Automatic merge of 'misc-fixes' branch from
[linux-2.6] / arch / ia64 / kernel / ptrace.c
1 /*
2  * Kernel support for the ptrace() and syscall tracing interfaces.
3  *
4  * Copyright (C) 1999-2005 Hewlett-Packard Co
5  *      David Mosberger-Tang <davidm@hpl.hp.com>
6  *
7  * Derived from the x86 and Alpha versions.
8  */
9 #include <linux/config.h>
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/slab.h>
13 #include <linux/mm.h>
14 #include <linux/errno.h>
15 #include <linux/ptrace.h>
16 #include <linux/smp_lock.h>
17 #include <linux/user.h>
18 #include <linux/security.h>
19 #include <linux/audit.h>
20 #include <linux/signal.h>
21
22 #include <asm/pgtable.h>
23 #include <asm/processor.h>
24 #include <asm/ptrace_offsets.h>
25 #include <asm/rse.h>
26 #include <asm/system.h>
27 #include <asm/uaccess.h>
28 #include <asm/unwind.h>
29 #ifdef CONFIG_PERFMON
30 #include <asm/perfmon.h>
31 #endif
32
33 #include "entry.h"
34
35 /*
36  * Bits in the PSR that we allow ptrace() to change:
37  *      be, up, ac, mfl, mfh (the user mask; five bits total)
38  *      db (debug breakpoint fault; one bit)
39  *      id (instruction debug fault disable; one bit)
40  *      dd (data debug fault disable; one bit)
41  *      ri (restart instruction; two bits)
42  *      is (instruction set; one bit)
43  */
44 #define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS      \
45                    | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
46
47 #define MASK(nbits)     ((1UL << (nbits)) - 1)  /* mask with NBITS bits set */
48 #define PFM_MASK        MASK(38)
49
50 #define PTRACE_DEBUG    0
51
52 #if PTRACE_DEBUG
53 # define dprintk(format...)     printk(format)
54 # define inline
55 #else
56 # define dprintk(format...)
57 #endif
58
59 /* Return TRUE if PT was created due to kernel-entry via a system-call.  */
60
61 static inline int
62 in_syscall (struct pt_regs *pt)
63 {
64         return (long) pt->cr_ifs >= 0;
65 }
66
67 /*
68  * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
69  * bitset where bit i is set iff the NaT bit of register i is set.
70  */
71 unsigned long
72 ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat)
73 {
74 #       define GET_BITS(first, last, unat)                              \
75         ({                                                              \
76                 unsigned long bit = ia64_unat_pos(&pt->r##first);       \
77                 unsigned long nbits = (last - first + 1);               \
78                 unsigned long mask = MASK(nbits) << first;              \
79                 unsigned long dist;                                     \
80                 if (bit < first)                                        \
81                         dist = 64 + bit - first;                        \
82                 else                                                    \
83                         dist = bit - first;                             \
84                 ia64_rotr(unat, dist) & mask;                           \
85         })
86         unsigned long val;
87
88         /*
89          * Registers that are stored consecutively in struct pt_regs
90          * can be handled in parallel.  If the register order in
91          * struct_pt_regs changes, this code MUST be updated.
92          */
93         val  = GET_BITS( 1,  1, scratch_unat);
94         val |= GET_BITS( 2,  3, scratch_unat);
95         val |= GET_BITS(12, 13, scratch_unat);
96         val |= GET_BITS(14, 14, scratch_unat);
97         val |= GET_BITS(15, 15, scratch_unat);
98         val |= GET_BITS( 8, 11, scratch_unat);
99         val |= GET_BITS(16, 31, scratch_unat);
100         return val;
101
102 #       undef GET_BITS
103 }
104
105 /*
106  * Set the NaT bits for the scratch registers according to NAT and
107  * return the resulting unat (assuming the scratch registers are
108  * stored in PT).
109  */
110 unsigned long
111 ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat)
112 {
113 #       define PUT_BITS(first, last, nat)                               \
114         ({                                                              \
115                 unsigned long bit = ia64_unat_pos(&pt->r##first);       \
116                 unsigned long nbits = (last - first + 1);               \
117                 unsigned long mask = MASK(nbits) << first;              \
118                 long dist;                                              \
119                 if (bit < first)                                        \
120                         dist = 64 + bit - first;                        \
121                 else                                                    \
122                         dist = bit - first;                             \
123                 ia64_rotl(nat & mask, dist);                            \
124         })
125         unsigned long scratch_unat;
126
127         /*
128          * Registers that are stored consecutively in struct pt_regs
129          * can be handled in parallel.  If the register order in
130          * struct_pt_regs changes, this code MUST be updated.
131          */
132         scratch_unat  = PUT_BITS( 1,  1, nat);
133         scratch_unat |= PUT_BITS( 2,  3, nat);
134         scratch_unat |= PUT_BITS(12, 13, nat);
135         scratch_unat |= PUT_BITS(14, 14, nat);
136         scratch_unat |= PUT_BITS(15, 15, nat);
137         scratch_unat |= PUT_BITS( 8, 11, nat);
138         scratch_unat |= PUT_BITS(16, 31, nat);
139
140         return scratch_unat;
141
142 #       undef PUT_BITS
143 }
144
145 #define IA64_MLX_TEMPLATE       0x2
146 #define IA64_MOVL_OPCODE        6
147
148 void
149 ia64_increment_ip (struct pt_regs *regs)
150 {
151         unsigned long w0, ri = ia64_psr(regs)->ri + 1;
152
153         if (ri > 2) {
154                 ri = 0;
155                 regs->cr_iip += 16;
156         } else if (ri == 2) {
157                 get_user(w0, (char __user *) regs->cr_iip + 0);
158                 if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
159                         /*
160                          * rfi'ing to slot 2 of an MLX bundle causes
161                          * an illegal operation fault.  We don't want
162                          * that to happen...
163                          */
164                         ri = 0;
165                         regs->cr_iip += 16;
166                 }
167         }
168         ia64_psr(regs)->ri = ri;
169 }
170
171 void
172 ia64_decrement_ip (struct pt_regs *regs)
173 {
174         unsigned long w0, ri = ia64_psr(regs)->ri - 1;
175
176         if (ia64_psr(regs)->ri == 0) {
177                 regs->cr_iip -= 16;
178                 ri = 2;
179                 get_user(w0, (char __user *) regs->cr_iip + 0);
180                 if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
181                         /*
182                          * rfi'ing to slot 2 of an MLX bundle causes
183                          * an illegal operation fault.  We don't want
184                          * that to happen...
185                          */
186                         ri = 1;
187                 }
188         }
189         ia64_psr(regs)->ri = ri;
190 }
191
192 /*
193  * This routine is used to read an rnat bits that are stored on the
194  * kernel backing store.  Since, in general, the alignment of the user
195  * and kernel are different, this is not completely trivial.  In
196  * essence, we need to construct the user RNAT based on up to two
197  * kernel RNAT values and/or the RNAT value saved in the child's
198  * pt_regs.
199  *
200  * user rbs
201  *
202  * +--------+ <-- lowest address
203  * | slot62 |
204  * +--------+
205  * |  rnat  | 0x....1f8
206  * +--------+
207  * | slot00 | \
208  * +--------+ |
209  * | slot01 | > child_regs->ar_rnat
210  * +--------+ |
211  * | slot02 | /                         kernel rbs
212  * +--------+                           +--------+
213  *          <- child_regs->ar_bspstore  | slot61 | <-- krbs
214  * +- - - - +                           +--------+
215  *                                      | slot62 |
216  * +- - - - +                           +--------+
217  *                                      |  rnat  |
218  * +- - - - +                           +--------+
219  *   vrnat                              | slot00 |
220  * +- - - - +                           +--------+
221  *                                      =        =
222  *                                      +--------+
223  *                                      | slot00 | \
224  *                                      +--------+ |
225  *                                      | slot01 | > child_stack->ar_rnat
226  *                                      +--------+ |
227  *                                      | slot02 | /
228  *                                      +--------+
229  *                                                <--- child_stack->ar_bspstore
230  *
231  * The way to think of this code is as follows: bit 0 in the user rnat
232  * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
233  * value.  The kernel rnat value holding this bit is stored in
234  * variable rnat0.  rnat1 is loaded with the kernel rnat value that
235  * form the upper bits of the user rnat value.
236  *
237  * Boundary cases:
238  *
239  * o when reading the rnat "below" the first rnat slot on the kernel
240  *   backing store, rnat0/rnat1 are set to 0 and the low order bits are
241  *   merged in from pt->ar_rnat.
242  *
243  * o when reading the rnat "above" the last rnat slot on the kernel
244  *   backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
245  */
246 static unsigned long
247 get_rnat (struct task_struct *task, struct switch_stack *sw,
248           unsigned long *krbs, unsigned long *urnat_addr,
249           unsigned long *urbs_end)
250 {
251         unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr;
252         unsigned long umask = 0, mask, m;
253         unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
254         long num_regs, nbits;
255         struct pt_regs *pt;
256
257         pt = ia64_task_regs(task);
258         kbsp = (unsigned long *) sw->ar_bspstore;
259         ubspstore = (unsigned long *) pt->ar_bspstore;
260
261         if (urbs_end < urnat_addr)
262                 nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end);
263         else
264                 nbits = 63;
265         mask = MASK(nbits);
266         /*
267          * First, figure out which bit number slot 0 in user-land maps
268          * to in the kernel rnat.  Do this by figuring out how many
269          * register slots we're beyond the user's backingstore and
270          * then computing the equivalent address in kernel space.
271          */
272         num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
273         slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
274         shift = ia64_rse_slot_num(slot0_kaddr);
275         rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
276         rnat0_kaddr = rnat1_kaddr - 64;
277
278         if (ubspstore + 63 > urnat_addr) {
279                 /* some bits need to be merged in from pt->ar_rnat */
280                 umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
281                 urnat = (pt->ar_rnat & umask);
282                 mask &= ~umask;
283                 if (!mask)
284                         return urnat;
285         }
286
287         m = mask << shift;
288         if (rnat0_kaddr >= kbsp)
289                 rnat0 = sw->ar_rnat;
290         else if (rnat0_kaddr > krbs)
291                 rnat0 = *rnat0_kaddr;
292         urnat |= (rnat0 & m) >> shift;
293
294         m = mask >> (63 - shift);
295         if (rnat1_kaddr >= kbsp)
296                 rnat1 = sw->ar_rnat;
297         else if (rnat1_kaddr > krbs)
298                 rnat1 = *rnat1_kaddr;
299         urnat |= (rnat1 & m) << (63 - shift);
300         return urnat;
301 }
302
303 /*
304  * The reverse of get_rnat.
305  */
306 static void
307 put_rnat (struct task_struct *task, struct switch_stack *sw,
308           unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat,
309           unsigned long *urbs_end)
310 {
311         unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m;
312         unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
313         long num_regs, nbits;
314         struct pt_regs *pt;
315         unsigned long cfm, *urbs_kargs;
316
317         pt = ia64_task_regs(task);
318         kbsp = (unsigned long *) sw->ar_bspstore;
319         ubspstore = (unsigned long *) pt->ar_bspstore;
320
321         urbs_kargs = urbs_end;
322         if (in_syscall(pt)) {
323                 /*
324                  * If entered via syscall, don't allow user to set rnat bits
325                  * for syscall args.
326                  */
327                 cfm = pt->cr_ifs;
328                 urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f));
329         }
330
331         if (urbs_kargs >= urnat_addr)
332                 nbits = 63;
333         else {
334                 if ((urnat_addr - 63) >= urbs_kargs)
335                         return;
336                 nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs);
337         }
338         mask = MASK(nbits);
339
340         /*
341          * First, figure out which bit number slot 0 in user-land maps
342          * to in the kernel rnat.  Do this by figuring out how many
343          * register slots we're beyond the user's backingstore and
344          * then computing the equivalent address in kernel space.
345          */
346         num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
347         slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
348         shift = ia64_rse_slot_num(slot0_kaddr);
349         rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
350         rnat0_kaddr = rnat1_kaddr - 64;
351
352         if (ubspstore + 63 > urnat_addr) {
353                 /* some bits need to be place in pt->ar_rnat: */
354                 umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
355                 pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask);
356                 mask &= ~umask;
357                 if (!mask)
358                         return;
359         }
360         /*
361          * Note: Section 11.1 of the EAS guarantees that bit 63 of an
362          * rnat slot is ignored. so we don't have to clear it here.
363          */
364         rnat0 = (urnat << shift);
365         m = mask << shift;
366         if (rnat0_kaddr >= kbsp)
367                 sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m);
368         else if (rnat0_kaddr > krbs)
369                 *rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m));
370
371         rnat1 = (urnat >> (63 - shift));
372         m = mask >> (63 - shift);
373         if (rnat1_kaddr >= kbsp)
374                 sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m);
375         else if (rnat1_kaddr > krbs)
376                 *rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m));
377 }
378
379 static inline int
380 on_kernel_rbs (unsigned long addr, unsigned long bspstore,
381                unsigned long urbs_end)
382 {
383         unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *)
384                                                       urbs_end);
385         return (addr >= bspstore && addr <= (unsigned long) rnat_addr);
386 }
387
388 /*
389  * Read a word from the user-level backing store of task CHILD.  ADDR
390  * is the user-level address to read the word from, VAL a pointer to
391  * the return value, and USER_BSP gives the end of the user-level
392  * backing store (i.e., it's the address that would be in ar.bsp after
393  * the user executed a "cover" instruction).
394  *
395  * This routine takes care of accessing the kernel register backing
396  * store for those registers that got spilled there.  It also takes
397  * care of calculating the appropriate RNaT collection words.
398  */
399 long
400 ia64_peek (struct task_struct *child, struct switch_stack *child_stack,
401            unsigned long user_rbs_end, unsigned long addr, long *val)
402 {
403         unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr;
404         struct pt_regs *child_regs;
405         size_t copied;
406         long ret;
407
408         urbs_end = (long *) user_rbs_end;
409         laddr = (unsigned long *) addr;
410         child_regs = ia64_task_regs(child);
411         bspstore = (unsigned long *) child_regs->ar_bspstore;
412         krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
413         if (on_kernel_rbs(addr, (unsigned long) bspstore,
414                           (unsigned long) urbs_end))
415         {
416                 /*
417                  * Attempt to read the RBS in an area that's actually
418                  * on the kernel RBS => read the corresponding bits in
419                  * the kernel RBS.
420                  */
421                 rnat_addr = ia64_rse_rnat_addr(laddr);
422                 ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end);
423
424                 if (laddr == rnat_addr) {
425                         /* return NaT collection word itself */
426                         *val = ret;
427                         return 0;
428                 }
429
430                 if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) {
431                         /*
432                          * It is implementation dependent whether the
433                          * data portion of a NaT value gets saved on a
434                          * st8.spill or RSE spill (e.g., see EAS 2.6,
435                          * 4.4.4.6 Register Spill and Fill).  To get
436                          * consistent behavior across all possible
437                          * IA-64 implementations, we return zero in
438                          * this case.
439                          */
440                         *val = 0;
441                         return 0;
442                 }
443
444                 if (laddr < urbs_end) {
445                         /*
446                          * The desired word is on the kernel RBS and
447                          * is not a NaT.
448                          */
449                         regnum = ia64_rse_num_regs(bspstore, laddr);
450                         *val = *ia64_rse_skip_regs(krbs, regnum);
451                         return 0;
452                 }
453         }
454         copied = access_process_vm(child, addr, &ret, sizeof(ret), 0);
455         if (copied != sizeof(ret))
456                 return -EIO;
457         *val = ret;
458         return 0;
459 }
460
461 long
462 ia64_poke (struct task_struct *child, struct switch_stack *child_stack,
463            unsigned long user_rbs_end, unsigned long addr, long val)
464 {
465         unsigned long *bspstore, *krbs, regnum, *laddr;
466         unsigned long *urbs_end = (long *) user_rbs_end;
467         struct pt_regs *child_regs;
468
469         laddr = (unsigned long *) addr;
470         child_regs = ia64_task_regs(child);
471         bspstore = (unsigned long *) child_regs->ar_bspstore;
472         krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
473         if (on_kernel_rbs(addr, (unsigned long) bspstore,
474                           (unsigned long) urbs_end))
475         {
476                 /*
477                  * Attempt to write the RBS in an area that's actually
478                  * on the kernel RBS => write the corresponding bits
479                  * in the kernel RBS.
480                  */
481                 if (ia64_rse_is_rnat_slot(laddr))
482                         put_rnat(child, child_stack, krbs, laddr, val,
483                                  urbs_end);
484                 else {
485                         if (laddr < urbs_end) {
486                                 regnum = ia64_rse_num_regs(bspstore, laddr);
487                                 *ia64_rse_skip_regs(krbs, regnum) = val;
488                         }
489                 }
490         } else if (access_process_vm(child, addr, &val, sizeof(val), 1)
491                    != sizeof(val))
492                 return -EIO;
493         return 0;
494 }
495
496 /*
497  * Calculate the address of the end of the user-level register backing
498  * store.  This is the address that would have been stored in ar.bsp
499  * if the user had executed a "cover" instruction right before
500  * entering the kernel.  If CFMP is not NULL, it is used to return the
501  * "current frame mask" that was active at the time the kernel was
502  * entered.
503  */
504 unsigned long
505 ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt,
506                        unsigned long *cfmp)
507 {
508         unsigned long *krbs, *bspstore, cfm = pt->cr_ifs;
509         long ndirty;
510
511         krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
512         bspstore = (unsigned long *) pt->ar_bspstore;
513         ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
514
515         if (in_syscall(pt))
516                 ndirty += (cfm & 0x7f);
517         else
518                 cfm &= ~(1UL << 63);    /* clear valid bit */
519
520         if (cfmp)
521                 *cfmp = cfm;
522         return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty);
523 }
524
525 /*
526  * Synchronize (i.e, write) the RSE backing store living in kernel
527  * space to the VM of the CHILD task.  SW and PT are the pointers to
528  * the switch_stack and pt_regs structures, respectively.
529  * USER_RBS_END is the user-level address at which the backing store
530  * ends.
531  */
532 long
533 ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw,
534                     unsigned long user_rbs_start, unsigned long user_rbs_end)
535 {
536         unsigned long addr, val;
537         long ret;
538
539         /* now copy word for word from kernel rbs to user rbs: */
540         for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
541                 ret = ia64_peek(child, sw, user_rbs_end, addr, &val);
542                 if (ret < 0)
543                         return ret;
544                 if (access_process_vm(child, addr, &val, sizeof(val), 1)
545                     != sizeof(val))
546                         return -EIO;
547         }
548         return 0;
549 }
550
551 static inline int
552 thread_matches (struct task_struct *thread, unsigned long addr)
553 {
554         unsigned long thread_rbs_end;
555         struct pt_regs *thread_regs;
556
557         if (ptrace_check_attach(thread, 0) < 0)
558                 /*
559                  * If the thread is not in an attachable state, we'll
560                  * ignore it.  The net effect is that if ADDR happens
561                  * to overlap with the portion of the thread's
562                  * register backing store that is currently residing
563                  * on the thread's kernel stack, then ptrace() may end
564                  * up accessing a stale value.  But if the thread
565                  * isn't stopped, that's a problem anyhow, so we're
566                  * doing as well as we can...
567                  */
568                 return 0;
569
570         thread_regs = ia64_task_regs(thread);
571         thread_rbs_end = ia64_get_user_rbs_end(thread, thread_regs, NULL);
572         if (!on_kernel_rbs(addr, thread_regs->ar_bspstore, thread_rbs_end))
573                 return 0;
574
575         return 1;       /* looks like we've got a winner */
576 }
577
578 /*
579  * GDB apparently wants to be able to read the register-backing store
580  * of any thread when attached to a given process.  If we are peeking
581  * or poking an address that happens to reside in the kernel-backing
582  * store of another thread, we need to attach to that thread, because
583  * otherwise we end up accessing stale data.
584  *
585  * task_list_lock must be read-locked before calling this routine!
586  */
587 static struct task_struct *
588 find_thread_for_addr (struct task_struct *child, unsigned long addr)
589 {
590         struct task_struct *g, *p;
591         struct mm_struct *mm;
592         int mm_users;
593
594         if (!(mm = get_task_mm(child)))
595                 return child;
596
597         /* -1 because of our get_task_mm(): */
598         mm_users = atomic_read(&mm->mm_users) - 1;
599         if (mm_users <= 1)
600                 goto out;               /* not multi-threaded */
601
602         /*
603          * First, traverse the child's thread-list.  Good for scalability with
604          * NPTL-threads.
605          */
606         p = child;
607         do {
608                 if (thread_matches(p, addr)) {
609                         child = p;
610                         goto out;
611                 }
612                 if (mm_users-- <= 1)
613                         goto out;
614         } while ((p = next_thread(p)) != child);
615
616         do_each_thread(g, p) {
617                 if (child->mm != mm)
618                         continue;
619
620                 if (thread_matches(p, addr)) {
621                         child = p;
622                         goto out;
623                 }
624         } while_each_thread(g, p);
625   out:
626         mmput(mm);
627         return child;
628 }
629
630 /*
631  * Write f32-f127 back to task->thread.fph if it has been modified.
632  */
633 inline void
634 ia64_flush_fph (struct task_struct *task)
635 {
636         struct ia64_psr *psr = ia64_psr(ia64_task_regs(task));
637
638         if (ia64_is_local_fpu_owner(task) && psr->mfh) {
639                 psr->mfh = 0;
640                 task->thread.flags |= IA64_THREAD_FPH_VALID;
641                 ia64_save_fpu(&task->thread.fph[0]);
642         }
643 }
644
645 /*
646  * Sync the fph state of the task so that it can be manipulated
647  * through thread.fph.  If necessary, f32-f127 are written back to
648  * thread.fph or, if the fph state hasn't been used before, thread.fph
649  * is cleared to zeroes.  Also, access to f32-f127 is disabled to
650  * ensure that the task picks up the state from thread.fph when it
651  * executes again.
652  */
653 void
654 ia64_sync_fph (struct task_struct *task)
655 {
656         struct ia64_psr *psr = ia64_psr(ia64_task_regs(task));
657
658         ia64_flush_fph(task);
659         if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) {
660                 task->thread.flags |= IA64_THREAD_FPH_VALID;
661                 memset(&task->thread.fph, 0, sizeof(task->thread.fph));
662         }
663         ia64_drop_fpu(task);
664         psr->dfh = 1;
665 }
666
667 static int
668 access_fr (struct unw_frame_info *info, int regnum, int hi,
669            unsigned long *data, int write_access)
670 {
671         struct ia64_fpreg fpval;
672         int ret;
673
674         ret = unw_get_fr(info, regnum, &fpval);
675         if (ret < 0)
676                 return ret;
677
678         if (write_access) {
679                 fpval.u.bits[hi] = *data;
680                 ret = unw_set_fr(info, regnum, fpval);
681         } else
682                 *data = fpval.u.bits[hi];
683         return ret;
684 }
685
686 /*
687  * Change the machine-state of CHILD such that it will return via the normal
688  * kernel exit-path, rather than the syscall-exit path.
689  */
690 static void
691 convert_to_non_syscall (struct task_struct *child, struct pt_regs  *pt,
692                         unsigned long cfm)
693 {
694         struct unw_frame_info info, prev_info;
695         unsigned long ip, sp, pr;
696
697         unw_init_from_blocked_task(&info, child);
698         while (1) {
699                 prev_info = info;
700                 if (unw_unwind(&info) < 0)
701                         return;
702
703                 unw_get_sp(&info, &sp);
704                 if ((long)((unsigned long)child + IA64_STK_OFFSET - sp)
705                     < IA64_PT_REGS_SIZE) {
706                         dprintk("ptrace.%s: ran off the top of the kernel "
707                                 "stack\n", __FUNCTION__);
708                         return;
709                 }
710                 if (unw_get_pr (&prev_info, &pr) < 0) {
711                         unw_get_rp(&prev_info, &ip);
712                         dprintk("ptrace.%s: failed to read "
713                                 "predicate register (ip=0x%lx)\n",
714                                 __FUNCTION__, ip);
715                         return;
716                 }
717                 if (unw_is_intr_frame(&info)
718                     && (pr & (1UL << PRED_USER_STACK)))
719                         break;
720         }
721
722         unw_get_pr(&prev_info, &pr);
723         pr &= ~(1UL << PRED_SYSCALL);
724         pr |=  (1UL << PRED_NON_SYSCALL);
725         unw_set_pr(&prev_info, pr);
726
727         pt->cr_ifs = (1UL << 63) | cfm;
728 }
729
730 static int
731 access_nat_bits (struct task_struct *child, struct pt_regs *pt,
732                  struct unw_frame_info *info,
733                  unsigned long *data, int write_access)
734 {
735         unsigned long regnum, nat_bits, scratch_unat, dummy = 0;
736         char nat = 0;
737
738         if (write_access) {
739                 nat_bits = *data;
740                 scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits);
741                 if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) {
742                         dprintk("ptrace: failed to set ar.unat\n");
743                         return -1;
744                 }
745                 for (regnum = 4; regnum <= 7; ++regnum) {
746                         unw_get_gr(info, regnum, &dummy, &nat);
747                         unw_set_gr(info, regnum, dummy,
748                                    (nat_bits >> regnum) & 1);
749                 }
750         } else {
751                 if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) {
752                         dprintk("ptrace: failed to read ar.unat\n");
753                         return -1;
754                 }
755                 nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat);
756                 for (regnum = 4; regnum <= 7; ++regnum) {
757                         unw_get_gr(info, regnum, &dummy, &nat);
758                         nat_bits |= (nat != 0) << regnum;
759                 }
760                 *data = nat_bits;
761         }
762         return 0;
763 }
764
765 static int
766 access_uarea (struct task_struct *child, unsigned long addr,
767               unsigned long *data, int write_access)
768 {
769         unsigned long *ptr, regnum, urbs_end, rnat_addr, cfm;
770         struct switch_stack *sw;
771         struct pt_regs *pt;
772 #       define pt_reg_addr(pt, reg)     ((void *)                           \
773                                          ((unsigned long) (pt)              \
774                                           + offsetof(struct pt_regs, reg)))
775
776
777         pt = ia64_task_regs(child);
778         sw = (struct switch_stack *) (child->thread.ksp + 16);
779
780         if ((addr & 0x7) != 0) {
781                 dprintk("ptrace: unaligned register address 0x%lx\n", addr);
782                 return -1;
783         }
784
785         if (addr < PT_F127 + 16) {
786                 /* accessing fph */
787                 if (write_access)
788                         ia64_sync_fph(child);
789                 else
790                         ia64_flush_fph(child);
791                 ptr = (unsigned long *)
792                         ((unsigned long) &child->thread.fph + addr);
793         } else if ((addr >= PT_F10) && (addr < PT_F11 + 16)) {
794                 /* scratch registers untouched by kernel (saved in pt_regs) */
795                 ptr = pt_reg_addr(pt, f10) + (addr - PT_F10);
796         } else if (addr >= PT_F12 && addr < PT_F15 + 16) {
797                 /*
798                  * Scratch registers untouched by kernel (saved in
799                  * switch_stack).
800                  */
801                 ptr = (unsigned long *) ((long) sw
802                                          + (addr - PT_NAT_BITS - 32));
803         } else if (addr < PT_AR_LC + 8) {
804                 /* preserved state: */
805                 struct unw_frame_info info;
806                 char nat = 0;
807                 int ret;
808
809                 unw_init_from_blocked_task(&info, child);
810                 if (unw_unwind_to_user(&info) < 0)
811                         return -1;
812
813                 switch (addr) {
814                       case PT_NAT_BITS:
815                         return access_nat_bits(child, pt, &info,
816                                                data, write_access);
817
818                       case PT_R4: case PT_R5: case PT_R6: case PT_R7:
819                         if (write_access) {
820                                 /* read NaT bit first: */
821                                 unsigned long dummy;
822
823                                 ret = unw_get_gr(&info, (addr - PT_R4)/8 + 4,
824                                                  &dummy, &nat);
825                                 if (ret < 0)
826                                         return ret;
827                         }
828                         return unw_access_gr(&info, (addr - PT_R4)/8 + 4, data,
829                                              &nat, write_access);
830
831                       case PT_B1: case PT_B2: case PT_B3:
832                       case PT_B4: case PT_B5:
833                         return unw_access_br(&info, (addr - PT_B1)/8 + 1, data,
834                                              write_access);
835
836                       case PT_AR_EC:
837                         return unw_access_ar(&info, UNW_AR_EC, data,
838                                              write_access);
839
840                       case PT_AR_LC:
841                         return unw_access_ar(&info, UNW_AR_LC, data,
842                                              write_access);
843
844                       default:
845                         if (addr >= PT_F2 && addr < PT_F5 + 16)
846                                 return access_fr(&info, (addr - PT_F2)/16 + 2,
847                                                  (addr & 8) != 0, data,
848                                                  write_access);
849                         else if (addr >= PT_F16 && addr < PT_F31 + 16)
850                                 return access_fr(&info,
851                                                  (addr - PT_F16)/16 + 16,
852                                                  (addr & 8) != 0,
853                                                  data, write_access);
854                         else {
855                                 dprintk("ptrace: rejecting access to register "
856                                         "address 0x%lx\n", addr);
857                                 return -1;
858                         }
859                 }
860         } else if (addr < PT_F9+16) {
861                 /* scratch state */
862                 switch (addr) {
863                       case PT_AR_BSP:
864                         /*
865                          * By convention, we use PT_AR_BSP to refer to
866                          * the end of the user-level backing store.
867                          * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof)
868                          * to get the real value of ar.bsp at the time
869                          * the kernel was entered.
870                          *
871                          * Furthermore, when changing the contents of
872                          * PT_AR_BSP (or PT_CFM) we MUST copy any
873                          * users-level stacked registers that are
874                          * stored on the kernel stack back to
875                          * user-space because otherwise, we might end
876                          * up clobbering kernel stacked registers.
877                          * Also, if this happens while the task is
878                          * blocked in a system call, which convert the
879                          * state such that the non-system-call exit
880                          * path is used.  This ensures that the proper
881                          * state will be picked up when resuming
882                          * execution.  However, it *also* means that
883                          * once we write PT_AR_BSP/PT_CFM, it won't be
884                          * possible to modify the syscall arguments of
885                          * the pending system call any longer.  This
886                          * shouldn't be an issue because modifying
887                          * PT_AR_BSP/PT_CFM generally implies that
888                          * we're either abandoning the pending system
889                          * call or that we defer it's re-execution
890                          * (e.g., due to GDB doing an inferior
891                          * function call).
892                          */
893                         urbs_end = ia64_get_user_rbs_end(child, pt, &cfm);
894                         if (write_access) {
895                                 if (*data != urbs_end) {
896                                         if (ia64_sync_user_rbs(child, sw,
897                                                                pt->ar_bspstore,
898                                                                urbs_end) < 0)
899                                                 return -1;
900                                         if (in_syscall(pt))
901                                                 convert_to_non_syscall(child,
902                                                                        pt,
903                                                                        cfm);
904                                         /*
905                                          * Simulate user-level write
906                                          * of ar.bsp:
907                                          */
908                                         pt->loadrs = 0;
909                                         pt->ar_bspstore = *data;
910                                 }
911                         } else
912                                 *data = urbs_end;
913                         return 0;
914
915                       case PT_CFM:
916                         urbs_end = ia64_get_user_rbs_end(child, pt, &cfm);
917                         if (write_access) {
918                                 if (((cfm ^ *data) & PFM_MASK) != 0) {
919                                         if (ia64_sync_user_rbs(child, sw,
920                                                                pt->ar_bspstore,
921                                                                urbs_end) < 0)
922                                                 return -1;
923                                         if (in_syscall(pt))
924                                                 convert_to_non_syscall(child,
925                                                                        pt,
926                                                                        cfm);
927                                         pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK)
928                                                       | (*data & PFM_MASK));
929                                 }
930                         } else
931                                 *data = cfm;
932                         return 0;
933
934                       case PT_CR_IPSR:
935                         if (write_access)
936                                 pt->cr_ipsr = ((*data & IPSR_MASK)
937                                                | (pt->cr_ipsr & ~IPSR_MASK));
938                         else
939                                 *data = (pt->cr_ipsr & IPSR_MASK);
940                         return 0;
941
942                       case PT_AR_RNAT:
943                         urbs_end = ia64_get_user_rbs_end(child, pt, NULL);
944                         rnat_addr = (long) ia64_rse_rnat_addr((long *)
945                                                               urbs_end);
946                         if (write_access)
947                                 return ia64_poke(child, sw, urbs_end,
948                                                  rnat_addr, *data);
949                         else
950                                 return ia64_peek(child, sw, urbs_end,
951                                                  rnat_addr, data);
952
953                       case PT_R1:
954                         ptr = pt_reg_addr(pt, r1);
955                         break;
956                       case PT_R2:  case PT_R3:
957                         ptr = pt_reg_addr(pt, r2) + (addr - PT_R2);
958                         break;
959                       case PT_R8:  case PT_R9:  case PT_R10: case PT_R11:
960                         ptr = pt_reg_addr(pt, r8) + (addr - PT_R8);
961                         break;
962                       case PT_R12: case PT_R13:
963                         ptr = pt_reg_addr(pt, r12) + (addr - PT_R12);
964                         break;
965                       case PT_R14:
966                         ptr = pt_reg_addr(pt, r14);
967                         break;
968                       case PT_R15:
969                         ptr = pt_reg_addr(pt, r15);
970                         break;
971                       case PT_R16: case PT_R17: case PT_R18: case PT_R19:
972                       case PT_R20: case PT_R21: case PT_R22: case PT_R23:
973                       case PT_R24: case PT_R25: case PT_R26: case PT_R27:
974                       case PT_R28: case PT_R29: case PT_R30: case PT_R31:
975                         ptr = pt_reg_addr(pt, r16) + (addr - PT_R16);
976                         break;
977                       case PT_B0:
978                         ptr = pt_reg_addr(pt, b0);
979                         break;
980                       case PT_B6:
981                         ptr = pt_reg_addr(pt, b6);
982                         break;
983                       case PT_B7:
984                         ptr = pt_reg_addr(pt, b7);
985                         break;
986                       case PT_F6:  case PT_F6+8: case PT_F7: case PT_F7+8:
987                       case PT_F8:  case PT_F8+8: case PT_F9: case PT_F9+8:
988                         ptr = pt_reg_addr(pt, f6) + (addr - PT_F6);
989                         break;
990                       case PT_AR_BSPSTORE:
991                         ptr = pt_reg_addr(pt, ar_bspstore);
992                         break;
993                       case PT_AR_RSC:
994                         ptr = pt_reg_addr(pt, ar_rsc);
995                         break;
996                       case PT_AR_UNAT:
997                         ptr = pt_reg_addr(pt, ar_unat);
998                         break;
999                       case PT_AR_PFS:
1000                         ptr = pt_reg_addr(pt, ar_pfs);
1001                         break;
1002                       case PT_AR_CCV:
1003                         ptr = pt_reg_addr(pt, ar_ccv);
1004                         break;
1005                       case PT_AR_FPSR:
1006                         ptr = pt_reg_addr(pt, ar_fpsr);
1007                         break;
1008                       case PT_CR_IIP:
1009                         ptr = pt_reg_addr(pt, cr_iip);
1010                         break;
1011                       case PT_PR:
1012                         ptr = pt_reg_addr(pt, pr);
1013                         break;
1014                         /* scratch register */
1015
1016                       default:
1017                         /* disallow accessing anything else... */
1018                         dprintk("ptrace: rejecting access to register "
1019                                 "address 0x%lx\n", addr);
1020                         return -1;
1021                 }
1022         } else if (addr <= PT_AR_SSD) {
1023                 ptr = pt_reg_addr(pt, ar_csd) + (addr - PT_AR_CSD);
1024         } else {
1025                 /* access debug registers */
1026
1027                 if (addr >= PT_IBR) {
1028                         regnum = (addr - PT_IBR) >> 3;
1029                         ptr = &child->thread.ibr[0];
1030                 } else {
1031                         regnum = (addr - PT_DBR) >> 3;
1032                         ptr = &child->thread.dbr[0];
1033                 }
1034
1035                 if (regnum >= 8) {
1036                         dprintk("ptrace: rejecting access to register "
1037                                 "address 0x%lx\n", addr);
1038                         return -1;
1039                 }
1040 #ifdef CONFIG_PERFMON
1041                 /*
1042                  * Check if debug registers are used by perfmon. This
1043                  * test must be done once we know that we can do the
1044                  * operation, i.e. the arguments are all valid, but
1045                  * before we start modifying the state.
1046                  *
1047                  * Perfmon needs to keep a count of how many processes
1048                  * are trying to modify the debug registers for system
1049                  * wide monitoring sessions.
1050                  *
1051                  * We also include read access here, because they may
1052                  * cause the PMU-installed debug register state
1053                  * (dbr[], ibr[]) to be reset. The two arrays are also
1054                  * used by perfmon, but we do not use
1055                  * IA64_THREAD_DBG_VALID. The registers are restored
1056                  * by the PMU context switch code.
1057                  */
1058                 if (pfm_use_debug_registers(child)) return -1;
1059 #endif
1060
1061                 if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) {
1062                         child->thread.flags |= IA64_THREAD_DBG_VALID;
1063                         memset(child->thread.dbr, 0,
1064                                sizeof(child->thread.dbr));
1065                         memset(child->thread.ibr, 0,
1066                                sizeof(child->thread.ibr));
1067                 }
1068
1069                 ptr += regnum;
1070
1071                 if ((regnum & 1) && write_access) {
1072                         /* don't let the user set kernel-level breakpoints: */
1073                         *ptr = *data & ~(7UL << 56);
1074                         return 0;
1075                 }
1076         }
1077         if (write_access)
1078                 *ptr = *data;
1079         else
1080                 *data = *ptr;
1081         return 0;
1082 }
1083
1084 static long
1085 ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
1086 {
1087         unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val;
1088         struct unw_frame_info info;
1089         struct ia64_fpreg fpval;
1090         struct switch_stack *sw;
1091         struct pt_regs *pt;
1092         long ret, retval = 0;
1093         char nat = 0;
1094         int i;
1095
1096         if (!access_ok(VERIFY_WRITE, ppr, sizeof(struct pt_all_user_regs)))
1097                 return -EIO;
1098
1099         pt = ia64_task_regs(child);
1100         sw = (struct switch_stack *) (child->thread.ksp + 16);
1101         unw_init_from_blocked_task(&info, child);
1102         if (unw_unwind_to_user(&info) < 0) {
1103                 return -EIO;
1104         }
1105
1106         if (((unsigned long) ppr & 0x7) != 0) {
1107                 dprintk("ptrace:unaligned register address %p\n", ppr);
1108                 return -EIO;
1109         }
1110
1111         if (access_uarea(child, PT_CR_IPSR, &psr, 0) < 0
1112             || access_uarea(child, PT_AR_EC, &ec, 0) < 0
1113             || access_uarea(child, PT_AR_LC, &lc, 0) < 0
1114             || access_uarea(child, PT_AR_RNAT, &rnat, 0) < 0
1115             || access_uarea(child, PT_AR_BSP, &bsp, 0) < 0
1116             || access_uarea(child, PT_CFM, &cfm, 0)
1117             || access_uarea(child, PT_NAT_BITS, &nat_bits, 0))
1118                 return -EIO;
1119
1120         /* control regs */
1121
1122         retval |= __put_user(pt->cr_iip, &ppr->cr_iip);
1123         retval |= __put_user(psr, &ppr->cr_ipsr);
1124
1125         /* app regs */
1126
1127         retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
1128         retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]);
1129         retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
1130         retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
1131         retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
1132         retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
1133
1134         retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]);
1135         retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]);
1136         retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]);
1137         retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]);
1138         retval |= __put_user(cfm, &ppr->cfm);
1139
1140         /* gr1-gr3 */
1141
1142         retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long));
1143         retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2);
1144
1145         /* gr4-gr7 */
1146
1147         for (i = 4; i < 8; i++) {
1148                 if (unw_access_gr(&info, i, &val, &nat, 0) < 0)
1149                         return -EIO;
1150                 retval |= __put_user(val, &ppr->gr[i]);
1151         }
1152
1153         /* gr8-gr11 */
1154
1155         retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4);
1156
1157         /* gr12-gr15 */
1158
1159         retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2);
1160         retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long));
1161         retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long));
1162
1163         /* gr16-gr31 */
1164
1165         retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16);
1166
1167         /* b0 */
1168
1169         retval |= __put_user(pt->b0, &ppr->br[0]);
1170
1171         /* b1-b5 */
1172
1173         for (i = 1; i < 6; i++) {
1174                 if (unw_access_br(&info, i, &val, 0) < 0)
1175                         return -EIO;
1176                 __put_user(val, &ppr->br[i]);
1177         }
1178
1179         /* b6-b7 */
1180
1181         retval |= __put_user(pt->b6, &ppr->br[6]);
1182         retval |= __put_user(pt->b7, &ppr->br[7]);
1183
1184         /* fr2-fr5 */
1185
1186         for (i = 2; i < 6; i++) {
1187                 if (unw_get_fr(&info, i, &fpval) < 0)
1188                         return -EIO;
1189                 retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
1190         }
1191
1192         /* fr6-fr11 */
1193
1194         retval |= __copy_to_user(&ppr->fr[6], &pt->f6,
1195                                  sizeof(struct ia64_fpreg) * 6);
1196
1197         /* fp scratch regs(12-15) */
1198
1199         retval |= __copy_to_user(&ppr->fr[12], &sw->f12,
1200                                  sizeof(struct ia64_fpreg) * 4);
1201
1202         /* fr16-fr31 */
1203
1204         for (i = 16; i < 32; i++) {
1205                 if (unw_get_fr(&info, i, &fpval) < 0)
1206                         return -EIO;
1207                 retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
1208         }
1209
1210         /* fph */
1211
1212         ia64_flush_fph(child);
1213         retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph,
1214                                  sizeof(ppr->fr[32]) * 96);
1215
1216         /*  preds */
1217
1218         retval |= __put_user(pt->pr, &ppr->pr);
1219
1220         /* nat bits */
1221
1222         retval |= __put_user(nat_bits, &ppr->nat);
1223
1224         ret = retval ? -EIO : 0;
1225         return ret;
1226 }
1227
1228 static long
1229 ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
1230 {
1231         unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val = 0;
1232         struct unw_frame_info info;
1233         struct switch_stack *sw;
1234         struct ia64_fpreg fpval;
1235         struct pt_regs *pt;
1236         long ret, retval = 0;
1237         int i;
1238
1239         memset(&fpval, 0, sizeof(fpval));
1240
1241         if (!access_ok(VERIFY_READ, ppr, sizeof(struct pt_all_user_regs)))
1242                 return -EIO;
1243
1244         pt = ia64_task_regs(child);
1245         sw = (struct switch_stack *) (child->thread.ksp + 16);
1246         unw_init_from_blocked_task(&info, child);
1247         if (unw_unwind_to_user(&info) < 0) {
1248                 return -EIO;
1249         }
1250
1251         if (((unsigned long) ppr & 0x7) != 0) {
1252                 dprintk("ptrace:unaligned register address %p\n", ppr);
1253                 return -EIO;
1254         }
1255
1256         /* control regs */
1257
1258         retval |= __get_user(pt->cr_iip, &ppr->cr_iip);
1259         retval |= __get_user(psr, &ppr->cr_ipsr);
1260
1261         /* app regs */
1262
1263         retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
1264         retval |= __get_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]);
1265         retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
1266         retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
1267         retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
1268         retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
1269
1270         retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]);
1271         retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]);
1272         retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]);
1273         retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]);
1274         retval |= __get_user(cfm, &ppr->cfm);
1275
1276         /* gr1-gr3 */
1277
1278         retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long));
1279         retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2);
1280
1281         /* gr4-gr7 */
1282
1283         for (i = 4; i < 8; i++) {
1284                 retval |= __get_user(val, &ppr->gr[i]);
1285                 /* NaT bit will be set via PT_NAT_BITS: */
1286                 if (unw_set_gr(&info, i, val, 0) < 0)
1287                         return -EIO;
1288         }
1289
1290         /* gr8-gr11 */
1291
1292         retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4);
1293
1294         /* gr12-gr15 */
1295
1296         retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2);
1297         retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long));
1298         retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long));
1299
1300         /* gr16-gr31 */
1301
1302         retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16);
1303
1304         /* b0 */
1305
1306         retval |= __get_user(pt->b0, &ppr->br[0]);
1307
1308         /* b1-b5 */
1309
1310         for (i = 1; i < 6; i++) {
1311                 retval |= __get_user(val, &ppr->br[i]);
1312                 unw_set_br(&info, i, val);
1313         }
1314
1315         /* b6-b7 */
1316
1317         retval |= __get_user(pt->b6, &ppr->br[6]);
1318         retval |= __get_user(pt->b7, &ppr->br[7]);
1319
1320         /* fr2-fr5 */
1321
1322         for (i = 2; i < 6; i++) {
1323                 retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval));
1324                 if (unw_set_fr(&info, i, fpval) < 0)
1325                         return -EIO;
1326         }
1327
1328         /* fr6-fr11 */
1329
1330         retval |= __copy_from_user(&pt->f6, &ppr->fr[6],
1331                                    sizeof(ppr->fr[6]) * 6);
1332
1333         /* fp scratch regs(12-15) */
1334
1335         retval |= __copy_from_user(&sw->f12, &ppr->fr[12],
1336                                    sizeof(ppr->fr[12]) * 4);
1337
1338         /* fr16-fr31 */
1339
1340         for (i = 16; i < 32; i++) {
1341                 retval |= __copy_from_user(&fpval, &ppr->fr[i],
1342                                            sizeof(fpval));
1343                 if (unw_set_fr(&info, i, fpval) < 0)
1344                         return -EIO;
1345         }
1346
1347         /* fph */
1348
1349         ia64_sync_fph(child);
1350         retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32],
1351                                    sizeof(ppr->fr[32]) * 96);
1352
1353         /* preds */
1354
1355         retval |= __get_user(pt->pr, &ppr->pr);
1356
1357         /* nat bits */
1358
1359         retval |= __get_user(nat_bits, &ppr->nat);
1360
1361         retval |= access_uarea(child, PT_CR_IPSR, &psr, 1);
1362         retval |= access_uarea(child, PT_AR_EC, &ec, 1);
1363         retval |= access_uarea(child, PT_AR_LC, &lc, 1);
1364         retval |= access_uarea(child, PT_AR_RNAT, &rnat, 1);
1365         retval |= access_uarea(child, PT_AR_BSP, &bsp, 1);
1366         retval |= access_uarea(child, PT_CFM, &cfm, 1);
1367         retval |= access_uarea(child, PT_NAT_BITS, &nat_bits, 1);
1368
1369         ret = retval ? -EIO : 0;
1370         return ret;
1371 }
1372
1373 /*
1374  * Called by kernel/ptrace.c when detaching..
1375  *
1376  * Make sure the single step bit is not set.
1377  */
1378 void
1379 ptrace_disable (struct task_struct *child)
1380 {
1381         struct ia64_psr *child_psr = ia64_psr(ia64_task_regs(child));
1382
1383         /* make sure the single step/taken-branch trap bits are not set: */
1384         child_psr->ss = 0;
1385         child_psr->tb = 0;
1386 }
1387
1388 asmlinkage long
1389 sys_ptrace (long request, pid_t pid, unsigned long addr, unsigned long data)
1390 {
1391         struct pt_regs *pt;
1392         unsigned long urbs_end, peek_or_poke;
1393         struct task_struct *child;
1394         struct switch_stack *sw;
1395         long ret;
1396
1397         lock_kernel();
1398         ret = -EPERM;
1399         if (request == PTRACE_TRACEME) {
1400                 /* are we already being traced? */
1401                 if (current->ptrace & PT_PTRACED)
1402                         goto out;
1403                 ret = security_ptrace(current->parent, current);
1404                 if (ret)
1405                         goto out;
1406                 current->ptrace |= PT_PTRACED;
1407                 ret = 0;
1408                 goto out;
1409         }
1410
1411         peek_or_poke = (request == PTRACE_PEEKTEXT
1412                         || request == PTRACE_PEEKDATA
1413                         || request == PTRACE_POKETEXT
1414                         || request == PTRACE_POKEDATA);
1415         ret = -ESRCH;
1416         read_lock(&tasklist_lock);
1417         {
1418                 child = find_task_by_pid(pid);
1419                 if (child) {
1420                         if (peek_or_poke)
1421                                 child = find_thread_for_addr(child, addr);
1422                         get_task_struct(child);
1423                 }
1424         }
1425         read_unlock(&tasklist_lock);
1426         if (!child)
1427                 goto out;
1428         ret = -EPERM;
1429         if (pid == 1)           /* no messing around with init! */
1430                 goto out_tsk;
1431
1432         if (request == PTRACE_ATTACH) {
1433                 ret = ptrace_attach(child);
1434                 goto out_tsk;
1435         }
1436
1437         ret = ptrace_check_attach(child, request == PTRACE_KILL);
1438         if (ret < 0)
1439                 goto out_tsk;
1440
1441         pt = ia64_task_regs(child);
1442         sw = (struct switch_stack *) (child->thread.ksp + 16);
1443
1444         switch (request) {
1445               case PTRACE_PEEKTEXT:
1446               case PTRACE_PEEKDATA:
1447                 /* read word at location addr */
1448                 urbs_end = ia64_get_user_rbs_end(child, pt, NULL);
1449                 ret = ia64_peek(child, sw, urbs_end, addr, &data);
1450                 if (ret == 0) {
1451                         ret = data;
1452                         /* ensure "ret" is not mistaken as an error code: */
1453                         force_successful_syscall_return();
1454                 }
1455                 goto out_tsk;
1456
1457               case PTRACE_POKETEXT:
1458               case PTRACE_POKEDATA:
1459                 /* write the word at location addr */
1460                 urbs_end = ia64_get_user_rbs_end(child, pt, NULL);
1461                 ret = ia64_poke(child, sw, urbs_end, addr, data);
1462                 goto out_tsk;
1463
1464               case PTRACE_PEEKUSR:
1465                 /* read the word at addr in the USER area */
1466                 if (access_uarea(child, addr, &data, 0) < 0) {
1467                         ret = -EIO;
1468                         goto out_tsk;
1469                 }
1470                 ret = data;
1471                 /* ensure "ret" is not mistaken as an error code */
1472                 force_successful_syscall_return();
1473                 goto out_tsk;
1474
1475               case PTRACE_POKEUSR:
1476                 /* write the word at addr in the USER area */
1477                 if (access_uarea(child, addr, &data, 1) < 0) {
1478                         ret = -EIO;
1479                         goto out_tsk;
1480                 }
1481                 ret = 0;
1482                 goto out_tsk;
1483
1484               case PTRACE_OLD_GETSIGINFO:
1485                 /* for backwards-compatibility */
1486                 ret = ptrace_request(child, PTRACE_GETSIGINFO, addr, data);
1487                 goto out_tsk;
1488
1489               case PTRACE_OLD_SETSIGINFO:
1490                 /* for backwards-compatibility */
1491                 ret = ptrace_request(child, PTRACE_SETSIGINFO, addr, data);
1492                 goto out_tsk;
1493
1494               case PTRACE_SYSCALL:
1495                 /* continue and stop at next (return from) syscall */
1496               case PTRACE_CONT:
1497                 /* restart after signal. */
1498                 ret = -EIO;
1499                 if (!valid_signal(data))
1500                         goto out_tsk;
1501                 if (request == PTRACE_SYSCALL)
1502                         set_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
1503                 else
1504                         clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
1505                 child->exit_code = data;
1506
1507                 /*
1508                  * Make sure the single step/taken-branch trap bits
1509                  * are not set:
1510                  */
1511                 ia64_psr(pt)->ss = 0;
1512                 ia64_psr(pt)->tb = 0;
1513
1514                 wake_up_process(child);
1515                 ret = 0;
1516                 goto out_tsk;
1517
1518               case PTRACE_KILL:
1519                 /*
1520                  * Make the child exit.  Best I can do is send it a
1521                  * sigkill.  Perhaps it should be put in the status
1522                  * that it wants to exit.
1523                  */
1524                 if (child->exit_state == EXIT_ZOMBIE)
1525                         /* already dead */
1526                         goto out_tsk;
1527                 child->exit_code = SIGKILL;
1528
1529                 ptrace_disable(child);
1530                 wake_up_process(child);
1531                 ret = 0;
1532                 goto out_tsk;
1533
1534               case PTRACE_SINGLESTEP:
1535                 /* let child execute for one instruction */
1536               case PTRACE_SINGLEBLOCK:
1537                 ret = -EIO;
1538                 if (!valid_signal(data))
1539                         goto out_tsk;
1540
1541                 clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
1542                 if (request == PTRACE_SINGLESTEP) {
1543                         ia64_psr(pt)->ss = 1;
1544                 } else {
1545                         ia64_psr(pt)->tb = 1;
1546                 }
1547                 child->exit_code = data;
1548
1549                 /* give it a chance to run. */
1550                 wake_up_process(child);
1551                 ret = 0;
1552                 goto out_tsk;
1553
1554               case PTRACE_DETACH:
1555                 /* detach a process that was attached. */
1556                 ret = ptrace_detach(child, data);
1557                 goto out_tsk;
1558
1559               case PTRACE_GETREGS:
1560                 ret = ptrace_getregs(child,
1561                                      (struct pt_all_user_regs __user *) data);
1562                 goto out_tsk;
1563
1564               case PTRACE_SETREGS:
1565                 ret = ptrace_setregs(child,
1566                                      (struct pt_all_user_regs __user *) data);
1567                 goto out_tsk;
1568
1569               default:
1570                 ret = ptrace_request(child, request, addr, data);
1571                 goto out_tsk;
1572         }
1573   out_tsk:
1574         put_task_struct(child);
1575   out:
1576         unlock_kernel();
1577         return ret;
1578 }
1579
1580
1581 void
1582 syscall_trace (void)
1583 {
1584         if (!test_thread_flag(TIF_SYSCALL_TRACE))
1585                 return;
1586         if (!(current->ptrace & PT_PTRACED))
1587                 return;
1588         /*
1589          * The 0x80 provides a way for the tracing parent to
1590          * distinguish between a syscall stop and SIGTRAP delivery.
1591          */
1592         ptrace_notify(SIGTRAP
1593                       | ((current->ptrace & PT_TRACESYSGOOD) ? 0x80 : 0));
1594
1595         /*
1596          * This isn't the same as continuing with a signal, but it
1597          * will do for normal use.  strace only continues with a
1598          * signal if the stopping signal is not SIGTRAP.  -brl
1599          */
1600         if (current->exit_code) {
1601                 send_sig(current->exit_code, current, 1);
1602                 current->exit_code = 0;
1603         }
1604 }
1605
1606 /* "asmlinkage" so the input arguments are preserved... */
1607
1608 asmlinkage void
1609 syscall_trace_enter (long arg0, long arg1, long arg2, long arg3,
1610                      long arg4, long arg5, long arg6, long arg7,
1611                      struct pt_regs regs)
1612 {
1613         if (test_thread_flag(TIF_SYSCALL_TRACE) 
1614             && (current->ptrace & PT_PTRACED))
1615                 syscall_trace();
1616
1617         if (unlikely(current->audit_context)) {
1618                 long syscall;
1619                 int arch;
1620
1621                 if (IS_IA32_PROCESS(&regs)) {
1622                         syscall = regs.r1;
1623                         arch = AUDIT_ARCH_I386;
1624                 } else {
1625                         syscall = regs.r15;
1626                         arch = AUDIT_ARCH_IA64;
1627                 }
1628
1629                 audit_syscall_entry(current, arch, syscall, arg0, arg1, arg2, arg3);
1630         }
1631
1632 }
1633
1634 /* "asmlinkage" so the input arguments are preserved... */
1635
1636 asmlinkage void
1637 syscall_trace_leave (long arg0, long arg1, long arg2, long arg3,
1638                      long arg4, long arg5, long arg6, long arg7,
1639                      struct pt_regs regs)
1640 {
1641         if (unlikely(current->audit_context))
1642                 audit_syscall_exit(current, AUDITSC_RESULT(regs.r10), regs.r8);
1643
1644         if (test_thread_flag(TIF_SYSCALL_TRACE)
1645             && (current->ptrace & PT_PTRACED))
1646                 syscall_trace();
1647 }