2 * Fast Ethernet Controller (FCC) driver for Motorola MPC8260.
3 * Copyright (c) 2000 MontaVista Software, Inc. Dan Malek (dmalek@jlc.net)
5 * This version of the driver is a combination of the 8xx fec and
6 * 8260 SCC Ethernet drivers. This version has some additional
7 * configuration options, which should probably be moved out of
8 * here. This driver currently works for the EST SBC8260,
9 * SBS Diablo/BCM, Embedded Planet RPX6, TQM8260, and others.
11 * Right now, I am very watseful with the buffers. I allocate memory
12 * pages and then divide them into 2K frame buffers. This way I know I
13 * have buffers large enough to hold one frame within one buffer descriptor.
14 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
15 * will be much more memory efficient and will easily handle lots of
16 * small packets. Since this is a cache coherent processor and CPM,
17 * I could also preallocate SKB's and use them directly on the interface.
19 * 2004-12 Leo Li (leoli@freescale.com)
20 * - Rework the FCC clock configuration part, make it easier to configure.
24 #include <linux/kernel.h>
25 #include <linux/sched.h>
26 #include <linux/string.h>
27 #include <linux/ptrace.h>
28 #include <linux/errno.h>
29 #include <linux/ioport.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/pci.h>
33 #include <linux/init.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/spinlock.h>
39 #include <linux/mii.h>
40 #include <linux/workqueue.h>
41 #include <linux/bitops.h>
43 #include <asm/immap_cpm2.h>
44 #include <asm/pgtable.h>
45 #include <asm/mpc8260.h>
47 #include <asm/uaccess.h>
48 #include <asm/signal.h>
50 /* We can't use the PHY interrupt if we aren't using MDIO. */
51 #if !defined(CONFIG_USE_MDIO)
55 /* If we have a PHY interrupt, we will advertise both full-duplex and half-
56 * duplex capabilities. If we don't have a PHY interrupt, then we will only
57 * advertise half-duplex capabilities.
59 #define MII_ADVERTISE_HALF (ADVERTISE_100HALF | ADVERTISE_10HALF | \
61 #define MII_ADVERTISE_ALL (ADVERTISE_100FULL | ADVERTISE_10FULL | \
64 #define MII_ADVERTISE_DEFAULT MII_ADVERTISE_ALL
66 #define MII_ADVERTISE_DEFAULT MII_ADVERTISE_HALF
70 /* The transmitter timeout
72 #define TX_TIMEOUT (2*HZ)
74 #ifdef CONFIG_USE_MDIO
75 /* Forward declarations of some structures to support different PHYs */
79 void (*funct)(uint mii_reg, struct net_device *dev);
86 const phy_cmd_t *config;
87 const phy_cmd_t *startup;
88 const phy_cmd_t *ack_int;
89 const phy_cmd_t *shutdown;
92 /* values for phy_status */
94 #define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */
95 #define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */
96 #define PHY_CONF_SPMASK 0x00f0 /* mask for speed */
97 #define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */
98 #define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */
99 #define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */
100 #define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */
102 #define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */
103 #define PHY_STAT_FAULT 0x0200 /* 1 remote fault */
104 #define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */
105 #define PHY_STAT_SPMASK 0xf000 /* mask for speed */
106 #define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */
107 #define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */
108 #define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */
109 #define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */
110 #endif /* CONFIG_USE_MDIO */
112 /* The number of Tx and Rx buffers. These are allocated from the page
113 * pool. The code may assume these are power of two, so it is best
114 * to keep them that size.
115 * We don't need to allocate pages for the transmitter. We just use
116 * the skbuffer directly.
118 #define FCC_ENET_RX_PAGES 16
119 #define FCC_ENET_RX_FRSIZE 2048
120 #define FCC_ENET_RX_FRPPG (PAGE_SIZE / FCC_ENET_RX_FRSIZE)
121 #define RX_RING_SIZE (FCC_ENET_RX_FRPPG * FCC_ENET_RX_PAGES)
122 #define TX_RING_SIZE 16 /* Must be power of two */
123 #define TX_RING_MOD_MASK 15 /* for this to work */
125 /* The FCC stores dest/src/type, data, and checksum for receive packets.
126 * size includes support for VLAN
128 #define PKT_MAXBUF_SIZE 1522
129 #define PKT_MINBUF_SIZE 64
131 /* Maximum input DMA size. Must be a should(?) be a multiple of 4.
132 * size includes support for VLAN
134 #define PKT_MAXDMA_SIZE 1524
136 /* Maximum input buffer size. Must be a multiple of 32.
138 #define PKT_MAXBLR_SIZE 1536
140 static int fcc_enet_open(struct net_device *dev);
141 static int fcc_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
142 static int fcc_enet_rx(struct net_device *dev);
143 static irqreturn_t fcc_enet_interrupt(int irq, void *dev_id);
144 static int fcc_enet_close(struct net_device *dev);
145 static struct net_device_stats *fcc_enet_get_stats(struct net_device *dev);
146 /* static void set_multicast_list(struct net_device *dev); */
147 static void fcc_restart(struct net_device *dev, int duplex);
148 static void fcc_stop(struct net_device *dev);
149 static int fcc_enet_set_mac_address(struct net_device *dev, void *addr);
151 /* These will be configurable for the FCC choice.
152 * Multiple ports can be configured. There is little choice among the
153 * I/O pins to the PHY, except the clocks. We will need some board
154 * dependent clock selection.
155 * Why in the hell did I put these inside #ifdef's? I dunno, maybe to
156 * help show what pins are used for each device.
159 /* Since the CLK setting changes greatly from board to board, I changed
160 * it to a easy way. You just need to specify which CLK number to use.
161 * Note that only limited choices can be make on each port.
164 /* FCC1 Clock Source Configuration. There are board specific.
165 Can only choose from CLK9-12 */
166 #ifdef CONFIG_SBC82xx
169 #elif defined(CONFIG_ADS8272)
177 /* FCC2 Clock Source Configuration. There are board specific.
178 Can only choose from CLK13-16 */
179 #ifdef CONFIG_ADS8272
187 /* FCC3 Clock Source Configuration. There are board specific.
188 Can only choose from CLK13-16 */
192 /* Automatically generates register configurations */
193 #define PC_CLK(x) ((uint)(1<<(x-1))) /* FCC CLK I/O ports */
195 #define CMXFCR_RF1CS(x) ((uint)((x-5)<<27)) /* FCC1 Receive Clock Source */
196 #define CMXFCR_TF1CS(x) ((uint)((x-5)<<24)) /* FCC1 Transmit Clock Source */
197 #define CMXFCR_RF2CS(x) ((uint)((x-9)<<19)) /* FCC2 Receive Clock Source */
198 #define CMXFCR_TF2CS(x) ((uint)((x-9)<<16)) /* FCC2 Transmit Clock Source */
199 #define CMXFCR_RF3CS(x) ((uint)((x-9)<<11)) /* FCC3 Receive Clock Source */
200 #define CMXFCR_TF3CS(x) ((uint)((x-9)<<8)) /* FCC3 Transmit Clock Source */
202 #define PC_F1RXCLK PC_CLK(F1_RXCLK)
203 #define PC_F1TXCLK PC_CLK(F1_TXCLK)
204 #define CMX1_CLK_ROUTE (CMXFCR_RF1CS(F1_RXCLK) | CMXFCR_TF1CS(F1_TXCLK))
205 #define CMX1_CLK_MASK ((uint)0xff000000)
207 #define PC_F2RXCLK PC_CLK(F2_RXCLK)
208 #define PC_F2TXCLK PC_CLK(F2_TXCLK)
209 #define CMX2_CLK_ROUTE (CMXFCR_RF2CS(F2_RXCLK) | CMXFCR_TF2CS(F2_TXCLK))
210 #define CMX2_CLK_MASK ((uint)0x00ff0000)
212 #define PC_F3RXCLK PC_CLK(F3_RXCLK)
213 #define PC_F3TXCLK PC_CLK(F3_TXCLK)
214 #define CMX3_CLK_ROUTE (CMXFCR_RF3CS(F3_RXCLK) | CMXFCR_TF3CS(F3_TXCLK))
215 #define CMX3_CLK_MASK ((uint)0x0000ff00)
218 /* I/O Pin assignment for FCC1. I don't yet know the best way to do this,
219 * but there is little variation among the choices.
221 #define PA1_COL ((uint)0x00000001)
222 #define PA1_CRS ((uint)0x00000002)
223 #define PA1_TXER ((uint)0x00000004)
224 #define PA1_TXEN ((uint)0x00000008)
225 #define PA1_RXDV ((uint)0x00000010)
226 #define PA1_RXER ((uint)0x00000020)
227 #define PA1_TXDAT ((uint)0x00003c00)
228 #define PA1_RXDAT ((uint)0x0003c000)
229 #define PA1_PSORA_BOUT (PA1_RXDAT | PA1_TXDAT)
230 #define PA1_PSORA_BIN (PA1_COL | PA1_CRS | PA1_TXER | PA1_TXEN | \
232 #define PA1_DIRA_BOUT (PA1_RXDAT | PA1_CRS | PA1_COL | PA1_RXER | PA1_RXDV)
233 #define PA1_DIRA_BIN (PA1_TXDAT | PA1_TXEN | PA1_TXER)
236 /* I/O Pin assignment for FCC2. I don't yet know the best way to do this,
237 * but there is little variation among the choices.
239 #define PB2_TXER ((uint)0x00000001)
240 #define PB2_RXDV ((uint)0x00000002)
241 #define PB2_TXEN ((uint)0x00000004)
242 #define PB2_RXER ((uint)0x00000008)
243 #define PB2_COL ((uint)0x00000010)
244 #define PB2_CRS ((uint)0x00000020)
245 #define PB2_TXDAT ((uint)0x000003c0)
246 #define PB2_RXDAT ((uint)0x00003c00)
247 #define PB2_PSORB_BOUT (PB2_RXDAT | PB2_TXDAT | PB2_CRS | PB2_COL | \
248 PB2_RXER | PB2_RXDV | PB2_TXER)
249 #define PB2_PSORB_BIN (PB2_TXEN)
250 #define PB2_DIRB_BOUT (PB2_RXDAT | PB2_CRS | PB2_COL | PB2_RXER | PB2_RXDV)
251 #define PB2_DIRB_BIN (PB2_TXDAT | PB2_TXEN | PB2_TXER)
254 /* I/O Pin assignment for FCC3. I don't yet know the best way to do this,
255 * but there is little variation among the choices.
257 #define PB3_RXDV ((uint)0x00004000)
258 #define PB3_RXER ((uint)0x00008000)
259 #define PB3_TXER ((uint)0x00010000)
260 #define PB3_TXEN ((uint)0x00020000)
261 #define PB3_COL ((uint)0x00040000)
262 #define PB3_CRS ((uint)0x00080000)
263 #ifndef CONFIG_RPX8260
264 #define PB3_TXDAT ((uint)0x0f000000)
265 #define PC3_TXDAT ((uint)0x00000000)
267 #define PB3_TXDAT ((uint)0x0f000000)
270 #define PB3_RXDAT ((uint)0x00f00000)
271 #define PB3_PSORB_BOUT (PB3_RXDAT | PB3_TXDAT | PB3_CRS | PB3_COL | \
272 PB3_RXER | PB3_RXDV | PB3_TXER | PB3_TXEN)
273 #define PB3_PSORB_BIN (0)
274 #define PB3_DIRB_BOUT (PB3_RXDAT | PB3_CRS | PB3_COL | PB3_RXER | PB3_RXDV)
275 #define PB3_DIRB_BIN (PB3_TXDAT | PB3_TXEN | PB3_TXER)
277 #define PC3_PSORC_BOUT (PC3_TXDAT)
278 #define PC3_PSORC_BIN (0)
279 #define PC3_DIRC_BOUT (0)
280 #define PC3_DIRC_BIN (PC3_TXDAT)
283 /* MII status/control serial interface.
285 #if defined(CONFIG_RPX8260)
286 /* The EP8260 doesn't use Port C for MDIO */
287 #define PC_MDIO ((uint)0x00000000)
288 #define PC_MDCK ((uint)0x00000000)
289 #elif defined(CONFIG_TQM8260)
290 /* TQM8260 has MDIO and MDCK on PC30 and PC31 respectively */
291 #define PC_MDIO ((uint)0x00000002)
292 #define PC_MDCK ((uint)0x00000001)
293 #elif defined(CONFIG_ADS8272)
294 #define PC_MDIO ((uint)0x00002000)
295 #define PC_MDCK ((uint)0x00001000)
296 #elif defined(CONFIG_EST8260) || defined(CONFIG_ADS8260) || defined(CONFIG_PQ2FADS)
297 #define PC_MDIO ((uint)0x00400000)
298 #define PC_MDCK ((uint)0x00200000)
300 #define PC_MDIO ((uint)0x00000004)
301 #define PC_MDCK ((uint)0x00000020)
304 #if defined(CONFIG_USE_MDIO) && (!defined(PC_MDIO) || !defined(PC_MDCK))
305 #error "Must define PC_MDIO and PC_MDCK if using MDIO"
309 /* default to dynamic config of phy addresses */
310 #define FCC1_PHY_ADDR 0
311 #ifdef CONFIG_PQ2FADS
312 #define FCC2_PHY_ADDR 0
314 #define FCC2_PHY_ADDR 2
316 #define FCC3_PHY_ADDR 3
318 /* A table of information for supporting FCCs. This does two things.
319 * First, we know how many FCCs we have and they are always externally
320 * numbered from zero. Second, it holds control register and I/O
321 * information that could be different among board designs.
323 typedef struct fcc_info {
337 static fcc_info_t fcc_ports[] = {
338 #ifdef CONFIG_FCC1_ENET
339 { 0, FCC1_PHY_ADDR, CPM_CR_FCC1_SBLOCK, CPM_CR_FCC1_PAGE, PROFF_FCC1, SIU_INT_FCC1,
340 (PC_F1RXCLK | PC_F1TXCLK), CMX1_CLK_ROUTE, CMX1_CLK_MASK,
343 #ifdef CONFIG_FCC2_ENET
344 { 1, FCC2_PHY_ADDR, CPM_CR_FCC2_SBLOCK, CPM_CR_FCC2_PAGE, PROFF_FCC2, SIU_INT_FCC2,
345 (PC_F2RXCLK | PC_F2TXCLK), CMX2_CLK_ROUTE, CMX2_CLK_MASK,
348 #ifdef CONFIG_FCC3_ENET
349 { 2, FCC3_PHY_ADDR, CPM_CR_FCC3_SBLOCK, CPM_CR_FCC3_PAGE, PROFF_FCC3, SIU_INT_FCC3,
350 (PC_F3RXCLK | PC_F3TXCLK), CMX3_CLK_ROUTE, CMX3_CLK_MASK,
355 /* The FCC buffer descriptors track the ring buffers. The rx_bd_base and
356 * tx_bd_base always point to the base of the buffer descriptors. The
357 * cur_rx and cur_tx point to the currently available buffer.
358 * The dirty_tx tracks the current buffer that is being sent by the
359 * controller. The cur_tx and dirty_tx are equal under both completely
360 * empty and completely full conditions. The empty/ready indicator in
361 * the buffer descriptor determines the actual condition.
363 struct fcc_enet_private {
364 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
365 struct sk_buff* tx_skbuff[TX_RING_SIZE];
369 /* CPM dual port RAM relative addresses.
371 cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */
373 cbd_t *cur_rx, *cur_tx; /* The next free ring entry */
374 cbd_t *dirty_tx; /* The ring entries to be free()ed. */
375 volatile fcc_t *fccp;
376 volatile fcc_enet_t *ep;
377 struct net_device_stats stats;
381 #ifdef CONFIG_USE_MDIO
386 struct work_struct phy_relink;
387 struct work_struct phy_display_config;
388 struct net_device *dev;
393 #endif /* CONFIG_USE_MDIO */
402 static void init_fcc_shutdown(fcc_info_t *fip, struct fcc_enet_private *cep,
403 volatile cpm2_map_t *immap);
404 static void init_fcc_startup(fcc_info_t *fip, struct net_device *dev);
405 static void init_fcc_ioports(fcc_info_t *fip, volatile iop_cpm2_t *io,
406 volatile cpm2_map_t *immap);
407 static void init_fcc_param(fcc_info_t *fip, struct net_device *dev,
408 volatile cpm2_map_t *immap);
410 #ifdef CONFIG_USE_MDIO
411 static int mii_queue(struct net_device *dev, int request, void (*func)(uint, struct net_device *));
412 static uint mii_send_receive(fcc_info_t *fip, uint cmd);
413 static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c);
415 /* Make MII read/write commands for the FCC.
417 #define mk_mii_read(REG) (0x60020000 | (((REG) & 0x1f) << 18))
418 #define mk_mii_write(REG, VAL) (0x50020000 | (((REG) & 0x1f) << 18) | \
421 #endif /* CONFIG_USE_MDIO */
425 fcc_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
427 struct fcc_enet_private *cep = (struct fcc_enet_private *)dev->priv;
430 /* Fill in a Tx ring entry */
433 #ifndef final_version
434 if (!cep->tx_free || (bdp->cbd_sc & BD_ENET_TX_READY)) {
435 /* Ooops. All transmit buffers are full. Bail out.
436 * This should not happen, since the tx queue should be stopped.
438 printk("%s: tx queue full!.\n", dev->name);
443 /* Clear all of the status flags. */
444 bdp->cbd_sc &= ~BD_ENET_TX_STATS;
446 /* If the frame is short, tell CPM to pad it. */
447 if (skb->len <= ETH_ZLEN)
448 bdp->cbd_sc |= BD_ENET_TX_PAD;
450 bdp->cbd_sc &= ~BD_ENET_TX_PAD;
452 /* Set buffer length and buffer pointer. */
453 bdp->cbd_datlen = skb->len;
454 bdp->cbd_bufaddr = __pa(skb->data);
456 spin_lock_irq(&cep->lock);
458 /* Save skb pointer. */
459 cep->tx_skbuff[cep->skb_cur] = skb;
461 cep->stats.tx_bytes += skb->len;
462 cep->skb_cur = (cep->skb_cur+1) & TX_RING_MOD_MASK;
464 /* Send it on its way. Tell CPM its ready, interrupt when done,
465 * its the last BD of the frame, and to put the CRC on the end.
467 bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR | BD_ENET_TX_LAST | BD_ENET_TX_TC);
470 /* Errata says don't do this. */
471 cep->fccp->fcc_ftodr = 0x8000;
473 dev->trans_start = jiffies;
475 /* If this was the last BD in the ring, start at the beginning again. */
476 if (bdp->cbd_sc & BD_ENET_TX_WRAP)
477 bdp = cep->tx_bd_base;
482 netif_stop_queue(dev);
484 cep->cur_tx = (cbd_t *)bdp;
486 spin_unlock_irq(&cep->lock);
493 fcc_enet_timeout(struct net_device *dev)
495 struct fcc_enet_private *cep = (struct fcc_enet_private *)dev->priv;
497 printk("%s: transmit timed out.\n", dev->name);
498 cep->stats.tx_errors++;
499 #ifndef final_version
503 printk(" Ring data dump: cur_tx %p tx_free %d cur_rx %p.\n",
504 cep->cur_tx, cep->tx_free,
506 bdp = cep->tx_bd_base;
507 printk(" Tx @base %p :\n", bdp);
508 for (i = 0 ; i < TX_RING_SIZE; i++, bdp++)
509 printk("%04x %04x %08x\n",
513 bdp = cep->rx_bd_base;
514 printk(" Rx @base %p :\n", bdp);
515 for (i = 0 ; i < RX_RING_SIZE; i++, bdp++)
516 printk("%04x %04x %08x\n",
523 netif_wake_queue(dev);
526 /* The interrupt handler. */
528 fcc_enet_interrupt(int irq, void * dev_id)
530 struct net_device *dev = dev_id;
531 volatile struct fcc_enet_private *cep;
536 cep = (struct fcc_enet_private *)dev->priv;
538 /* Get the interrupt events that caused us to be here.
540 int_events = cep->fccp->fcc_fcce;
541 cep->fccp->fcc_fcce = (int_events & cep->fccp->fcc_fccm);
545 /* We have to be careful here to make sure that we aren't
546 * interrupted by a PHY interrupt.
548 disable_irq_nosync(PHY_INTERRUPT);
551 /* Handle receive event in its own function.
553 if (int_events & FCC_ENET_RXF)
556 /* Check for a transmit error. The manual is a little unclear
557 * about this, so the debug code until I get it figured out. It
558 * appears that if TXE is set, then TXB is not set. However,
559 * if carrier sense is lost during frame transmission, the TXE
560 * bit is set, "and continues the buffer transmission normally."
561 * I don't know if "normally" implies TXB is set when the buffer
562 * descriptor is closed.....trial and error :-).
565 /* Transmit OK, or non-fatal error. Update the buffer descriptors.
567 if (int_events & (FCC_ENET_TXE | FCC_ENET_TXB)) {
568 spin_lock(&cep->lock);
570 while ((bdp->cbd_sc&BD_ENET_TX_READY)==0) {
571 if (cep->tx_free == TX_RING_SIZE)
574 if (bdp->cbd_sc & BD_ENET_TX_HB) /* No heartbeat */
575 cep->stats.tx_heartbeat_errors++;
576 if (bdp->cbd_sc & BD_ENET_TX_LC) /* Late collision */
577 cep->stats.tx_window_errors++;
578 if (bdp->cbd_sc & BD_ENET_TX_RL) /* Retrans limit */
579 cep->stats.tx_aborted_errors++;
580 if (bdp->cbd_sc & BD_ENET_TX_UN) /* Underrun */
581 cep->stats.tx_fifo_errors++;
582 if (bdp->cbd_sc & BD_ENET_TX_CSL) /* Carrier lost */
583 cep->stats.tx_carrier_errors++;
586 /* No heartbeat or Lost carrier are not really bad errors.
587 * The others require a restart transmit command.
590 (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
592 cep->stats.tx_errors++;
595 cep->stats.tx_packets++;
597 /* Deferred means some collisions occurred during transmit,
598 * but we eventually sent the packet OK.
600 if (bdp->cbd_sc & BD_ENET_TX_DEF)
601 cep->stats.collisions++;
603 /* Free the sk buffer associated with this last transmit. */
604 dev_kfree_skb_irq(cep->tx_skbuff[cep->skb_dirty]);
605 cep->tx_skbuff[cep->skb_dirty] = NULL;
606 cep->skb_dirty = (cep->skb_dirty + 1) & TX_RING_MOD_MASK;
608 /* Update pointer to next buffer descriptor to be transmitted. */
609 if (bdp->cbd_sc & BD_ENET_TX_WRAP)
610 bdp = cep->tx_bd_base;
614 /* I don't know if we can be held off from processing these
615 * interrupts for more than one frame time. I really hope
616 * not. In such a case, we would now want to check the
617 * currently available BD (cur_tx) and determine if any
618 * buffers between the dirty_tx and cur_tx have also been
619 * sent. We would want to process anything in between that
620 * does not have BD_ENET_TX_READY set.
623 /* Since we have freed up a buffer, the ring is no longer
626 if (!cep->tx_free++) {
627 if (netif_queue_stopped(dev)) {
628 netif_wake_queue(dev);
632 cep->dirty_tx = (cbd_t *)bdp;
636 volatile cpm_cpm2_t *cp;
638 /* Some transmit errors cause the transmitter to shut
639 * down. We now issue a restart transmit. Since the
640 * errors close the BD and update the pointers, the restart
641 * _should_ pick up without having to reset any of our
642 * pointers either. Also, To workaround 8260 device erratum
643 * CPM37, we must disable and then re-enable the transmitter
644 * following a Late Collision, Underrun, or Retry Limit error.
646 cep->fccp->fcc_gfmr &= ~FCC_GFMR_ENT;
647 udelay(10); /* wait a few microseconds just on principle */
648 cep->fccp->fcc_gfmr |= FCC_GFMR_ENT;
652 mk_cr_cmd(cep->fip->fc_cpmpage, cep->fip->fc_cpmblock,
653 0x0c, CPM_CR_RESTART_TX) | CPM_CR_FLG;
654 while (cp->cp_cpcr & CPM_CR_FLG);
656 spin_unlock(&cep->lock);
659 /* Check for receive busy, i.e. packets coming but no place to
662 if (int_events & FCC_ENET_BSY) {
663 cep->fccp->fcc_fcce = FCC_ENET_BSY;
664 cep->stats.rx_dropped++;
668 enable_irq(PHY_INTERRUPT);
673 /* During a receive, the cur_rx points to the current incoming buffer.
674 * When we update through the ring, if the next incoming buffer has
675 * not been given to the system, we just set the empty indicator,
676 * effectively tossing the packet.
679 fcc_enet_rx(struct net_device *dev)
681 struct fcc_enet_private *cep;
686 cep = (struct fcc_enet_private *)dev->priv;
688 /* First, grab all of the stats for the incoming packet.
689 * These get messed up if we get called due to a busy condition.
694 if (bdp->cbd_sc & BD_ENET_RX_EMPTY)
697 #ifndef final_version
698 /* Since we have allocated space to hold a complete frame, both
699 * the first and last indicators should be set.
701 if ((bdp->cbd_sc & (BD_ENET_RX_FIRST | BD_ENET_RX_LAST)) !=
702 (BD_ENET_RX_FIRST | BD_ENET_RX_LAST))
703 printk("CPM ENET: rcv is not first+last\n");
706 /* Frame too long or too short. */
707 if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
708 cep->stats.rx_length_errors++;
709 if (bdp->cbd_sc & BD_ENET_RX_NO) /* Frame alignment */
710 cep->stats.rx_frame_errors++;
711 if (bdp->cbd_sc & BD_ENET_RX_CR) /* CRC Error */
712 cep->stats.rx_crc_errors++;
713 if (bdp->cbd_sc & BD_ENET_RX_OV) /* FIFO overrun */
714 cep->stats.rx_crc_errors++;
715 if (bdp->cbd_sc & BD_ENET_RX_CL) /* Late Collision */
716 cep->stats.rx_frame_errors++;
719 (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | BD_ENET_RX_CR
720 | BD_ENET_RX_OV | BD_ENET_RX_CL)))
722 /* Process the incoming frame. */
723 cep->stats.rx_packets++;
725 /* Remove the FCS from the packet length. */
726 pkt_len = bdp->cbd_datlen - 4;
727 cep->stats.rx_bytes += pkt_len;
729 /* This does 16 byte alignment, much more than we need. */
730 skb = dev_alloc_skb(pkt_len);
733 printk("%s: Memory squeeze, dropping packet.\n", dev->name);
734 cep->stats.rx_dropped++;
737 skb_put(skb,pkt_len); /* Make room */
738 eth_copy_and_sum(skb,
739 (unsigned char *)__va(bdp->cbd_bufaddr),
741 skb->protocol=eth_type_trans(skb,dev);
746 /* Clear the status flags for this buffer. */
747 bdp->cbd_sc &= ~BD_ENET_RX_STATS;
749 /* Mark the buffer empty. */
750 bdp->cbd_sc |= BD_ENET_RX_EMPTY;
752 /* Update BD pointer to next entry. */
753 if (bdp->cbd_sc & BD_ENET_RX_WRAP)
754 bdp = cep->rx_bd_base;
759 cep->cur_rx = (cbd_t *)bdp;
765 fcc_enet_close(struct net_device *dev)
767 #ifdef CONFIG_USE_MDIO
768 struct fcc_enet_private *fep = dev->priv;
771 netif_stop_queue(dev);
773 #ifdef CONFIG_USE_MDIO
775 mii_do_cmd(dev, fep->phy->shutdown);
781 static struct net_device_stats *fcc_enet_get_stats(struct net_device *dev)
783 struct fcc_enet_private *cep = (struct fcc_enet_private *)dev->priv;
788 #ifdef CONFIG_USE_MDIO
790 /* NOTE: Most of the following comes from the FEC driver for 860. The
791 * overall structure of MII code has been retained (as it's proved stable
792 * and well-tested), but actual transfer requests are processed "at once"
793 * instead of being queued (there's no interrupt-driven MII transfer
794 * mechanism, one has to toggle the data/clock bits manually).
797 mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *))
799 struct fcc_enet_private *fep;
802 /* Add PHY address to register command. */
804 regval |= fep->phy_addr << 23;
808 tmp = mii_send_receive(fep->fip, regval);
815 static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c)
822 for(k = 0; (c+k)->mii_data != mk_mii_end; k++)
823 mii_queue(dev, (c+k)->mii_data, (c+k)->funct);
826 static void mii_parse_sr(uint mii_reg, struct net_device *dev)
828 volatile struct fcc_enet_private *fep = dev->priv;
829 uint s = fep->phy_status;
831 s &= ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC);
833 if (mii_reg & BMSR_LSTATUS)
835 if (mii_reg & BMSR_RFAULT)
837 if (mii_reg & BMSR_ANEGCOMPLETE)
843 static void mii_parse_cr(uint mii_reg, struct net_device *dev)
845 volatile struct fcc_enet_private *fep = dev->priv;
846 uint s = fep->phy_status;
848 s &= ~(PHY_CONF_ANE | PHY_CONF_LOOP);
850 if (mii_reg & BMCR_ANENABLE)
852 if (mii_reg & BMCR_LOOPBACK)
858 static void mii_parse_anar(uint mii_reg, struct net_device *dev)
860 volatile struct fcc_enet_private *fep = dev->priv;
861 uint s = fep->phy_status;
863 s &= ~(PHY_CONF_SPMASK);
865 if (mii_reg & ADVERTISE_10HALF)
867 if (mii_reg & ADVERTISE_10FULL)
869 if (mii_reg & ADVERTISE_100HALF)
870 s |= PHY_CONF_100HDX;
871 if (mii_reg & ADVERTISE_100FULL)
872 s |= PHY_CONF_100FDX;
877 /* ------------------------------------------------------------------------- */
878 /* Generic PHY support. Should work for all PHYs, but does not support link
881 #ifdef CONFIG_FCC_GENERIC_PHY
883 static phy_info_t phy_info_generic = {
884 0x00000000, /* 0-->match any PHY */
887 (const phy_cmd_t []) { /* config */
888 /* advertise only half-duplex capabilities */
889 { mk_mii_write(MII_ADVERTISE, MII_ADVERTISE_HALF),
892 /* enable auto-negotiation */
893 { mk_mii_write(MII_BMCR, BMCR_ANENABLE), mii_parse_cr },
896 (const phy_cmd_t []) { /* startup */
897 /* restart auto-negotiation */
898 { mk_mii_write(MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART),
902 (const phy_cmd_t []) { /* ack_int */
903 /* We don't actually use the ack_int table with a generic
904 * PHY, but putting a reference to mii_parse_sr here keeps
905 * us from getting a compiler warning about unused static
906 * functions in the case where we only compile in generic
909 { mk_mii_read(MII_BMSR), mii_parse_sr },
912 (const phy_cmd_t []) { /* shutdown */
916 #endif /* ifdef CONFIG_FCC_GENERIC_PHY */
918 /* ------------------------------------------------------------------------- */
919 /* The Level one LXT970 is used by many boards */
921 #ifdef CONFIG_FCC_LXT970
923 #define MII_LXT970_MIRROR 16 /* Mirror register */
924 #define MII_LXT970_IER 17 /* Interrupt Enable Register */
925 #define MII_LXT970_ISR 18 /* Interrupt Status Register */
926 #define MII_LXT970_CONFIG 19 /* Configuration Register */
927 #define MII_LXT970_CSR 20 /* Chip Status Register */
929 static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev)
931 volatile struct fcc_enet_private *fep = dev->priv;
932 uint s = fep->phy_status;
934 s &= ~(PHY_STAT_SPMASK);
936 if (mii_reg & 0x0800) {
937 if (mii_reg & 0x1000)
938 s |= PHY_STAT_100FDX;
940 s |= PHY_STAT_100HDX;
942 if (mii_reg & 0x1000)
951 static phy_info_t phy_info_lxt970 = {
955 (const phy_cmd_t []) { /* config */
957 // { mk_mii_write(MII_ADVERTISE, 0x0021), NULL },
959 /* Set default operation of 100-TX....for some reason
960 * some of these bits are set on power up, which is wrong.
962 { mk_mii_write(MII_LXT970_CONFIG, 0), NULL },
964 { mk_mii_read(MII_BMCR), mii_parse_cr },
965 { mk_mii_read(MII_ADVERTISE), mii_parse_anar },
968 (const phy_cmd_t []) { /* startup - enable interrupts */
969 { mk_mii_write(MII_LXT970_IER, 0x0002), NULL },
970 { mk_mii_write(MII_BMCR, 0x1200), NULL }, /* autonegotiate */
973 (const phy_cmd_t []) { /* ack_int */
974 /* read SR and ISR to acknowledge */
976 { mk_mii_read(MII_BMSR), mii_parse_sr },
977 { mk_mii_read(MII_LXT970_ISR), NULL },
979 /* find out the current status */
981 { mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr },
984 (const phy_cmd_t []) { /* shutdown - disable interrupts */
985 { mk_mii_write(MII_LXT970_IER, 0x0000), NULL },
990 #endif /* CONFIG_FEC_LXT970 */
992 /* ------------------------------------------------------------------------- */
993 /* The Level one LXT971 is used on some of my custom boards */
995 #ifdef CONFIG_FCC_LXT971
997 /* register definitions for the 971 */
999 #define MII_LXT971_PCR 16 /* Port Control Register */
1000 #define MII_LXT971_SR2 17 /* Status Register 2 */
1001 #define MII_LXT971_IER 18 /* Interrupt Enable Register */
1002 #define MII_LXT971_ISR 19 /* Interrupt Status Register */
1003 #define MII_LXT971_LCR 20 /* LED Control Register */
1004 #define MII_LXT971_TCR 30 /* Transmit Control Register */
1007 * I had some nice ideas of running the MDIO faster...
1008 * The 971 should support 8MHz and I tried it, but things acted really
1009 * weird, so 2.5 MHz ought to be enough for anyone...
1012 static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev)
1014 volatile struct fcc_enet_private *fep = dev->priv;
1015 uint s = fep->phy_status;
1017 s &= ~(PHY_STAT_SPMASK);
1019 if (mii_reg & 0x4000) {
1020 if (mii_reg & 0x0200)
1021 s |= PHY_STAT_100FDX;
1023 s |= PHY_STAT_100HDX;
1025 if (mii_reg & 0x0200)
1026 s |= PHY_STAT_10FDX;
1028 s |= PHY_STAT_10HDX;
1030 if (mii_reg & 0x0008)
1031 s |= PHY_STAT_FAULT;
1033 fep->phy_status = s;
1036 static phy_info_t phy_info_lxt971 = {
1040 (const phy_cmd_t []) { /* config */
1041 /* configure link capabilities to advertise */
1042 { mk_mii_write(MII_ADVERTISE, MII_ADVERTISE_DEFAULT),
1045 /* enable auto-negotiation */
1046 { mk_mii_write(MII_BMCR, BMCR_ANENABLE), mii_parse_cr },
1049 (const phy_cmd_t []) { /* startup - enable interrupts */
1050 { mk_mii_write(MII_LXT971_IER, 0x00f2), NULL },
1052 /* restart auto-negotiation */
1053 { mk_mii_write(MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART),
1057 (const phy_cmd_t []) { /* ack_int */
1058 /* find out the current status */
1059 { mk_mii_read(MII_BMSR), NULL },
1060 { mk_mii_read(MII_BMSR), mii_parse_sr },
1061 { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
1063 /* we only need to read ISR to acknowledge */
1064 { mk_mii_read(MII_LXT971_ISR), NULL },
1067 (const phy_cmd_t []) { /* shutdown - disable interrupts */
1068 { mk_mii_write(MII_LXT971_IER, 0x0000), NULL },
1073 #endif /* CONFIG_FCC_LXT971 */
1075 /* ------------------------------------------------------------------------- */
1076 /* The Quality Semiconductor QS6612 is used on the RPX CLLF */
1078 #ifdef CONFIG_FCC_QS6612
1080 /* register definitions */
1082 #define MII_QS6612_MCR 17 /* Mode Control Register */
1083 #define MII_QS6612_FTR 27 /* Factory Test Register */
1084 #define MII_QS6612_MCO 28 /* Misc. Control Register */
1085 #define MII_QS6612_ISR 29 /* Interrupt Source Register */
1086 #define MII_QS6612_IMR 30 /* Interrupt Mask Register */
1087 #define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */
1089 static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev)
1091 volatile struct fcc_enet_private *fep = dev->priv;
1092 uint s = fep->phy_status;
1094 s &= ~(PHY_STAT_SPMASK);
1096 switch((mii_reg >> 2) & 7) {
1097 case 1: s |= PHY_STAT_10HDX; break;
1098 case 2: s |= PHY_STAT_100HDX; break;
1099 case 5: s |= PHY_STAT_10FDX; break;
1100 case 6: s |= PHY_STAT_100FDX; break;
1103 fep->phy_status = s;
1106 static phy_info_t phy_info_qs6612 = {
1110 (const phy_cmd_t []) { /* config */
1111 // { mk_mii_write(MII_ADVERTISE, 0x061), NULL }, /* 10 Mbps */
1113 /* The PHY powers up isolated on the RPX,
1114 * so send a command to allow operation.
1117 { mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL },
1119 /* parse cr and anar to get some info */
1121 { mk_mii_read(MII_BMCR), mii_parse_cr },
1122 { mk_mii_read(MII_ADVERTISE), mii_parse_anar },
1125 (const phy_cmd_t []) { /* startup - enable interrupts */
1126 { mk_mii_write(MII_QS6612_IMR, 0x003a), NULL },
1127 { mk_mii_write(MII_BMCR, 0x1200), NULL }, /* autonegotiate */
1130 (const phy_cmd_t []) { /* ack_int */
1132 /* we need to read ISR, SR and ANER to acknowledge */
1134 { mk_mii_read(MII_QS6612_ISR), NULL },
1135 { mk_mii_read(MII_BMSR), mii_parse_sr },
1136 { mk_mii_read(MII_EXPANSION), NULL },
1138 /* read pcr to get info */
1140 { mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr },
1143 (const phy_cmd_t []) { /* shutdown - disable interrupts */
1144 { mk_mii_write(MII_QS6612_IMR, 0x0000), NULL },
1150 #endif /* CONFIG_FEC_QS6612 */
1153 /* ------------------------------------------------------------------------- */
1154 /* The Davicom DM9131 is used on the HYMOD board */
1156 #ifdef CONFIG_FCC_DM9131
1158 /* register definitions */
1160 #define MII_DM9131_ACR 16 /* Aux. Config Register */
1161 #define MII_DM9131_ACSR 17 /* Aux. Config/Status Register */
1162 #define MII_DM9131_10TCSR 18 /* 10BaseT Config/Status Reg. */
1163 #define MII_DM9131_INTR 21 /* Interrupt Register */
1164 #define MII_DM9131_RECR 22 /* Receive Error Counter Reg. */
1165 #define MII_DM9131_DISCR 23 /* Disconnect Counter Register */
1167 static void mii_parse_dm9131_acsr(uint mii_reg, struct net_device *dev)
1169 volatile struct fcc_enet_private *fep = dev->priv;
1170 uint s = fep->phy_status;
1172 s &= ~(PHY_STAT_SPMASK);
1174 switch ((mii_reg >> 12) & 0xf) {
1175 case 1: s |= PHY_STAT_10HDX; break;
1176 case 2: s |= PHY_STAT_10FDX; break;
1177 case 4: s |= PHY_STAT_100HDX; break;
1178 case 8: s |= PHY_STAT_100FDX; break;
1181 fep->phy_status = s;
1184 static phy_info_t phy_info_dm9131 = {
1188 (const phy_cmd_t []) { /* config */
1189 /* parse cr and anar to get some info */
1190 { mk_mii_read(MII_BMCR), mii_parse_cr },
1191 { mk_mii_read(MII_ADVERTISE), mii_parse_anar },
1194 (const phy_cmd_t []) { /* startup - enable interrupts */
1195 { mk_mii_write(MII_DM9131_INTR, 0x0002), NULL },
1196 { mk_mii_write(MII_BMCR, 0x1200), NULL }, /* autonegotiate */
1199 (const phy_cmd_t []) { /* ack_int */
1201 /* we need to read INTR, SR and ANER to acknowledge */
1203 { mk_mii_read(MII_DM9131_INTR), NULL },
1204 { mk_mii_read(MII_BMSR), mii_parse_sr },
1205 { mk_mii_read(MII_EXPANSION), NULL },
1207 /* read acsr to get info */
1209 { mk_mii_read(MII_DM9131_ACSR), mii_parse_dm9131_acsr },
1212 (const phy_cmd_t []) { /* shutdown - disable interrupts */
1213 { mk_mii_write(MII_DM9131_INTR, 0x0f00), NULL },
1219 #endif /* CONFIG_FEC_DM9131 */
1220 #ifdef CONFIG_FCC_DM9161
1221 /* ------------------------------------------------------------------------- */
1222 /* DM9161 Control register values */
1223 #define MIIM_DM9161_CR_STOP 0x0400
1224 #define MIIM_DM9161_CR_RSTAN 0x1200
1226 #define MIIM_DM9161_SCR 0x10
1227 #define MIIM_DM9161_SCR_INIT 0x0610
1229 /* DM9161 Specified Configuration and Status Register */
1230 #define MIIM_DM9161_SCSR 0x11
1231 #define MIIM_DM9161_SCSR_100F 0x8000
1232 #define MIIM_DM9161_SCSR_100H 0x4000
1233 #define MIIM_DM9161_SCSR_10F 0x2000
1234 #define MIIM_DM9161_SCSR_10H 0x1000
1235 /* DM9161 10BT register */
1236 #define MIIM_DM9161_10BTCSR 0x12
1237 #define MIIM_DM9161_10BTCSR_INIT 0x7800
1238 /* DM9161 Interrupt Register */
1239 #define MIIM_DM9161_INTR 0x15
1240 #define MIIM_DM9161_INTR_PEND 0x8000
1241 #define MIIM_DM9161_INTR_DPLX_MASK 0x0800
1242 #define MIIM_DM9161_INTR_SPD_MASK 0x0400
1243 #define MIIM_DM9161_INTR_LINK_MASK 0x0200
1244 #define MIIM_DM9161_INTR_MASK 0x0100
1245 #define MIIM_DM9161_INTR_DPLX_CHANGE 0x0010
1246 #define MIIM_DM9161_INTR_SPD_CHANGE 0x0008
1247 #define MIIM_DM9161_INTR_LINK_CHANGE 0x0004
1248 #define MIIM_DM9161_INTR_INIT 0x0000
1249 #define MIIM_DM9161_INTR_STOP \
1250 (MIIM_DM9161_INTR_DPLX_MASK | MIIM_DM9161_INTR_SPD_MASK \
1251 | MIIM_DM9161_INTR_LINK_MASK | MIIM_DM9161_INTR_MASK)
1253 static void mii_parse_dm9161_sr(uint mii_reg, struct net_device * dev)
1255 volatile struct fcc_enet_private *fep = dev->priv;
1256 uint regstat, timeout=0xffff;
1258 while(!(mii_reg & 0x0020) && timeout--)
1260 regstat=mk_mii_read(MII_BMSR);
1261 regstat |= fep->phy_addr <<23;
1262 mii_reg = mii_send_receive(fep->fip,regstat);
1265 mii_parse_sr(mii_reg, dev);
1268 static void mii_parse_dm9161_scsr(uint mii_reg, struct net_device * dev)
1270 volatile struct fcc_enet_private *fep = dev->priv;
1271 uint s = fep->phy_status;
1273 s &= ~(PHY_STAT_SPMASK);
1274 switch((mii_reg >>12) & 0xf) {
1277 s |= PHY_STAT_10HDX;
1278 printk("10BaseT Half Duplex\n");
1283 s |= PHY_STAT_10FDX;
1284 printk("10BaseT Full Duplex\n");
1289 s |= PHY_STAT_100HDX;
1290 printk("100BaseT Half Duplex\n");
1295 s |= PHY_STAT_100FDX;
1296 printk("100BaseT Full Duplex\n");
1301 fep->phy_status = s;
1305 static void mii_dm9161_wait(uint mii_reg, struct net_device *dev)
1309 /* Davicom takes a bit to come up after a reset,
1310 * so wait here for a bit */
1311 schedule_timeout_uninterruptible(timeout);
1314 static phy_info_t phy_info_dm9161 = {
1317 (const phy_cmd_t[]) { /* config */
1318 { mk_mii_write(MII_BMCR, MIIM_DM9161_CR_STOP), NULL},
1319 /* Do not bypass the scrambler/descrambler */
1320 { mk_mii_write(MIIM_DM9161_SCR, MIIM_DM9161_SCR_INIT), NULL},
1321 /* Configure 10BTCSR register */
1322 { mk_mii_write(MIIM_DM9161_10BTCSR, MIIM_DM9161_10BTCSR_INIT),NULL},
1323 /* Configure some basic stuff */
1324 { mk_mii_write(MII_BMCR, 0x1000), NULL},
1325 { mk_mii_read(MII_BMCR), mii_parse_cr },
1326 { mk_mii_read(MII_ADVERTISE), mii_parse_anar },
1329 (const phy_cmd_t[]) { /* startup */
1330 /* Restart Auto Negotiation */
1331 { mk_mii_write(MII_BMCR, MIIM_DM9161_CR_RSTAN), NULL},
1332 /* Status is read once to clear old link state */
1333 { mk_mii_read(MII_BMSR), mii_dm9161_wait},
1334 /* Auto-negotiate */
1335 { mk_mii_read(MII_BMSR), mii_parse_dm9161_sr},
1336 /* Read the status */
1337 { mk_mii_read(MIIM_DM9161_SCSR), mii_parse_dm9161_scsr},
1338 /* Clear any pending interrupts */
1339 { mk_mii_read(MIIM_DM9161_INTR), NULL},
1340 /* Enable Interrupts */
1341 { mk_mii_write(MIIM_DM9161_INTR, MIIM_DM9161_INTR_INIT), NULL},
1344 (const phy_cmd_t[]) { /* ack_int */
1345 { mk_mii_read(MIIM_DM9161_INTR), NULL},
1347 { mk_mii_read(MII_BMSR), NULL},
1348 { mk_mii_read(MII_BMSR), mii_parse_dm9161_sr},
1349 { mk_mii_read(MIIM_DM9161_SCSR), mii_parse_dm9161_scsr},
1353 (const phy_cmd_t[]) { /* shutdown */
1354 { mk_mii_read(MIIM_DM9161_INTR),NULL},
1355 { mk_mii_write(MIIM_DM9161_INTR, MIIM_DM9161_INTR_STOP), NULL},
1359 #endif /* CONFIG_FCC_DM9161 */
1361 static phy_info_t *phy_info[] = {
1363 #ifdef CONFIG_FCC_LXT970
1365 #endif /* CONFIG_FEC_LXT970 */
1367 #ifdef CONFIG_FCC_LXT971
1369 #endif /* CONFIG_FEC_LXT971 */
1371 #ifdef CONFIG_FCC_QS6612
1373 #endif /* CONFIG_FEC_QS6612 */
1375 #ifdef CONFIG_FCC_DM9131
1377 #endif /* CONFIG_FEC_DM9131 */
1379 #ifdef CONFIG_FCC_DM9161
1381 #endif /* CONFIG_FCC_DM9161 */
1383 #ifdef CONFIG_FCC_GENERIC_PHY
1384 /* Generic PHY support. This must be the last PHY in the table.
1385 * It will be used to support any PHY that doesn't match a previous
1386 * entry in the table.
1389 #endif /* CONFIG_FCC_GENERIC_PHY */
1394 static void mii_display_status(struct work_struct *work)
1396 volatile struct fcc_enet_private *fep =
1397 container_of(work, struct fcc_enet_private, phy_relink);
1398 struct net_device *dev = fep->dev;
1399 uint s = fep->phy_status;
1401 if (!fep->link && !fep->old_link) {
1402 /* Link is still down - don't print anything */
1406 printk("%s: status: ", dev->name);
1409 printk("link down");
1413 switch(s & PHY_STAT_SPMASK) {
1414 case PHY_STAT_100FDX: printk(", 100 Mbps Full Duplex"); break;
1415 case PHY_STAT_100HDX: printk(", 100 Mbps Half Duplex"); break;
1416 case PHY_STAT_10FDX: printk(", 10 Mbps Full Duplex"); break;
1417 case PHY_STAT_10HDX: printk(", 10 Mbps Half Duplex"); break;
1419 printk(", Unknown speed/duplex");
1422 if (s & PHY_STAT_ANC)
1423 printk(", auto-negotiation complete");
1426 if (s & PHY_STAT_FAULT)
1427 printk(", remote fault");
1432 static void mii_display_config(struct work_struct *work)
1434 volatile struct fcc_enet_private *fep =
1435 container_of(work, struct fcc_enet_private,
1436 phy_display_config);
1437 struct net_device *dev = fep->dev;
1438 uint s = fep->phy_status;
1440 printk("%s: config: auto-negotiation ", dev->name);
1442 if (s & PHY_CONF_ANE)
1447 if (s & PHY_CONF_100FDX)
1449 if (s & PHY_CONF_100HDX)
1451 if (s & PHY_CONF_10FDX)
1453 if (s & PHY_CONF_10HDX)
1455 if (!(s & PHY_CONF_SPMASK))
1456 printk(", No speed/duplex selected?");
1458 if (s & PHY_CONF_LOOP)
1459 printk(", loopback enabled");
1463 fep->sequence_done = 1;
1466 static void mii_relink(struct net_device *dev)
1468 struct fcc_enet_private *fep = dev->priv;
1471 fep->old_link = fep->link;
1472 fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0;
1475 printk(" mii_relink: link=%d\n", fep->link);
1480 & (PHY_STAT_100FDX | PHY_STAT_10FDX))
1482 fcc_restart(dev, duplex);
1484 printk(" mii_relink: duplex=%d\n", duplex);
1489 static void mii_queue_relink(uint mii_reg, struct net_device *dev)
1491 struct fcc_enet_private *fep = dev->priv;
1495 schedule_work(&fep->phy_relink);
1498 static void mii_queue_config(uint mii_reg, struct net_device *dev)
1500 struct fcc_enet_private *fep = dev->priv;
1502 schedule_work(&fep->phy_display_config);
1505 phy_cmd_t phy_cmd_relink[] = { { mk_mii_read(MII_BMCR), mii_queue_relink },
1507 phy_cmd_t phy_cmd_config[] = { { mk_mii_read(MII_BMCR), mii_queue_config },
1511 /* Read remainder of PHY ID.
1514 mii_discover_phy3(uint mii_reg, struct net_device *dev)
1516 struct fcc_enet_private *fep;
1520 printk("mii_reg: %08x\n", mii_reg);
1521 fep->phy_id |= (mii_reg & 0xffff);
1523 for(i = 0; phy_info[i]; i++)
1524 if((phy_info[i]->id == (fep->phy_id >> 4)) || !phy_info[i]->id)
1528 panic("%s: PHY id 0x%08x is not supported!\n",
1529 dev->name, fep->phy_id);
1531 fep->phy = phy_info[i];
1532 fep->phy_id_done = 1;
1534 printk("%s: Phy @ 0x%x, type %s (0x%08x)\n",
1535 dev->name, fep->phy_addr, fep->phy->name, fep->phy_id);
1538 /* Scan all of the MII PHY addresses looking for someone to respond
1539 * with a valid ID. This usually happens quickly.
1542 mii_discover_phy(uint mii_reg, struct net_device *dev)
1544 struct fcc_enet_private *fep;
1549 if ((phytype = (mii_reg & 0xffff)) != 0xffff) {
1551 /* Got first part of ID, now get remainder. */
1552 fep->phy_id = phytype << 16;
1553 mii_queue(dev, mk_mii_read(MII_PHYSID2), mii_discover_phy3);
1556 if (fep->phy_addr < 32) {
1557 mii_queue(dev, mk_mii_read(MII_PHYSID1),
1560 printk("fec: No PHY device found.\n");
1564 #endif /* CONFIG_USE_MDIO */
1566 #ifdef PHY_INTERRUPT
1567 /* This interrupt occurs when the PHY detects a link change. */
1569 mii_link_interrupt(int irq, void * dev_id)
1571 struct net_device *dev = dev_id;
1572 struct fcc_enet_private *fep = dev->priv;
1573 fcc_info_t *fip = fep->fip;
1576 /* We don't want to be interrupted by an FCC
1579 disable_irq_nosync(fip->fc_interrupt);
1581 mii_do_cmd(dev, fep->phy->ack_int);
1582 /* restart and display status */
1583 mii_do_cmd(dev, phy_cmd_relink);
1585 enable_irq(fip->fc_interrupt);
1589 #endif /* ifdef PHY_INTERRUPT */
1591 #if 0 /* This should be fixed someday */
1592 /* Set or clear the multicast filter for this adaptor.
1593 * Skeleton taken from sunlance driver.
1594 * The CPM Ethernet implementation allows Multicast as well as individual
1595 * MAC address filtering. Some of the drivers check to make sure it is
1596 * a group multicast address, and discard those that are not. I guess I
1597 * will do the same for now, but just remove the test if you want
1598 * individual filtering as well (do the upper net layers want or support
1599 * this kind of feature?).
1602 set_multicast_list(struct net_device *dev)
1604 struct fcc_enet_private *cep;
1605 struct dev_mc_list *dmi;
1606 u_char *mcptr, *tdptr;
1607 volatile fcc_enet_t *ep;
1610 cep = (struct fcc_enet_private *)dev->priv;
1613 /* Get pointer to FCC area in parameter RAM.
1615 ep = (fcc_enet_t *)dev->base_addr;
1617 if (dev->flags&IFF_PROMISC) {
1619 /* Log any net taps. */
1620 printk("%s: Promiscuous mode enabled.\n", dev->name);
1621 cep->fccp->fcc_fpsmr |= FCC_PSMR_PRO;
1624 cep->fccp->fcc_fpsmr &= ~FCC_PSMR_PRO;
1626 if (dev->flags & IFF_ALLMULTI) {
1627 /* Catch all multicast addresses, so set the
1628 * filter to all 1's.
1630 ep->fen_gaddrh = 0xffffffff;
1631 ep->fen_gaddrl = 0xffffffff;
1634 /* Clear filter and add the addresses in the list.
1641 for (i=0; i<dev->mc_count; i++, dmi = dmi->next) {
1643 /* Only support group multicast for now.
1645 if (!(dmi->dmi_addr[0] & 1))
1648 /* The address in dmi_addr is LSB first,
1649 * and taddr is MSB first. We have to
1650 * copy bytes MSB first from dmi_addr.
1652 mcptr = (u_char *)dmi->dmi_addr + 5;
1653 tdptr = (u_char *)&ep->fen_taddrh;
1655 *tdptr++ = *mcptr--;
1657 /* Ask CPM to run CRC and set bit in
1660 cpmp->cp_cpcr = mk_cr_cmd(cep->fip->fc_cpmpage,
1661 cep->fip->fc_cpmblock, 0x0c,
1662 CPM_CR_SET_GADDR) | CPM_CR_FLG;
1664 while (cpmp->cp_cpcr & CPM_CR_FLG);
1672 /* Set the individual MAC address.
1674 int fcc_enet_set_mac_address(struct net_device *dev, void *p)
1676 struct sockaddr *addr= (struct sockaddr *) p;
1677 struct fcc_enet_private *cep;
1678 volatile fcc_enet_t *ep;
1682 cep = (struct fcc_enet_private *)(dev->priv);
1685 if (netif_running(dev))
1688 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1690 eap = (unsigned char *) &(ep->fen_paddrh);
1691 for (i=5; i>=0; i--)
1692 *eap++ = addr->sa_data[i];
1698 /* Initialize the CPM Ethernet on FCC.
1700 static int __init fec_enet_init(void)
1702 struct net_device *dev;
1703 struct fcc_enet_private *cep;
1706 volatile cpm2_map_t *immap;
1707 volatile iop_cpm2_t *io;
1709 immap = (cpm2_map_t *)CPM_MAP_ADDR; /* and to internal registers */
1710 io = &immap->im_ioport;
1712 np = sizeof(fcc_ports) / sizeof(fcc_info_t);
1716 /* Create an Ethernet device instance.
1718 dev = alloc_etherdev(sizeof(*cep));
1723 spin_lock_init(&cep->lock);
1726 init_fcc_shutdown(fip, cep, immap);
1727 init_fcc_ioports(fip, io, immap);
1728 init_fcc_param(fip, dev, immap);
1730 dev->base_addr = (unsigned long)(cep->ep);
1732 /* The CPM Ethernet specific entries in the device
1735 dev->open = fcc_enet_open;
1736 dev->hard_start_xmit = fcc_enet_start_xmit;
1737 dev->tx_timeout = fcc_enet_timeout;
1738 dev->watchdog_timeo = TX_TIMEOUT;
1739 dev->stop = fcc_enet_close;
1740 dev->get_stats = fcc_enet_get_stats;
1741 /* dev->set_multicast_list = set_multicast_list; */
1742 dev->set_mac_address = fcc_enet_set_mac_address;
1744 init_fcc_startup(fip, dev);
1746 err = register_netdev(dev);
1752 printk("%s: FCC ENET Version 0.3, ", dev->name);
1754 printk("%02x:", dev->dev_addr[i]);
1755 printk("%02x\n", dev->dev_addr[5]);
1757 #ifdef CONFIG_USE_MDIO
1758 /* Queue up command to detect the PHY and initialize the
1759 * remainder of the interface.
1761 cep->phy_id_done = 0;
1762 cep->phy_addr = fip->fc_phyaddr;
1763 mii_queue(dev, mk_mii_read(MII_PHYSID1), mii_discover_phy);
1764 INIT_WORK(&cep->phy_relink, mii_display_status);
1765 INIT_WORK(&cep->phy_display_config, mii_display_config);
1767 #endif /* CONFIG_USE_MDIO */
1774 module_init(fec_enet_init);
1776 /* Make sure the device is shut down during initialization.
1779 init_fcc_shutdown(fcc_info_t *fip, struct fcc_enet_private *cep,
1780 volatile cpm2_map_t *immap)
1782 volatile fcc_enet_t *ep;
1783 volatile fcc_t *fccp;
1785 /* Get pointer to FCC area in parameter RAM.
1787 ep = (fcc_enet_t *)(&immap->im_dprambase[fip->fc_proff]);
1789 /* And another to the FCC register area.
1791 fccp = (volatile fcc_t *)(&immap->im_fcc[fip->fc_fccnum]);
1792 cep->fccp = fccp; /* Keep the pointers handy */
1795 /* Disable receive and transmit in case someone left it running.
1797 fccp->fcc_gfmr &= ~(FCC_GFMR_ENR | FCC_GFMR_ENT);
1800 /* Initialize the I/O pins for the FCC Ethernet.
1803 init_fcc_ioports(fcc_info_t *fip, volatile iop_cpm2_t *io,
1804 volatile cpm2_map_t *immap)
1807 /* FCC1 pins are on port A/C. FCC2/3 are port B/C.
1809 if (fip->fc_proff == PROFF_FCC1) {
1810 /* Configure port A and C pins for FCC1 Ethernet.
1812 io->iop_pdira &= ~PA1_DIRA_BOUT;
1813 io->iop_pdira |= PA1_DIRA_BIN;
1814 io->iop_psora &= ~PA1_PSORA_BOUT;
1815 io->iop_psora |= PA1_PSORA_BIN;
1816 io->iop_ppara |= (PA1_DIRA_BOUT | PA1_DIRA_BIN);
1818 if (fip->fc_proff == PROFF_FCC2) {
1819 /* Configure port B and C pins for FCC Ethernet.
1821 io->iop_pdirb &= ~PB2_DIRB_BOUT;
1822 io->iop_pdirb |= PB2_DIRB_BIN;
1823 io->iop_psorb &= ~PB2_PSORB_BOUT;
1824 io->iop_psorb |= PB2_PSORB_BIN;
1825 io->iop_pparb |= (PB2_DIRB_BOUT | PB2_DIRB_BIN);
1827 if (fip->fc_proff == PROFF_FCC3) {
1828 /* Configure port B and C pins for FCC Ethernet.
1830 io->iop_pdirb &= ~PB3_DIRB_BOUT;
1831 io->iop_pdirb |= PB3_DIRB_BIN;
1832 io->iop_psorb &= ~PB3_PSORB_BOUT;
1833 io->iop_psorb |= PB3_PSORB_BIN;
1834 io->iop_pparb |= (PB3_DIRB_BOUT | PB3_DIRB_BIN);
1836 io->iop_pdirc &= ~PC3_DIRC_BOUT;
1837 io->iop_pdirc |= PC3_DIRC_BIN;
1838 io->iop_psorc &= ~PC3_PSORC_BOUT;
1839 io->iop_psorc |= PC3_PSORC_BIN;
1840 io->iop_pparc |= (PC3_DIRC_BOUT | PC3_DIRC_BIN);
1844 /* Port C has clocks......
1846 io->iop_psorc &= ~(fip->fc_trxclocks);
1847 io->iop_pdirc &= ~(fip->fc_trxclocks);
1848 io->iop_pparc |= fip->fc_trxclocks;
1850 #ifdef CONFIG_USE_MDIO
1851 /* ....and the MII serial clock/data.
1853 io->iop_pdatc |= (fip->fc_mdio | fip->fc_mdck);
1854 io->iop_podrc &= ~(fip->fc_mdio | fip->fc_mdck);
1855 io->iop_pdirc |= (fip->fc_mdio | fip->fc_mdck);
1856 io->iop_pparc &= ~(fip->fc_mdio | fip->fc_mdck);
1857 #endif /* CONFIG_USE_MDIO */
1859 /* Configure Serial Interface clock routing.
1860 * First, clear all FCC bits to zero,
1861 * then set the ones we want.
1863 immap->im_cpmux.cmx_fcr &= ~(fip->fc_clockmask);
1864 immap->im_cpmux.cmx_fcr |= fip->fc_clockroute;
1868 init_fcc_param(fcc_info_t *fip, struct net_device *dev,
1869 volatile cpm2_map_t *immap)
1872 unsigned long mem_addr;
1875 struct fcc_enet_private *cep;
1876 volatile fcc_enet_t *ep;
1877 volatile cbd_t *bdp;
1878 volatile cpm_cpm2_t *cp;
1880 cep = (struct fcc_enet_private *)(dev->priv);
1886 /* Zero the whole thing.....I must have missed some individually.
1887 * It works when I do this.
1889 memset((char *)ep, 0, sizeof(fcc_enet_t));
1891 /* Allocate space for the buffer descriptors from regular memory.
1892 * Initialize base addresses for the buffer descriptors.
1894 cep->rx_bd_base = kmalloc(sizeof(cbd_t) * RX_RING_SIZE,
1895 GFP_KERNEL | GFP_DMA);
1896 ep->fen_genfcc.fcc_rbase = __pa(cep->rx_bd_base);
1897 cep->tx_bd_base = kmalloc(sizeof(cbd_t) * TX_RING_SIZE,
1898 GFP_KERNEL | GFP_DMA);
1899 ep->fen_genfcc.fcc_tbase = __pa(cep->tx_bd_base);
1901 cep->dirty_tx = cep->cur_tx = cep->tx_bd_base;
1902 cep->cur_rx = cep->rx_bd_base;
1904 ep->fen_genfcc.fcc_rstate = (CPMFCR_GBL | CPMFCR_EB) << 24;
1905 ep->fen_genfcc.fcc_tstate = (CPMFCR_GBL | CPMFCR_EB) << 24;
1907 /* Set maximum bytes per receive buffer.
1908 * It must be a multiple of 32.
1910 ep->fen_genfcc.fcc_mrblr = PKT_MAXBLR_SIZE;
1912 /* Allocate space in the reserved FCC area of DPRAM for the
1913 * internal buffers. No one uses this space (yet), so we
1914 * can do this. Later, we will add resource management for
1917 mem_addr = CPM_FCC_SPECIAL_BASE + (fip->fc_fccnum * 128);
1918 ep->fen_genfcc.fcc_riptr = mem_addr;
1919 ep->fen_genfcc.fcc_tiptr = mem_addr+32;
1920 ep->fen_padptr = mem_addr+64;
1921 memset((char *)(&(immap->im_dprambase[(mem_addr+64)])), 0x88, 32);
1923 ep->fen_genfcc.fcc_rbptr = 0;
1924 ep->fen_genfcc.fcc_tbptr = 0;
1925 ep->fen_genfcc.fcc_rcrc = 0;
1926 ep->fen_genfcc.fcc_tcrc = 0;
1927 ep->fen_genfcc.fcc_res1 = 0;
1928 ep->fen_genfcc.fcc_res2 = 0;
1930 ep->fen_camptr = 0; /* CAM isn't used in this driver */
1932 /* Set CRC preset and mask.
1934 ep->fen_cmask = 0xdebb20e3;
1935 ep->fen_cpres = 0xffffffff;
1937 ep->fen_crcec = 0; /* CRC Error counter */
1938 ep->fen_alec = 0; /* alignment error counter */
1939 ep->fen_disfc = 0; /* discard frame counter */
1940 ep->fen_retlim = 15; /* Retry limit threshold */
1941 ep->fen_pper = 0; /* Normal persistence */
1943 /* Clear hash filter tables.
1950 /* Clear the Out-of-sequence TxBD.
1952 ep->fen_tfcstat = 0;
1956 ep->fen_mflr = PKT_MAXBUF_SIZE; /* maximum frame length register */
1957 ep->fen_minflr = PKT_MINBUF_SIZE; /* minimum frame length register */
1959 /* Set Ethernet station address.
1961 * This is supplied in the board information structure, so we
1962 * copy that into the controller.
1963 * So, far we have only been given one Ethernet address. We make
1964 * it unique by setting a few bits in the upper byte of the
1965 * non-static part of the address.
1967 eap = (unsigned char *)&(ep->fen_paddrh);
1968 for (i=5; i>=0; i--) {
1971 * The EP8260 only uses FCC3, so we can safely give it the real
1974 #ifdef CONFIG_SBC82xx
1976 /* bd->bi_enetaddr holds the SCC0 address; the FCC
1977 devices count up from there */
1978 dev->dev_addr[i] = bd->bi_enetaddr[i] & ~3;
1979 dev->dev_addr[i] += 1 + fip->fc_fccnum;
1980 *eap++ = dev->dev_addr[i];
1983 #ifndef CONFIG_RPX8260
1985 dev->dev_addr[i] = bd->bi_enetaddr[i];
1986 dev->dev_addr[i] |= (1 << (7 - fip->fc_fccnum));
1987 *eap++ = dev->dev_addr[i];
1991 *eap++ = dev->dev_addr[i] = bd->bi_enetaddr[i];
2000 ep->fen_maxd1 = PKT_MAXDMA_SIZE; /* maximum DMA1 length */
2001 ep->fen_maxd2 = PKT_MAXDMA_SIZE; /* maximum DMA2 length */
2003 /* Clear stat counters, in case we ever enable RMON.
2020 ep->fen_rfthr = 0; /* Suggested by manual */
2024 /* Now allocate the host memory pages and initialize the
2025 * buffer descriptors.
2027 bdp = cep->tx_bd_base;
2028 for (i=0; i<TX_RING_SIZE; i++) {
2030 /* Initialize the BD for every fragment in the page.
2033 bdp->cbd_datlen = 0;
2034 bdp->cbd_bufaddr = 0;
2038 /* Set the last buffer to wrap.
2041 bdp->cbd_sc |= BD_SC_WRAP;
2043 bdp = cep->rx_bd_base;
2044 for (i=0; i<FCC_ENET_RX_PAGES; i++) {
2048 mem_addr = __get_free_page(GFP_KERNEL);
2050 /* Initialize the BD for every fragment in the page.
2052 for (j=0; j<FCC_ENET_RX_FRPPG; j++) {
2053 bdp->cbd_sc = BD_ENET_RX_EMPTY | BD_ENET_RX_INTR;
2054 bdp->cbd_datlen = 0;
2055 bdp->cbd_bufaddr = __pa(mem_addr);
2056 mem_addr += FCC_ENET_RX_FRSIZE;
2061 /* Set the last buffer to wrap.
2064 bdp->cbd_sc |= BD_SC_WRAP;
2066 /* Let's re-initialize the channel now. We have to do it later
2067 * than the manual describes because we have just now finished
2068 * the BD initialization.
2070 cp->cp_cpcr = mk_cr_cmd(fip->fc_cpmpage, fip->fc_cpmblock, 0x0c,
2071 CPM_CR_INIT_TRX) | CPM_CR_FLG;
2072 while (cp->cp_cpcr & CPM_CR_FLG);
2074 cep->skb_cur = cep->skb_dirty = 0;
2080 init_fcc_startup(fcc_info_t *fip, struct net_device *dev)
2082 volatile fcc_t *fccp;
2083 struct fcc_enet_private *cep;
2085 cep = (struct fcc_enet_private *)(dev->priv);
2088 #ifdef CONFIG_RPX8260
2089 #ifdef PHY_INTERRUPT
2090 /* Route PHY interrupt to IRQ. The following code only works for
2091 * IRQ1 - IRQ7. It does not work for Port C interrupts.
2093 *((volatile u_char *) (RPX_CSR_ADDR + 13)) &= ~BCSR13_FETH_IRQMASK;
2094 *((volatile u_char *) (RPX_CSR_ADDR + 13)) |=
2095 ((PHY_INTERRUPT - SIU_INT_IRQ1 + 1) << 4);
2097 /* Initialize MDIO pins. */
2098 *((volatile u_char *) (RPX_CSR_ADDR + 4)) &= ~BCSR4_MII_MDC;
2099 *((volatile u_char *) (RPX_CSR_ADDR + 4)) |=
2100 BCSR4_MII_READ | BCSR4_MII_MDIO;
2101 /* Enable external LXT971 PHY. */
2102 *((volatile u_char *) (RPX_CSR_ADDR + 4)) |= BCSR4_EN_PHY;
2104 *((volatile u_char *) (RPX_CSR_ADDR+ 4)) |= BCSR4_EN_MII;
2106 #endif /* ifdef CONFIG_RPX8260 */
2108 fccp->fcc_fcce = 0xffff; /* Clear any pending events */
2110 /* Leave FCC interrupts masked for now. Will be unmasked by
2115 /* Install our interrupt handler.
2117 if (request_irq(fip->fc_interrupt, fcc_enet_interrupt, 0, "fenet",
2119 printk("Can't get FCC IRQ %d\n", fip->fc_interrupt);
2121 #ifdef PHY_INTERRUPT
2122 #ifdef CONFIG_ADS8272
2123 if (request_irq(PHY_INTERRUPT, mii_link_interrupt, IRQF_SHARED,
2125 printk(KERN_CRIT "Can't get MII IRQ %d\n", PHY_INTERRUPT);
2127 /* Make IRQn edge triggered. This does not work if PHY_INTERRUPT is
2130 ((volatile cpm2_map_t *) CPM_MAP_ADDR)->im_intctl.ic_siexr |=
2131 (1 << (14 - (PHY_INTERRUPT - SIU_INT_IRQ1)));
2133 if (request_irq(PHY_INTERRUPT, mii_link_interrupt, 0,
2135 printk(KERN_CRIT "Can't get MII IRQ %d\n", PHY_INTERRUPT);
2137 #endif /* PHY_INTERRUPT */
2139 /* Set GFMR to enable Ethernet operating mode.
2141 fccp->fcc_gfmr = (FCC_GFMR_TCI | FCC_GFMR_MODE_ENET);
2143 /* Set sync/delimiters.
2145 fccp->fcc_fdsr = 0xd555;
2147 /* Set protocol specific processing mode for Ethernet.
2148 * This has to be adjusted for Full Duplex operation after we can
2149 * determine how to detect that.
2151 fccp->fcc_fpsmr = FCC_PSMR_ENCRC;
2153 #ifdef CONFIG_PQ2ADS
2154 /* Enable the PHY. */
2155 *(volatile uint *)(BCSR_ADDR + 4) &= ~BCSR1_FETHIEN;
2156 *(volatile uint *)(BCSR_ADDR + 4) |= BCSR1_FETH_RST;
2158 #if defined(CONFIG_PQ2ADS) || defined(CONFIG_PQ2FADS)
2159 /* Enable the 2nd PHY. */
2160 *(volatile uint *)(BCSR_ADDR + 12) &= ~BCSR3_FETHIEN2;
2161 *(volatile uint *)(BCSR_ADDR + 12) |= BCSR3_FETH2_RST;
2164 #if defined(CONFIG_USE_MDIO) || defined(CONFIG_TQM8260)
2165 /* start in full duplex mode, and negotiate speed
2167 fcc_restart (dev, 1);
2169 /* start in half duplex mode
2171 fcc_restart (dev, 0);
2175 #ifdef CONFIG_USE_MDIO
2176 /* MII command/status interface.
2177 * I'm not going to describe all of the details. You can find the
2178 * protocol definition in many other places, including the data sheet
2179 * of most PHY parts.
2180 * I wonder what "they" were thinking (maybe weren't) when they leave
2181 * the I2C in the CPM but I have to toggle these bits......
2183 #ifdef CONFIG_RPX8260
2184 /* The EP8260 has the MDIO pins in a BCSR instead of on Port C
2185 * like most other boards.
2187 #define MDIO_ADDR ((volatile u_char *)(RPX_CSR_ADDR + 4))
2188 #define MAKE_MDIO_OUTPUT *MDIO_ADDR &= ~BCSR4_MII_READ
2189 #define MAKE_MDIO_INPUT *MDIO_ADDR |= BCSR4_MII_READ | BCSR4_MII_MDIO
2190 #define OUT_MDIO(bit) \
2192 *MDIO_ADDR |= BCSR4_MII_MDIO; \
2194 *MDIO_ADDR &= ~BCSR4_MII_MDIO;
2195 #define IN_MDIO (*MDIO_ADDR & BCSR4_MII_MDIO)
2196 #define OUT_MDC(bit) \
2198 *MDIO_ADDR |= BCSR4_MII_MDC; \
2200 *MDIO_ADDR &= ~BCSR4_MII_MDC;
2201 #else /* ifdef CONFIG_RPX8260 */
2202 /* This is for the usual case where the MDIO pins are on Port C.
2204 #define MDIO_ADDR (((volatile cpm2_map_t *)CPM_MAP_ADDR)->im_ioport)
2205 #define MAKE_MDIO_OUTPUT MDIO_ADDR.iop_pdirc |= fip->fc_mdio
2206 #define MAKE_MDIO_INPUT MDIO_ADDR.iop_pdirc &= ~fip->fc_mdio
2207 #define OUT_MDIO(bit) \
2209 MDIO_ADDR.iop_pdatc |= fip->fc_mdio; \
2211 MDIO_ADDR.iop_pdatc &= ~fip->fc_mdio;
2212 #define IN_MDIO ((MDIO_ADDR.iop_pdatc) & fip->fc_mdio)
2213 #define OUT_MDC(bit) \
2215 MDIO_ADDR.iop_pdatc |= fip->fc_mdck; \
2217 MDIO_ADDR.iop_pdatc &= ~fip->fc_mdck;
2218 #endif /* ifdef CONFIG_RPX8260 */
2221 mii_send_receive(fcc_info_t *fip, uint cmd)
2224 int read_op, i, off;
2227 read_op = ((cmd & 0xf0000000) == 0x60000000);
2234 for (i = 0; i < 32; i++)
2244 for (i = 0, off = 31; i < (read_op ? 14 : 32); i++, --off)
2246 OUT_MDIO((cmd >> off) & 0x00000001);
2265 for (i = 0; i < 16; i++)
2285 #endif /* CONFIG_USE_MDIO */
2288 fcc_stop(struct net_device *dev)
2290 struct fcc_enet_private *fep= (struct fcc_enet_private *)(dev->priv);
2291 volatile fcc_t *fccp = fep->fccp;
2292 fcc_info_t *fip = fep->fip;
2293 volatile fcc_enet_t *ep = fep->ep;
2294 volatile cpm_cpm2_t *cp = cpmp;
2295 volatile cbd_t *bdp;
2298 if ((fccp->fcc_gfmr & (FCC_GFMR_ENR | FCC_GFMR_ENT)) == 0)
2299 return; /* already down */
2303 /* issue the graceful stop tx command */
2304 while (cp->cp_cpcr & CPM_CR_FLG);
2305 cp->cp_cpcr = mk_cr_cmd(fip->fc_cpmpage, fip->fc_cpmblock,
2306 0x0c, CPM_CR_GRA_STOP_TX) | CPM_CR_FLG;
2307 while (cp->cp_cpcr & CPM_CR_FLG);
2309 /* Disable transmit/receive */
2310 fccp->fcc_gfmr &= ~(FCC_GFMR_ENR | FCC_GFMR_ENT);
2312 /* issue the restart tx command */
2313 fccp->fcc_fcce = FCC_ENET_GRA;
2314 while (cp->cp_cpcr & CPM_CR_FLG);
2315 cp->cp_cpcr = mk_cr_cmd(fip->fc_cpmpage, fip->fc_cpmblock,
2316 0x0c, CPM_CR_RESTART_TX) | CPM_CR_FLG;
2317 while (cp->cp_cpcr & CPM_CR_FLG);
2319 /* free tx buffers */
2320 fep->skb_cur = fep->skb_dirty = 0;
2321 for (i=0; i<=TX_RING_MOD_MASK; i++) {
2322 if (fep->tx_skbuff[i] != NULL) {
2323 dev_kfree_skb(fep->tx_skbuff[i]);
2324 fep->tx_skbuff[i] = NULL;
2327 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
2328 fep->tx_free = TX_RING_SIZE;
2329 ep->fen_genfcc.fcc_tbptr = ep->fen_genfcc.fcc_tbase;
2331 /* Initialize the tx buffer descriptors. */
2332 bdp = fep->tx_bd_base;
2333 for (i=0; i<TX_RING_SIZE; i++) {
2335 bdp->cbd_datlen = 0;
2336 bdp->cbd_bufaddr = 0;
2339 /* Set the last buffer to wrap. */
2341 bdp->cbd_sc |= BD_SC_WRAP;
2345 fcc_restart(struct net_device *dev, int duplex)
2347 struct fcc_enet_private *fep = (struct fcc_enet_private *)(dev->priv);
2348 volatile fcc_t *fccp = fep->fccp;
2350 /* stop any transmissions in progress */
2354 fccp->fcc_fpsmr |= FCC_PSMR_FDE | FCC_PSMR_LPB;
2356 fccp->fcc_fpsmr &= ~(FCC_PSMR_FDE | FCC_PSMR_LPB);
2358 /* Enable interrupts for transmit error, complete frame
2359 * received, and any transmit buffer we have also set the
2362 fccp->fcc_fccm = (FCC_ENET_TXE | FCC_ENET_RXF | FCC_ENET_TXB);
2364 /* Enable transmit/receive */
2365 fccp->fcc_gfmr |= FCC_GFMR_ENR | FCC_GFMR_ENT;
2369 fcc_enet_open(struct net_device *dev)
2371 struct fcc_enet_private *fep = dev->priv;
2373 #ifdef CONFIG_USE_MDIO
2374 fep->sequence_done = 0;
2378 fcc_restart(dev, 0); /* always start in half-duplex */
2379 mii_do_cmd(dev, fep->phy->ack_int);
2380 mii_do_cmd(dev, fep->phy->config);
2381 mii_do_cmd(dev, phy_cmd_config); /* display configuration */
2382 while(!fep->sequence_done)
2385 mii_do_cmd(dev, fep->phy->startup);
2386 netif_start_queue(dev);
2387 return 0; /* Success */
2389 return -ENODEV; /* No PHY we understand */
2392 fcc_restart(dev, 0); /* always start in half-duplex */
2393 netif_start_queue(dev);
2394 return 0; /* Always succeed */
2395 #endif /* CONFIG_USE_MDIO */