1005 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
1008 debugf1(" Memory type is: %s\n",
1009 (type == MEM_DDR2) ? "MEM_DDR2" :
1010 (type == MEM_RDDR2) ? "MEM_RDDR2" :
1011 (type == MEM_DDR) ? "MEM_DDR" : "MEM_RDDR");
1017 * Read the DRAM Configuration Low register. It differs between CG, D & E revs
1018 * and the later RevF memory controllers (DDR vs DDR2)
1021 * number of memory channels in operation
1023 * contents of the DCL0_LOW register
1025 static int k8_early_channel_count(struct amd64_pvt *pvt)
1029 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
1033 if ((boot_cpu_data.x86_model >> 4) >= OPTERON_CPU_REV_F) {
1034 /* RevF (NPT) and later */
1035 flag = pvt->dclr0 & F10_WIDTH_128;
1037 /* RevE and earlier */
1038 flag = pvt->dclr0 & REVE_WIDTH_128;
1044 return (flag) ? 2 : 1;
1047 /* extract the ERROR ADDRESS for the K8 CPUs */
1048 static u64 k8_get_error_address(struct mem_ctl_info *mci,
1049 struct amd64_error_info_regs *info)
1051 return (((u64) (info->nbeah & 0xff)) << 32) +
1052 (info->nbeal & ~0x03);
1056 * Read the Base and Limit registers for K8 based Memory controllers; extract
1057 * fields from the 'raw' reg into separate data fields
1059 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
1061 static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1064 u32 off = dram << 3; /* 8 bytes between DRAM entries */
1067 err = pci_read_config_dword(pvt->addr_f1_ctl,
1068 K8_DRAM_BASE_LOW + off, &low);
1070 debugf0("Reading K8_DRAM_BASE_LOW failed\n");
1072 /* Extract parts into separate data entries */
1073 pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
1074 pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
1075 pvt->dram_rw_en[dram] = (low & 0x3);
1077 err = pci_read_config_dword(pvt->addr_f1_ctl,
1078 K8_DRAM_LIMIT_LOW + off, &low);
1080 debugf0("Reading K8_DRAM_LIMIT_LOW failed\n");
1083 * Extract parts into separate data entries. Limit is the HIGHEST memory
1084 * location of the region, so lower 24 bits need to be all ones
1086 pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
1087 pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
1088 pvt->dram_DstNode[dram] = (low & 0x7);
1091 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
1092 struct amd64_error_info_regs *info,
1095 struct mem_ctl_info *src_mci;
1096 unsigned short syndrome;
1100 /* Extract the syndrome parts and form a 16-bit syndrome */
1101 syndrome = EXTRACT_HIGH_SYNDROME(info->nbsl) << 8;
1102 syndrome |= EXTRACT_LOW_SYNDROME(info->nbsh);
1104 /* CHIPKILL enabled */
1105 if (info->nbcfg & K8_NBCFG_CHIPKILL) {
1106 channel = get_channel_from_ecc_syndrome(syndrome);
1109 * Syndrome didn't map, so we don't know which of the
1110 * 2 DIMMs is in error. So we need to ID 'both' of them
1113 amd64_mc_printk(mci, KERN_WARNING,
1114 "unknown syndrome 0x%x - possible error "
1115 "reporting race\n", syndrome);
1116 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1121 * non-chipkill ecc mode
1123 * The k8 documentation is unclear about how to determine the
1124 * channel number when using non-chipkill memory. This method
1125 * was obtained from email communication with someone at AMD.
1126 * (Wish the email was placed in this comment - norsk)
1128 channel = ((SystemAddress & BIT(3)) != 0);
1132 * Find out which node the error address belongs to. This may be
1133 * different from the node that detected the error.
1135 src_mci = find_mc_by_sys_addr(mci, SystemAddress);
1137 amd64_mc_printk(mci, KERN_ERR,
1138 "failed to map error address 0x%lx to a node\n",
1139 (unsigned long)SystemAddress);
1140 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1144 /* Now map the SystemAddress to a CSROW */
1145 csrow = sys_addr_to_csrow(src_mci, SystemAddress);
1147 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1149 error_address_to_page_and_offset(SystemAddress, &page, &offset);
1151 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1152 channel, EDAC_MOD_STR);
1157 * determrine the number of PAGES in for this DIMM's size based on its DRAM
1160 * First step is to calc the number of bits to shift a value of 1 left to
1161 * indicate show many pages. Start with the DBAM value as the starting bits,
1162 * then proceed to adjust those shift bits, based on CPU rev and the table.
1163 * See BKDG on the DBAM
1165 static int k8_dbam_map_to_pages(struct amd64_pvt *pvt, int dram_map)
1169 if (pvt->ext_model >= OPTERON_CPU_REV_F) {
1170 nr_pages = 1 << (revf_quad_ddr2_shift[dram_map] - PAGE_SHIFT);
1173 * RevE and less section; this line is tricky. It collapses the
1174 * table used by RevD and later to one that matches revisions CG
1177 dram_map -= (pvt->ext_model >= OPTERON_CPU_REV_D) ?
1178 (dram_map > 8 ? 4 : (dram_map > 5 ?
1179 3 : (dram_map > 2 ? 1 : 0))) : 0;
1181 /* 25 shift is 32MiB minimum DIMM size in RevE and prior */
1182 nr_pages = 1 << (dram_map + 25 - PAGE_SHIFT);
1189 * Get the number of DCT channels in use.
1192 * number of Memory Channels in operation
1194 * contents of the DCL0_LOW register
1196 static int f10_early_channel_count(struct amd64_pvt *pvt)
1198 int err = 0, channels = 0;
1201 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
1205 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_1, &pvt->dclr1);
1209 /* If we are in 128 bit mode, then we are using 2 channels */
1210 if (pvt->dclr0 & F10_WIDTH_128) {
1211 debugf0("Data WIDTH is 128 bits - 2 channels\n");
1217 * Need to check if in UN-ganged mode: In such, there are 2 channels,
1218 * but they are NOT in 128 bit mode and thus the above 'dcl0' status bit
1221 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1222 * their CSEnable bit on. If so, then SINGLE DIMM case.
1224 debugf0("Data WIDTH is NOT 128 bits - need more decoding\n");
1227 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1228 * is more than just one DIMM present in unganged mode. Need to check
1229 * both controllers since DIMMs can be placed in either one.
1232 err = pci_read_config_dword(pvt->dram_f2_ctl, DBAM0, &dbam);
1236 if (DBAM_DIMM(0, dbam) > 0)
1238 if (DBAM_DIMM(1, dbam) > 0)
1240 if (DBAM_DIMM(2, dbam) > 0)
1242 if (DBAM_DIMM(3, dbam) > 0)
1245 /* If more than 2 DIMMs are present, then we have 2 channels */
1248 else if (channels == 0) {
1249 /* No DIMMs on DCT0, so look at DCT1 */
1250 err = pci_read_config_dword(pvt->dram_f2_ctl, DBAM1, &dbam);
1254 if (DBAM_DIMM(0, dbam) > 0)
1256 if (DBAM_DIMM(1, dbam) > 0)
1258 if (DBAM_DIMM(2, dbam) > 0)
1260 if (DBAM_DIMM(3, dbam) > 0)
1267 /* If we found ALL 0 values, then assume just ONE DIMM-ONE Channel */
1271 debugf0("DIMM count= %d\n", channels);
1280 static int f10_dbam_map_to_pages(struct amd64_pvt *pvt, int dram_map)
1282 return 1 << (revf_quad_ddr2_shift[dram_map] - PAGE_SHIFT);
1285 /* Enable extended configuration access via 0xCF8 feature */
1286 static void amd64_setup(struct amd64_pvt *pvt)
1290 pci_read_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, ®);
1292 pvt->flags.cf8_extcfg = !!(reg & F10_NB_CFG_LOW_ENABLE_EXT_CFG);
1293 reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1294 pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
1297 /* Restore the extended configuration access via 0xCF8 feature */
1298 static void amd64_teardown(struct amd64_pvt *pvt)
1302 pci_read_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, ®);
1304 reg &= ~F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1305 if (pvt->flags.cf8_extcfg)
1306 reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1307 pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
1310 static u64 f10_get_error_address(struct mem_ctl_info *mci,
1311 struct amd64_error_info_regs *info)
1313 return (((u64) (info->nbeah & 0xffff)) << 32) +
1314 (info->nbeal & ~0x01);
1318 * Read the Base and Limit registers for F10 based Memory controllers. Extract
1319 * fields from the 'raw' reg into separate data fields.
1321 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
1323 static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1325 u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;
1327 low_offset = K8_DRAM_BASE_LOW + (dram << 3);
1328 high_offset = F10_DRAM_BASE_HIGH + (dram << 3);
1330 /* read the 'raw' DRAM BASE Address register */
1331 pci_read_config_dword(pvt->addr_f1_ctl, low_offset, &low_base);
1333 /* Read from the ECS data register */
1334 pci_read_config_dword(pvt->addr_f1_ctl, high_offset, &high_base);
1336 /* Extract parts into separate data entries */
1337 pvt->dram_rw_en[dram] = (low_base & 0x3);
1339 if (pvt->dram_rw_en[dram] == 0)
1342 pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;
1344 pvt->dram_base[dram] = (((((u64) high_base & 0x000000FF) << 32) |
1345 ((u64) low_base & 0xFFFF0000))) << 8;
1347 low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
1348 high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);
1350 /* read the 'raw' LIMIT registers */
1351 pci_read_config_dword(pvt->addr_f1_ctl, low_offset, &low_limit);
1353 /* Read from the ECS data register for the HIGH portion */
1354 pci_read_config_dword(pvt->addr_f1_ctl, high_offset, &high_limit);
1356 debugf0(" HW Regs: BASE=0x%08x-%08x LIMIT= 0x%08x-%08x\n",
1357 high_base, low_base, high_limit, low_limit);
1359 pvt->dram_DstNode[dram] = (low_limit & 0x7);
1360 pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
1363 * Extract address values and form a LIMIT address. Limit is the HIGHEST
1364 * memory location of the region, so low 24 bits need to be all ones.
1366 low_limit |= 0x0000FFFF;
1367 pvt->dram_limit[dram] =
1368 ((((u64) high_limit << 32) + (u64) low_limit) << 8) | (0xFF);
1371 static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
1375 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCTL_SEL_LOW,
1376 &pvt->dram_ctl_select_low);
1378 debugf0("Reading F10_DCTL_SEL_LOW failed\n");
1380 debugf0("DRAM_DCTL_SEL_LOW=0x%x DctSelBaseAddr=0x%x\n",
1381 pvt->dram_ctl_select_low, dct_sel_baseaddr(pvt));
1383 debugf0(" DRAM DCTs are=%s DRAM Is=%s DRAM-Ctl-"
1384 "sel-hi-range=%s\n",
1385 (dct_ganging_enabled(pvt) ? "GANGED" : "NOT GANGED"),
1386 (dct_dram_enabled(pvt) ? "Enabled" : "Disabled"),
1387 (dct_high_range_enabled(pvt) ? "Enabled" : "Disabled"));
1389 debugf0(" DctDatIntLv=%s MemCleared=%s DctSelIntLvAddr=0x%x\n",
1390 (dct_data_intlv_enabled(pvt) ? "Enabled" : "Disabled"),
1391 (dct_memory_cleared(pvt) ? "True " : "False "),
1392 dct_sel_interleave_addr(pvt));
1395 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCTL_SEL_HIGH,
1396 &pvt->dram_ctl_select_high);
1398 debugf0("Reading F10_DCTL_SEL_HIGH failed\n");
1402 * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1403 * Interleaving Modes.
1405 static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1406 int hi_range_sel, u32 intlv_en)
1408 u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;
1410 if (dct_ganging_enabled(pvt))
1412 else if (hi_range_sel)
1414 else if (dct_interleave_enabled(pvt)) {
1416 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1418 if (dct_sel_interleave_addr(pvt) == 0)
1419 cs = sys_addr >> 6 & 1;
1420 else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
1421 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1423 if (dct_sel_interleave_addr(pvt) & 1)
1424 cs = (sys_addr >> 9 & 1) ^ temp;
1426 cs = (sys_addr >> 6 & 1) ^ temp;
1427 } else if (intlv_en & 4)
1428 cs = sys_addr >> 15 & 1;
1429 else if (intlv_en & 2)
1430 cs = sys_addr >> 14 & 1;
1431 else if (intlv_en & 1)
1432 cs = sys_addr >> 13 & 1;
1434 cs = sys_addr >> 12 & 1;
1435 } else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
1436 cs = ~dct_sel_high & 1;
1443 static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
1447 else if (intlv_en == 3)
1449 else if (intlv_en == 7)
1455 /* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
1456 static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
1457 u32 dct_sel_base_addr,
1458 u64 dct_sel_base_off,
1459 u32 hole_valid, u32 hole_off,
1465 if (!(dct_sel_base_addr & 0xFFFFF800) &&
1466 hole_valid && (sys_addr >= 0x100000000ULL))
1467 chan_off = hole_off << 16;
1469 chan_off = dct_sel_base_off;
1471 if (hole_valid && (sys_addr >= 0x100000000ULL))
1472 chan_off = hole_off << 16;
1474 chan_off = dram_base & 0xFFFFF8000000ULL;
1477 return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
1478 (chan_off & 0x0000FFFFFF800000ULL);
1481 /* Hack for the time being - Can we get this from BIOS?? */
1482 #define CH0SPARE_RANK 0
1483 #define CH1SPARE_RANK 1
1486 * checks if the csrow passed in is marked as SPARED, if so returns the new
1489 static inline int f10_process_possible_spare(int csrow,
1490 u32 cs, struct amd64_pvt *pvt)
1495 /* Depending on channel, isolate respective SPARING info */
1497 swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
1498 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
1499 if (swap_done && (csrow == bad_dram_cs))
1500 csrow = CH1SPARE_RANK;
1502 swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
1503 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
1504 if (swap_done && (csrow == bad_dram_cs))
1505 csrow = CH0SPARE_RANK;
1511 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1512 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1515 * -EINVAL: NOT FOUND
1516 * 0..csrow = Chip-Select Row
1518 static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
1520 struct mem_ctl_info *mci;
1521 struct amd64_pvt *pvt;
1522 u32 cs_base, cs_mask;
1523 int cs_found = -EINVAL;
1526 mci = mci_lookup[nid];
1530 pvt = mci->pvt_info;
1532 debugf1("InputAddr=0x%x channelselect=%d\n", in_addr, cs);
1534 for (csrow = 0; csrow < CHIPSELECT_COUNT; csrow++) {
1536 cs_base = amd64_get_dct_base(pvt, cs, csrow);
1537 if (!(cs_base & K8_DCSB_CS_ENABLE))
1541 * We have an ENABLED CSROW, Isolate just the MASK bits of the
1542 * target: [28:19] and [13:5], which map to [36:27] and [21:13]
1543 * of the actual address.
1545 cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;
1548 * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
1549 * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
1551 cs_mask = amd64_get_dct_mask(pvt, cs, csrow);
1553 debugf1(" CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
1554 csrow, cs_base, cs_mask);
1556 cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;
1558 debugf1(" Final CSMask=0x%x\n", cs_mask);
1559 debugf1(" (InputAddr & ~CSMask)=0x%x "
1560 "(CSBase & ~CSMask)=0x%x\n",
1561 (in_addr & ~cs_mask), (cs_base & ~cs_mask));
1563 if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
1564 cs_found = f10_process_possible_spare(csrow, cs, pvt);
1566 debugf1(" MATCH csrow=%d\n", cs_found);
1573 /* For a given @dram_range, check if @sys_addr falls within it. */
1574 static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
1575 u64 sys_addr, int *nid, int *chan_sel)
1577 int node_id, cs_found = -EINVAL, high_range = 0;
1578 u32 intlv_en, intlv_sel, intlv_shift, hole_off;
1579 u32 hole_valid, tmp, dct_sel_base, channel;
1580 u64 dram_base, chan_addr, dct_sel_base_off;
1582 dram_base = pvt->dram_base[dram_range];
1583 intlv_en = pvt->dram_IntlvEn[dram_range];
1585 node_id = pvt->dram_DstNode[dram_range];
1586 intlv_sel = pvt->dram_IntlvSel[dram_range];
1588 debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
1589 dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);
1592 * This assumes that one node's DHAR is the same as all the other
1595 hole_off = (pvt->dhar & 0x0000FF80);
1596 hole_valid = (pvt->dhar & 0x1);
1597 dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16;
1599 debugf1(" HoleOffset=0x%x HoleValid=0x%x IntlvSel=0x%x\n",
1600 hole_off, hole_valid, intlv_sel);
1603 (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1606 dct_sel_base = dct_sel_baseaddr(pvt);
1609 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1610 * select between DCT0 and DCT1.
1612 if (dct_high_range_enabled(pvt) &&
1613 !dct_ganging_enabled(pvt) &&
1614 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1617 channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
1619 chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
1620 dct_sel_base_off, hole_valid,
1621 hole_off, dram_base);
1623 intlv_shift = f10_map_intlv_en_to_shift(intlv_en);
1625 /* remove Node ID (in case of memory interleaving) */
1626 tmp = chan_addr & 0xFC0;
1628 chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;
1630 /* remove channel interleave and hash */
1631 if (dct_interleave_enabled(pvt) &&
1632 !dct_high_range_enabled(pvt) &&
1633 !dct_ganging_enabled(pvt)) {
1634 if (dct_sel_interleave_addr(pvt) != 1)
1635 chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
1637 tmp = chan_addr & 0xFC0;
1638 chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
1643 debugf1(" (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
1644 chan_addr, (u32)(chan_addr >> 8));
1646 cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);
1648 if (cs_found >= 0) {
1650 *chan_sel = channel;
1655 static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1656 int *node, int *chan_sel)
1658 int dram_range, cs_found = -EINVAL;
1659 u64 dram_base, dram_limit;
1661 for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {
1663 if (!pvt->dram_rw_en[dram_range])
1666 dram_base = pvt->dram_base[dram_range];
1667 dram_limit = pvt->dram_limit[dram_range];
1669 if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {
1671 cs_found = f10_match_to_this_node(pvt, dram_range,
1682 * This the F10h reference code from AMD to map a @sys_addr to NodeID,
1685 * The @sys_addr is usually an error address received from the hardware.
1687 static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
1688 struct amd64_error_info_regs *info,
1691 struct amd64_pvt *pvt = mci->pvt_info;
1693 unsigned short syndrome;
1694 int nid, csrow, chan = 0;
1696 csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1699 error_address_to_page_and_offset(sys_addr, &page, &offset);
1701 syndrome = EXTRACT_HIGH_SYNDROME(info->nbsl) << 8;
1702 syndrome |= EXTRACT_LOW_SYNDROME(info->nbsh);
1705 * Is CHIPKILL on? If so, then we can attempt to use the
1706 * syndrome to isolate which channel the error was on.
1708 if (pvt->nbcfg & K8_NBCFG_CHIPKILL)
1709 chan = get_channel_from_ecc_syndrome(syndrome);
1712 edac_mc_handle_ce(mci, page, offset, syndrome,
1713 csrow, chan, EDAC_MOD_STR);
1716 * Channel unknown, report all channels on this
1719 for (chan = 0; chan < mci->csrows[csrow].nr_channels;
1721 edac_mc_handle_ce(mci, page, offset,
1729 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1734 * Input (@index) is the DBAM DIMM value (1 of 4) used as an index into a shift
1735 * table (revf_quad_ddr2_shift) which starts at 128MB DIMM size. Index of 0
1736 * indicates an empty DIMM slot, as reported by Hardware on empty slots.
1738 * Normalize to 128MB by subracting 27 bit shift.
1740 static int map_dbam_to_csrow_size(int index)
1744 if (index > 0 && index <= DBAM_MAX_VALUE)
1745 mega_bytes = ((128 << (revf_quad_ddr2_shift[index]-27)));
1751 * debug routine to display the memory sizes of a DIMM (ganged or not) and it
1754 static void f10_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt,
1757 int dimm, size0, size1;
1761 debugf1(" dbam%d: 0x%8.08x CSROW is %s\n", ctrl,
1762 ctrl ? pvt->dbam1 : pvt->dbam0,
1763 ganged ? "GANGED - dbam1 not used" : "NON-GANGED");
1765 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
1766 dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0;
1768 /* Dump memory sizes for DIMM and its CSROWs */
1769 for (dimm = 0; dimm < 4; dimm++) {
1772 if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
1773 size0 = map_dbam_to_csrow_size(DBAM_DIMM(dimm, dbam));
1776 if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
1777 size1 = map_dbam_to_csrow_size(DBAM_DIMM(dimm, dbam));
1779 debugf1(" CTRL-%d DIMM-%d=%5dMB CSROW-%d=%5dMB "
1792 * Very early hardware probe on pci_probe thread to determine if this module
1793 * supports the hardware.
1799 static int f10_probe_valid_hardware(struct amd64_pvt *pvt)
1804 * If we are on a DDR3 machine, we don't know yet if
1805 * we support that properly at this time
1807 if ((pvt->dchr0 & F10_DCHR_Ddr3Mode) ||
1808 (pvt->dchr1 & F10_DCHR_Ddr3Mode)) {
1810 amd64_printk(KERN_WARNING,
1811 "%s() This machine is running with DDR3 memory. "
1812 "This is not currently supported. "
1813 "DCHR0=0x%x DCHR1=0x%x\n",
1814 __func__, pvt->dchr0, pvt->dchr1);
1816 amd64_printk(KERN_WARNING,
1817 " Contact '%s' module MAINTAINER to help add"
1828 * There currently are 3 types type of MC devices for AMD Athlon/Opterons
1829 * (as per PCI DEVICE_IDs):
1831 * Family K8: That is the Athlon64 and Opteron CPUs. They all have the same PCI
1832 * DEVICE ID, even though there is differences between the different Revisions
1835 * Family F10h and F11h.
1838 static struct amd64_family_type amd64_family_types[] = {
1841 .addr_f1_ctl = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1842 .misc_f3_ctl = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1844 .early_channel_count = k8_early_channel_count,
1845 .get_error_address = k8_get_error_address,
1846 .read_dram_base_limit = k8_read_dram_base_limit,
1847 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1848 .dbam_map_to_pages = k8_dbam_map_to_pages,
1852 .ctl_name = "Family 10h",
1853 .addr_f1_ctl = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1854 .misc_f3_ctl = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1856 .probe_valid_hardware = f10_probe_valid_hardware,
1857 .early_channel_count = f10_early_channel_count,
1858 .get_error_address = f10_get_error_address,
1859 .read_dram_base_limit = f10_read_dram_base_limit,
1860 .read_dram_ctl_register = f10_read_dram_ctl_register,
1861 .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
1862 .dbam_map_to_pages = f10_dbam_map_to_pages,
1866 .ctl_name = "Family 11h",
1867 .addr_f1_ctl = PCI_DEVICE_ID_AMD_11H_NB_MAP,
1868 .misc_f3_ctl = PCI_DEVICE_ID_AMD_11H_NB_MISC,
1870 .probe_valid_hardware = f10_probe_valid_hardware,
1871 .early_channel_count = f10_early_channel_count,
1872 .get_error_address = f10_get_error_address,
1873 .read_dram_base_limit = f10_read_dram_base_limit,
1874 .read_dram_ctl_register = f10_read_dram_ctl_register,
1875 .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
1876 .dbam_map_to_pages = f10_dbam_map_to_pages,
1881 static struct pci_dev *pci_get_related_function(unsigned int vendor,
1882 unsigned int device,
1883 struct pci_dev *related)
1885 struct pci_dev *dev = NULL;
1887 dev = pci_get_device(vendor, device, dev);
1889 if ((dev->bus->number == related->bus->number) &&
1890 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1892 dev = pci_get_device(vendor, device, dev);
1899 * syndrome mapping table for ECC ChipKill devices
1901 * The comment in each row is the token (nibble) number that is in error.
1902 * The least significant nibble of the syndrome is the mask for the bits
1903 * that are in error (need to be toggled) for the particular nibble.
1905 * Each row contains 16 entries.
1906 * The first entry (0th) is the channel number for that row of syndromes.
1907 * The remaining 15 entries are the syndromes for the respective Error
1910 * 1st index entry is 0x0001 mask, indicating that the rightmost bit is the
1912 * The 2nd index entry is 0x0010 that the second bit is damaged.
1913 * The 3rd index entry is 0x0011 indicating that the rightmost 2 bits
1915 * Thus so on until index 15, 0x1111, whose entry has the syndrome
1916 * indicating that all 4 bits are damaged.
1918 * A search is performed on this table looking for a given syndrome.
1920 * See the AMD documentation for ECC syndromes. This ECC table is valid
1921 * across all the versions of the AMD64 processors.
1923 * A fast lookup is to use the LAST four bits of the 16-bit syndrome as a
1924 * COLUMN index, then search all ROWS of that column, looking for a match
1925 * with the input syndrome. The ROW value will be the token number.
1927 * The 0'th entry on that row, can be returned as the CHANNEL (0 or 1) of this
1930 #define NUMBER_ECC_ROWS 36
1931 static const unsigned short ecc_chipkill_syndromes[NUMBER_ECC_ROWS][16] = {
1932 /* Channel 0 syndromes */
1933 {/*0*/ 0, 0xe821, 0x7c32, 0x9413, 0xbb44, 0x5365, 0xc776, 0x2f57,
1934 0xdd88, 0x35a9, 0xa1ba, 0x499b, 0x66cc, 0x8eed, 0x1afe, 0xf2df },
1935 {/*1*/ 0, 0x5d31, 0xa612, 0xfb23, 0x9584, 0xc8b5, 0x3396, 0x6ea7,
1936 0xeac8, 0xb7f9, 0x4cda, 0x11eb, 0x7f4c, 0x227d, 0xd95e, 0x846f },
1937 {/*2*/ 0, 0x0001, 0x0002, 0x0003, 0x0004, 0x0005, 0x0006, 0x0007,
1938 0x0008, 0x0009, 0x000a, 0x000b, 0x000c, 0x000d, 0x000e, 0x000f },
1939 {/*3*/ 0, 0x2021, 0x3032, 0x1013, 0x4044, 0x6065, 0x7076, 0x5057,
1940 0x8088, 0xa0a9, 0xb0ba, 0x909b, 0xc0cc, 0xe0ed, 0xf0fe, 0xd0df },
1941 {/*4*/ 0, 0x5041, 0xa082, 0xf0c3, 0x9054, 0xc015, 0x30d6, 0x6097,
1942 0xe0a8, 0xb0e9, 0x402a, 0x106b, 0x70fc, 0x20bd, 0xd07e, 0x803f },
1943 {/*5*/ 0, 0xbe21, 0xd732, 0x6913, 0x2144, 0x9f65, 0xf676, 0x4857,
1944 0x3288, 0x8ca9, 0xe5ba, 0x5b9b, 0x13cc, 0xaded, 0xc4fe, 0x7adf },
1945 {/*6*/ 0, 0x4951, 0x8ea2, 0xc7f3, 0x5394, 0x1ac5, 0xdd36, 0x9467,
1946 0xa1e8, 0xe8b9, 0x2f4a, 0x661b, 0xf27c, 0xbb2d, 0x7cde, 0x358f },
1947 {/*7*/ 0, 0x74e1, 0x9872, 0xec93, 0xd6b4, 0xa255, 0x4ec6, 0x3a27,
1948 0x6bd8, 0x1f39, 0xf3aa, 0x874b, 0xbd6c, 0xc98d, 0x251e, 0x51ff },
1949 {/*8*/ 0, 0x15c1, 0x2a42, 0x3f83, 0xcef4, 0xdb35, 0xe4b6, 0xf177,
1950 0x4758, 0x5299, 0x6d1a, 0x78db, 0x89ac, 0x9c6d, 0xa3ee, 0xb62f },
1951 {/*9*/ 0, 0x3d01, 0x1602, 0x2b03, 0x8504, 0xb805, 0x9306, 0xae07,
1952 0xca08, 0xf709, 0xdc0a, 0xe10b, 0x4f0c, 0x720d, 0x590e, 0x640f },
1953 {/*a*/ 0, 0x9801, 0xec02, 0x7403, 0x6b04, 0xf305, 0x8706, 0x1f07,
1954 0xbd08, 0x2509, 0x510a, 0xc90b, 0xd60c, 0x4e0d, 0x3a0e, 0xa20f },
1955 {/*b*/ 0, 0xd131, 0x6212, 0xb323, 0x3884, 0xe9b5, 0x5a96, 0x8ba7,
1956 0x1cc8, 0xcdf9, 0x7eda, 0xafeb, 0x244c, 0xf57d, 0x465e, 0x976f },
1957 {/*c*/ 0, 0xe1d1, 0x7262, 0x93b3, 0xb834, 0x59e5, 0xca56, 0x2b87,
1958 0xdc18, 0x3dc9, 0xae7a, 0x4fab, 0x542c, 0x85fd, 0x164e, 0xf79f },
1959 {/*d*/ 0, 0x6051, 0xb0a2, 0xd0f3, 0x1094, 0x70c5, 0xa036, 0xc067,
1960 0x20e8, 0x40b9, 0x904a, 0x601b, 0x307c, 0x502d, 0x80de, 0xe08f },
1961 {/*e*/ 0, 0xa4c1, 0xf842, 0x5c83, 0xe6f4, 0x4235, 0x1eb6, 0xba77,
1962 0x7b58, 0xdf99, 0x831a, 0x27db, 0x9dac, 0x396d, 0x65ee, 0xc12f },
1963 {/*f*/ 0, 0x11c1, 0x2242, 0x3383, 0xc8f4, 0xd935, 0xeab6, 0xfb77,
1964 0x4c58, 0x5d99, 0x6e1a, 0x7fdb, 0x84ac, 0x956d, 0xa6ee, 0xb72f },
1966 /* Channel 1 syndromes */
1967 {/*10*/ 1, 0x45d1, 0x8a62, 0xcfb3, 0x5e34, 0x1be5, 0xd456, 0x9187,
1968 0xa718, 0xe2c9, 0x2d7a, 0x68ab, 0xf92c, 0xbcfd, 0x734e, 0x369f },
1969 {/*11*/ 1, 0x63e1, 0xb172, 0xd293, 0x14b4, 0x7755, 0xa5c6, 0xc627,
1970 0x28d8, 0x4b39, 0x99aa, 0xfa4b, 0x3c6c, 0x5f8d, 0x8d1e, 0xeeff },
1971 {/*12*/ 1, 0xb741, 0xd982, 0x6ec3, 0x2254, 0x9515, 0xfbd6, 0x4c97,
1972 0x33a8, 0x84e9, 0xea2a, 0x5d6b, 0x11fc, 0xa6bd, 0xc87e, 0x7f3f },
1973 {/*13*/ 1, 0xdd41, 0x6682, 0xbbc3, 0x3554, 0xe815, 0x53d6, 0xce97,
1974 0x1aa8, 0xc7e9, 0x7c2a, 0xa1fb, 0x2ffc, 0xf2bd, 0x497e, 0x943f },
1975 {/*14*/ 1, 0x2bd1, 0x3d62, 0x16b3, 0x4f34, 0x64e5, 0x7256, 0x5987,
1976 0x8518, 0xaec9, 0xb87a, 0x93ab, 0xca2c, 0xe1fd, 0xf74e, 0xdc9f },
1977 {/*15*/ 1, 0x83c1, 0xc142, 0x4283, 0xa4f4, 0x2735, 0x65b6, 0xe677,
1978 0xf858, 0x7b99, 0x391a, 0xbadb, 0x5cac, 0xdf6d, 0x9dee, 0x1e2f },
1979 {/*16*/ 1, 0x8fd1, 0xc562, 0x4ab3, 0xa934, 0x26e5, 0x6c56, 0xe387,
1980 0xfe18, 0x71c9, 0x3b7a, 0xb4ab, 0x572c, 0xd8fd, 0x924e, 0x1d9f },
1981 {/*17*/ 1, 0x4791, 0x89e2, 0xce73, 0x5264, 0x15f5, 0xdb86, 0x9c17,
1982 0xa3b8, 0xe429, 0x2a5a, 0x6dcb, 0xf1dc, 0xb64d, 0x783e, 0x3faf },
1983 {/*18*/ 1, 0x5781, 0xa9c2, 0xfe43, 0x92a4, 0xc525, 0x3b66, 0x6ce7,
1984 0xe3f8, 0xb479, 0x4a3a, 0x1dbb, 0x715c, 0x26dd, 0xd89e, 0x8f1f },
1985 {/*19*/ 1, 0xbf41, 0xd582, 0x6ac3, 0x2954, 0x9615, 0xfcd6, 0x4397,
1986 0x3ea8, 0x81e9, 0xeb2a, 0x546b, 0x17fc, 0xa8bd, 0xc27e, 0x7d3f },
1987 {/*1a*/ 1, 0x9891, 0xe1e2, 0x7273, 0x6464, 0xf7f5, 0x8586, 0x1617,
1988 0xb8b8, 0x2b29, 0x595a, 0xcacb, 0xdcdc, 0x4f4d, 0x3d3e, 0xaeaf },
1989 {/*1b*/ 1, 0xcce1, 0x4472, 0x8893, 0xfdb4, 0x3f55, 0xb9c6, 0x7527,
1990 0x56d8, 0x9a39, 0x12aa, 0xde4b, 0xab6c, 0x678d, 0xef1e, 0x23ff },
1991 {/*1c*/ 1, 0xa761, 0xf9b2, 0x5ed3, 0xe214, 0x4575, 0x1ba6, 0xbcc7,
1992 0x7328, 0xd449, 0x8a9a, 0x2dfb, 0x913c, 0x365d, 0x688e, 0xcfef },
1993 {/*1d*/ 1, 0xff61, 0x55b2, 0xaad3, 0x7914, 0x8675, 0x2ca6, 0xd3c7,
1994 0x9e28, 0x6149, 0xcb9a, 0x34fb, 0xe73c, 0x185d, 0xb28e, 0x4def },
1995 {/*1e*/ 1, 0x5451, 0xa8a2, 0xfcf3, 0x9694, 0xc2c5, 0x3e36, 0x6a67,
1996 0xebe8, 0xbfb9, 0x434a, 0x171b, 0x7d7c, 0x292d, 0xd5de, 0x818f },
1997 {/*1f*/ 1, 0x6fc1, 0xb542, 0xda83, 0x19f4, 0x7635, 0xacb6, 0xc377,
1998 0x2e58, 0x4199, 0x9b1a, 0xf4db, 0x37ac, 0x586d, 0x82ee, 0xed2f },
2000 /* ECC bits are also in the set of tokens and they too can go bad
2001 * first 2 cover channel 0, while the second 2 cover channel 1
2003 {/*20*/ 0, 0xbe01, 0xd702, 0x6903, 0x2104, 0x9f05, 0xf606, 0x4807,
2004 0x3208, 0x8c09, 0xe50a, 0x5b0b, 0x130c, 0xad0d, 0xc40e, 0x7a0f },
2005 {/*21*/ 0, 0x4101, 0x8202, 0xc303, 0x5804, 0x1905, 0xda06, 0x9b07,
2006 0xac08, 0xed09, 0x2e0a, 0x6f0b, 0x640c, 0xb50d, 0x760e, 0x370f },
2007 {/*22*/ 1, 0xc441, 0x4882, 0x8cc3, 0xf654, 0x3215, 0xbed6, 0x7a97,
2008 0x5ba8, 0x9fe9, 0x132a, 0xd76b, 0xadfc, 0x69bd, 0xe57e, 0x213f },
2009 {/*23*/ 1, 0x7621, 0x9b32, 0xed13, 0xda44, 0xac65, 0x4176, 0x3757,
2010 0x6f88, 0x19a9, 0xf4ba, 0x829b, 0xb5cc, 0xc3ed, 0x2efe, 0x58df }
2014 * Given the syndrome argument, scan each of the channel tables for a syndrome
2015 * match. Depending on which table it is found, return the channel number.
2017 static int get_channel_from_ecc_syndrome(unsigned short syndrome)
2022 /* Determine column to scan */
2023 column = syndrome & 0xF;
2025 /* Scan all rows, looking for syndrome, or end of table */
2026 for (row = 0; row < NUMBER_ECC_ROWS; row++) {
2027 if (ecc_chipkill_syndromes[row][column] == syndrome)
2028 return ecc_chipkill_syndromes[row][0];
2031 debugf0("syndrome(%x) not found\n", syndrome);
2036 * Check for valid error in the NB Status High register. If so, proceed to read
2037 * NB Status Low, NB Address Low and NB Address High registers and store data
2038 * into error structure.
2041 * - 1: if hardware regs contains valid error info
2042 * - 0: if no valid error is indicated
2044 static int amd64_get_error_info_regs(struct mem_ctl_info *mci,
2045 struct amd64_error_info_regs *regs)
2047 struct amd64_pvt *pvt;
2048 struct pci_dev *misc_f3_ctl;
2051 pvt = mci->pvt_info;
2052 misc_f3_ctl = pvt->misc_f3_ctl;
2054 err = pci_read_config_dword(misc_f3_ctl, K8_NBSH, ®s->nbsh);
2058 if (!(regs->nbsh & K8_NBSH_VALID_BIT))
2061 /* valid error, read remaining error information registers */
2062 err = pci_read_config_dword(misc_f3_ctl, K8_NBSL, ®s->nbsl);
2066 err = pci_read_config_dword(misc_f3_ctl, K8_NBEAL, ®s->nbeal);
2070 err = pci_read_config_dword(misc_f3_ctl, K8_NBEAH, ®s->nbeah);
2074 err = pci_read_config_dword(misc_f3_ctl, K8_NBCFG, ®s->nbcfg);
2081 debugf0("Reading error info register failed\n");
2086 * This function is called to retrieve the error data from hardware and store it
2087 * in the info structure.
2090 * - 1: if a valid error is found
2091 * - 0: if no error is found
2093 static int amd64_get_error_info(struct mem_ctl_info *mci,
2094 struct amd64_error_info_regs *info)
2096 struct amd64_pvt *pvt;
2097 struct amd64_error_info_regs regs;
2099 pvt = mci->pvt_info;
2101 if (!amd64_get_error_info_regs(mci, info))
2105 * Here's the problem with the K8's EDAC reporting: There are four
2106 * registers which report pieces of error information. They are shared
2107 * between CEs and UEs. Furthermore, contrary to what is stated in the
2108 * BKDG, the overflow bit is never used! Every error always updates the
2109 * reporting registers.
2111 * Can you see the race condition? All four error reporting registers
2112 * must be read before a new error updates them! There is no way to read
2113 * all four registers atomically. The best than can be done is to detect
2114 * that a race has occured and then report the error without any kind of
2117 * What is still positive is that errors are still reported and thus
2118 * problems can still be detected - just not localized because the
2119 * syndrome and address are spread out across registers.
2121 * Grrrrr!!!!! Here's hoping that AMD fixes this in some future K8 rev.
2122 * UEs and CEs should have separate register sets with proper overflow
2123 * bits that are used! At very least the problem can be fixed by
2124 * honoring the ErrValid bit in 'nbsh' and not updating registers - just
2125 * set the overflow bit - unless the current error is CE and the new
2126 * error is UE which would be the only situation for overwriting the
2132 /* Use info from the second read - most current */
2133 if (unlikely(!amd64_get_error_info_regs(mci, info)))
2136 /* clear the error bits in hardware */
2137 pci_write_bits32(pvt->misc_f3_ctl, K8_NBSH, 0, K8_NBSH_VALID_BIT);
2139 /* Check for the possible race condition */
2140 if ((regs.nbsh != info->nbsh) ||
2141 (regs.nbsl != info->nbsl) ||
2142 (regs.nbeah != info->nbeah) ||
2143 (regs.nbeal != info->nbeal)) {
2144 amd64_mc_printk(mci, KERN_WARNING,
2145 "hardware STATUS read access race condition "
2152 static inline void amd64_decode_gart_tlb_error(struct mem_ctl_info *mci,
2153 struct amd64_error_info_regs *info)
2156 u32 ec_tt; /* error code transaction type (2b) */
2157 u32 ec_ll; /* error code cache level (2b) */
2159 err_code = EXTRACT_ERROR_CODE(info->nbsl);
2160 ec_ll = EXTRACT_LL_CODE(err_code);
2161 ec_tt = EXTRACT_TT_CODE(err_code);
2163 amd64_mc_printk(mci, KERN_ERR,
2164 "GART TLB event: transaction type(%s), "
2165 "cache level(%s)\n", tt_msgs[ec_tt], ll_msgs[ec_ll]);
2168 static inline void amd64_decode_mem_cache_error(struct mem_ctl_info *mci,
2169 struct amd64_error_info_regs *info)
2172 u32 ec_rrrr; /* error code memory transaction (4b) */
2173 u32 ec_tt; /* error code transaction type (2b) */
2174 u32 ec_ll; /* error code cache level (2b) */
2176 err_code = EXTRACT_ERROR_CODE(info->nbsl);
2177 ec_ll = EXTRACT_LL_CODE(err_code);
2178 ec_tt = EXTRACT_TT_CODE(err_code);
2179 ec_rrrr = EXTRACT_RRRR_CODE(err_code);
2181 amd64_mc_printk(mci, KERN_ERR,
2182 "cache hierarchy error: memory transaction type(%s), "
2183 "transaction type(%s), cache level(%s)\n",
2184 rrrr_msgs[ec_rrrr], tt_msgs[ec_tt], ll_msgs[ec_ll]);
2189 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
2190 * ADDRESS and process.
2192 static void amd64_handle_ce(struct mem_ctl_info *mci,
2193 struct amd64_error_info_regs *info)
2195 struct amd64_pvt *pvt = mci->pvt_info;
2198 /* Ensure that the Error Address is VALID */
2199 if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
2200 amd64_mc_printk(mci, KERN_ERR,
2201 "HW has no ERROR_ADDRESS available\n");
2202 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
2206 SystemAddress = extract_error_address(mci, info);
2208 amd64_mc_printk(mci, KERN_ERR,
2209 "CE ERROR_ADDRESS= 0x%llx\n", SystemAddress);
2211 pvt->ops->map_sysaddr_to_csrow(mci, info, SystemAddress);
2214 /* Handle any Un-correctable Errors (UEs) */
2215 static void amd64_handle_ue(struct mem_ctl_info *mci,
2216 struct amd64_error_info_regs *info)
2221 struct mem_ctl_info *log_mci, *src_mci = NULL;
2225 if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
2226 amd64_mc_printk(mci, KERN_CRIT,
2227 "HW has no ERROR_ADDRESS available\n");
2228 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2232 SystemAddress = extract_error_address(mci, info);
2235 * Find out which node the error address belongs to. This may be
2236 * different from the node that detected the error.
2238 src_mci = find_mc_by_sys_addr(mci, SystemAddress);
2240 amd64_mc_printk(mci, KERN_CRIT,
2241 "ERROR ADDRESS (0x%lx) value NOT mapped to a MC\n",
2242 (unsigned long)SystemAddress);
2243 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2249 csrow = sys_addr_to_csrow(log_mci, SystemAddress);
2251 amd64_mc_printk(mci, KERN_CRIT,
2252 "ERROR_ADDRESS (0x%lx) value NOT mapped to 'csrow'\n",
2253 (unsigned long)SystemAddress);
2254 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2256 error_address_to_page_and_offset(SystemAddress, &page, &offset);
2257 edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
2261 static void amd64_decode_bus_error(struct mem_ctl_info *mci,
2262 struct amd64_error_info_regs *info)
2264 u32 err_code, ext_ec;
2265 u32 ec_pp; /* error code participating processor (2p) */
2266 u32 ec_to; /* error code timed out (1b) */
2267 u32 ec_rrrr; /* error code memory transaction (4b) */
2268 u32 ec_ii; /* error code memory or I/O (2b) */
2269 u32 ec_ll; /* error code cache level (2b) */
2271 ext_ec = EXTRACT_EXT_ERROR_CODE(info->nbsl);
2272 err_code = EXTRACT_ERROR_CODE(info->nbsl);
2274 ec_ll = EXTRACT_LL_CODE(err_code);
2275 ec_ii = EXTRACT_II_CODE(err_code);
2276 ec_rrrr = EXTRACT_RRRR_CODE(err_code);
2277 ec_to = EXTRACT_TO_CODE(err_code);
2278 ec_pp = EXTRACT_PP_CODE(err_code);
2280 amd64_mc_printk(mci, KERN_ERR,
2282 " time-out(%s) mem or i/o(%s)\n"
2283 " participating processor(%s)\n"
2284 " memory transaction type(%s)\n"
2285 " cache level(%s) Error Found by: %s\n",
2291 (info->nbsh & K8_NBSH_ERR_SCRUBER) ?
2292 "Scrubber" : "Normal Operation");
2294 /* If this was an 'observed' error, early out */
2295 if (ec_pp == K8_NBSL_PP_OBS)
2296 return; /* We aren't the node involved */
2298 /* Parse out the extended error code for ECC events */
2300 /* F10 changed to one Extended ECC error code */
2301 case F10_NBSL_EXT_ERR_RES: /* Reserved field */
2302 case F10_NBSL_EXT_ERR_ECC: /* F10 ECC ext err code */
2306 amd64_mc_printk(mci, KERN_ERR, "NOT ECC: no special error "
2307 "handling for this error\n");
2311 if (info->nbsh & K8_NBSH_CECC)
2312 amd64_handle_ce(mci, info);
2313 else if (info->nbsh & K8_NBSH_UECC)
2314 amd64_handle_ue(mci, info);
2317 * If main error is CE then overflow must be CE. If main error is UE
2318 * then overflow is unknown. We'll call the overflow a CE - if
2319 * panic_on_ue is set then we're already panic'ed and won't arrive
2320 * here. Else, then apparently someone doesn't think that UE's are
2323 if (info->nbsh & K8_NBSH_OVERFLOW)
2324 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR
2325 "Error Overflow set");
2328 int amd64_process_error_info(struct mem_ctl_info *mci,
2329 struct amd64_error_info_regs *info,
2332 struct amd64_pvt *pvt;
2333 struct amd64_error_info_regs *regs;
2334 u32 err_code, ext_ec;
2335 int gart_tlb_error = 0;
2337 pvt = mci->pvt_info;
2339 /* If caller doesn't want us to process the error, return */
2345 debugf1("NorthBridge ERROR: mci(0x%p)\n", mci);
2346 debugf1(" MC node(%d) Error-Address(0x%.8x-%.8x)\n",
2347 pvt->mc_node_id, regs->nbeah, regs->nbeal);
2348 debugf1(" nbsh(0x%.8x) nbsl(0x%.8x)\n",
2349 regs->nbsh, regs->nbsl);
2350 debugf1(" Valid Error=%s Overflow=%s\n",
2351 (regs->nbsh & K8_NBSH_VALID_BIT) ? "True" : "False",
2352 (regs->nbsh & K8_NBSH_OVERFLOW) ? "True" : "False");
2353 debugf1(" Err Uncorrected=%s MCA Error Reporting=%s\n",
2354 (regs->nbsh & K8_NBSH_UNCORRECTED_ERR) ?
2356 (regs->nbsh & K8_NBSH_ERR_ENABLE) ?
2358 debugf1(" MiscErr Valid=%s ErrAddr Valid=%s PCC=%s\n",
2359 (regs->nbsh & K8_NBSH_MISC_ERR_VALID) ?
2361 (regs->nbsh & K8_NBSH_VALID_ERROR_ADDR) ?
2363 (regs->nbsh & K8_NBSH_PCC) ?
2365 debugf1(" CECC=%s UECC=%s Found by Scruber=%s\n",
2366 (regs->nbsh & K8_NBSH_CECC) ?
2368 (regs->nbsh & K8_NBSH_UECC) ?
2370 (regs->nbsh & K8_NBSH_ERR_SCRUBER) ?
2372 debugf1(" CORE0=%s CORE1=%s CORE2=%s CORE3=%s\n",
2373 (regs->nbsh & K8_NBSH_CORE0) ? "True" : "False",
2374 (regs->nbsh & K8_NBSH_CORE1) ? "True" : "False",
2375 (regs->nbsh & K8_NBSH_CORE2) ? "True" : "False",
2376 (regs->nbsh & K8_NBSH_CORE3) ? "True" : "False");
2379 err_code = EXTRACT_ERROR_CODE(regs->nbsl);
2381 /* Determine which error type:
2382 * 1) GART errors - non-fatal, developmental events
2387 if (TEST_TLB_ERROR(err_code)) {
2389 * GART errors are intended to help graphics driver developers
2390 * to detect bad GART PTEs. It is recommended by AMD to disable
2391 * GART table walk error reporting by default[1] (currently
2392 * being disabled in mce_cpu_quirks()) and according to the
2393 * comment in mce_cpu_quirks(), such GART errors can be
2394 * incorrectly triggered. We may see these errors anyway and
2395 * unless requested by the user, they won't be reported.
2397 * [1] section 13.10.1 on BIOS and Kernel Developers Guide for
2398 * AMD NPT family 0Fh processors
2400 if (report_gart_errors == 0)
2404 * Only if GART error reporting is requested should we generate
2409 debugf1("GART TLB error\n");
2410 amd64_decode_gart_tlb_error(mci, info);
2411 } else if (TEST_MEM_ERROR(err_code)) {
2412 debugf1("Memory/Cache error\n");
2413 amd64_decode_mem_cache_error(mci, info);
2414 } else if (TEST_BUS_ERROR(err_code)) {
2415 debugf1("Bus (Link/DRAM) error\n");
2416 amd64_decode_bus_error(mci, info);
2418 /* shouldn't reach here! */
2419 amd64_mc_printk(mci, KERN_WARNING,
2420 "%s(): unknown MCE error 0x%x\n", __func__,
2424 ext_ec = EXTRACT_EXT_ERROR_CODE(regs->nbsl);
2425 amd64_mc_printk(mci, KERN_ERR,
2426 "ExtErr=(0x%x) %s\n", ext_ec, ext_msgs[ext_ec]);
2428 if (((ext_ec >= F10_NBSL_EXT_ERR_CRC &&
2429 ext_ec <= F10_NBSL_EXT_ERR_TGT) ||
2430 (ext_ec == F10_NBSL_EXT_ERR_RMW)) &&
2431 EXTRACT_LDT_LINK(info->nbsh)) {
2433 amd64_mc_printk(mci, KERN_ERR,
2434 "Error on hypertransport link: %s\n",
2436 EXTRACT_LDT_LINK(info->nbsh)]);
2440 * Check the UE bit of the NB status high register, if set generate some
2441 * logs. If NOT a GART error, then process the event as a NO-INFO event.
2442 * If it was a GART error, skip that process.
2444 if (regs->nbsh & K8_NBSH_UNCORRECTED_ERR) {
2445 amd64_mc_printk(mci, KERN_CRIT, "uncorrected error\n");
2446 if (!gart_tlb_error)
2447 edac_mc_handle_ue_no_info(mci, "UE bit is set\n");
2450 if (regs->nbsh & K8_NBSH_PCC)
2451 amd64_mc_printk(mci, KERN_CRIT,
2452 "PCC (processor context corrupt) set\n");
2456 EXPORT_SYMBOL_GPL(amd64_process_error_info);