1 #ifndef __PARISC_UACCESS_H
2 #define __PARISC_UACCESS_H
5 * User space memory access functions
7 #include <linux/sched.h>
9 #include <asm/system.h>
10 #include <asm/cache.h>
11 #include <asm-generic/uaccess.h>
14 #define VERIFY_WRITE 1
16 #define KERNEL_DS ((mm_segment_t){0})
17 #define USER_DS ((mm_segment_t){1})
19 #define segment_eq(a,b) ((a).seg == (b).seg)
21 #define get_ds() (KERNEL_DS)
22 #define get_fs() (current_thread_info()->addr_limit)
23 #define set_fs(x) (current_thread_info()->addr_limit = (x))
26 * Note that since kernel addresses are in a separate address space on
27 * parisc, we don't need to do anything for access_ok().
28 * We just let the page fault handler do the right thing. This also means
29 * that put_user is the same as __put_user, etc.
32 extern int __get_kernel_bad(void);
33 extern int __get_user_bad(void);
34 extern int __put_kernel_bad(void);
35 extern int __put_user_bad(void);
37 static inline long access_ok(int type, const void __user * addr,
43 #define put_user __put_user
44 #define get_user __get_user
46 #if BITS_PER_LONG == 32
47 #define LDD_KERNEL(ptr) __get_kernel_bad();
48 #define LDD_USER(ptr) __get_user_bad();
49 #define STD_KERNEL(x, ptr) __put_kernel_asm64(x,ptr)
50 #define STD_USER(x, ptr) __put_user_asm64(x,ptr)
52 #define LDD_KERNEL(ptr) __get_kernel_asm("ldd",ptr)
53 #define LDD_USER(ptr) __get_user_asm("ldd",ptr)
54 #define STD_KERNEL(x, ptr) __put_kernel_asm("std",x,ptr)
55 #define STD_USER(x, ptr) __put_user_asm("std",x,ptr)
59 * The exception table contains two values: the first is an address
60 * for an instruction that is allowed to fault, and the second is
61 * the address to the fixup routine.
64 struct exception_table_entry {
65 unsigned long insn; /* address of insn that is allowed to fault. */
66 long fixup; /* fixup routine */
70 * The page fault handler stores, in a per-cpu area, the following information
71 * if a fixup routine is available.
73 struct exception_data {
74 unsigned long fault_ip;
75 unsigned long fault_space;
76 unsigned long fault_addr;
79 #define __get_user(x,ptr) \
81 register long __gu_err __asm__ ("r8") = 0; \
82 register long __gu_val __asm__ ("r9") = 0; \
84 if (segment_eq(get_fs(),KERNEL_DS)) { \
85 switch (sizeof(*(ptr))) { \
86 case 1: __get_kernel_asm("ldb",ptr); break; \
87 case 2: __get_kernel_asm("ldh",ptr); break; \
88 case 4: __get_kernel_asm("ldw",ptr); break; \
89 case 8: LDD_KERNEL(ptr); break; \
90 default: __get_kernel_bad(); break; \
94 switch (sizeof(*(ptr))) { \
95 case 1: __get_user_asm("ldb",ptr); break; \
96 case 2: __get_user_asm("ldh",ptr); break; \
97 case 4: __get_user_asm("ldw",ptr); break; \
98 case 8: LDD_USER(ptr); break; \
99 default: __get_user_bad(); break; \
103 (x) = (__typeof__(*(ptr))) __gu_val; \
108 #define __get_kernel_asm(ldx,ptr) \
109 __asm__("\n1:\t" ldx "\t0(%2),%0\n" \
110 "\t.section __ex_table,\"aw\"\n" \
111 "\t.dword\t1b,fixup_get_user_skip_1\n" \
113 : "=r"(__gu_val), "=r"(__gu_err) \
114 : "r"(ptr), "1"(__gu_err) \
117 #define __get_user_asm(ldx,ptr) \
118 __asm__("\n1:\t" ldx "\t0(%%sr3,%2),%0\n" \
119 "\t.section __ex_table,\"aw\"\n" \
120 "\t.dword\t1b,fixup_get_user_skip_1\n" \
122 : "=r"(__gu_val), "=r"(__gu_err) \
123 : "r"(ptr), "1"(__gu_err) \
126 #define __get_kernel_asm(ldx,ptr) \
127 __asm__("\n1:\t" ldx "\t0(%2),%0\n" \
128 "\t.section __ex_table,\"aw\"\n" \
129 "\t.word\t1b,fixup_get_user_skip_1\n" \
131 : "=r"(__gu_val), "=r"(__gu_err) \
132 : "r"(ptr), "1"(__gu_err) \
135 #define __get_user_asm(ldx,ptr) \
136 __asm__("\n1:\t" ldx "\t0(%%sr3,%2),%0\n" \
137 "\t.section __ex_table,\"aw\"\n" \
138 "\t.word\t1b,fixup_get_user_skip_1\n" \
140 : "=r"(__gu_val), "=r"(__gu_err) \
141 : "r"(ptr), "1"(__gu_err) \
143 #endif /* !__LP64__ */
145 #define __put_user(x,ptr) \
147 register long __pu_err __asm__ ("r8") = 0; \
148 __typeof__(*(ptr)) __x = (__typeof__(*(ptr)))(x); \
150 if (segment_eq(get_fs(),KERNEL_DS)) { \
151 switch (sizeof(*(ptr))) { \
152 case 1: __put_kernel_asm("stb",__x,ptr); break; \
153 case 2: __put_kernel_asm("sth",__x,ptr); break; \
154 case 4: __put_kernel_asm("stw",__x,ptr); break; \
155 case 8: STD_KERNEL(__x,ptr); break; \
156 default: __put_kernel_bad(); break; \
160 switch (sizeof(*(ptr))) { \
161 case 1: __put_user_asm("stb",__x,ptr); break; \
162 case 2: __put_user_asm("sth",__x,ptr); break; \
163 case 4: __put_user_asm("stw",__x,ptr); break; \
164 case 8: STD_USER(__x,ptr); break; \
165 default: __put_user_bad(); break; \
173 * The "__put_user/kernel_asm()" macros tell gcc they read from memory
174 * instead of writing. This is because they do not write to any memory
175 * gcc knows about, so there are no aliasing issues. These macros must
176 * also be aware that "fixup_put_user_skip_[12]" are executed in the
177 * context of the fault, and any registers used there must be listed
178 * as clobbers. In this case only "r1" is used by the current routines.
179 * r8/r9 are already listed as err/val.
183 #define __put_kernel_asm(stx,x,ptr) \
184 __asm__ __volatile__ ( \
185 "\n1:\t" stx "\t%2,0(%1)\n" \
186 "\t.section __ex_table,\"aw\"\n" \
187 "\t.dword\t1b,fixup_put_user_skip_1\n" \
190 : "r"(ptr), "r"(x), "0"(__pu_err) \
193 #define __put_user_asm(stx,x,ptr) \
194 __asm__ __volatile__ ( \
195 "\n1:\t" stx "\t%2,0(%%sr3,%1)\n" \
196 "\t.section __ex_table,\"aw\"\n" \
197 "\t.dword\t1b,fixup_put_user_skip_1\n" \
200 : "r"(ptr), "r"(x), "0"(__pu_err) \
203 #define __put_kernel_asm(stx,x,ptr) \
204 __asm__ __volatile__ ( \
205 "\n1:\t" stx "\t%2,0(%1)\n" \
206 "\t.section __ex_table,\"aw\"\n" \
207 "\t.word\t1b,fixup_put_user_skip_1\n" \
210 : "r"(ptr), "r"(x), "0"(__pu_err) \
213 #define __put_user_asm(stx,x,ptr) \
214 __asm__ __volatile__ ( \
215 "\n1:\t" stx "\t%2,0(%%sr3,%1)\n" \
216 "\t.section __ex_table,\"aw\"\n" \
217 "\t.word\t1b,fixup_put_user_skip_1\n" \
220 : "r"(ptr), "r"(x), "0"(__pu_err) \
223 #define __put_kernel_asm64(__val,ptr) do { \
224 u64 __val64 = (u64)(__val); \
225 u32 hi = (__val64) >> 32; \
226 u32 lo = (__val64) & 0xffffffff; \
227 __asm__ __volatile__ ( \
228 "\n1:\tstw %2,0(%1)\n" \
229 "\n2:\tstw %3,4(%1)\n" \
230 "\t.section __ex_table,\"aw\"\n" \
231 "\t.word\t1b,fixup_put_user_skip_2\n" \
232 "\t.word\t2b,fixup_put_user_skip_1\n" \
235 : "r"(ptr), "r"(hi), "r"(lo), "0"(__pu_err) \
239 #define __put_user_asm64(__val,ptr) do { \
240 u64 __val64 = (u64)__val; \
241 u32 hi = (__val64) >> 32; \
242 u32 lo = (__val64) & 0xffffffff; \
243 __asm__ __volatile__ ( \
244 "\n1:\tstw %2,0(%%sr3,%1)\n" \
245 "\n2:\tstw %3,4(%%sr3,%1)\n" \
246 "\t.section __ex_table,\"aw\"\n" \
247 "\t.word\t1b,fixup_get_user_skip_2\n" \
248 "\t.word\t2b,fixup_get_user_skip_1\n" \
251 : "r"(ptr), "r"(hi), "r"(lo), "0"(__pu_err) \
255 #endif /* !__LP64__ */
259 * Complex access routines -- external declarations
262 extern unsigned long lcopy_to_user(void __user *, const void *, unsigned long);
263 extern unsigned long lcopy_from_user(void *, const void __user *, unsigned long);
264 extern unsigned long lcopy_in_user(void __user *, const void __user *, unsigned long);
265 extern long lstrncpy_from_user(char *, const char __user *, long);
266 extern unsigned lclear_user(void __user *,unsigned long);
267 extern long lstrnlen_user(const char __user *,long);
270 * Complex access routines -- macros
273 #define strncpy_from_user lstrncpy_from_user
274 #define strnlen_user lstrnlen_user
275 #define strlen_user(str) lstrnlen_user(str, 0x7fffffffL)
276 #define clear_user lclear_user
277 #define __clear_user lclear_user
279 unsigned long copy_to_user(void __user *dst, const void *src, unsigned long len);
280 #define __copy_to_user copy_to_user
281 unsigned long copy_from_user(void *dst, const void __user *src, unsigned long len);
282 #define __copy_from_user copy_from_user
283 unsigned long copy_in_user(void __user *dst, const void __user *src, unsigned long len);
284 #define __copy_in_user copy_in_user
285 #define __copy_to_user_inatomic __copy_to_user
286 #define __copy_from_user_inatomic __copy_from_user
288 #endif /* __PARISC_UACCESS_H */