[ALSA] hda-intel - patch for Intel ICH8
[linux-2.6] / sound / pci / hda / hda_codec.c
1 /*
2  * Universal Interface for Intel High Definition Audio Codec
3  *
4  * Copyright (c) 2004 Takashi Iwai <tiwai@suse.de>
5  *
6  *
7  *  This driver is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License as published by
9  *  the Free Software Foundation; either version 2 of the License, or
10  *  (at your option) any later version.
11  *
12  *  This driver is distributed in the hope that it will be useful,
13  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *  GNU General Public License for more details.
16  *
17  *  You should have received a copy of the GNU General Public License
18  *  along with this program; if not, write to the Free Software
19  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  */
21
22 #include <sound/driver.h>
23 #include <linux/init.h>
24 #include <linux/delay.h>
25 #include <linux/slab.h>
26 #include <linux/pci.h>
27 #include <linux/moduleparam.h>
28 #include <sound/core.h>
29 #include "hda_codec.h"
30 #include <sound/asoundef.h>
31 #include <sound/initval.h>
32 #include "hda_local.h"
33
34
35 MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
36 MODULE_DESCRIPTION("Universal interface for High Definition Audio Codec");
37 MODULE_LICENSE("GPL");
38
39
40 /*
41  * vendor / preset table
42  */
43
44 struct hda_vendor_id {
45         unsigned int id;
46         const char *name;
47 };
48
49 /* codec vendor labels */
50 static struct hda_vendor_id hda_vendor_ids[] = {
51         { 0x10ec, "Realtek" },
52         { 0x11d4, "Analog Devices" },
53         { 0x13f6, "C-Media" },
54         { 0x434d, "C-Media" },
55         { 0x8384, "SigmaTel" },
56         {} /* terminator */
57 };
58
59 /* codec presets */
60 #include "hda_patch.h"
61
62
63 /**
64  * snd_hda_codec_read - send a command and get the response
65  * @codec: the HDA codec
66  * @nid: NID to send the command
67  * @direct: direct flag
68  * @verb: the verb to send
69  * @parm: the parameter for the verb
70  *
71  * Send a single command and read the corresponding response.
72  *
73  * Returns the obtained response value, or -1 for an error.
74  */
75 unsigned int snd_hda_codec_read(struct hda_codec *codec, hda_nid_t nid, int direct,
76                                 unsigned int verb, unsigned int parm)
77 {
78         unsigned int res;
79         down(&codec->bus->cmd_mutex);
80         if (! codec->bus->ops.command(codec, nid, direct, verb, parm))
81                 res = codec->bus->ops.get_response(codec);
82         else
83                 res = (unsigned int)-1;
84         up(&codec->bus->cmd_mutex);
85         return res;
86 }
87
88 /**
89  * snd_hda_codec_write - send a single command without waiting for response
90  * @codec: the HDA codec
91  * @nid: NID to send the command
92  * @direct: direct flag
93  * @verb: the verb to send
94  * @parm: the parameter for the verb
95  *
96  * Send a single command without waiting for response.
97  *
98  * Returns 0 if successful, or a negative error code.
99  */
100 int snd_hda_codec_write(struct hda_codec *codec, hda_nid_t nid, int direct,
101                          unsigned int verb, unsigned int parm)
102 {
103         int err;
104         down(&codec->bus->cmd_mutex);
105         err = codec->bus->ops.command(codec, nid, direct, verb, parm);
106         up(&codec->bus->cmd_mutex);
107         return err;
108 }
109
110 /**
111  * snd_hda_sequence_write - sequence writes
112  * @codec: the HDA codec
113  * @seq: VERB array to send
114  *
115  * Send the commands sequentially from the given array.
116  * The array must be terminated with NID=0.
117  */
118 void snd_hda_sequence_write(struct hda_codec *codec, const struct hda_verb *seq)
119 {
120         for (; seq->nid; seq++)
121                 snd_hda_codec_write(codec, seq->nid, 0, seq->verb, seq->param);
122 }
123
124 /**
125  * snd_hda_get_sub_nodes - get the range of sub nodes
126  * @codec: the HDA codec
127  * @nid: NID to parse
128  * @start_id: the pointer to store the start NID
129  *
130  * Parse the NID and store the start NID of its sub-nodes.
131  * Returns the number of sub-nodes.
132  */
133 int snd_hda_get_sub_nodes(struct hda_codec *codec, hda_nid_t nid, hda_nid_t *start_id)
134 {
135         unsigned int parm;
136
137         parm = snd_hda_param_read(codec, nid, AC_PAR_NODE_COUNT);
138         *start_id = (parm >> 16) & 0x7fff;
139         return (int)(parm & 0x7fff);
140 }
141
142 /**
143  * snd_hda_get_connections - get connection list
144  * @codec: the HDA codec
145  * @nid: NID to parse
146  * @conn_list: connection list array
147  * @max_conns: max. number of connections to store
148  *
149  * Parses the connection list of the given widget and stores the list
150  * of NIDs.
151  *
152  * Returns the number of connections, or a negative error code.
153  */
154 int snd_hda_get_connections(struct hda_codec *codec, hda_nid_t nid,
155                             hda_nid_t *conn_list, int max_conns)
156 {
157         unsigned int parm;
158         int i, conn_len, conns;
159         unsigned int shift, num_elems, mask;
160         hda_nid_t prev_nid;
161
162         snd_assert(conn_list && max_conns > 0, return -EINVAL);
163
164         parm = snd_hda_param_read(codec, nid, AC_PAR_CONNLIST_LEN);
165         if (parm & AC_CLIST_LONG) {
166                 /* long form */
167                 shift = 16;
168                 num_elems = 2;
169         } else {
170                 /* short form */
171                 shift = 8;
172                 num_elems = 4;
173         }
174         conn_len = parm & AC_CLIST_LENGTH;
175         mask = (1 << (shift-1)) - 1;
176
177         if (! conn_len)
178                 return 0; /* no connection */
179
180         if (conn_len == 1) {
181                 /* single connection */
182                 parm = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_CONNECT_LIST, 0);
183                 conn_list[0] = parm & mask;
184                 return 1;
185         }
186
187         /* multi connection */
188         conns = 0;
189         prev_nid = 0;
190         for (i = 0; i < conn_len; i++) {
191                 int range_val;
192                 hda_nid_t val, n;
193
194                 if (i % num_elems == 0)
195                         parm = snd_hda_codec_read(codec, nid, 0,
196                                                   AC_VERB_GET_CONNECT_LIST, i);
197                 range_val = !! (parm & (1 << (shift-1))); /* ranges */
198                 val = parm & mask;
199                 parm >>= shift;
200                 if (range_val) {
201                         /* ranges between the previous and this one */
202                         if (! prev_nid || prev_nid >= val) {
203                                 snd_printk(KERN_WARNING "hda_codec: invalid dep_range_val %x:%x\n", prev_nid, val);
204                                 continue;
205                         }
206                         for (n = prev_nid + 1; n <= val; n++) {
207                                 if (conns >= max_conns) {
208                                         snd_printk(KERN_ERR "Too many connections\n");
209                                         return -EINVAL;
210                                 }
211                                 conn_list[conns++] = n;
212                         }
213                 } else {
214                         if (conns >= max_conns) {
215                                 snd_printk(KERN_ERR "Too many connections\n");
216                                 return -EINVAL;
217                         }
218                         conn_list[conns++] = val;
219                 }
220                 prev_nid = val;
221         }
222         return conns;
223 }
224
225
226 /**
227  * snd_hda_queue_unsol_event - add an unsolicited event to queue
228  * @bus: the BUS
229  * @res: unsolicited event (lower 32bit of RIRB entry)
230  * @res_ex: codec addr and flags (upper 32bit or RIRB entry)
231  *
232  * Adds the given event to the queue.  The events are processed in
233  * the workqueue asynchronously.  Call this function in the interrupt
234  * hanlder when RIRB receives an unsolicited event.
235  *
236  * Returns 0 if successful, or a negative error code.
237  */
238 int snd_hda_queue_unsol_event(struct hda_bus *bus, u32 res, u32 res_ex)
239 {
240         struct hda_bus_unsolicited *unsol;
241         unsigned int wp;
242
243         if ((unsol = bus->unsol) == NULL)
244                 return 0;
245
246         wp = (unsol->wp + 1) % HDA_UNSOL_QUEUE_SIZE;
247         unsol->wp = wp;
248
249         wp <<= 1;
250         unsol->queue[wp] = res;
251         unsol->queue[wp + 1] = res_ex;
252
253         queue_work(unsol->workq, &unsol->work);
254
255         return 0;
256 }
257
258 /*
259  * process queueud unsolicited events
260  */
261 static void process_unsol_events(void *data)
262 {
263         struct hda_bus *bus = data;
264         struct hda_bus_unsolicited *unsol = bus->unsol;
265         struct hda_codec *codec;
266         unsigned int rp, caddr, res;
267
268         while (unsol->rp != unsol->wp) {
269                 rp = (unsol->rp + 1) % HDA_UNSOL_QUEUE_SIZE;
270                 unsol->rp = rp;
271                 rp <<= 1;
272                 res = unsol->queue[rp];
273                 caddr = unsol->queue[rp + 1];
274                 if (! (caddr & (1 << 4))) /* no unsolicited event? */
275                         continue;
276                 codec = bus->caddr_tbl[caddr & 0x0f];
277                 if (codec && codec->patch_ops.unsol_event)
278                         codec->patch_ops.unsol_event(codec, res);
279         }
280 }
281
282 /*
283  * initialize unsolicited queue
284  */
285 static int init_unsol_queue(struct hda_bus *bus)
286 {
287         struct hda_bus_unsolicited *unsol;
288
289         if (bus->unsol) /* already initialized */
290                 return 0;
291
292         unsol = kzalloc(sizeof(*unsol), GFP_KERNEL);
293         if (! unsol) {
294                 snd_printk(KERN_ERR "hda_codec: can't allocate unsolicited queue\n");
295                 return -ENOMEM;
296         }
297         unsol->workq = create_workqueue("hda_codec");
298         if (! unsol->workq) {
299                 snd_printk(KERN_ERR "hda_codec: can't create workqueue\n");
300                 kfree(unsol);
301                 return -ENOMEM;
302         }
303         INIT_WORK(&unsol->work, process_unsol_events, bus);
304         bus->unsol = unsol;
305         return 0;
306 }
307
308 /*
309  * destructor
310  */
311 static void snd_hda_codec_free(struct hda_codec *codec);
312
313 static int snd_hda_bus_free(struct hda_bus *bus)
314 {
315         struct list_head *p, *n;
316
317         if (! bus)
318                 return 0;
319         if (bus->unsol) {
320                 destroy_workqueue(bus->unsol->workq);
321                 kfree(bus->unsol);
322         }
323         list_for_each_safe(p, n, &bus->codec_list) {
324                 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
325                 snd_hda_codec_free(codec);
326         }
327         if (bus->ops.private_free)
328                 bus->ops.private_free(bus);
329         kfree(bus);
330         return 0;
331 }
332
333 static int snd_hda_bus_dev_free(struct snd_device *device)
334 {
335         struct hda_bus *bus = device->device_data;
336         return snd_hda_bus_free(bus);
337 }
338
339 /**
340  * snd_hda_bus_new - create a HDA bus
341  * @card: the card entry
342  * @temp: the template for hda_bus information
343  * @busp: the pointer to store the created bus instance
344  *
345  * Returns 0 if successful, or a negative error code.
346  */
347 int snd_hda_bus_new(struct snd_card *card, const struct hda_bus_template *temp,
348                     struct hda_bus **busp)
349 {
350         struct hda_bus *bus;
351         int err;
352         static struct snd_device_ops dev_ops = {
353                 .dev_free = snd_hda_bus_dev_free,
354         };
355
356         snd_assert(temp, return -EINVAL);
357         snd_assert(temp->ops.command && temp->ops.get_response, return -EINVAL);
358
359         if (busp)
360                 *busp = NULL;
361
362         bus = kzalloc(sizeof(*bus), GFP_KERNEL);
363         if (bus == NULL) {
364                 snd_printk(KERN_ERR "can't allocate struct hda_bus\n");
365                 return -ENOMEM;
366         }
367
368         bus->card = card;
369         bus->private_data = temp->private_data;
370         bus->pci = temp->pci;
371         bus->modelname = temp->modelname;
372         bus->ops = temp->ops;
373
374         init_MUTEX(&bus->cmd_mutex);
375         INIT_LIST_HEAD(&bus->codec_list);
376
377         if ((err = snd_device_new(card, SNDRV_DEV_BUS, bus, &dev_ops)) < 0) {
378                 snd_hda_bus_free(bus);
379                 return err;
380         }
381         if (busp)
382                 *busp = bus;
383         return 0;
384 }
385
386
387 /*
388  * find a matching codec preset
389  */
390 static const struct hda_codec_preset *find_codec_preset(struct hda_codec *codec)
391 {
392         const struct hda_codec_preset **tbl, *preset;
393
394         for (tbl = hda_preset_tables; *tbl; tbl++) {
395                 for (preset = *tbl; preset->id; preset++) {
396                         u32 mask = preset->mask;
397                         if (! mask)
398                                 mask = ~0;
399                         if (preset->id == (codec->vendor_id & mask))
400                                 return preset;
401                 }
402         }
403         return NULL;
404 }
405
406 /*
407  * snd_hda_get_codec_name - store the codec name
408  */
409 void snd_hda_get_codec_name(struct hda_codec *codec,
410                             char *name, int namelen)
411 {
412         const struct hda_vendor_id *c;
413         const char *vendor = NULL;
414         u16 vendor_id = codec->vendor_id >> 16;
415         char tmp[16];
416
417         for (c = hda_vendor_ids; c->id; c++) {
418                 if (c->id == vendor_id) {
419                         vendor = c->name;
420                         break;
421                 }
422         }
423         if (! vendor) {
424                 sprintf(tmp, "Generic %04x", vendor_id);
425                 vendor = tmp;
426         }
427         if (codec->preset && codec->preset->name)
428                 snprintf(name, namelen, "%s %s", vendor, codec->preset->name);
429         else
430                 snprintf(name, namelen, "%s ID %x", vendor, codec->vendor_id & 0xffff);
431 }
432
433 /*
434  * look for an AFG and MFG nodes
435  */
436 static void setup_fg_nodes(struct hda_codec *codec)
437 {
438         int i, total_nodes;
439         hda_nid_t nid;
440
441         total_nodes = snd_hda_get_sub_nodes(codec, AC_NODE_ROOT, &nid);
442         for (i = 0; i < total_nodes; i++, nid++) {
443                 switch((snd_hda_param_read(codec, nid, AC_PAR_FUNCTION_TYPE) & 0xff)) {
444                 case AC_GRP_AUDIO_FUNCTION:
445                         codec->afg = nid;
446                         break;
447                 case AC_GRP_MODEM_FUNCTION:
448                         codec->mfg = nid;
449                         break;
450                 default:
451                         break;
452                 }
453         }
454 }
455
456 /*
457  * read widget caps for each widget and store in cache
458  */
459 static int read_widget_caps(struct hda_codec *codec, hda_nid_t fg_node)
460 {
461         int i;
462         hda_nid_t nid;
463
464         codec->num_nodes = snd_hda_get_sub_nodes(codec, fg_node,
465                                                  &codec->start_nid);
466         codec->wcaps = kmalloc(codec->num_nodes * 4, GFP_KERNEL);
467         if (! codec->wcaps)
468                 return -ENOMEM;
469         nid = codec->start_nid;
470         for (i = 0; i < codec->num_nodes; i++, nid++)
471                 codec->wcaps[i] = snd_hda_param_read(codec, nid,
472                                                      AC_PAR_AUDIO_WIDGET_CAP);
473         return 0;
474 }
475
476
477 /*
478  * codec destructor
479  */
480 static void snd_hda_codec_free(struct hda_codec *codec)
481 {
482         if (! codec)
483                 return;
484         list_del(&codec->list);
485         codec->bus->caddr_tbl[codec->addr] = NULL;
486         if (codec->patch_ops.free)
487                 codec->patch_ops.free(codec);
488         kfree(codec->amp_info);
489         kfree(codec->wcaps);
490         kfree(codec);
491 }
492
493 static void init_amp_hash(struct hda_codec *codec);
494
495 /**
496  * snd_hda_codec_new - create a HDA codec
497  * @bus: the bus to assign
498  * @codec_addr: the codec address
499  * @codecp: the pointer to store the generated codec
500  *
501  * Returns 0 if successful, or a negative error code.
502  */
503 int snd_hda_codec_new(struct hda_bus *bus, unsigned int codec_addr,
504                       struct hda_codec **codecp)
505 {
506         struct hda_codec *codec;
507         char component[13];
508         int err;
509
510         snd_assert(bus, return -EINVAL);
511         snd_assert(codec_addr <= HDA_MAX_CODEC_ADDRESS, return -EINVAL);
512
513         if (bus->caddr_tbl[codec_addr]) {
514                 snd_printk(KERN_ERR "hda_codec: address 0x%x is already occupied\n", codec_addr);
515                 return -EBUSY;
516         }
517
518         codec = kzalloc(sizeof(*codec), GFP_KERNEL);
519         if (codec == NULL) {
520                 snd_printk(KERN_ERR "can't allocate struct hda_codec\n");
521                 return -ENOMEM;
522         }
523
524         codec->bus = bus;
525         codec->addr = codec_addr;
526         init_MUTEX(&codec->spdif_mutex);
527         init_amp_hash(codec);
528
529         list_add_tail(&codec->list, &bus->codec_list);
530         bus->caddr_tbl[codec_addr] = codec;
531
532         codec->vendor_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_VENDOR_ID);
533         codec->subsystem_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_SUBSYSTEM_ID);
534         codec->revision_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_REV_ID);
535
536         setup_fg_nodes(codec);
537         if (! codec->afg && ! codec->mfg) {
538                 snd_printdd("hda_codec: no AFG or MFG node found\n");
539                 snd_hda_codec_free(codec);
540                 return -ENODEV;
541         }
542
543         if (read_widget_caps(codec, codec->afg ? codec->afg : codec->mfg) < 0) {
544                 snd_printk(KERN_ERR "hda_codec: cannot malloc\n");
545                 snd_hda_codec_free(codec);
546                 return -ENOMEM;
547         }
548
549         if (! codec->subsystem_id) {
550                 hda_nid_t nid = codec->afg ? codec->afg : codec->mfg;
551                 codec->subsystem_id = snd_hda_codec_read(codec, nid, 0,
552                                                          AC_VERB_GET_SUBSYSTEM_ID,
553                                                          0);
554         }
555
556         codec->preset = find_codec_preset(codec);
557         if (! *bus->card->mixername)
558                 snd_hda_get_codec_name(codec, bus->card->mixername,
559                                        sizeof(bus->card->mixername));
560
561         if (codec->preset && codec->preset->patch)
562                 err = codec->preset->patch(codec);
563         else
564                 err = snd_hda_parse_generic_codec(codec);
565         if (err < 0) {
566                 snd_hda_codec_free(codec);
567                 return err;
568         }
569
570         if (codec->patch_ops.unsol_event)
571                 init_unsol_queue(bus);
572
573         snd_hda_codec_proc_new(codec);
574
575         sprintf(component, "HDA:%08x", codec->vendor_id);
576         snd_component_add(codec->bus->card, component);
577
578         if (codecp)
579                 *codecp = codec;
580         return 0;
581 }
582
583 /**
584  * snd_hda_codec_setup_stream - set up the codec for streaming
585  * @codec: the CODEC to set up
586  * @nid: the NID to set up
587  * @stream_tag: stream tag to pass, it's between 0x1 and 0xf.
588  * @channel_id: channel id to pass, zero based.
589  * @format: stream format.
590  */
591 void snd_hda_codec_setup_stream(struct hda_codec *codec, hda_nid_t nid, u32 stream_tag,
592                                 int channel_id, int format)
593 {
594         if (! nid)
595                 return;
596
597         snd_printdd("hda_codec_setup_stream: NID=0x%x, stream=0x%x, channel=%d, format=0x%x\n",
598                     nid, stream_tag, channel_id, format);
599         snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CHANNEL_STREAMID,
600                             (stream_tag << 4) | channel_id);
601         msleep(1);
602         snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_STREAM_FORMAT, format);
603 }
604
605
606 /*
607  * amp access functions
608  */
609
610 /* FIXME: more better hash key? */
611 #define HDA_HASH_KEY(nid,dir,idx) (u32)((nid) + ((idx) << 16) + ((dir) << 24))
612 #define INFO_AMP_CAPS   (1<<0)
613 #define INFO_AMP_VOL(ch)        (1 << (1 + (ch)))
614
615 /* initialize the hash table */
616 static void init_amp_hash(struct hda_codec *codec)
617 {
618         memset(codec->amp_hash, 0xff, sizeof(codec->amp_hash));
619         codec->num_amp_entries = 0;
620         codec->amp_info_size = 0;
621         codec->amp_info = NULL;
622 }
623
624 /* query the hash.  allocate an entry if not found. */
625 static struct hda_amp_info *get_alloc_amp_hash(struct hda_codec *codec, u32 key)
626 {
627         u16 idx = key % (u16)ARRAY_SIZE(codec->amp_hash);
628         u16 cur = codec->amp_hash[idx];
629         struct hda_amp_info *info;
630
631         while (cur != 0xffff) {
632                 info = &codec->amp_info[cur];
633                 if (info->key == key)
634                         return info;
635                 cur = info->next;
636         }
637
638         /* add a new hash entry */
639         if (codec->num_amp_entries >= codec->amp_info_size) {
640                 /* reallocate the array */
641                 int new_size = codec->amp_info_size + 64;
642                 struct hda_amp_info *new_info = kcalloc(new_size, sizeof(struct hda_amp_info),
643                                                         GFP_KERNEL);
644                 if (! new_info) {
645                         snd_printk(KERN_ERR "hda_codec: can't malloc amp_info\n");
646                         return NULL;
647                 }
648                 if (codec->amp_info) {
649                         memcpy(new_info, codec->amp_info,
650                                codec->amp_info_size * sizeof(struct hda_amp_info));
651                         kfree(codec->amp_info);
652                 }
653                 codec->amp_info_size = new_size;
654                 codec->amp_info = new_info;
655         }
656         cur = codec->num_amp_entries++;
657         info = &codec->amp_info[cur];
658         info->key = key;
659         info->status = 0; /* not initialized yet */
660         info->next = codec->amp_hash[idx];
661         codec->amp_hash[idx] = cur;
662
663         return info;
664 }
665
666 /*
667  * query AMP capabilities for the given widget and direction
668  */
669 static u32 query_amp_caps(struct hda_codec *codec, hda_nid_t nid, int direction)
670 {
671         struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, 0));
672
673         if (! info)
674                 return 0;
675         if (! (info->status & INFO_AMP_CAPS)) {
676                 if (! (get_wcaps(codec, nid) & AC_WCAP_AMP_OVRD))
677                         nid = codec->afg;
678                 info->amp_caps = snd_hda_param_read(codec, nid, direction == HDA_OUTPUT ?
679                                                     AC_PAR_AMP_OUT_CAP : AC_PAR_AMP_IN_CAP);
680                 info->status |= INFO_AMP_CAPS;
681         }
682         return info->amp_caps;
683 }
684
685 /*
686  * read the current volume to info
687  * if the cache exists, read the cache value.
688  */
689 static unsigned int get_vol_mute(struct hda_codec *codec, struct hda_amp_info *info,
690                          hda_nid_t nid, int ch, int direction, int index)
691 {
692         u32 val, parm;
693
694         if (info->status & INFO_AMP_VOL(ch))
695                 return info->vol[ch];
696
697         parm = ch ? AC_AMP_GET_RIGHT : AC_AMP_GET_LEFT;
698         parm |= direction == HDA_OUTPUT ? AC_AMP_GET_OUTPUT : AC_AMP_GET_INPUT;
699         parm |= index;
700         val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_AMP_GAIN_MUTE, parm);
701         info->vol[ch] = val & 0xff;
702         info->status |= INFO_AMP_VOL(ch);
703         return info->vol[ch];
704 }
705
706 /*
707  * write the current volume in info to the h/w and update the cache
708  */
709 static void put_vol_mute(struct hda_codec *codec, struct hda_amp_info *info,
710                          hda_nid_t nid, int ch, int direction, int index, int val)
711 {
712         u32 parm;
713
714         parm = ch ? AC_AMP_SET_RIGHT : AC_AMP_SET_LEFT;
715         parm |= direction == HDA_OUTPUT ? AC_AMP_SET_OUTPUT : AC_AMP_SET_INPUT;
716         parm |= index << AC_AMP_SET_INDEX_SHIFT;
717         parm |= val;
718         snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_AMP_GAIN_MUTE, parm);
719         info->vol[ch] = val;
720 }
721
722 /*
723  * read AMP value.  The volume is between 0 to 0x7f, 0x80 = mute bit.
724  */
725 static int snd_hda_codec_amp_read(struct hda_codec *codec, hda_nid_t nid, int ch, int direction, int index)
726 {
727         struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, index));
728         if (! info)
729                 return 0;
730         return get_vol_mute(codec, info, nid, ch, direction, index);
731 }
732
733 /*
734  * update the AMP value, mask = bit mask to set, val = the value
735  */
736 static int snd_hda_codec_amp_update(struct hda_codec *codec, hda_nid_t nid, int ch, int direction, int idx, int mask, int val)
737 {
738         struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, idx));
739
740         if (! info)
741                 return 0;
742         val &= mask;
743         val |= get_vol_mute(codec, info, nid, ch, direction, idx) & ~mask;
744         if (info->vol[ch] == val && ! codec->in_resume)
745                 return 0;
746         put_vol_mute(codec, info, nid, ch, direction, idx, val);
747         return 1;
748 }
749
750
751 /*
752  * AMP control callbacks
753  */
754 /* retrieve parameters from private_value */
755 #define get_amp_nid(kc)         ((kc)->private_value & 0xffff)
756 #define get_amp_channels(kc)    (((kc)->private_value >> 16) & 0x3)
757 #define get_amp_direction(kc)   (((kc)->private_value >> 18) & 0x1)
758 #define get_amp_index(kc)       (((kc)->private_value >> 19) & 0xf)
759
760 /* volume */
761 int snd_hda_mixer_amp_volume_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
762 {
763         struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
764         u16 nid = get_amp_nid(kcontrol);
765         u8 chs = get_amp_channels(kcontrol);
766         int dir = get_amp_direction(kcontrol);
767         u32 caps;
768
769         caps = query_amp_caps(codec, nid, dir);
770         caps = (caps & AC_AMPCAP_NUM_STEPS) >> AC_AMPCAP_NUM_STEPS_SHIFT; /* num steps */
771         if (! caps) {
772                 printk(KERN_WARNING "hda_codec: num_steps = 0 for NID=0x%x\n", nid);
773                 return -EINVAL;
774         }
775         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
776         uinfo->count = chs == 3 ? 2 : 1;
777         uinfo->value.integer.min = 0;
778         uinfo->value.integer.max = caps;
779         return 0;
780 }
781
782 int snd_hda_mixer_amp_volume_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
783 {
784         struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
785         hda_nid_t nid = get_amp_nid(kcontrol);
786         int chs = get_amp_channels(kcontrol);
787         int dir = get_amp_direction(kcontrol);
788         int idx = get_amp_index(kcontrol);
789         long *valp = ucontrol->value.integer.value;
790
791         if (chs & 1)
792                 *valp++ = snd_hda_codec_amp_read(codec, nid, 0, dir, idx) & 0x7f;
793         if (chs & 2)
794                 *valp = snd_hda_codec_amp_read(codec, nid, 1, dir, idx) & 0x7f;
795         return 0;
796 }
797
798 int snd_hda_mixer_amp_volume_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
799 {
800         struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
801         hda_nid_t nid = get_amp_nid(kcontrol);
802         int chs = get_amp_channels(kcontrol);
803         int dir = get_amp_direction(kcontrol);
804         int idx = get_amp_index(kcontrol);
805         long *valp = ucontrol->value.integer.value;
806         int change = 0;
807
808         if (chs & 1) {
809                 change = snd_hda_codec_amp_update(codec, nid, 0, dir, idx,
810                                                   0x7f, *valp);
811                 valp++;
812         }
813         if (chs & 2)
814                 change |= snd_hda_codec_amp_update(codec, nid, 1, dir, idx,
815                                                    0x7f, *valp);
816         return change;
817 }
818
819 /* switch */
820 int snd_hda_mixer_amp_switch_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
821 {
822         int chs = get_amp_channels(kcontrol);
823
824         uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
825         uinfo->count = chs == 3 ? 2 : 1;
826         uinfo->value.integer.min = 0;
827         uinfo->value.integer.max = 1;
828         return 0;
829 }
830
831 int snd_hda_mixer_amp_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
832 {
833         struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
834         hda_nid_t nid = get_amp_nid(kcontrol);
835         int chs = get_amp_channels(kcontrol);
836         int dir = get_amp_direction(kcontrol);
837         int idx = get_amp_index(kcontrol);
838         long *valp = ucontrol->value.integer.value;
839
840         if (chs & 1)
841                 *valp++ = (snd_hda_codec_amp_read(codec, nid, 0, dir, idx) & 0x80) ? 0 : 1;
842         if (chs & 2)
843                 *valp = (snd_hda_codec_amp_read(codec, nid, 1, dir, idx) & 0x80) ? 0 : 1;
844         return 0;
845 }
846
847 int snd_hda_mixer_amp_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
848 {
849         struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
850         hda_nid_t nid = get_amp_nid(kcontrol);
851         int chs = get_amp_channels(kcontrol);
852         int dir = get_amp_direction(kcontrol);
853         int idx = get_amp_index(kcontrol);
854         long *valp = ucontrol->value.integer.value;
855         int change = 0;
856
857         if (chs & 1) {
858                 change = snd_hda_codec_amp_update(codec, nid, 0, dir, idx,
859                                                   0x80, *valp ? 0 : 0x80);
860                 valp++;
861         }
862         if (chs & 2)
863                 change |= snd_hda_codec_amp_update(codec, nid, 1, dir, idx,
864                                                    0x80, *valp ? 0 : 0x80);
865         
866         return change;
867 }
868
869 /*
870  * bound volume controls
871  *
872  * bind multiple volumes (# indices, from 0)
873  */
874
875 #define AMP_VAL_IDX_SHIFT       19
876 #define AMP_VAL_IDX_MASK        (0x0f<<19)
877
878 int snd_hda_mixer_bind_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
879 {
880         struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
881         unsigned long pval;
882         int err;
883
884         down(&codec->spdif_mutex); /* reuse spdif_mutex */
885         pval = kcontrol->private_value;
886         kcontrol->private_value = pval & ~AMP_VAL_IDX_MASK; /* index 0 */
887         err = snd_hda_mixer_amp_switch_get(kcontrol, ucontrol);
888         kcontrol->private_value = pval;
889         up(&codec->spdif_mutex);
890         return err;
891 }
892
893 int snd_hda_mixer_bind_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
894 {
895         struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
896         unsigned long pval;
897         int i, indices, err = 0, change = 0;
898
899         down(&codec->spdif_mutex); /* reuse spdif_mutex */
900         pval = kcontrol->private_value;
901         indices = (pval & AMP_VAL_IDX_MASK) >> AMP_VAL_IDX_SHIFT;
902         for (i = 0; i < indices; i++) {
903                 kcontrol->private_value = (pval & ~AMP_VAL_IDX_MASK) | (i << AMP_VAL_IDX_SHIFT);
904                 err = snd_hda_mixer_amp_switch_put(kcontrol, ucontrol);
905                 if (err < 0)
906                         break;
907                 change |= err;
908         }
909         kcontrol->private_value = pval;
910         up(&codec->spdif_mutex);
911         return err < 0 ? err : change;
912 }
913
914 /*
915  * SPDIF out controls
916  */
917
918 static int snd_hda_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
919 {
920         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
921         uinfo->count = 1;
922         return 0;
923 }
924
925 static int snd_hda_spdif_cmask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
926 {
927         ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
928                                            IEC958_AES0_NONAUDIO |
929                                            IEC958_AES0_CON_EMPHASIS_5015 |
930                                            IEC958_AES0_CON_NOT_COPYRIGHT;
931         ucontrol->value.iec958.status[1] = IEC958_AES1_CON_CATEGORY |
932                                            IEC958_AES1_CON_ORIGINAL;
933         return 0;
934 }
935
936 static int snd_hda_spdif_pmask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
937 {
938         ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
939                                            IEC958_AES0_NONAUDIO |
940                                            IEC958_AES0_PRO_EMPHASIS_5015;
941         return 0;
942 }
943
944 static int snd_hda_spdif_default_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
945 {
946         struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
947
948         ucontrol->value.iec958.status[0] = codec->spdif_status & 0xff;
949         ucontrol->value.iec958.status[1] = (codec->spdif_status >> 8) & 0xff;
950         ucontrol->value.iec958.status[2] = (codec->spdif_status >> 16) & 0xff;
951         ucontrol->value.iec958.status[3] = (codec->spdif_status >> 24) & 0xff;
952
953         return 0;
954 }
955
956 /* convert from SPDIF status bits to HDA SPDIF bits
957  * bit 0 (DigEn) is always set zero (to be filled later)
958  */
959 static unsigned short convert_from_spdif_status(unsigned int sbits)
960 {
961         unsigned short val = 0;
962
963         if (sbits & IEC958_AES0_PROFESSIONAL)
964                 val |= 1 << 6;
965         if (sbits & IEC958_AES0_NONAUDIO)
966                 val |= 1 << 5;
967         if (sbits & IEC958_AES0_PROFESSIONAL) {
968                 if ((sbits & IEC958_AES0_PRO_EMPHASIS) == IEC958_AES0_PRO_EMPHASIS_5015)
969                         val |= 1 << 3;
970         } else {
971                 if ((sbits & IEC958_AES0_CON_EMPHASIS) == IEC958_AES0_CON_EMPHASIS_5015)
972                         val |= 1 << 3;
973                 if (! (sbits & IEC958_AES0_CON_NOT_COPYRIGHT))
974                         val |= 1 << 4;
975                 if (sbits & (IEC958_AES1_CON_ORIGINAL << 8))
976                         val |= 1 << 7;
977                 val |= sbits & (IEC958_AES1_CON_CATEGORY << 8);
978         }
979         return val;
980 }
981
982 /* convert to SPDIF status bits from HDA SPDIF bits
983  */
984 static unsigned int convert_to_spdif_status(unsigned short val)
985 {
986         unsigned int sbits = 0;
987
988         if (val & (1 << 5))
989                 sbits |= IEC958_AES0_NONAUDIO;
990         if (val & (1 << 6))
991                 sbits |= IEC958_AES0_PROFESSIONAL;
992         if (sbits & IEC958_AES0_PROFESSIONAL) {
993                 if (sbits & (1 << 3))
994                         sbits |= IEC958_AES0_PRO_EMPHASIS_5015;
995         } else {
996                 if (val & (1 << 3))
997                         sbits |= IEC958_AES0_CON_EMPHASIS_5015;
998                 if (! (val & (1 << 4)))
999                         sbits |= IEC958_AES0_CON_NOT_COPYRIGHT;
1000                 if (val & (1 << 7))
1001                         sbits |= (IEC958_AES1_CON_ORIGINAL << 8);
1002                 sbits |= val & (0x7f << 8);
1003         }
1004         return sbits;
1005 }
1006
1007 static int snd_hda_spdif_default_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1008 {
1009         struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1010         hda_nid_t nid = kcontrol->private_value;
1011         unsigned short val;
1012         int change;
1013
1014         down(&codec->spdif_mutex);
1015         codec->spdif_status = ucontrol->value.iec958.status[0] |
1016                 ((unsigned int)ucontrol->value.iec958.status[1] << 8) |
1017                 ((unsigned int)ucontrol->value.iec958.status[2] << 16) |
1018                 ((unsigned int)ucontrol->value.iec958.status[3] << 24);
1019         val = convert_from_spdif_status(codec->spdif_status);
1020         val |= codec->spdif_ctls & 1;
1021         change = codec->spdif_ctls != val;
1022         codec->spdif_ctls = val;
1023
1024         if (change || codec->in_resume) {
1025                 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val & 0xff);
1026                 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_2, val >> 8);
1027         }
1028
1029         up(&codec->spdif_mutex);
1030         return change;
1031 }
1032
1033 static int snd_hda_spdif_out_switch_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1034 {
1035         uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1036         uinfo->count = 1;
1037         uinfo->value.integer.min = 0;
1038         uinfo->value.integer.max = 1;
1039         return 0;
1040 }
1041
1042 static int snd_hda_spdif_out_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1043 {
1044         struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1045
1046         ucontrol->value.integer.value[0] = codec->spdif_ctls & 1;
1047         return 0;
1048 }
1049
1050 static int snd_hda_spdif_out_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1051 {
1052         struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1053         hda_nid_t nid = kcontrol->private_value;
1054         unsigned short val;
1055         int change;
1056
1057         down(&codec->spdif_mutex);
1058         val = codec->spdif_ctls & ~1;
1059         if (ucontrol->value.integer.value[0])
1060                 val |= 1;
1061         change = codec->spdif_ctls != val;
1062         if (change || codec->in_resume) {
1063                 codec->spdif_ctls = val;
1064                 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val & 0xff);
1065                 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_AMP_GAIN_MUTE,
1066                                     AC_AMP_SET_RIGHT | AC_AMP_SET_LEFT |
1067                                     AC_AMP_SET_OUTPUT | ((val & 1) ? 0 : 0x80));
1068         }
1069         up(&codec->spdif_mutex);
1070         return change;
1071 }
1072
1073 static struct snd_kcontrol_new dig_mixes[] = {
1074         {
1075                 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1076                 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1077                 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1078                 .info = snd_hda_spdif_mask_info,
1079                 .get = snd_hda_spdif_cmask_get,
1080         },
1081         {
1082                 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1083                 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1084                 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PRO_MASK),
1085                 .info = snd_hda_spdif_mask_info,
1086                 .get = snd_hda_spdif_pmask_get,
1087         },
1088         {
1089                 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1090                 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1091                 .info = snd_hda_spdif_mask_info,
1092                 .get = snd_hda_spdif_default_get,
1093                 .put = snd_hda_spdif_default_put,
1094         },
1095         {
1096                 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1097                 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH),
1098                 .info = snd_hda_spdif_out_switch_info,
1099                 .get = snd_hda_spdif_out_switch_get,
1100                 .put = snd_hda_spdif_out_switch_put,
1101         },
1102         { } /* end */
1103 };
1104
1105 /**
1106  * snd_hda_create_spdif_out_ctls - create Output SPDIF-related controls
1107  * @codec: the HDA codec
1108  * @nid: audio out widget NID
1109  *
1110  * Creates controls related with the SPDIF output.
1111  * Called from each patch supporting the SPDIF out.
1112  *
1113  * Returns 0 if successful, or a negative error code.
1114  */
1115 int snd_hda_create_spdif_out_ctls(struct hda_codec *codec, hda_nid_t nid)
1116 {
1117         int err;
1118         struct snd_kcontrol *kctl;
1119         struct snd_kcontrol_new *dig_mix;
1120
1121         for (dig_mix = dig_mixes; dig_mix->name; dig_mix++) {
1122                 kctl = snd_ctl_new1(dig_mix, codec);
1123                 kctl->private_value = nid;
1124                 if ((err = snd_ctl_add(codec->bus->card, kctl)) < 0)
1125                         return err;
1126         }
1127         codec->spdif_ctls = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0);
1128         codec->spdif_status = convert_to_spdif_status(codec->spdif_ctls);
1129         return 0;
1130 }
1131
1132 /*
1133  * SPDIF input
1134  */
1135
1136 #define snd_hda_spdif_in_switch_info    snd_hda_spdif_out_switch_info
1137
1138 static int snd_hda_spdif_in_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1139 {
1140         struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1141
1142         ucontrol->value.integer.value[0] = codec->spdif_in_enable;
1143         return 0;
1144 }
1145
1146 static int snd_hda_spdif_in_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1147 {
1148         struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1149         hda_nid_t nid = kcontrol->private_value;
1150         unsigned int val = !!ucontrol->value.integer.value[0];
1151         int change;
1152
1153         down(&codec->spdif_mutex);
1154         change = codec->spdif_in_enable != val;
1155         if (change || codec->in_resume) {
1156                 codec->spdif_in_enable = val;
1157                 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val);
1158         }
1159         up(&codec->spdif_mutex);
1160         return change;
1161 }
1162
1163 static int snd_hda_spdif_in_status_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1164 {
1165         struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1166         hda_nid_t nid = kcontrol->private_value;
1167         unsigned short val;
1168         unsigned int sbits;
1169
1170         val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0);
1171         sbits = convert_to_spdif_status(val);
1172         ucontrol->value.iec958.status[0] = sbits;
1173         ucontrol->value.iec958.status[1] = sbits >> 8;
1174         ucontrol->value.iec958.status[2] = sbits >> 16;
1175         ucontrol->value.iec958.status[3] = sbits >> 24;
1176         return 0;
1177 }
1178
1179 static struct snd_kcontrol_new dig_in_ctls[] = {
1180         {
1181                 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1182                 .name = SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH),
1183                 .info = snd_hda_spdif_in_switch_info,
1184                 .get = snd_hda_spdif_in_switch_get,
1185                 .put = snd_hda_spdif_in_switch_put,
1186         },
1187         {
1188                 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1189                 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1190                 .name = SNDRV_CTL_NAME_IEC958("",CAPTURE,DEFAULT),
1191                 .info = snd_hda_spdif_mask_info,
1192                 .get = snd_hda_spdif_in_status_get,
1193         },
1194         { } /* end */
1195 };
1196
1197 /**
1198  * snd_hda_create_spdif_in_ctls - create Input SPDIF-related controls
1199  * @codec: the HDA codec
1200  * @nid: audio in widget NID
1201  *
1202  * Creates controls related with the SPDIF input.
1203  * Called from each patch supporting the SPDIF in.
1204  *
1205  * Returns 0 if successful, or a negative error code.
1206  */
1207 int snd_hda_create_spdif_in_ctls(struct hda_codec *codec, hda_nid_t nid)
1208 {
1209         int err;
1210         struct snd_kcontrol *kctl;
1211         struct snd_kcontrol_new *dig_mix;
1212
1213         for (dig_mix = dig_in_ctls; dig_mix->name; dig_mix++) {
1214                 kctl = snd_ctl_new1(dig_mix, codec);
1215                 kctl->private_value = nid;
1216                 if ((err = snd_ctl_add(codec->bus->card, kctl)) < 0)
1217                         return err;
1218         }
1219         codec->spdif_in_enable = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0) & 1;
1220         return 0;
1221 }
1222
1223
1224 /*
1225  * set power state of the codec
1226  */
1227 static void hda_set_power_state(struct hda_codec *codec, hda_nid_t fg,
1228                                 unsigned int power_state)
1229 {
1230         hda_nid_t nid, nid_start;
1231         int nodes;
1232
1233         snd_hda_codec_write(codec, fg, 0, AC_VERB_SET_POWER_STATE,
1234                             power_state);
1235
1236         nodes = snd_hda_get_sub_nodes(codec, fg, &nid_start);
1237         for (nid = nid_start; nid < nodes + nid_start; nid++) {
1238                 if (get_wcaps(codec, nid) & AC_WCAP_POWER)
1239                         snd_hda_codec_write(codec, nid, 0,
1240                                             AC_VERB_SET_POWER_STATE,
1241                                             power_state);
1242         }
1243
1244         if (power_state == AC_PWRST_D0)
1245                 msleep(10);
1246 }
1247
1248
1249 /**
1250  * snd_hda_build_controls - build mixer controls
1251  * @bus: the BUS
1252  *
1253  * Creates mixer controls for each codec included in the bus.
1254  *
1255  * Returns 0 if successful, otherwise a negative error code.
1256  */
1257 int snd_hda_build_controls(struct hda_bus *bus)
1258 {
1259         struct list_head *p;
1260
1261         /* build controls */
1262         list_for_each(p, &bus->codec_list) {
1263                 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1264                 int err;
1265                 if (! codec->patch_ops.build_controls)
1266                         continue;
1267                 err = codec->patch_ops.build_controls(codec);
1268                 if (err < 0)
1269                         return err;
1270         }
1271
1272         /* initialize */
1273         list_for_each(p, &bus->codec_list) {
1274                 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1275                 int err;
1276                 hda_set_power_state(codec,
1277                                     codec->afg ? codec->afg : codec->mfg,
1278                                     AC_PWRST_D0);
1279                 if (! codec->patch_ops.init)
1280                         continue;
1281                 err = codec->patch_ops.init(codec);
1282                 if (err < 0)
1283                         return err;
1284         }
1285         return 0;
1286 }
1287
1288
1289 /*
1290  * stream formats
1291  */
1292 struct hda_rate_tbl {
1293         unsigned int hz;
1294         unsigned int alsa_bits;
1295         unsigned int hda_fmt;
1296 };
1297
1298 static struct hda_rate_tbl rate_bits[] = {
1299         /* rate in Hz, ALSA rate bitmask, HDA format value */
1300
1301         /* autodetected value used in snd_hda_query_supported_pcm */
1302         { 8000, SNDRV_PCM_RATE_8000, 0x0500 }, /* 1/6 x 48 */
1303         { 11025, SNDRV_PCM_RATE_11025, 0x4300 }, /* 1/4 x 44 */
1304         { 16000, SNDRV_PCM_RATE_16000, 0x0200 }, /* 1/3 x 48 */
1305         { 22050, SNDRV_PCM_RATE_22050, 0x4100 }, /* 1/2 x 44 */
1306         { 32000, SNDRV_PCM_RATE_32000, 0x0a00 }, /* 2/3 x 48 */
1307         { 44100, SNDRV_PCM_RATE_44100, 0x4000 }, /* 44 */
1308         { 48000, SNDRV_PCM_RATE_48000, 0x0000 }, /* 48 */
1309         { 88200, SNDRV_PCM_RATE_88200, 0x4800 }, /* 2 x 44 */
1310         { 96000, SNDRV_PCM_RATE_96000, 0x0800 }, /* 2 x 48 */
1311         { 176400, SNDRV_PCM_RATE_176400, 0x5800 },/* 4 x 44 */
1312         { 192000, SNDRV_PCM_RATE_192000, 0x1800 }, /* 4 x 48 */
1313
1314         /* not autodetected value */
1315         { 9600, SNDRV_PCM_RATE_KNOT, 0x0400 }, /* 1/5 x 48 */
1316
1317         { 0 } /* terminator */
1318 };
1319
1320 /**
1321  * snd_hda_calc_stream_format - calculate format bitset
1322  * @rate: the sample rate
1323  * @channels: the number of channels
1324  * @format: the PCM format (SNDRV_PCM_FORMAT_XXX)
1325  * @maxbps: the max. bps
1326  *
1327  * Calculate the format bitset from the given rate, channels and th PCM format.
1328  *
1329  * Return zero if invalid.
1330  */
1331 unsigned int snd_hda_calc_stream_format(unsigned int rate,
1332                                         unsigned int channels,
1333                                         unsigned int format,
1334                                         unsigned int maxbps)
1335 {
1336         int i;
1337         unsigned int val = 0;
1338
1339         for (i = 0; rate_bits[i].hz; i++)
1340                 if (rate_bits[i].hz == rate) {
1341                         val = rate_bits[i].hda_fmt;
1342                         break;
1343                 }
1344         if (! rate_bits[i].hz) {
1345                 snd_printdd("invalid rate %d\n", rate);
1346                 return 0;
1347         }
1348
1349         if (channels == 0 || channels > 8) {
1350                 snd_printdd("invalid channels %d\n", channels);
1351                 return 0;
1352         }
1353         val |= channels - 1;
1354
1355         switch (snd_pcm_format_width(format)) {
1356         case 8:  val |= 0x00; break;
1357         case 16: val |= 0x10; break;
1358         case 20:
1359         case 24:
1360         case 32:
1361                 if (maxbps >= 32)
1362                         val |= 0x40;
1363                 else if (maxbps >= 24)
1364                         val |= 0x30;
1365                 else
1366                         val |= 0x20;
1367                 break;
1368         default:
1369                 snd_printdd("invalid format width %d\n", snd_pcm_format_width(format));
1370                 return 0;
1371         }
1372
1373         return val;
1374 }
1375
1376 /**
1377  * snd_hda_query_supported_pcm - query the supported PCM rates and formats
1378  * @codec: the HDA codec
1379  * @nid: NID to query
1380  * @ratesp: the pointer to store the detected rate bitflags
1381  * @formatsp: the pointer to store the detected formats
1382  * @bpsp: the pointer to store the detected format widths
1383  *
1384  * Queries the supported PCM rates and formats.  The NULL @ratesp, @formatsp
1385  * or @bsps argument is ignored.
1386  *
1387  * Returns 0 if successful, otherwise a negative error code.
1388  */
1389 int snd_hda_query_supported_pcm(struct hda_codec *codec, hda_nid_t nid,
1390                                 u32 *ratesp, u64 *formatsp, unsigned int *bpsp)
1391 {
1392         int i;
1393         unsigned int val, streams;
1394
1395         val = 0;
1396         if (nid != codec->afg &&
1397             (get_wcaps(codec, nid) & AC_WCAP_FORMAT_OVRD)) {
1398                 val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
1399                 if (val == -1)
1400                         return -EIO;
1401         }
1402         if (! val)
1403                 val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
1404
1405         if (ratesp) {
1406                 u32 rates = 0;
1407                 for (i = 0; rate_bits[i].hz; i++) {
1408                         if (val & (1 << i))
1409                                 rates |= rate_bits[i].alsa_bits;
1410                 }
1411                 *ratesp = rates;
1412         }
1413
1414         if (formatsp || bpsp) {
1415                 u64 formats = 0;
1416                 unsigned int bps;
1417                 unsigned int wcaps;
1418
1419                 wcaps = get_wcaps(codec, nid);
1420                 streams = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
1421                 if (streams == -1)
1422                         return -EIO;
1423                 if (! streams) {
1424                         streams = snd_hda_param_read(codec, codec->afg, AC_PAR_STREAM);
1425                         if (streams == -1)
1426                                 return -EIO;
1427                 }
1428
1429                 bps = 0;
1430                 if (streams & AC_SUPFMT_PCM) {
1431                         if (val & AC_SUPPCM_BITS_8) {
1432                                 formats |= SNDRV_PCM_FMTBIT_U8;
1433                                 bps = 8;
1434                         }
1435                         if (val & AC_SUPPCM_BITS_16) {
1436                                 formats |= SNDRV_PCM_FMTBIT_S16_LE;
1437                                 bps = 16;
1438                         }
1439                         if (wcaps & AC_WCAP_DIGITAL) {
1440                                 if (val & AC_SUPPCM_BITS_32)
1441                                         formats |= SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE;
1442                                 if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24))
1443                                         formats |= SNDRV_PCM_FMTBIT_S32_LE;
1444                                 if (val & AC_SUPPCM_BITS_24)
1445                                         bps = 24;
1446                                 else if (val & AC_SUPPCM_BITS_20)
1447                                         bps = 20;
1448                         } else if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24|AC_SUPPCM_BITS_32)) {
1449                                 formats |= SNDRV_PCM_FMTBIT_S32_LE;
1450                                 if (val & AC_SUPPCM_BITS_32)
1451                                         bps = 32;
1452                                 else if (val & AC_SUPPCM_BITS_20)
1453                                         bps = 20;
1454                                 else if (val & AC_SUPPCM_BITS_24)
1455                                         bps = 24;
1456                         }
1457                 }
1458                 else if (streams == AC_SUPFMT_FLOAT32) { /* should be exclusive */
1459                         formats |= SNDRV_PCM_FMTBIT_FLOAT_LE;
1460                         bps = 32;
1461                 } else if (streams == AC_SUPFMT_AC3) { /* should be exclusive */
1462                         /* temporary hack: we have still no proper support
1463                          * for the direct AC3 stream...
1464                          */
1465                         formats |= SNDRV_PCM_FMTBIT_U8;
1466                         bps = 8;
1467                 }
1468                 if (formatsp)
1469                         *formatsp = formats;
1470                 if (bpsp)
1471                         *bpsp = bps;
1472         }
1473
1474         return 0;
1475 }
1476
1477 /**
1478  * snd_hda_is_supported_format - check whether the given node supports the format val
1479  *
1480  * Returns 1 if supported, 0 if not.
1481  */
1482 int snd_hda_is_supported_format(struct hda_codec *codec, hda_nid_t nid,
1483                                 unsigned int format)
1484 {
1485         int i;
1486         unsigned int val = 0, rate, stream;
1487
1488         if (nid != codec->afg &&
1489             (get_wcaps(codec, nid) & AC_WCAP_FORMAT_OVRD)) {
1490                 val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
1491                 if (val == -1)
1492                         return 0;
1493         }
1494         if (! val) {
1495                 val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
1496                 if (val == -1)
1497                         return 0;
1498         }
1499
1500         rate = format & 0xff00;
1501         for (i = 0; rate_bits[i].hz; i++)
1502                 if (rate_bits[i].hda_fmt == rate) {
1503                         if (val & (1 << i))
1504                                 break;
1505                         return 0;
1506                 }
1507         if (! rate_bits[i].hz)
1508                 return 0;
1509
1510         stream = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
1511         if (stream == -1)
1512                 return 0;
1513         if (! stream && nid != codec->afg)
1514                 stream = snd_hda_param_read(codec, codec->afg, AC_PAR_STREAM);
1515         if (! stream || stream == -1)
1516                 return 0;
1517
1518         if (stream & AC_SUPFMT_PCM) {
1519                 switch (format & 0xf0) {
1520                 case 0x00:
1521                         if (! (val & AC_SUPPCM_BITS_8))
1522                                 return 0;
1523                         break;
1524                 case 0x10:
1525                         if (! (val & AC_SUPPCM_BITS_16))
1526                                 return 0;
1527                         break;
1528                 case 0x20:
1529                         if (! (val & AC_SUPPCM_BITS_20))
1530                                 return 0;
1531                         break;
1532                 case 0x30:
1533                         if (! (val & AC_SUPPCM_BITS_24))
1534                                 return 0;
1535                         break;
1536                 case 0x40:
1537                         if (! (val & AC_SUPPCM_BITS_32))
1538                                 return 0;
1539                         break;
1540                 default:
1541                         return 0;
1542                 }
1543         } else {
1544                 /* FIXME: check for float32 and AC3? */
1545         }
1546
1547         return 1;
1548 }
1549
1550 /*
1551  * PCM stuff
1552  */
1553 static int hda_pcm_default_open_close(struct hda_pcm_stream *hinfo,
1554                                       struct hda_codec *codec,
1555                                       struct snd_pcm_substream *substream)
1556 {
1557         return 0;
1558 }
1559
1560 static int hda_pcm_default_prepare(struct hda_pcm_stream *hinfo,
1561                                    struct hda_codec *codec,
1562                                    unsigned int stream_tag,
1563                                    unsigned int format,
1564                                    struct snd_pcm_substream *substream)
1565 {
1566         snd_hda_codec_setup_stream(codec, hinfo->nid, stream_tag, 0, format);
1567         return 0;
1568 }
1569
1570 static int hda_pcm_default_cleanup(struct hda_pcm_stream *hinfo,
1571                                    struct hda_codec *codec,
1572                                    struct snd_pcm_substream *substream)
1573 {
1574         snd_hda_codec_setup_stream(codec, hinfo->nid, 0, 0, 0);
1575         return 0;
1576 }
1577
1578 static int set_pcm_default_values(struct hda_codec *codec, struct hda_pcm_stream *info)
1579 {
1580         if (info->nid) {
1581                 /* query support PCM information from the given NID */
1582                 if (! info->rates || ! info->formats)
1583                         snd_hda_query_supported_pcm(codec, info->nid,
1584                                                     info->rates ? NULL : &info->rates,
1585                                                     info->formats ? NULL : &info->formats,
1586                                                     info->maxbps ? NULL : &info->maxbps);
1587         }
1588         if (info->ops.open == NULL)
1589                 info->ops.open = hda_pcm_default_open_close;
1590         if (info->ops.close == NULL)
1591                 info->ops.close = hda_pcm_default_open_close;
1592         if (info->ops.prepare == NULL) {
1593                 snd_assert(info->nid, return -EINVAL);
1594                 info->ops.prepare = hda_pcm_default_prepare;
1595         }
1596         if (info->ops.cleanup == NULL) {
1597                 snd_assert(info->nid, return -EINVAL);
1598                 info->ops.cleanup = hda_pcm_default_cleanup;
1599         }
1600         return 0;
1601 }
1602
1603 /**
1604  * snd_hda_build_pcms - build PCM information
1605  * @bus: the BUS
1606  *
1607  * Create PCM information for each codec included in the bus.
1608  *
1609  * The build_pcms codec patch is requested to set up codec->num_pcms and
1610  * codec->pcm_info properly.  The array is referred by the top-level driver
1611  * to create its PCM instances.
1612  * The allocated codec->pcm_info should be released in codec->patch_ops.free
1613  * callback.
1614  *
1615  * At least, substreams, channels_min and channels_max must be filled for
1616  * each stream.  substreams = 0 indicates that the stream doesn't exist.
1617  * When rates and/or formats are zero, the supported values are queried
1618  * from the given nid.  The nid is used also by the default ops.prepare
1619  * and ops.cleanup callbacks.
1620  *
1621  * The driver needs to call ops.open in its open callback.  Similarly,
1622  * ops.close is supposed to be called in the close callback.
1623  * ops.prepare should be called in the prepare or hw_params callback
1624  * with the proper parameters for set up.
1625  * ops.cleanup should be called in hw_free for clean up of streams.
1626  *
1627  * This function returns 0 if successfull, or a negative error code.
1628  */
1629 int snd_hda_build_pcms(struct hda_bus *bus)
1630 {
1631         struct list_head *p;
1632
1633         list_for_each(p, &bus->codec_list) {
1634                 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1635                 unsigned int pcm, s;
1636                 int err;
1637                 if (! codec->patch_ops.build_pcms)
1638                         continue;
1639                 err = codec->patch_ops.build_pcms(codec);
1640                 if (err < 0)
1641                         return err;
1642                 for (pcm = 0; pcm < codec->num_pcms; pcm++) {
1643                         for (s = 0; s < 2; s++) {
1644                                 struct hda_pcm_stream *info;
1645                                 info = &codec->pcm_info[pcm].stream[s];
1646                                 if (! info->substreams)
1647                                         continue;
1648                                 err = set_pcm_default_values(codec, info);
1649                                 if (err < 0)
1650                                         return err;
1651                         }
1652                 }
1653         }
1654         return 0;
1655 }
1656
1657
1658 /**
1659  * snd_hda_check_board_config - compare the current codec with the config table
1660  * @codec: the HDA codec
1661  * @tbl: configuration table, terminated by null entries
1662  *
1663  * Compares the modelname or PCI subsystem id of the current codec with the
1664  * given configuration table.  If a matching entry is found, returns its
1665  * config value (supposed to be 0 or positive).
1666  *
1667  * If no entries are matching, the function returns a negative value.
1668  */
1669 int snd_hda_check_board_config(struct hda_codec *codec, const struct hda_board_config *tbl)
1670 {
1671         const struct hda_board_config *c;
1672
1673         if (codec->bus->modelname) {
1674                 for (c = tbl; c->modelname || c->pci_subvendor; c++) {
1675                         if (c->modelname &&
1676                             ! strcmp(codec->bus->modelname, c->modelname)) {
1677                                 snd_printd(KERN_INFO "hda_codec: model '%s' is selected\n", c->modelname);
1678                                 return c->config;
1679                         }
1680                 }
1681         }
1682
1683         if (codec->bus->pci) {
1684                 u16 subsystem_vendor, subsystem_device;
1685                 pci_read_config_word(codec->bus->pci, PCI_SUBSYSTEM_VENDOR_ID, &subsystem_vendor);
1686                 pci_read_config_word(codec->bus->pci, PCI_SUBSYSTEM_ID, &subsystem_device);
1687                 for (c = tbl; c->modelname || c->pci_subvendor; c++) {
1688                         if (c->pci_subvendor == subsystem_vendor &&
1689                             (! c->pci_subdevice /* all match */||
1690                              (c->pci_subdevice == subsystem_device))) {
1691                                 snd_printdd(KERN_INFO "hda_codec: PCI %x:%x, codec config %d is selected\n",
1692                                             subsystem_vendor, subsystem_device, c->config);
1693                                 return c->config;
1694                         }
1695                 }
1696         }
1697         return -1;
1698 }
1699
1700 /**
1701  * snd_hda_add_new_ctls - create controls from the array
1702  * @codec: the HDA codec
1703  * @knew: the array of struct snd_kcontrol_new
1704  *
1705  * This helper function creates and add new controls in the given array.
1706  * The array must be terminated with an empty entry as terminator.
1707  *
1708  * Returns 0 if successful, or a negative error code.
1709  */
1710 int snd_hda_add_new_ctls(struct hda_codec *codec, struct snd_kcontrol_new *knew)
1711 {
1712         int err;
1713
1714         for (; knew->name; knew++) {
1715                 struct snd_kcontrol *kctl;
1716                 kctl = snd_ctl_new1(knew, codec);
1717                 if (! kctl)
1718                         return -ENOMEM;
1719                 err = snd_ctl_add(codec->bus->card, kctl);
1720                 if (err < 0) {
1721                         if (! codec->addr)
1722                                 return err;
1723                         kctl = snd_ctl_new1(knew, codec);
1724                         if (! kctl)
1725                                 return -ENOMEM;
1726                         kctl->id.device = codec->addr;
1727                         if ((err = snd_ctl_add(codec->bus->card, kctl)) < 0)
1728                                 return err;
1729                 }
1730         }
1731         return 0;
1732 }
1733
1734
1735 /*
1736  * Channel mode helper
1737  */
1738 int snd_hda_ch_mode_info(struct hda_codec *codec, struct snd_ctl_elem_info *uinfo,
1739                          const struct hda_channel_mode *chmode, int num_chmodes)
1740 {
1741         uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1742         uinfo->count = 1;
1743         uinfo->value.enumerated.items = num_chmodes;
1744         if (uinfo->value.enumerated.item >= num_chmodes)
1745                 uinfo->value.enumerated.item = num_chmodes - 1;
1746         sprintf(uinfo->value.enumerated.name, "%dch",
1747                 chmode[uinfo->value.enumerated.item].channels);
1748         return 0;
1749 }
1750
1751 int snd_hda_ch_mode_get(struct hda_codec *codec, struct snd_ctl_elem_value *ucontrol,
1752                         const struct hda_channel_mode *chmode, int num_chmodes,
1753                         int max_channels)
1754 {
1755         int i;
1756
1757         for (i = 0; i < num_chmodes; i++) {
1758                 if (max_channels == chmode[i].channels) {
1759                         ucontrol->value.enumerated.item[0] = i;
1760                         break;
1761                 }
1762         }
1763         return 0;
1764 }
1765
1766 int snd_hda_ch_mode_put(struct hda_codec *codec, struct snd_ctl_elem_value *ucontrol,
1767                         const struct hda_channel_mode *chmode, int num_chmodes,
1768                         int *max_channelsp)
1769 {
1770         unsigned int mode;
1771
1772         mode = ucontrol->value.enumerated.item[0];
1773         snd_assert(mode < num_chmodes, return -EINVAL);
1774         if (*max_channelsp == chmode[mode].channels && ! codec->in_resume)
1775                 return 0;
1776         /* change the current channel setting */
1777         *max_channelsp = chmode[mode].channels;
1778         if (chmode[mode].sequence)
1779                 snd_hda_sequence_write(codec, chmode[mode].sequence);
1780         return 1;
1781 }
1782
1783 /*
1784  * input MUX helper
1785  */
1786 int snd_hda_input_mux_info(const struct hda_input_mux *imux, struct snd_ctl_elem_info *uinfo)
1787 {
1788         unsigned int index;
1789
1790         uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1791         uinfo->count = 1;
1792         uinfo->value.enumerated.items = imux->num_items;
1793         index = uinfo->value.enumerated.item;
1794         if (index >= imux->num_items)
1795                 index = imux->num_items - 1;
1796         strcpy(uinfo->value.enumerated.name, imux->items[index].label);
1797         return 0;
1798 }
1799
1800 int snd_hda_input_mux_put(struct hda_codec *codec, const struct hda_input_mux *imux,
1801                           struct snd_ctl_elem_value *ucontrol, hda_nid_t nid,
1802                           unsigned int *cur_val)
1803 {
1804         unsigned int idx;
1805
1806         idx = ucontrol->value.enumerated.item[0];
1807         if (idx >= imux->num_items)
1808                 idx = imux->num_items - 1;
1809         if (*cur_val == idx && ! codec->in_resume)
1810                 return 0;
1811         snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CONNECT_SEL,
1812                             imux->items[idx].index);
1813         *cur_val = idx;
1814         return 1;
1815 }
1816
1817
1818 /*
1819  * Multi-channel / digital-out PCM helper functions
1820  */
1821
1822 /*
1823  * open the digital out in the exclusive mode
1824  */
1825 int snd_hda_multi_out_dig_open(struct hda_codec *codec, struct hda_multi_out *mout)
1826 {
1827         down(&codec->spdif_mutex);
1828         if (mout->dig_out_used) {
1829                 up(&codec->spdif_mutex);
1830                 return -EBUSY; /* already being used */
1831         }
1832         mout->dig_out_used = HDA_DIG_EXCLUSIVE;
1833         up(&codec->spdif_mutex);
1834         return 0;
1835 }
1836
1837 /*
1838  * release the digital out
1839  */
1840 int snd_hda_multi_out_dig_close(struct hda_codec *codec, struct hda_multi_out *mout)
1841 {
1842         down(&codec->spdif_mutex);
1843         mout->dig_out_used = 0;
1844         up(&codec->spdif_mutex);
1845         return 0;
1846 }
1847
1848 /*
1849  * set up more restrictions for analog out
1850  */
1851 int snd_hda_multi_out_analog_open(struct hda_codec *codec, struct hda_multi_out *mout,
1852                                   struct snd_pcm_substream *substream)
1853 {
1854         substream->runtime->hw.channels_max = mout->max_channels;
1855         return snd_pcm_hw_constraint_step(substream->runtime, 0,
1856                                           SNDRV_PCM_HW_PARAM_CHANNELS, 2);
1857 }
1858
1859 /*
1860  * set up the i/o for analog out
1861  * when the digital out is available, copy the front out to digital out, too.
1862  */
1863 int snd_hda_multi_out_analog_prepare(struct hda_codec *codec, struct hda_multi_out *mout,
1864                                      unsigned int stream_tag,
1865                                      unsigned int format,
1866                                      struct snd_pcm_substream *substream)
1867 {
1868         hda_nid_t *nids = mout->dac_nids;
1869         int chs = substream->runtime->channels;
1870         int i;
1871
1872         down(&codec->spdif_mutex);
1873         if (mout->dig_out_nid && mout->dig_out_used != HDA_DIG_EXCLUSIVE) {
1874                 if (chs == 2 &&
1875                     snd_hda_is_supported_format(codec, mout->dig_out_nid, format) &&
1876                     ! (codec->spdif_status & IEC958_AES0_NONAUDIO)) {
1877                         mout->dig_out_used = HDA_DIG_ANALOG_DUP;
1878                         /* setup digital receiver */
1879                         snd_hda_codec_setup_stream(codec, mout->dig_out_nid,
1880                                                    stream_tag, 0, format);
1881                 } else {
1882                         mout->dig_out_used = 0;
1883                         snd_hda_codec_setup_stream(codec, mout->dig_out_nid, 0, 0, 0);
1884                 }
1885         }
1886         up(&codec->spdif_mutex);
1887
1888         /* front */
1889         snd_hda_codec_setup_stream(codec, nids[HDA_FRONT], stream_tag, 0, format);
1890         if (mout->hp_nid)
1891                 /* headphone out will just decode front left/right (stereo) */
1892                 snd_hda_codec_setup_stream(codec, mout->hp_nid, stream_tag, 0, format);
1893         /* surrounds */
1894         for (i = 1; i < mout->num_dacs; i++) {
1895                 if (chs >= (i + 1) * 2) /* independent out */
1896                         snd_hda_codec_setup_stream(codec, nids[i], stream_tag, i * 2,
1897                                                    format);
1898                 else /* copy front */
1899                         snd_hda_codec_setup_stream(codec, nids[i], stream_tag, 0,
1900                                                    format);
1901         }
1902         return 0;
1903 }
1904
1905 /*
1906  * clean up the setting for analog out
1907  */
1908 int snd_hda_multi_out_analog_cleanup(struct hda_codec *codec, struct hda_multi_out *mout)
1909 {
1910         hda_nid_t *nids = mout->dac_nids;
1911         int i;
1912
1913         for (i = 0; i < mout->num_dacs; i++)
1914                 snd_hda_codec_setup_stream(codec, nids[i], 0, 0, 0);
1915         if (mout->hp_nid)
1916                 snd_hda_codec_setup_stream(codec, mout->hp_nid, 0, 0, 0);
1917         down(&codec->spdif_mutex);
1918         if (mout->dig_out_nid && mout->dig_out_used == HDA_DIG_ANALOG_DUP) {
1919                 snd_hda_codec_setup_stream(codec, mout->dig_out_nid, 0, 0, 0);
1920                 mout->dig_out_used = 0;
1921         }
1922         up(&codec->spdif_mutex);
1923         return 0;
1924 }
1925
1926 /*
1927  * Helper for automatic ping configuration
1928  */
1929
1930 static int is_in_nid_list(hda_nid_t nid, hda_nid_t *list)
1931 {
1932         for (; *list; list++)
1933                 if (*list == nid)
1934                         return 1;
1935         return 0;
1936 }
1937
1938 /* parse all pin widgets and store the useful pin nids to cfg */
1939 int snd_hda_parse_pin_def_config(struct hda_codec *codec, struct auto_pin_cfg *cfg,
1940                                  hda_nid_t *ignore_nids)
1941 {
1942         hda_nid_t nid, nid_start;
1943         int i, j, nodes;
1944         short seq, sequences[4], assoc_line_out;
1945
1946         memset(cfg, 0, sizeof(*cfg));
1947
1948         memset(sequences, 0, sizeof(sequences));
1949         assoc_line_out = 0;
1950
1951         nodes = snd_hda_get_sub_nodes(codec, codec->afg, &nid_start);
1952         for (nid = nid_start; nid < nodes + nid_start; nid++) {
1953                 unsigned int wid_caps = get_wcaps(codec, nid);
1954                 unsigned int wid_type = (wid_caps & AC_WCAP_TYPE) >> AC_WCAP_TYPE_SHIFT;
1955                 unsigned int def_conf;
1956                 short assoc, loc;
1957
1958                 /* read all default configuration for pin complex */
1959                 if (wid_type != AC_WID_PIN)
1960                         continue;
1961                 /* ignore the given nids (e.g. pc-beep returns error) */
1962                 if (ignore_nids && is_in_nid_list(nid, ignore_nids))
1963                         continue;
1964
1965                 def_conf = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_CONFIG_DEFAULT, 0);
1966                 if (get_defcfg_connect(def_conf) == AC_JACK_PORT_NONE)
1967                         continue;
1968                 loc = get_defcfg_location(def_conf);
1969                 switch (get_defcfg_device(def_conf)) {
1970                 case AC_JACK_LINE_OUT:
1971                         seq = get_defcfg_sequence(def_conf);
1972                         assoc = get_defcfg_association(def_conf);
1973                         if (! assoc)
1974                                 continue;
1975                         if (! assoc_line_out)
1976                                 assoc_line_out = assoc;
1977                         else if (assoc_line_out != assoc)
1978                                 continue;
1979                         if (cfg->line_outs >= ARRAY_SIZE(cfg->line_out_pins))
1980                                 continue;
1981                         cfg->line_out_pins[cfg->line_outs] = nid;
1982                         sequences[cfg->line_outs] = seq;
1983                         cfg->line_outs++;
1984                         break;
1985                 case AC_JACK_SPEAKER:
1986                         cfg->speaker_pin = nid;
1987                         break;
1988                 case AC_JACK_HP_OUT:
1989                         cfg->hp_pin = nid;
1990                         break;
1991                 case AC_JACK_MIC_IN:
1992                         if (loc == AC_JACK_LOC_FRONT)
1993                                 cfg->input_pins[AUTO_PIN_FRONT_MIC] = nid;
1994                         else
1995                                 cfg->input_pins[AUTO_PIN_MIC] = nid;
1996                         break;
1997                 case AC_JACK_LINE_IN:
1998                         if (loc == AC_JACK_LOC_FRONT)
1999                                 cfg->input_pins[AUTO_PIN_FRONT_LINE] = nid;
2000                         else
2001                                 cfg->input_pins[AUTO_PIN_LINE] = nid;
2002                         break;
2003                 case AC_JACK_CD:
2004                         cfg->input_pins[AUTO_PIN_CD] = nid;
2005                         break;
2006                 case AC_JACK_AUX:
2007                         cfg->input_pins[AUTO_PIN_AUX] = nid;
2008                         break;
2009                 case AC_JACK_SPDIF_OUT:
2010                         cfg->dig_out_pin = nid;
2011                         break;
2012                 case AC_JACK_SPDIF_IN:
2013                         cfg->dig_in_pin = nid;
2014                         break;
2015                 }
2016         }
2017
2018         /* sort by sequence */
2019         for (i = 0; i < cfg->line_outs; i++)
2020                 for (j = i + 1; j < cfg->line_outs; j++)
2021                         if (sequences[i] > sequences[j]) {
2022                                 seq = sequences[i];
2023                                 sequences[i] = sequences[j];
2024                                 sequences[j] = seq;
2025                                 nid = cfg->line_out_pins[i];
2026                                 cfg->line_out_pins[i] = cfg->line_out_pins[j];
2027                                 cfg->line_out_pins[j] = nid;
2028                         }
2029
2030         /* Reorder the surround channels
2031          * ALSA sequence is front/surr/clfe/side
2032          * HDA sequence is:
2033          *    4-ch: front/surr  =>  OK as it is
2034          *    6-ch: front/clfe/surr
2035          *    8-ch: front/clfe/side/surr
2036          */
2037         switch (cfg->line_outs) {
2038         case 3:
2039                 nid = cfg->line_out_pins[1];
2040                 cfg->line_out_pins[1] = cfg->line_out_pins[2];
2041                 cfg->line_out_pins[2] = nid;
2042                 break;
2043         case 4:
2044                 nid = cfg->line_out_pins[1];
2045                 cfg->line_out_pins[1] = cfg->line_out_pins[3];
2046                 cfg->line_out_pins[3] = cfg->line_out_pins[2];
2047                 cfg->line_out_pins[2] = nid;
2048                 break;
2049         }
2050
2051         return 0;
2052 }
2053
2054 /* labels for input pins */
2055 const char *auto_pin_cfg_labels[AUTO_PIN_LAST] = {
2056         "Mic", "Front Mic", "Line", "Front Line", "CD", "Aux"
2057 };
2058
2059
2060 #ifdef CONFIG_PM
2061 /*
2062  * power management
2063  */
2064
2065 /**
2066  * snd_hda_suspend - suspend the codecs
2067  * @bus: the HDA bus
2068  * @state: suspsend state
2069  *
2070  * Returns 0 if successful.
2071  */
2072 int snd_hda_suspend(struct hda_bus *bus, pm_message_t state)
2073 {
2074         struct list_head *p;
2075
2076         /* FIXME: should handle power widget capabilities */
2077         list_for_each(p, &bus->codec_list) {
2078                 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
2079                 if (codec->patch_ops.suspend)
2080                         codec->patch_ops.suspend(codec, state);
2081                 hda_set_power_state(codec,
2082                                     codec->afg ? codec->afg : codec->mfg,
2083                                     AC_PWRST_D3);
2084         }
2085         return 0;
2086 }
2087
2088 /**
2089  * snd_hda_resume - resume the codecs
2090  * @bus: the HDA bus
2091  * @state: resume state
2092  *
2093  * Returns 0 if successful.
2094  */
2095 int snd_hda_resume(struct hda_bus *bus)
2096 {
2097         struct list_head *p;
2098
2099         list_for_each(p, &bus->codec_list) {
2100                 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
2101                 hda_set_power_state(codec,
2102                                     codec->afg ? codec->afg : codec->mfg,
2103                                     AC_PWRST_D0);
2104                 if (codec->patch_ops.resume)
2105                         codec->patch_ops.resume(codec);
2106         }
2107         return 0;
2108 }
2109
2110 /**
2111  * snd_hda_resume_ctls - resume controls in the new control list
2112  * @codec: the HDA codec
2113  * @knew: the array of struct snd_kcontrol_new
2114  *
2115  * This function resumes the mixer controls in the struct snd_kcontrol_new array,
2116  * originally for snd_hda_add_new_ctls().
2117  * The array must be terminated with an empty entry as terminator.
2118  */
2119 int snd_hda_resume_ctls(struct hda_codec *codec, struct snd_kcontrol_new *knew)
2120 {
2121         struct snd_ctl_elem_value *val;
2122
2123         val = kmalloc(sizeof(*val), GFP_KERNEL);
2124         if (! val)
2125                 return -ENOMEM;
2126         codec->in_resume = 1;
2127         for (; knew->name; knew++) {
2128                 int i, count;
2129                 count = knew->count ? knew->count : 1;
2130                 for (i = 0; i < count; i++) {
2131                         memset(val, 0, sizeof(*val));
2132                         val->id.iface = knew->iface;
2133                         val->id.device = knew->device;
2134                         val->id.subdevice = knew->subdevice;
2135                         strcpy(val->id.name, knew->name);
2136                         val->id.index = knew->index ? knew->index : i;
2137                         /* Assume that get callback reads only from cache,
2138                          * not accessing to the real hardware
2139                          */
2140                         if (snd_ctl_elem_read(codec->bus->card, val) < 0)
2141                                 continue;
2142                         snd_ctl_elem_write(codec->bus->card, NULL, val);
2143                 }
2144         }
2145         codec->in_resume = 0;
2146         kfree(val);
2147         return 0;
2148 }
2149
2150 /**
2151  * snd_hda_resume_spdif_out - resume the digital out
2152  * @codec: the HDA codec
2153  */
2154 int snd_hda_resume_spdif_out(struct hda_codec *codec)
2155 {
2156         return snd_hda_resume_ctls(codec, dig_mixes);
2157 }
2158
2159 /**
2160  * snd_hda_resume_spdif_in - resume the digital in
2161  * @codec: the HDA codec
2162  */
2163 int snd_hda_resume_spdif_in(struct hda_codec *codec)
2164 {
2165         return snd_hda_resume_ctls(codec, dig_in_ctls);
2166 }
2167 #endif
2168
2169 /*
2170  * symbols exported for controller modules
2171  */
2172 EXPORT_SYMBOL(snd_hda_codec_read);
2173 EXPORT_SYMBOL(snd_hda_codec_write);
2174 EXPORT_SYMBOL(snd_hda_sequence_write);
2175 EXPORT_SYMBOL(snd_hda_get_sub_nodes);
2176 EXPORT_SYMBOL(snd_hda_queue_unsol_event);
2177 EXPORT_SYMBOL(snd_hda_bus_new);
2178 EXPORT_SYMBOL(snd_hda_codec_new);
2179 EXPORT_SYMBOL(snd_hda_codec_setup_stream);
2180 EXPORT_SYMBOL(snd_hda_calc_stream_format);
2181 EXPORT_SYMBOL(snd_hda_build_pcms);
2182 EXPORT_SYMBOL(snd_hda_build_controls);
2183 #ifdef CONFIG_PM
2184 EXPORT_SYMBOL(snd_hda_suspend);
2185 EXPORT_SYMBOL(snd_hda_resume);
2186 #endif
2187
2188 /*
2189  *  INIT part
2190  */
2191
2192 static int __init alsa_hda_init(void)
2193 {
2194         return 0;
2195 }
2196
2197 static void __exit alsa_hda_exit(void)
2198 {
2199 }
2200
2201 module_init(alsa_hda_init)
2202 module_exit(alsa_hda_exit)