1 #include <linux/bitops.h>
2 #include <linux/slab.h>
6 #include <linux/pagemap.h>
7 #include <linux/page-flags.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
18 #include "btrfs_inode.h"
20 /* temporary define until extent_map moves out of btrfs */
21 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
22 unsigned long extra_flags,
23 void (*ctor)(void *, struct kmem_cache *,
26 static struct kmem_cache *extent_state_cache;
27 static struct kmem_cache *extent_buffer_cache;
29 static LIST_HEAD(buffers);
30 static LIST_HEAD(states);
34 static DEFINE_SPINLOCK(leak_lock);
37 #define BUFFER_LRU_MAX 64
42 struct rb_node rb_node;
45 struct extent_page_data {
47 struct extent_io_tree *tree;
48 get_extent_t *get_extent;
50 /* tells writepage not to lock the state bits for this range
51 * it still does the unlocking
53 unsigned int extent_locked:1;
55 /* tells the submit_bio code to use a WRITE_SYNC */
56 unsigned int sync_io:1;
59 int __init extent_io_init(void)
61 extent_state_cache = btrfs_cache_create("extent_state",
62 sizeof(struct extent_state), 0,
64 if (!extent_state_cache)
67 extent_buffer_cache = btrfs_cache_create("extent_buffers",
68 sizeof(struct extent_buffer), 0,
70 if (!extent_buffer_cache)
71 goto free_state_cache;
75 kmem_cache_destroy(extent_state_cache);
79 void extent_io_exit(void)
81 struct extent_state *state;
82 struct extent_buffer *eb;
84 while (!list_empty(&states)) {
85 state = list_entry(states.next, struct extent_state, leak_list);
86 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
87 "state %lu in tree %p refs %d\n",
88 (unsigned long long)state->start,
89 (unsigned long long)state->end,
90 state->state, state->tree, atomic_read(&state->refs));
91 list_del(&state->leak_list);
92 kmem_cache_free(extent_state_cache, state);
96 while (!list_empty(&buffers)) {
97 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
98 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
99 "refs %d\n", (unsigned long long)eb->start,
100 eb->len, atomic_read(&eb->refs));
101 list_del(&eb->leak_list);
102 kmem_cache_free(extent_buffer_cache, eb);
104 if (extent_state_cache)
105 kmem_cache_destroy(extent_state_cache);
106 if (extent_buffer_cache)
107 kmem_cache_destroy(extent_buffer_cache);
110 void extent_io_tree_init(struct extent_io_tree *tree,
111 struct address_space *mapping, gfp_t mask)
113 tree->state.rb_node = NULL;
114 tree->buffer.rb_node = NULL;
116 tree->dirty_bytes = 0;
117 spin_lock_init(&tree->lock);
118 spin_lock_init(&tree->buffer_lock);
119 tree->mapping = mapping;
122 static struct extent_state *alloc_extent_state(gfp_t mask)
124 struct extent_state *state;
129 state = kmem_cache_alloc(extent_state_cache, mask);
136 spin_lock_irqsave(&leak_lock, flags);
137 list_add(&state->leak_list, &states);
138 spin_unlock_irqrestore(&leak_lock, flags);
140 atomic_set(&state->refs, 1);
141 init_waitqueue_head(&state->wq);
145 static void free_extent_state(struct extent_state *state)
149 if (atomic_dec_and_test(&state->refs)) {
153 WARN_ON(state->tree);
155 spin_lock_irqsave(&leak_lock, flags);
156 list_del(&state->leak_list);
157 spin_unlock_irqrestore(&leak_lock, flags);
159 kmem_cache_free(extent_state_cache, state);
163 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
164 struct rb_node *node)
166 struct rb_node **p = &root->rb_node;
167 struct rb_node *parent = NULL;
168 struct tree_entry *entry;
172 entry = rb_entry(parent, struct tree_entry, rb_node);
174 if (offset < entry->start)
176 else if (offset > entry->end)
182 entry = rb_entry(node, struct tree_entry, rb_node);
183 rb_link_node(node, parent, p);
184 rb_insert_color(node, root);
188 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
189 struct rb_node **prev_ret,
190 struct rb_node **next_ret)
192 struct rb_root *root = &tree->state;
193 struct rb_node *n = root->rb_node;
194 struct rb_node *prev = NULL;
195 struct rb_node *orig_prev = NULL;
196 struct tree_entry *entry;
197 struct tree_entry *prev_entry = NULL;
200 entry = rb_entry(n, struct tree_entry, rb_node);
204 if (offset < entry->start)
206 else if (offset > entry->end)
214 while (prev && offset > prev_entry->end) {
215 prev = rb_next(prev);
216 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
223 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
224 while (prev && offset < prev_entry->start) {
225 prev = rb_prev(prev);
226 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
233 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
236 struct rb_node *prev = NULL;
239 ret = __etree_search(tree, offset, &prev, NULL);
245 static struct extent_buffer *buffer_tree_insert(struct extent_io_tree *tree,
246 u64 offset, struct rb_node *node)
248 struct rb_root *root = &tree->buffer;
249 struct rb_node **p = &root->rb_node;
250 struct rb_node *parent = NULL;
251 struct extent_buffer *eb;
255 eb = rb_entry(parent, struct extent_buffer, rb_node);
257 if (offset < eb->start)
259 else if (offset > eb->start)
265 rb_link_node(node, parent, p);
266 rb_insert_color(node, root);
270 static struct extent_buffer *buffer_search(struct extent_io_tree *tree,
273 struct rb_root *root = &tree->buffer;
274 struct rb_node *n = root->rb_node;
275 struct extent_buffer *eb;
278 eb = rb_entry(n, struct extent_buffer, rb_node);
279 if (offset < eb->start)
281 else if (offset > eb->start)
290 * utility function to look for merge candidates inside a given range.
291 * Any extents with matching state are merged together into a single
292 * extent in the tree. Extents with EXTENT_IO in their state field
293 * are not merged because the end_io handlers need to be able to do
294 * operations on them without sleeping (or doing allocations/splits).
296 * This should be called with the tree lock held.
298 static int merge_state(struct extent_io_tree *tree,
299 struct extent_state *state)
301 struct extent_state *other;
302 struct rb_node *other_node;
304 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
307 other_node = rb_prev(&state->rb_node);
309 other = rb_entry(other_node, struct extent_state, rb_node);
310 if (other->end == state->start - 1 &&
311 other->state == state->state) {
312 state->start = other->start;
314 rb_erase(&other->rb_node, &tree->state);
315 free_extent_state(other);
318 other_node = rb_next(&state->rb_node);
320 other = rb_entry(other_node, struct extent_state, rb_node);
321 if (other->start == state->end + 1 &&
322 other->state == state->state) {
323 other->start = state->start;
325 rb_erase(&state->rb_node, &tree->state);
326 free_extent_state(state);
332 static void set_state_cb(struct extent_io_tree *tree,
333 struct extent_state *state,
336 if (tree->ops && tree->ops->set_bit_hook) {
337 tree->ops->set_bit_hook(tree->mapping->host, state->start,
338 state->end, state->state, bits);
342 static void clear_state_cb(struct extent_io_tree *tree,
343 struct extent_state *state,
346 if (tree->ops && tree->ops->clear_bit_hook) {
347 tree->ops->clear_bit_hook(tree->mapping->host, state->start,
348 state->end, state->state, bits);
353 * insert an extent_state struct into the tree. 'bits' are set on the
354 * struct before it is inserted.
356 * This may return -EEXIST if the extent is already there, in which case the
357 * state struct is freed.
359 * The tree lock is not taken internally. This is a utility function and
360 * probably isn't what you want to call (see set/clear_extent_bit).
362 static int insert_state(struct extent_io_tree *tree,
363 struct extent_state *state, u64 start, u64 end,
366 struct rb_node *node;
369 printk(KERN_ERR "btrfs end < start %llu %llu\n",
370 (unsigned long long)end,
371 (unsigned long long)start);
374 if (bits & EXTENT_DIRTY)
375 tree->dirty_bytes += end - start + 1;
376 set_state_cb(tree, state, bits);
377 state->state |= bits;
378 state->start = start;
380 node = tree_insert(&tree->state, end, &state->rb_node);
382 struct extent_state *found;
383 found = rb_entry(node, struct extent_state, rb_node);
384 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
385 "%llu %llu\n", (unsigned long long)found->start,
386 (unsigned long long)found->end,
387 (unsigned long long)start, (unsigned long long)end);
388 free_extent_state(state);
392 merge_state(tree, state);
397 * split a given extent state struct in two, inserting the preallocated
398 * struct 'prealloc' as the newly created second half. 'split' indicates an
399 * offset inside 'orig' where it should be split.
402 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
403 * are two extent state structs in the tree:
404 * prealloc: [orig->start, split - 1]
405 * orig: [ split, orig->end ]
407 * The tree locks are not taken by this function. They need to be held
410 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
411 struct extent_state *prealloc, u64 split)
413 struct rb_node *node;
414 prealloc->start = orig->start;
415 prealloc->end = split - 1;
416 prealloc->state = orig->state;
419 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
421 free_extent_state(prealloc);
424 prealloc->tree = tree;
429 * utility function to clear some bits in an extent state struct.
430 * it will optionally wake up any one waiting on this state (wake == 1), or
431 * forcibly remove the state from the tree (delete == 1).
433 * If no bits are set on the state struct after clearing things, the
434 * struct is freed and removed from the tree
436 static int clear_state_bit(struct extent_io_tree *tree,
437 struct extent_state *state, int bits, int wake,
440 int ret = state->state & bits;
442 if ((bits & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
443 u64 range = state->end - state->start + 1;
444 WARN_ON(range > tree->dirty_bytes);
445 tree->dirty_bytes -= range;
447 clear_state_cb(tree, state, bits);
448 state->state &= ~bits;
451 if (delete || state->state == 0) {
453 clear_state_cb(tree, state, state->state);
454 rb_erase(&state->rb_node, &tree->state);
456 free_extent_state(state);
461 merge_state(tree, state);
467 * clear some bits on a range in the tree. This may require splitting
468 * or inserting elements in the tree, so the gfp mask is used to
469 * indicate which allocations or sleeping are allowed.
471 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
472 * the given range from the tree regardless of state (ie for truncate).
474 * the range [start, end] is inclusive.
476 * This takes the tree lock, and returns < 0 on error, > 0 if any of the
477 * bits were already set, or zero if none of the bits were already set.
479 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
480 int bits, int wake, int delete, gfp_t mask)
482 struct extent_state *state;
483 struct extent_state *prealloc = NULL;
484 struct rb_node *node;
489 if (!prealloc && (mask & __GFP_WAIT)) {
490 prealloc = alloc_extent_state(mask);
495 spin_lock(&tree->lock);
497 * this search will find the extents that end after
500 node = tree_search(tree, start);
503 state = rb_entry(node, struct extent_state, rb_node);
504 if (state->start > end)
506 WARN_ON(state->end < start);
509 * | ---- desired range ---- |
511 * | ------------- state -------------- |
513 * We need to split the extent we found, and may flip
514 * bits on second half.
516 * If the extent we found extends past our range, we
517 * just split and search again. It'll get split again
518 * the next time though.
520 * If the extent we found is inside our range, we clear
521 * the desired bit on it.
524 if (state->start < start) {
526 prealloc = alloc_extent_state(GFP_ATOMIC);
527 err = split_state(tree, state, prealloc, start);
528 BUG_ON(err == -EEXIST);
532 if (state->end <= end) {
533 start = state->end + 1;
534 set |= clear_state_bit(tree, state, bits,
537 start = state->start;
542 * | ---- desired range ---- |
544 * We need to split the extent, and clear the bit
547 if (state->start <= end && state->end > end) {
549 prealloc = alloc_extent_state(GFP_ATOMIC);
550 err = split_state(tree, state, prealloc, end + 1);
551 BUG_ON(err == -EEXIST);
555 set |= clear_state_bit(tree, prealloc, bits,
561 start = state->end + 1;
562 set |= clear_state_bit(tree, state, bits, wake, delete);
566 spin_unlock(&tree->lock);
568 free_extent_state(prealloc);
575 spin_unlock(&tree->lock);
576 if (mask & __GFP_WAIT)
581 static int wait_on_state(struct extent_io_tree *tree,
582 struct extent_state *state)
583 __releases(tree->lock)
584 __acquires(tree->lock)
587 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
588 spin_unlock(&tree->lock);
590 spin_lock(&tree->lock);
591 finish_wait(&state->wq, &wait);
596 * waits for one or more bits to clear on a range in the state tree.
597 * The range [start, end] is inclusive.
598 * The tree lock is taken by this function
600 int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
602 struct extent_state *state;
603 struct rb_node *node;
605 spin_lock(&tree->lock);
609 * this search will find all the extents that end after
612 node = tree_search(tree, start);
616 state = rb_entry(node, struct extent_state, rb_node);
618 if (state->start > end)
621 if (state->state & bits) {
622 start = state->start;
623 atomic_inc(&state->refs);
624 wait_on_state(tree, state);
625 free_extent_state(state);
628 start = state->end + 1;
633 if (need_resched()) {
634 spin_unlock(&tree->lock);
636 spin_lock(&tree->lock);
640 spin_unlock(&tree->lock);
644 static void set_state_bits(struct extent_io_tree *tree,
645 struct extent_state *state,
648 if ((bits & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
649 u64 range = state->end - state->start + 1;
650 tree->dirty_bytes += range;
652 set_state_cb(tree, state, bits);
653 state->state |= bits;
657 * set some bits on a range in the tree. This may require allocations
658 * or sleeping, so the gfp mask is used to indicate what is allowed.
660 * If 'exclusive' == 1, this will fail with -EEXIST if some part of the
661 * range already has the desired bits set. The start of the existing
662 * range is returned in failed_start in this case.
664 * [start, end] is inclusive
665 * This takes the tree lock.
667 static int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
668 int bits, int exclusive, u64 *failed_start,
671 struct extent_state *state;
672 struct extent_state *prealloc = NULL;
673 struct rb_node *node;
679 if (!prealloc && (mask & __GFP_WAIT)) {
680 prealloc = alloc_extent_state(mask);
685 spin_lock(&tree->lock);
687 * this search will find all the extents that end after
690 node = tree_search(tree, start);
692 err = insert_state(tree, prealloc, start, end, bits);
694 BUG_ON(err == -EEXIST);
698 state = rb_entry(node, struct extent_state, rb_node);
699 last_start = state->start;
700 last_end = state->end;
703 * | ---- desired range ---- |
706 * Just lock what we found and keep going
708 if (state->start == start && state->end <= end) {
709 set = state->state & bits;
710 if (set && exclusive) {
711 *failed_start = state->start;
715 set_state_bits(tree, state, bits);
716 start = state->end + 1;
717 merge_state(tree, state);
722 * | ---- desired range ---- |
725 * | ------------- state -------------- |
727 * We need to split the extent we found, and may flip bits on
730 * If the extent we found extends past our
731 * range, we just split and search again. It'll get split
732 * again the next time though.
734 * If the extent we found is inside our range, we set the
737 if (state->start < start) {
738 set = state->state & bits;
739 if (exclusive && set) {
740 *failed_start = start;
744 err = split_state(tree, state, prealloc, start);
745 BUG_ON(err == -EEXIST);
749 if (state->end <= end) {
750 set_state_bits(tree, state, bits);
751 start = state->end + 1;
752 merge_state(tree, state);
754 start = state->start;
759 * | ---- desired range ---- |
760 * | state | or | state |
762 * There's a hole, we need to insert something in it and
763 * ignore the extent we found.
765 if (state->start > start) {
767 if (end < last_start)
770 this_end = last_start - 1;
771 err = insert_state(tree, prealloc, start, this_end,
774 BUG_ON(err == -EEXIST);
777 start = this_end + 1;
781 * | ---- desired range ---- |
783 * We need to split the extent, and set the bit
786 if (state->start <= end && state->end > end) {
787 set = state->state & bits;
788 if (exclusive && set) {
789 *failed_start = start;
793 err = split_state(tree, state, prealloc, end + 1);
794 BUG_ON(err == -EEXIST);
796 set_state_bits(tree, prealloc, bits);
797 merge_state(tree, prealloc);
805 spin_unlock(&tree->lock);
807 free_extent_state(prealloc);
814 spin_unlock(&tree->lock);
815 if (mask & __GFP_WAIT)
820 /* wrappers around set/clear extent bit */
821 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
824 return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
828 int set_extent_ordered(struct extent_io_tree *tree, u64 start, u64 end,
831 return set_extent_bit(tree, start, end, EXTENT_ORDERED, 0, NULL, mask);
834 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
835 int bits, gfp_t mask)
837 return set_extent_bit(tree, start, end, bits, 0, NULL,
841 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
842 int bits, gfp_t mask)
844 return clear_extent_bit(tree, start, end, bits, 0, 0, mask);
847 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
850 return set_extent_bit(tree, start, end,
851 EXTENT_DELALLOC | EXTENT_DIRTY,
855 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
858 return clear_extent_bit(tree, start, end,
859 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, mask);
862 int clear_extent_ordered(struct extent_io_tree *tree, u64 start, u64 end,
865 return clear_extent_bit(tree, start, end, EXTENT_ORDERED, 1, 0, mask);
868 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
871 return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
875 static int clear_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
878 return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0, mask);
881 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
884 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL,
888 static int clear_extent_uptodate(struct extent_io_tree *tree, u64 start,
891 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, mask);
894 static int set_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end,
897 return set_extent_bit(tree, start, end, EXTENT_WRITEBACK,
901 static int clear_extent_writeback(struct extent_io_tree *tree, u64 start,
904 return clear_extent_bit(tree, start, end, EXTENT_WRITEBACK, 1, 0, mask);
907 int wait_on_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end)
909 return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK);
913 * either insert or lock state struct between start and end use mask to tell
914 * us if waiting is desired.
916 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
921 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1,
922 &failed_start, mask);
923 if (err == -EEXIST && (mask & __GFP_WAIT)) {
924 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
925 start = failed_start;
929 WARN_ON(start > end);
934 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end,
940 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1,
941 &failed_start, mask);
942 if (err == -EEXIST) {
943 if (failed_start > start)
944 clear_extent_bit(tree, start, failed_start - 1,
945 EXTENT_LOCKED, 1, 0, mask);
951 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end,
954 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, mask);
958 * helper function to set pages and extents in the tree dirty
960 int set_range_dirty(struct extent_io_tree *tree, u64 start, u64 end)
962 unsigned long index = start >> PAGE_CACHE_SHIFT;
963 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
966 while (index <= end_index) {
967 page = find_get_page(tree->mapping, index);
969 __set_page_dirty_nobuffers(page);
970 page_cache_release(page);
973 set_extent_dirty(tree, start, end, GFP_NOFS);
978 * helper function to set both pages and extents in the tree writeback
980 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
982 unsigned long index = start >> PAGE_CACHE_SHIFT;
983 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
986 while (index <= end_index) {
987 page = find_get_page(tree->mapping, index);
989 set_page_writeback(page);
990 page_cache_release(page);
993 set_extent_writeback(tree, start, end, GFP_NOFS);
998 * find the first offset in the io tree with 'bits' set. zero is
999 * returned if we find something, and *start_ret and *end_ret are
1000 * set to reflect the state struct that was found.
1002 * If nothing was found, 1 is returned, < 0 on error
1004 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1005 u64 *start_ret, u64 *end_ret, int bits)
1007 struct rb_node *node;
1008 struct extent_state *state;
1011 spin_lock(&tree->lock);
1013 * this search will find all the extents that end after
1016 node = tree_search(tree, start);
1021 state = rb_entry(node, struct extent_state, rb_node);
1022 if (state->end >= start && (state->state & bits)) {
1023 *start_ret = state->start;
1024 *end_ret = state->end;
1028 node = rb_next(node);
1033 spin_unlock(&tree->lock);
1037 /* find the first state struct with 'bits' set after 'start', and
1038 * return it. tree->lock must be held. NULL will returned if
1039 * nothing was found after 'start'
1041 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1042 u64 start, int bits)
1044 struct rb_node *node;
1045 struct extent_state *state;
1048 * this search will find all the extents that end after
1051 node = tree_search(tree, start);
1056 state = rb_entry(node, struct extent_state, rb_node);
1057 if (state->end >= start && (state->state & bits))
1060 node = rb_next(node);
1069 * find a contiguous range of bytes in the file marked as delalloc, not
1070 * more than 'max_bytes'. start and end are used to return the range,
1072 * 1 is returned if we find something, 0 if nothing was in the tree
1074 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1075 u64 *start, u64 *end, u64 max_bytes)
1077 struct rb_node *node;
1078 struct extent_state *state;
1079 u64 cur_start = *start;
1081 u64 total_bytes = 0;
1083 spin_lock(&tree->lock);
1086 * this search will find all the extents that end after
1089 node = tree_search(tree, cur_start);
1097 state = rb_entry(node, struct extent_state, rb_node);
1098 if (found && (state->start != cur_start ||
1099 (state->state & EXTENT_BOUNDARY))) {
1102 if (!(state->state & EXTENT_DELALLOC)) {
1108 *start = state->start;
1111 cur_start = state->end + 1;
1112 node = rb_next(node);
1115 total_bytes += state->end - state->start + 1;
1116 if (total_bytes >= max_bytes)
1120 spin_unlock(&tree->lock);
1124 static noinline int __unlock_for_delalloc(struct inode *inode,
1125 struct page *locked_page,
1129 struct page *pages[16];
1130 unsigned long index = start >> PAGE_CACHE_SHIFT;
1131 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1132 unsigned long nr_pages = end_index - index + 1;
1135 if (index == locked_page->index && end_index == index)
1138 while (nr_pages > 0) {
1139 ret = find_get_pages_contig(inode->i_mapping, index,
1140 min_t(unsigned long, nr_pages,
1141 ARRAY_SIZE(pages)), pages);
1142 for (i = 0; i < ret; i++) {
1143 if (pages[i] != locked_page)
1144 unlock_page(pages[i]);
1145 page_cache_release(pages[i]);
1154 static noinline int lock_delalloc_pages(struct inode *inode,
1155 struct page *locked_page,
1159 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1160 unsigned long start_index = index;
1161 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1162 unsigned long pages_locked = 0;
1163 struct page *pages[16];
1164 unsigned long nrpages;
1168 /* the caller is responsible for locking the start index */
1169 if (index == locked_page->index && index == end_index)
1172 /* skip the page at the start index */
1173 nrpages = end_index - index + 1;
1174 while (nrpages > 0) {
1175 ret = find_get_pages_contig(inode->i_mapping, index,
1176 min_t(unsigned long,
1177 nrpages, ARRAY_SIZE(pages)), pages);
1182 /* now we have an array of pages, lock them all */
1183 for (i = 0; i < ret; i++) {
1185 * the caller is taking responsibility for
1188 if (pages[i] != locked_page) {
1189 lock_page(pages[i]);
1190 if (!PageDirty(pages[i]) ||
1191 pages[i]->mapping != inode->i_mapping) {
1193 unlock_page(pages[i]);
1194 page_cache_release(pages[i]);
1198 page_cache_release(pages[i]);
1207 if (ret && pages_locked) {
1208 __unlock_for_delalloc(inode, locked_page,
1210 ((u64)(start_index + pages_locked - 1)) <<
1217 * find a contiguous range of bytes in the file marked as delalloc, not
1218 * more than 'max_bytes'. start and end are used to return the range,
1220 * 1 is returned if we find something, 0 if nothing was in the tree
1222 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1223 struct extent_io_tree *tree,
1224 struct page *locked_page,
1225 u64 *start, u64 *end,
1235 /* step one, find a bunch of delalloc bytes starting at start */
1236 delalloc_start = *start;
1238 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1240 if (!found || delalloc_end <= *start) {
1241 *start = delalloc_start;
1242 *end = delalloc_end;
1247 * start comes from the offset of locked_page. We have to lock
1248 * pages in order, so we can't process delalloc bytes before
1251 if (delalloc_start < *start)
1252 delalloc_start = *start;
1255 * make sure to limit the number of pages we try to lock down
1258 if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1259 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1261 /* step two, lock all the pages after the page that has start */
1262 ret = lock_delalloc_pages(inode, locked_page,
1263 delalloc_start, delalloc_end);
1264 if (ret == -EAGAIN) {
1265 /* some of the pages are gone, lets avoid looping by
1266 * shortening the size of the delalloc range we're searching
1269 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1270 max_bytes = PAGE_CACHE_SIZE - offset;
1280 /* step three, lock the state bits for the whole range */
1281 lock_extent(tree, delalloc_start, delalloc_end, GFP_NOFS);
1283 /* then test to make sure it is all still delalloc */
1284 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1285 EXTENT_DELALLOC, 1);
1287 unlock_extent(tree, delalloc_start, delalloc_end, GFP_NOFS);
1288 __unlock_for_delalloc(inode, locked_page,
1289 delalloc_start, delalloc_end);
1293 *start = delalloc_start;
1294 *end = delalloc_end;
1299 int extent_clear_unlock_delalloc(struct inode *inode,
1300 struct extent_io_tree *tree,
1301 u64 start, u64 end, struct page *locked_page,
1304 int clear_delalloc, int clear_dirty,
1309 struct page *pages[16];
1310 unsigned long index = start >> PAGE_CACHE_SHIFT;
1311 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1312 unsigned long nr_pages = end_index - index + 1;
1317 clear_bits |= EXTENT_LOCKED;
1319 clear_bits |= EXTENT_DIRTY;
1322 clear_bits |= EXTENT_DELALLOC;
1324 clear_extent_bit(tree, start, end, clear_bits, 1, 0, GFP_NOFS);
1325 if (!(unlock_pages || clear_dirty || set_writeback || end_writeback))
1328 while (nr_pages > 0) {
1329 ret = find_get_pages_contig(inode->i_mapping, index,
1330 min_t(unsigned long,
1331 nr_pages, ARRAY_SIZE(pages)), pages);
1332 for (i = 0; i < ret; i++) {
1333 if (pages[i] == locked_page) {
1334 page_cache_release(pages[i]);
1338 clear_page_dirty_for_io(pages[i]);
1340 set_page_writeback(pages[i]);
1342 end_page_writeback(pages[i]);
1344 unlock_page(pages[i]);
1345 page_cache_release(pages[i]);
1355 * count the number of bytes in the tree that have a given bit(s)
1356 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1357 * cached. The total number found is returned.
1359 u64 count_range_bits(struct extent_io_tree *tree,
1360 u64 *start, u64 search_end, u64 max_bytes,
1363 struct rb_node *node;
1364 struct extent_state *state;
1365 u64 cur_start = *start;
1366 u64 total_bytes = 0;
1369 if (search_end <= cur_start) {
1374 spin_lock(&tree->lock);
1375 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1376 total_bytes = tree->dirty_bytes;
1380 * this search will find all the extents that end after
1383 node = tree_search(tree, cur_start);
1388 state = rb_entry(node, struct extent_state, rb_node);
1389 if (state->start > search_end)
1391 if (state->end >= cur_start && (state->state & bits)) {
1392 total_bytes += min(search_end, state->end) + 1 -
1393 max(cur_start, state->start);
1394 if (total_bytes >= max_bytes)
1397 *start = state->start;
1401 node = rb_next(node);
1406 spin_unlock(&tree->lock);
1412 * helper function to lock both pages and extents in the tree.
1413 * pages must be locked first.
1415 static int lock_range(struct extent_io_tree *tree, u64 start, u64 end)
1417 unsigned long index = start >> PAGE_CACHE_SHIFT;
1418 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1422 while (index <= end_index) {
1423 page = grab_cache_page(tree->mapping, index);
1429 err = PTR_ERR(page);
1434 lock_extent(tree, start, end, GFP_NOFS);
1439 * we failed above in getting the page at 'index', so we undo here
1440 * up to but not including the page at 'index'
1443 index = start >> PAGE_CACHE_SHIFT;
1444 while (index < end_index) {
1445 page = find_get_page(tree->mapping, index);
1447 page_cache_release(page);
1454 * helper function to unlock both pages and extents in the tree.
1456 static int unlock_range(struct extent_io_tree *tree, u64 start, u64 end)
1458 unsigned long index = start >> PAGE_CACHE_SHIFT;
1459 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1462 while (index <= end_index) {
1463 page = find_get_page(tree->mapping, index);
1465 page_cache_release(page);
1468 unlock_extent(tree, start, end, GFP_NOFS);
1474 * set the private field for a given byte offset in the tree. If there isn't
1475 * an extent_state there already, this does nothing.
1477 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1479 struct rb_node *node;
1480 struct extent_state *state;
1483 spin_lock(&tree->lock);
1485 * this search will find all the extents that end after
1488 node = tree_search(tree, start);
1493 state = rb_entry(node, struct extent_state, rb_node);
1494 if (state->start != start) {
1498 state->private = private;
1500 spin_unlock(&tree->lock);
1504 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1506 struct rb_node *node;
1507 struct extent_state *state;
1510 spin_lock(&tree->lock);
1512 * this search will find all the extents that end after
1515 node = tree_search(tree, start);
1520 state = rb_entry(node, struct extent_state, rb_node);
1521 if (state->start != start) {
1525 *private = state->private;
1527 spin_unlock(&tree->lock);
1532 * searches a range in the state tree for a given mask.
1533 * If 'filled' == 1, this returns 1 only if every extent in the tree
1534 * has the bits set. Otherwise, 1 is returned if any bit in the
1535 * range is found set.
1537 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1538 int bits, int filled)
1540 struct extent_state *state = NULL;
1541 struct rb_node *node;
1544 spin_lock(&tree->lock);
1545 node = tree_search(tree, start);
1546 while (node && start <= end) {
1547 state = rb_entry(node, struct extent_state, rb_node);
1549 if (filled && state->start > start) {
1554 if (state->start > end)
1557 if (state->state & bits) {
1561 } else if (filled) {
1565 start = state->end + 1;
1568 node = rb_next(node);
1575 spin_unlock(&tree->lock);
1580 * helper function to set a given page up to date if all the
1581 * extents in the tree for that page are up to date
1583 static int check_page_uptodate(struct extent_io_tree *tree,
1586 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1587 u64 end = start + PAGE_CACHE_SIZE - 1;
1588 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1))
1589 SetPageUptodate(page);
1594 * helper function to unlock a page if all the extents in the tree
1595 * for that page are unlocked
1597 static int check_page_locked(struct extent_io_tree *tree,
1600 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1601 u64 end = start + PAGE_CACHE_SIZE - 1;
1602 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0))
1608 * helper function to end page writeback if all the extents
1609 * in the tree for that page are done with writeback
1611 static int check_page_writeback(struct extent_io_tree *tree,
1614 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1615 u64 end = start + PAGE_CACHE_SIZE - 1;
1616 if (!test_range_bit(tree, start, end, EXTENT_WRITEBACK, 0))
1617 end_page_writeback(page);
1621 /* lots and lots of room for performance fixes in the end_bio funcs */
1624 * after a writepage IO is done, we need to:
1625 * clear the uptodate bits on error
1626 * clear the writeback bits in the extent tree for this IO
1627 * end_page_writeback if the page has no more pending IO
1629 * Scheduling is not allowed, so the extent state tree is expected
1630 * to have one and only one object corresponding to this IO.
1632 static void end_bio_extent_writepage(struct bio *bio, int err)
1634 int uptodate = err == 0;
1635 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1636 struct extent_io_tree *tree;
1643 struct page *page = bvec->bv_page;
1644 tree = &BTRFS_I(page->mapping->host)->io_tree;
1646 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1648 end = start + bvec->bv_len - 1;
1650 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1655 if (--bvec >= bio->bi_io_vec)
1656 prefetchw(&bvec->bv_page->flags);
1657 if (tree->ops && tree->ops->writepage_end_io_hook) {
1658 ret = tree->ops->writepage_end_io_hook(page, start,
1659 end, NULL, uptodate);
1664 if (!uptodate && tree->ops &&
1665 tree->ops->writepage_io_failed_hook) {
1666 ret = tree->ops->writepage_io_failed_hook(bio, page,
1669 uptodate = (err == 0);
1675 clear_extent_uptodate(tree, start, end, GFP_ATOMIC);
1676 ClearPageUptodate(page);
1680 clear_extent_writeback(tree, start, end, GFP_ATOMIC);
1683 end_page_writeback(page);
1685 check_page_writeback(tree, page);
1686 } while (bvec >= bio->bi_io_vec);
1692 * after a readpage IO is done, we need to:
1693 * clear the uptodate bits on error
1694 * set the uptodate bits if things worked
1695 * set the page up to date if all extents in the tree are uptodate
1696 * clear the lock bit in the extent tree
1697 * unlock the page if there are no other extents locked for it
1699 * Scheduling is not allowed, so the extent state tree is expected
1700 * to have one and only one object corresponding to this IO.
1702 static void end_bio_extent_readpage(struct bio *bio, int err)
1704 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1705 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1706 struct extent_io_tree *tree;
1716 struct page *page = bvec->bv_page;
1717 tree = &BTRFS_I(page->mapping->host)->io_tree;
1719 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1721 end = start + bvec->bv_len - 1;
1723 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1728 if (--bvec >= bio->bi_io_vec)
1729 prefetchw(&bvec->bv_page->flags);
1731 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
1732 ret = tree->ops->readpage_end_io_hook(page, start, end,
1737 if (!uptodate && tree->ops &&
1738 tree->ops->readpage_io_failed_hook) {
1739 ret = tree->ops->readpage_io_failed_hook(bio, page,
1743 test_bit(BIO_UPTODATE, &bio->bi_flags);
1751 set_extent_uptodate(tree, start, end,
1754 unlock_extent(tree, start, end, GFP_ATOMIC);
1758 SetPageUptodate(page);
1760 ClearPageUptodate(page);
1766 check_page_uptodate(tree, page);
1768 ClearPageUptodate(page);
1771 check_page_locked(tree, page);
1773 } while (bvec >= bio->bi_io_vec);
1779 * IO done from prepare_write is pretty simple, we just unlock
1780 * the structs in the extent tree when done, and set the uptodate bits
1783 static void end_bio_extent_preparewrite(struct bio *bio, int err)
1785 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1786 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1787 struct extent_io_tree *tree;
1792 struct page *page = bvec->bv_page;
1793 tree = &BTRFS_I(page->mapping->host)->io_tree;
1795 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1797 end = start + bvec->bv_len - 1;
1799 if (--bvec >= bio->bi_io_vec)
1800 prefetchw(&bvec->bv_page->flags);
1803 set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1805 ClearPageUptodate(page);
1809 unlock_extent(tree, start, end, GFP_ATOMIC);
1811 } while (bvec >= bio->bi_io_vec);
1817 extent_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
1822 bio = bio_alloc(gfp_flags, nr_vecs);
1824 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
1825 while (!bio && (nr_vecs /= 2))
1826 bio = bio_alloc(gfp_flags, nr_vecs);
1831 bio->bi_bdev = bdev;
1832 bio->bi_sector = first_sector;
1837 static int submit_one_bio(int rw, struct bio *bio, int mirror_num,
1838 unsigned long bio_flags)
1841 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1842 struct page *page = bvec->bv_page;
1843 struct extent_io_tree *tree = bio->bi_private;
1847 start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1848 end = start + bvec->bv_len - 1;
1850 bio->bi_private = NULL;
1854 if (tree->ops && tree->ops->submit_bio_hook)
1855 tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
1856 mirror_num, bio_flags);
1858 submit_bio(rw, bio);
1859 if (bio_flagged(bio, BIO_EOPNOTSUPP))
1865 static int submit_extent_page(int rw, struct extent_io_tree *tree,
1866 struct page *page, sector_t sector,
1867 size_t size, unsigned long offset,
1868 struct block_device *bdev,
1869 struct bio **bio_ret,
1870 unsigned long max_pages,
1871 bio_end_io_t end_io_func,
1873 unsigned long prev_bio_flags,
1874 unsigned long bio_flags)
1880 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
1881 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
1882 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
1884 if (bio_ret && *bio_ret) {
1887 contig = bio->bi_sector == sector;
1889 contig = bio->bi_sector + (bio->bi_size >> 9) ==
1892 if (prev_bio_flags != bio_flags || !contig ||
1893 (tree->ops && tree->ops->merge_bio_hook &&
1894 tree->ops->merge_bio_hook(page, offset, page_size, bio,
1896 bio_add_page(bio, page, page_size, offset) < page_size) {
1897 ret = submit_one_bio(rw, bio, mirror_num,
1904 if (this_compressed)
1907 nr = bio_get_nr_vecs(bdev);
1909 bio = extent_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
1911 bio_add_page(bio, page, page_size, offset);
1912 bio->bi_end_io = end_io_func;
1913 bio->bi_private = tree;
1918 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
1923 void set_page_extent_mapped(struct page *page)
1925 if (!PagePrivate(page)) {
1926 SetPagePrivate(page);
1927 page_cache_get(page);
1928 set_page_private(page, EXTENT_PAGE_PRIVATE);
1932 static void set_page_extent_head(struct page *page, unsigned long len)
1934 set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2);
1938 * basic readpage implementation. Locked extent state structs are inserted
1939 * into the tree that are removed when the IO is done (by the end_io
1942 static int __extent_read_full_page(struct extent_io_tree *tree,
1944 get_extent_t *get_extent,
1945 struct bio **bio, int mirror_num,
1946 unsigned long *bio_flags)
1948 struct inode *inode = page->mapping->host;
1949 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1950 u64 page_end = start + PAGE_CACHE_SIZE - 1;
1954 u64 last_byte = i_size_read(inode);
1958 struct extent_map *em;
1959 struct block_device *bdev;
1962 size_t page_offset = 0;
1964 size_t disk_io_size;
1965 size_t blocksize = inode->i_sb->s_blocksize;
1966 unsigned long this_bio_flag = 0;
1968 set_page_extent_mapped(page);
1971 lock_extent(tree, start, end, GFP_NOFS);
1973 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
1975 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
1978 iosize = PAGE_CACHE_SIZE - zero_offset;
1979 userpage = kmap_atomic(page, KM_USER0);
1980 memset(userpage + zero_offset, 0, iosize);
1981 flush_dcache_page(page);
1982 kunmap_atomic(userpage, KM_USER0);
1985 while (cur <= end) {
1986 if (cur >= last_byte) {
1988 iosize = PAGE_CACHE_SIZE - page_offset;
1989 userpage = kmap_atomic(page, KM_USER0);
1990 memset(userpage + page_offset, 0, iosize);
1991 flush_dcache_page(page);
1992 kunmap_atomic(userpage, KM_USER0);
1993 set_extent_uptodate(tree, cur, cur + iosize - 1,
1995 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1998 em = get_extent(inode, page, page_offset, cur,
2000 if (IS_ERR(em) || !em) {
2002 unlock_extent(tree, cur, end, GFP_NOFS);
2005 extent_offset = cur - em->start;
2006 BUG_ON(extent_map_end(em) <= cur);
2009 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
2010 this_bio_flag = EXTENT_BIO_COMPRESSED;
2012 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2013 cur_end = min(extent_map_end(em) - 1, end);
2014 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2015 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2016 disk_io_size = em->block_len;
2017 sector = em->block_start >> 9;
2019 sector = (em->block_start + extent_offset) >> 9;
2020 disk_io_size = iosize;
2023 block_start = em->block_start;
2024 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2025 block_start = EXTENT_MAP_HOLE;
2026 free_extent_map(em);
2029 /* we've found a hole, just zero and go on */
2030 if (block_start == EXTENT_MAP_HOLE) {
2032 userpage = kmap_atomic(page, KM_USER0);
2033 memset(userpage + page_offset, 0, iosize);
2034 flush_dcache_page(page);
2035 kunmap_atomic(userpage, KM_USER0);
2037 set_extent_uptodate(tree, cur, cur + iosize - 1,
2039 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2041 page_offset += iosize;
2044 /* the get_extent function already copied into the page */
2045 if (test_range_bit(tree, cur, cur_end, EXTENT_UPTODATE, 1)) {
2046 check_page_uptodate(tree, page);
2047 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2049 page_offset += iosize;
2052 /* we have an inline extent but it didn't get marked up
2053 * to date. Error out
2055 if (block_start == EXTENT_MAP_INLINE) {
2057 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2059 page_offset += iosize;
2064 if (tree->ops && tree->ops->readpage_io_hook) {
2065 ret = tree->ops->readpage_io_hook(page, cur,
2069 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2071 ret = submit_extent_page(READ, tree, page,
2072 sector, disk_io_size, page_offset,
2074 end_bio_extent_readpage, mirror_num,
2078 *bio_flags = this_bio_flag;
2083 page_offset += iosize;
2086 if (!PageError(page))
2087 SetPageUptodate(page);
2093 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2094 get_extent_t *get_extent)
2096 struct bio *bio = NULL;
2097 unsigned long bio_flags = 0;
2100 ret = __extent_read_full_page(tree, page, get_extent, &bio, 0,
2103 submit_one_bio(READ, bio, 0, bio_flags);
2108 * the writepage semantics are similar to regular writepage. extent
2109 * records are inserted to lock ranges in the tree, and as dirty areas
2110 * are found, they are marked writeback. Then the lock bits are removed
2111 * and the end_io handler clears the writeback ranges
2113 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2116 struct inode *inode = page->mapping->host;
2117 struct extent_page_data *epd = data;
2118 struct extent_io_tree *tree = epd->tree;
2119 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2121 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2125 u64 last_byte = i_size_read(inode);
2130 struct extent_map *em;
2131 struct block_device *bdev;
2134 size_t pg_offset = 0;
2136 loff_t i_size = i_size_read(inode);
2137 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2143 unsigned long nr_written = 0;
2145 if (wbc->sync_mode == WB_SYNC_ALL)
2146 write_flags = WRITE_SYNC_PLUG;
2148 write_flags = WRITE;
2150 WARN_ON(!PageLocked(page));
2151 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2152 if (page->index > end_index ||
2153 (page->index == end_index && !pg_offset)) {
2154 page->mapping->a_ops->invalidatepage(page, 0);
2159 if (page->index == end_index) {
2162 userpage = kmap_atomic(page, KM_USER0);
2163 memset(userpage + pg_offset, 0,
2164 PAGE_CACHE_SIZE - pg_offset);
2165 kunmap_atomic(userpage, KM_USER0);
2166 flush_dcache_page(page);
2170 set_page_extent_mapped(page);
2172 delalloc_start = start;
2175 if (!epd->extent_locked) {
2176 while (delalloc_end < page_end) {
2177 nr_delalloc = find_lock_delalloc_range(inode, tree,
2182 if (nr_delalloc == 0) {
2183 delalloc_start = delalloc_end + 1;
2186 tree->ops->fill_delalloc(inode, page, delalloc_start,
2187 delalloc_end, &page_started,
2189 delalloc_start = delalloc_end + 1;
2192 /* did the fill delalloc function already unlock and start
2197 goto update_nr_written;
2200 lock_extent(tree, start, page_end, GFP_NOFS);
2202 unlock_start = start;
2204 if (tree->ops && tree->ops->writepage_start_hook) {
2205 ret = tree->ops->writepage_start_hook(page, start,
2207 if (ret == -EAGAIN) {
2208 unlock_extent(tree, start, page_end, GFP_NOFS);
2209 redirty_page_for_writepage(wbc, page);
2212 goto update_nr_written;
2219 if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0))
2220 printk(KERN_ERR "btrfs delalloc bits after lock_extent\n");
2222 if (last_byte <= start) {
2223 clear_extent_dirty(tree, start, page_end, GFP_NOFS);
2224 unlock_extent(tree, start, page_end, GFP_NOFS);
2225 if (tree->ops && tree->ops->writepage_end_io_hook)
2226 tree->ops->writepage_end_io_hook(page, start,
2228 unlock_start = page_end + 1;
2232 set_extent_uptodate(tree, start, page_end, GFP_NOFS);
2233 blocksize = inode->i_sb->s_blocksize;
2235 while (cur <= end) {
2236 if (cur >= last_byte) {
2237 clear_extent_dirty(tree, cur, page_end, GFP_NOFS);
2238 unlock_extent(tree, unlock_start, page_end, GFP_NOFS);
2239 if (tree->ops && tree->ops->writepage_end_io_hook)
2240 tree->ops->writepage_end_io_hook(page, cur,
2242 unlock_start = page_end + 1;
2245 em = epd->get_extent(inode, page, pg_offset, cur,
2247 if (IS_ERR(em) || !em) {
2252 extent_offset = cur - em->start;
2253 BUG_ON(extent_map_end(em) <= cur);
2255 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2256 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2257 sector = (em->block_start + extent_offset) >> 9;
2259 block_start = em->block_start;
2260 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2261 free_extent_map(em);
2265 * compressed and inline extents are written through other
2268 if (compressed || block_start == EXTENT_MAP_HOLE ||
2269 block_start == EXTENT_MAP_INLINE) {
2270 clear_extent_dirty(tree, cur,
2271 cur + iosize - 1, GFP_NOFS);
2273 unlock_extent(tree, unlock_start, cur + iosize - 1,
2277 * end_io notification does not happen here for
2278 * compressed extents
2280 if (!compressed && tree->ops &&
2281 tree->ops->writepage_end_io_hook)
2282 tree->ops->writepage_end_io_hook(page, cur,
2285 else if (compressed) {
2286 /* we don't want to end_page_writeback on
2287 * a compressed extent. this happens
2294 pg_offset += iosize;
2298 /* leave this out until we have a page_mkwrite call */
2299 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2302 pg_offset += iosize;
2306 clear_extent_dirty(tree, cur, cur + iosize - 1, GFP_NOFS);
2307 if (tree->ops && tree->ops->writepage_io_hook) {
2308 ret = tree->ops->writepage_io_hook(page, cur,
2316 unsigned long max_nr = end_index + 1;
2318 set_range_writeback(tree, cur, cur + iosize - 1);
2319 if (!PageWriteback(page)) {
2320 printk(KERN_ERR "btrfs warning page %lu not "
2321 "writeback, cur %llu end %llu\n",
2322 page->index, (unsigned long long)cur,
2323 (unsigned long long)end);
2326 ret = submit_extent_page(write_flags, tree, page,
2327 sector, iosize, pg_offset,
2328 bdev, &epd->bio, max_nr,
2329 end_bio_extent_writepage,
2335 pg_offset += iosize;
2340 /* make sure the mapping tag for page dirty gets cleared */
2341 set_page_writeback(page);
2342 end_page_writeback(page);
2344 if (unlock_start <= page_end)
2345 unlock_extent(tree, unlock_start, page_end, GFP_NOFS);
2349 wbc->nr_to_write -= nr_written;
2350 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2351 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2352 page->mapping->writeback_index = page->index + nr_written;
2357 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2358 * @mapping: address space structure to write
2359 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2360 * @writepage: function called for each page
2361 * @data: data passed to writepage function
2363 * If a page is already under I/O, write_cache_pages() skips it, even
2364 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2365 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2366 * and msync() need to guarantee that all the data which was dirty at the time
2367 * the call was made get new I/O started against them. If wbc->sync_mode is
2368 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2369 * existing IO to complete.
2371 static int extent_write_cache_pages(struct extent_io_tree *tree,
2372 struct address_space *mapping,
2373 struct writeback_control *wbc,
2374 writepage_t writepage, void *data,
2375 void (*flush_fn)(void *))
2377 struct backing_dev_info *bdi = mapping->backing_dev_info;
2380 struct pagevec pvec;
2383 pgoff_t end; /* Inclusive */
2385 int range_whole = 0;
2387 pagevec_init(&pvec, 0);
2388 if (wbc->range_cyclic) {
2389 index = mapping->writeback_index; /* Start from prev offset */
2392 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2393 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2394 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2399 while (!done && (index <= end) &&
2400 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2401 PAGECACHE_TAG_DIRTY, min(end - index,
2402 (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
2406 for (i = 0; i < nr_pages; i++) {
2407 struct page *page = pvec.pages[i];
2410 * At this point we hold neither mapping->tree_lock nor
2411 * lock on the page itself: the page may be truncated or
2412 * invalidated (changing page->mapping to NULL), or even
2413 * swizzled back from swapper_space to tmpfs file
2416 if (tree->ops && tree->ops->write_cache_pages_lock_hook)
2417 tree->ops->write_cache_pages_lock_hook(page);
2421 if (unlikely(page->mapping != mapping)) {
2426 if (!wbc->range_cyclic && page->index > end) {
2432 if (wbc->sync_mode != WB_SYNC_NONE) {
2433 if (PageWriteback(page))
2435 wait_on_page_writeback(page);
2438 if (PageWriteback(page) ||
2439 !clear_page_dirty_for_io(page)) {
2444 ret = (*writepage)(page, wbc, data);
2446 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
2450 if (ret || wbc->nr_to_write <= 0)
2452 if (wbc->nonblocking && bdi_write_congested(bdi)) {
2453 wbc->encountered_congestion = 1;
2457 pagevec_release(&pvec);
2460 if (!scanned && !done) {
2462 * We hit the last page and there is more work to be done: wrap
2463 * back to the start of the file
2472 static void flush_epd_write_bio(struct extent_page_data *epd)
2476 submit_one_bio(WRITE_SYNC, epd->bio, 0, 0);
2478 submit_one_bio(WRITE, epd->bio, 0, 0);
2483 static noinline void flush_write_bio(void *data)
2485 struct extent_page_data *epd = data;
2486 flush_epd_write_bio(epd);
2489 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
2490 get_extent_t *get_extent,
2491 struct writeback_control *wbc)
2494 struct address_space *mapping = page->mapping;
2495 struct extent_page_data epd = {
2498 .get_extent = get_extent,
2500 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
2502 struct writeback_control wbc_writepages = {
2504 .sync_mode = wbc->sync_mode,
2505 .older_than_this = NULL,
2507 .range_start = page_offset(page) + PAGE_CACHE_SIZE,
2508 .range_end = (loff_t)-1,
2511 ret = __extent_writepage(page, wbc, &epd);
2513 extent_write_cache_pages(tree, mapping, &wbc_writepages,
2514 __extent_writepage, &epd, flush_write_bio);
2515 flush_epd_write_bio(&epd);
2519 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
2520 u64 start, u64 end, get_extent_t *get_extent,
2524 struct address_space *mapping = inode->i_mapping;
2526 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
2529 struct extent_page_data epd = {
2532 .get_extent = get_extent,
2534 .sync_io = mode == WB_SYNC_ALL,
2536 struct writeback_control wbc_writepages = {
2537 .bdi = inode->i_mapping->backing_dev_info,
2539 .older_than_this = NULL,
2540 .nr_to_write = nr_pages * 2,
2541 .range_start = start,
2542 .range_end = end + 1,
2545 while (start <= end) {
2546 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
2547 if (clear_page_dirty_for_io(page))
2548 ret = __extent_writepage(page, &wbc_writepages, &epd);
2550 if (tree->ops && tree->ops->writepage_end_io_hook)
2551 tree->ops->writepage_end_io_hook(page, start,
2552 start + PAGE_CACHE_SIZE - 1,
2556 page_cache_release(page);
2557 start += PAGE_CACHE_SIZE;
2560 flush_epd_write_bio(&epd);
2564 int extent_writepages(struct extent_io_tree *tree,
2565 struct address_space *mapping,
2566 get_extent_t *get_extent,
2567 struct writeback_control *wbc)
2570 struct extent_page_data epd = {
2573 .get_extent = get_extent,
2575 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
2578 ret = extent_write_cache_pages(tree, mapping, wbc,
2579 __extent_writepage, &epd,
2581 flush_epd_write_bio(&epd);
2585 int extent_readpages(struct extent_io_tree *tree,
2586 struct address_space *mapping,
2587 struct list_head *pages, unsigned nr_pages,
2588 get_extent_t get_extent)
2590 struct bio *bio = NULL;
2592 struct pagevec pvec;
2593 unsigned long bio_flags = 0;
2595 pagevec_init(&pvec, 0);
2596 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
2597 struct page *page = list_entry(pages->prev, struct page, lru);
2599 prefetchw(&page->flags);
2600 list_del(&page->lru);
2602 * what we want to do here is call add_to_page_cache_lru,
2603 * but that isn't exported, so we reproduce it here
2605 if (!add_to_page_cache(page, mapping,
2606 page->index, GFP_KERNEL)) {
2608 /* open coding of lru_cache_add, also not exported */
2609 page_cache_get(page);
2610 if (!pagevec_add(&pvec, page))
2611 __pagevec_lru_add_file(&pvec);
2612 __extent_read_full_page(tree, page, get_extent,
2613 &bio, 0, &bio_flags);
2615 page_cache_release(page);
2617 if (pagevec_count(&pvec))
2618 __pagevec_lru_add_file(&pvec);
2619 BUG_ON(!list_empty(pages));
2621 submit_one_bio(READ, bio, 0, bio_flags);
2626 * basic invalidatepage code, this waits on any locked or writeback
2627 * ranges corresponding to the page, and then deletes any extent state
2628 * records from the tree
2630 int extent_invalidatepage(struct extent_io_tree *tree,
2631 struct page *page, unsigned long offset)
2633 u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
2634 u64 end = start + PAGE_CACHE_SIZE - 1;
2635 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
2637 start += (offset + blocksize - 1) & ~(blocksize - 1);
2641 lock_extent(tree, start, end, GFP_NOFS);
2642 wait_on_extent_writeback(tree, start, end);
2643 clear_extent_bit(tree, start, end,
2644 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC,
2650 * simple commit_write call, set_range_dirty is used to mark both
2651 * the pages and the extent records as dirty
2653 int extent_commit_write(struct extent_io_tree *tree,
2654 struct inode *inode, struct page *page,
2655 unsigned from, unsigned to)
2657 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2659 set_page_extent_mapped(page);
2660 set_page_dirty(page);
2662 if (pos > inode->i_size) {
2663 i_size_write(inode, pos);
2664 mark_inode_dirty(inode);
2669 int extent_prepare_write(struct extent_io_tree *tree,
2670 struct inode *inode, struct page *page,
2671 unsigned from, unsigned to, get_extent_t *get_extent)
2673 u64 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
2674 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
2676 u64 orig_block_start;
2679 struct extent_map *em;
2680 unsigned blocksize = 1 << inode->i_blkbits;
2681 size_t page_offset = 0;
2682 size_t block_off_start;
2683 size_t block_off_end;
2689 set_page_extent_mapped(page);
2691 block_start = (page_start + from) & ~((u64)blocksize - 1);
2692 block_end = (page_start + to - 1) | (blocksize - 1);
2693 orig_block_start = block_start;
2695 lock_extent(tree, page_start, page_end, GFP_NOFS);
2696 while (block_start <= block_end) {
2697 em = get_extent(inode, page, page_offset, block_start,
2698 block_end - block_start + 1, 1);
2699 if (IS_ERR(em) || !em)
2702 cur_end = min(block_end, extent_map_end(em) - 1);
2703 block_off_start = block_start & (PAGE_CACHE_SIZE - 1);
2704 block_off_end = block_off_start + blocksize;
2705 isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS);
2707 if (!PageUptodate(page) && isnew &&
2708 (block_off_end > to || block_off_start < from)) {
2711 kaddr = kmap_atomic(page, KM_USER0);
2712 if (block_off_end > to)
2713 memset(kaddr + to, 0, block_off_end - to);
2714 if (block_off_start < from)
2715 memset(kaddr + block_off_start, 0,
2716 from - block_off_start);
2717 flush_dcache_page(page);
2718 kunmap_atomic(kaddr, KM_USER0);
2720 if ((em->block_start != EXTENT_MAP_HOLE &&
2721 em->block_start != EXTENT_MAP_INLINE) &&
2722 !isnew && !PageUptodate(page) &&
2723 (block_off_end > to || block_off_start < from) &&
2724 !test_range_bit(tree, block_start, cur_end,
2725 EXTENT_UPTODATE, 1)) {
2727 u64 extent_offset = block_start - em->start;
2729 sector = (em->block_start + extent_offset) >> 9;
2730 iosize = (cur_end - block_start + blocksize) &
2731 ~((u64)blocksize - 1);
2733 * we've already got the extent locked, but we
2734 * need to split the state such that our end_bio
2735 * handler can clear the lock.
2737 set_extent_bit(tree, block_start,
2738 block_start + iosize - 1,
2739 EXTENT_LOCKED, 0, NULL, GFP_NOFS);
2740 ret = submit_extent_page(READ, tree, page,
2741 sector, iosize, page_offset, em->bdev,
2743 end_bio_extent_preparewrite, 0,
2746 block_start = block_start + iosize;
2748 set_extent_uptodate(tree, block_start, cur_end,
2750 unlock_extent(tree, block_start, cur_end, GFP_NOFS);
2751 block_start = cur_end + 1;
2753 page_offset = block_start & (PAGE_CACHE_SIZE - 1);
2754 free_extent_map(em);
2757 wait_extent_bit(tree, orig_block_start,
2758 block_end, EXTENT_LOCKED);
2760 check_page_uptodate(tree, page);
2762 /* FIXME, zero out newly allocated blocks on error */
2767 * a helper for releasepage, this tests for areas of the page that
2768 * are locked or under IO and drops the related state bits if it is safe
2771 int try_release_extent_state(struct extent_map_tree *map,
2772 struct extent_io_tree *tree, struct page *page,
2775 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2776 u64 end = start + PAGE_CACHE_SIZE - 1;
2779 if (test_range_bit(tree, start, end,
2780 EXTENT_IOBITS | EXTENT_ORDERED, 0))
2783 if ((mask & GFP_NOFS) == GFP_NOFS)
2785 clear_extent_bit(tree, start, end, EXTENT_UPTODATE,
2792 * a helper for releasepage. As long as there are no locked extents
2793 * in the range corresponding to the page, both state records and extent
2794 * map records are removed
2796 int try_release_extent_mapping(struct extent_map_tree *map,
2797 struct extent_io_tree *tree, struct page *page,
2800 struct extent_map *em;
2801 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2802 u64 end = start + PAGE_CACHE_SIZE - 1;
2804 if ((mask & __GFP_WAIT) &&
2805 page->mapping->host->i_size > 16 * 1024 * 1024) {
2807 while (start <= end) {
2808 len = end - start + 1;
2809 spin_lock(&map->lock);
2810 em = lookup_extent_mapping(map, start, len);
2811 if (!em || IS_ERR(em)) {
2812 spin_unlock(&map->lock);
2815 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
2816 em->start != start) {
2817 spin_unlock(&map->lock);
2818 free_extent_map(em);
2821 if (!test_range_bit(tree, em->start,
2822 extent_map_end(em) - 1,
2823 EXTENT_LOCKED | EXTENT_WRITEBACK |
2826 remove_extent_mapping(map, em);
2827 /* once for the rb tree */
2828 free_extent_map(em);
2830 start = extent_map_end(em);
2831 spin_unlock(&map->lock);
2834 free_extent_map(em);
2837 return try_release_extent_state(map, tree, page, mask);
2840 sector_t extent_bmap(struct address_space *mapping, sector_t iblock,
2841 get_extent_t *get_extent)
2843 struct inode *inode = mapping->host;
2844 u64 start = iblock << inode->i_blkbits;
2845 sector_t sector = 0;
2846 size_t blksize = (1 << inode->i_blkbits);
2847 struct extent_map *em;
2849 lock_extent(&BTRFS_I(inode)->io_tree, start, start + blksize - 1,
2851 em = get_extent(inode, NULL, 0, start, blksize, 0);
2852 unlock_extent(&BTRFS_I(inode)->io_tree, start, start + blksize - 1,
2854 if (!em || IS_ERR(em))
2857 if (em->block_start > EXTENT_MAP_LAST_BYTE)
2860 sector = (em->block_start + start - em->start) >> inode->i_blkbits;
2862 free_extent_map(em);
2866 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2867 __u64 start, __u64 len, get_extent_t *get_extent)
2871 u64 max = start + len;
2874 struct extent_map *em = NULL;
2876 u64 em_start = 0, em_len = 0;
2877 unsigned long emflags;
2883 lock_extent(&BTRFS_I(inode)->io_tree, start, start + len,
2885 em = get_extent(inode, NULL, 0, off, max - off, 0);
2893 off = em->start + em->len;
2897 em_start = em->start;
2903 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
2905 flags |= FIEMAP_EXTENT_LAST;
2906 } else if (em->block_start == EXTENT_MAP_HOLE) {
2907 flags |= FIEMAP_EXTENT_UNWRITTEN;
2908 } else if (em->block_start == EXTENT_MAP_INLINE) {
2909 flags |= (FIEMAP_EXTENT_DATA_INLINE |
2910 FIEMAP_EXTENT_NOT_ALIGNED);
2911 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
2912 flags |= (FIEMAP_EXTENT_DELALLOC |
2913 FIEMAP_EXTENT_UNKNOWN);
2915 disko = em->block_start;
2917 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
2918 flags |= FIEMAP_EXTENT_ENCODED;
2920 emflags = em->flags;
2921 free_extent_map(em);
2925 em = get_extent(inode, NULL, 0, off, max - off, 0);
2932 emflags = em->flags;
2934 if (test_bit(EXTENT_FLAG_VACANCY, &emflags)) {
2935 flags |= FIEMAP_EXTENT_LAST;
2939 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
2945 free_extent_map(em);
2947 unlock_extent(&BTRFS_I(inode)->io_tree, start, start + len,
2952 static inline struct page *extent_buffer_page(struct extent_buffer *eb,
2956 struct address_space *mapping;
2959 return eb->first_page;
2960 i += eb->start >> PAGE_CACHE_SHIFT;
2961 mapping = eb->first_page->mapping;
2966 * extent_buffer_page is only called after pinning the page
2967 * by increasing the reference count. So we know the page must
2968 * be in the radix tree.
2971 p = radix_tree_lookup(&mapping->page_tree, i);
2977 static inline unsigned long num_extent_pages(u64 start, u64 len)
2979 return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
2980 (start >> PAGE_CACHE_SHIFT);
2983 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
2988 struct extent_buffer *eb = NULL;
2990 unsigned long flags;
2993 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
2996 spin_lock_init(&eb->lock);
2997 init_waitqueue_head(&eb->lock_wq);
3000 spin_lock_irqsave(&leak_lock, flags);
3001 list_add(&eb->leak_list, &buffers);
3002 spin_unlock_irqrestore(&leak_lock, flags);
3004 atomic_set(&eb->refs, 1);
3009 static void __free_extent_buffer(struct extent_buffer *eb)
3012 unsigned long flags;
3013 spin_lock_irqsave(&leak_lock, flags);
3014 list_del(&eb->leak_list);
3015 spin_unlock_irqrestore(&leak_lock, flags);
3017 kmem_cache_free(extent_buffer_cache, eb);
3020 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
3021 u64 start, unsigned long len,
3025 unsigned long num_pages = num_extent_pages(start, len);
3027 unsigned long index = start >> PAGE_CACHE_SHIFT;
3028 struct extent_buffer *eb;
3029 struct extent_buffer *exists = NULL;
3031 struct address_space *mapping = tree->mapping;
3034 spin_lock(&tree->buffer_lock);
3035 eb = buffer_search(tree, start);
3037 atomic_inc(&eb->refs);
3038 spin_unlock(&tree->buffer_lock);
3039 mark_page_accessed(eb->first_page);
3042 spin_unlock(&tree->buffer_lock);
3044 eb = __alloc_extent_buffer(tree, start, len, mask);
3049 eb->first_page = page0;
3052 page_cache_get(page0);
3053 mark_page_accessed(page0);
3054 set_page_extent_mapped(page0);
3055 set_page_extent_head(page0, len);
3056 uptodate = PageUptodate(page0);
3060 for (; i < num_pages; i++, index++) {
3061 p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM);
3066 set_page_extent_mapped(p);
3067 mark_page_accessed(p);
3070 set_page_extent_head(p, len);
3072 set_page_private(p, EXTENT_PAGE_PRIVATE);
3074 if (!PageUptodate(p))
3079 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3081 spin_lock(&tree->buffer_lock);
3082 exists = buffer_tree_insert(tree, start, &eb->rb_node);
3084 /* add one reference for the caller */
3085 atomic_inc(&exists->refs);
3086 spin_unlock(&tree->buffer_lock);
3089 spin_unlock(&tree->buffer_lock);
3091 /* add one reference for the tree */
3092 atomic_inc(&eb->refs);
3096 if (!atomic_dec_and_test(&eb->refs))
3098 for (index = 1; index < i; index++)
3099 page_cache_release(extent_buffer_page(eb, index));
3100 page_cache_release(extent_buffer_page(eb, 0));
3101 __free_extent_buffer(eb);
3105 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
3106 u64 start, unsigned long len,
3109 struct extent_buffer *eb;
3111 spin_lock(&tree->buffer_lock);
3112 eb = buffer_search(tree, start);
3114 atomic_inc(&eb->refs);
3115 spin_unlock(&tree->buffer_lock);
3118 mark_page_accessed(eb->first_page);
3123 void free_extent_buffer(struct extent_buffer *eb)
3128 if (!atomic_dec_and_test(&eb->refs))
3134 int clear_extent_buffer_dirty(struct extent_io_tree *tree,
3135 struct extent_buffer *eb)
3138 unsigned long num_pages;
3141 num_pages = num_extent_pages(eb->start, eb->len);
3143 for (i = 0; i < num_pages; i++) {
3144 page = extent_buffer_page(eb, i);
3145 if (!PageDirty(page))
3150 set_page_extent_head(page, eb->len);
3152 set_page_private(page, EXTENT_PAGE_PRIVATE);
3154 clear_page_dirty_for_io(page);
3155 spin_lock_irq(&page->mapping->tree_lock);
3156 if (!PageDirty(page)) {
3157 radix_tree_tag_clear(&page->mapping->page_tree,
3159 PAGECACHE_TAG_DIRTY);
3161 spin_unlock_irq(&page->mapping->tree_lock);
3167 int wait_on_extent_buffer_writeback(struct extent_io_tree *tree,
3168 struct extent_buffer *eb)
3170 return wait_on_extent_writeback(tree, eb->start,
3171 eb->start + eb->len - 1);
3174 int set_extent_buffer_dirty(struct extent_io_tree *tree,
3175 struct extent_buffer *eb)
3178 unsigned long num_pages;
3181 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3182 num_pages = num_extent_pages(eb->start, eb->len);
3183 for (i = 0; i < num_pages; i++)
3184 __set_page_dirty_nobuffers(extent_buffer_page(eb, i));
3188 int clear_extent_buffer_uptodate(struct extent_io_tree *tree,
3189 struct extent_buffer *eb)
3193 unsigned long num_pages;
3195 num_pages = num_extent_pages(eb->start, eb->len);
3196 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3198 clear_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3200 for (i = 0; i < num_pages; i++) {
3201 page = extent_buffer_page(eb, i);
3203 ClearPageUptodate(page);
3208 int set_extent_buffer_uptodate(struct extent_io_tree *tree,
3209 struct extent_buffer *eb)
3213 unsigned long num_pages;
3215 num_pages = num_extent_pages(eb->start, eb->len);
3217 set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3219 for (i = 0; i < num_pages; i++) {
3220 page = extent_buffer_page(eb, i);
3221 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
3222 ((i == num_pages - 1) &&
3223 ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
3224 check_page_uptodate(tree, page);
3227 SetPageUptodate(page);
3232 int extent_range_uptodate(struct extent_io_tree *tree,
3237 int pg_uptodate = 1;
3239 unsigned long index;
3241 ret = test_range_bit(tree, start, end, EXTENT_UPTODATE, 1);
3244 while (start <= end) {
3245 index = start >> PAGE_CACHE_SHIFT;
3246 page = find_get_page(tree->mapping, index);
3247 uptodate = PageUptodate(page);
3248 page_cache_release(page);
3253 start += PAGE_CACHE_SIZE;
3258 int extent_buffer_uptodate(struct extent_io_tree *tree,
3259 struct extent_buffer *eb)
3262 unsigned long num_pages;
3265 int pg_uptodate = 1;
3267 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3270 ret = test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3271 EXTENT_UPTODATE, 1);
3275 num_pages = num_extent_pages(eb->start, eb->len);
3276 for (i = 0; i < num_pages; i++) {
3277 page = extent_buffer_page(eb, i);
3278 if (!PageUptodate(page)) {
3286 int read_extent_buffer_pages(struct extent_io_tree *tree,
3287 struct extent_buffer *eb,
3288 u64 start, int wait,
3289 get_extent_t *get_extent, int mirror_num)
3292 unsigned long start_i;
3296 int locked_pages = 0;
3297 int all_uptodate = 1;
3298 int inc_all_pages = 0;
3299 unsigned long num_pages;
3300 struct bio *bio = NULL;
3301 unsigned long bio_flags = 0;
3303 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3306 if (test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3307 EXTENT_UPTODATE, 1)) {
3312 WARN_ON(start < eb->start);
3313 start_i = (start >> PAGE_CACHE_SHIFT) -
3314 (eb->start >> PAGE_CACHE_SHIFT);
3319 num_pages = num_extent_pages(eb->start, eb->len);
3320 for (i = start_i; i < num_pages; i++) {
3321 page = extent_buffer_page(eb, i);
3323 if (!trylock_page(page))
3329 if (!PageUptodate(page))
3334 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3338 for (i = start_i; i < num_pages; i++) {
3339 page = extent_buffer_page(eb, i);
3341 page_cache_get(page);
3342 if (!PageUptodate(page)) {
3345 ClearPageError(page);
3346 err = __extent_read_full_page(tree, page,
3348 mirror_num, &bio_flags);
3357 submit_one_bio(READ, bio, mirror_num, bio_flags);
3362 for (i = start_i; i < num_pages; i++) {
3363 page = extent_buffer_page(eb, i);
3364 wait_on_page_locked(page);
3365 if (!PageUptodate(page))
3370 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3375 while (locked_pages > 0) {
3376 page = extent_buffer_page(eb, i);
3384 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
3385 unsigned long start,
3392 char *dst = (char *)dstv;
3393 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3394 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3396 WARN_ON(start > eb->len);
3397 WARN_ON(start + len > eb->start + eb->len);
3399 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3402 page = extent_buffer_page(eb, i);
3404 cur = min(len, (PAGE_CACHE_SIZE - offset));
3405 kaddr = kmap_atomic(page, KM_USER1);
3406 memcpy(dst, kaddr + offset, cur);
3407 kunmap_atomic(kaddr, KM_USER1);
3416 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
3417 unsigned long min_len, char **token, char **map,
3418 unsigned long *map_start,
3419 unsigned long *map_len, int km)
3421 size_t offset = start & (PAGE_CACHE_SIZE - 1);
3424 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3425 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3426 unsigned long end_i = (start_offset + start + min_len - 1) >>
3433 offset = start_offset;
3437 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
3440 if (start + min_len > eb->len) {
3441 printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
3442 "wanted %lu %lu\n", (unsigned long long)eb->start,
3443 eb->len, start, min_len);
3447 p = extent_buffer_page(eb, i);
3448 kaddr = kmap_atomic(p, km);
3450 *map = kaddr + offset;
3451 *map_len = PAGE_CACHE_SIZE - offset;
3455 int map_extent_buffer(struct extent_buffer *eb, unsigned long start,
3456 unsigned long min_len,
3457 char **token, char **map,
3458 unsigned long *map_start,
3459 unsigned long *map_len, int km)
3463 if (eb->map_token) {
3464 unmap_extent_buffer(eb, eb->map_token, km);
3465 eb->map_token = NULL;
3468 err = map_private_extent_buffer(eb, start, min_len, token, map,
3469 map_start, map_len, km);
3471 eb->map_token = *token;
3473 eb->map_start = *map_start;
3474 eb->map_len = *map_len;
3479 void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km)
3481 kunmap_atomic(token, km);
3484 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
3485 unsigned long start,
3492 char *ptr = (char *)ptrv;
3493 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3494 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3497 WARN_ON(start > eb->len);
3498 WARN_ON(start + len > eb->start + eb->len);
3500 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3503 page = extent_buffer_page(eb, i);
3505 cur = min(len, (PAGE_CACHE_SIZE - offset));
3507 kaddr = kmap_atomic(page, KM_USER0);
3508 ret = memcmp(ptr, kaddr + offset, cur);
3509 kunmap_atomic(kaddr, KM_USER0);
3521 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
3522 unsigned long start, unsigned long len)
3528 char *src = (char *)srcv;
3529 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3530 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3532 WARN_ON(start > eb->len);
3533 WARN_ON(start + len > eb->start + eb->len);
3535 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3538 page = extent_buffer_page(eb, i);
3539 WARN_ON(!PageUptodate(page));
3541 cur = min(len, PAGE_CACHE_SIZE - offset);
3542 kaddr = kmap_atomic(page, KM_USER1);
3543 memcpy(kaddr + offset, src, cur);
3544 kunmap_atomic(kaddr, KM_USER1);
3553 void memset_extent_buffer(struct extent_buffer *eb, char c,
3554 unsigned long start, unsigned long len)
3560 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3561 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3563 WARN_ON(start > eb->len);
3564 WARN_ON(start + len > eb->start + eb->len);
3566 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3569 page = extent_buffer_page(eb, i);
3570 WARN_ON(!PageUptodate(page));
3572 cur = min(len, PAGE_CACHE_SIZE - offset);
3573 kaddr = kmap_atomic(page, KM_USER0);
3574 memset(kaddr + offset, c, cur);
3575 kunmap_atomic(kaddr, KM_USER0);
3583 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
3584 unsigned long dst_offset, unsigned long src_offset,
3587 u64 dst_len = dst->len;
3592 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3593 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3595 WARN_ON(src->len != dst_len);
3597 offset = (start_offset + dst_offset) &
3598 ((unsigned long)PAGE_CACHE_SIZE - 1);
3601 page = extent_buffer_page(dst, i);
3602 WARN_ON(!PageUptodate(page));
3604 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
3606 kaddr = kmap_atomic(page, KM_USER0);
3607 read_extent_buffer(src, kaddr + offset, src_offset, cur);
3608 kunmap_atomic(kaddr, KM_USER0);
3617 static void move_pages(struct page *dst_page, struct page *src_page,
3618 unsigned long dst_off, unsigned long src_off,
3621 char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3622 if (dst_page == src_page) {
3623 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
3625 char *src_kaddr = kmap_atomic(src_page, KM_USER1);
3626 char *p = dst_kaddr + dst_off + len;
3627 char *s = src_kaddr + src_off + len;
3632 kunmap_atomic(src_kaddr, KM_USER1);
3634 kunmap_atomic(dst_kaddr, KM_USER0);
3637 static void copy_pages(struct page *dst_page, struct page *src_page,
3638 unsigned long dst_off, unsigned long src_off,
3641 char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3644 if (dst_page != src_page)
3645 src_kaddr = kmap_atomic(src_page, KM_USER1);
3647 src_kaddr = dst_kaddr;
3649 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
3650 kunmap_atomic(dst_kaddr, KM_USER0);
3651 if (dst_page != src_page)
3652 kunmap_atomic(src_kaddr, KM_USER1);
3655 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3656 unsigned long src_offset, unsigned long len)
3659 size_t dst_off_in_page;
3660 size_t src_off_in_page;
3661 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3662 unsigned long dst_i;
3663 unsigned long src_i;
3665 if (src_offset + len > dst->len) {
3666 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
3667 "len %lu dst len %lu\n", src_offset, len, dst->len);
3670 if (dst_offset + len > dst->len) {
3671 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
3672 "len %lu dst len %lu\n", dst_offset, len, dst->len);
3677 dst_off_in_page = (start_offset + dst_offset) &
3678 ((unsigned long)PAGE_CACHE_SIZE - 1);
3679 src_off_in_page = (start_offset + src_offset) &
3680 ((unsigned long)PAGE_CACHE_SIZE - 1);
3682 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3683 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
3685 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
3687 cur = min_t(unsigned long, cur,
3688 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
3690 copy_pages(extent_buffer_page(dst, dst_i),
3691 extent_buffer_page(dst, src_i),
3692 dst_off_in_page, src_off_in_page, cur);
3700 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3701 unsigned long src_offset, unsigned long len)
3704 size_t dst_off_in_page;
3705 size_t src_off_in_page;
3706 unsigned long dst_end = dst_offset + len - 1;
3707 unsigned long src_end = src_offset + len - 1;
3708 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3709 unsigned long dst_i;
3710 unsigned long src_i;
3712 if (src_offset + len > dst->len) {
3713 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
3714 "len %lu len %lu\n", src_offset, len, dst->len);
3717 if (dst_offset + len > dst->len) {
3718 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
3719 "len %lu len %lu\n", dst_offset, len, dst->len);
3722 if (dst_offset < src_offset) {
3723 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
3727 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
3728 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
3730 dst_off_in_page = (start_offset + dst_end) &
3731 ((unsigned long)PAGE_CACHE_SIZE - 1);
3732 src_off_in_page = (start_offset + src_end) &
3733 ((unsigned long)PAGE_CACHE_SIZE - 1);
3735 cur = min_t(unsigned long, len, src_off_in_page + 1);
3736 cur = min(cur, dst_off_in_page + 1);
3737 move_pages(extent_buffer_page(dst, dst_i),
3738 extent_buffer_page(dst, src_i),
3739 dst_off_in_page - cur + 1,
3740 src_off_in_page - cur + 1, cur);
3748 int try_release_extent_buffer(struct extent_io_tree *tree, struct page *page)
3750 u64 start = page_offset(page);
3751 struct extent_buffer *eb;
3754 unsigned long num_pages;
3756 spin_lock(&tree->buffer_lock);
3757 eb = buffer_search(tree, start);
3761 if (atomic_read(&eb->refs) > 1) {
3765 if (test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3769 /* at this point we can safely release the extent buffer */
3770 num_pages = num_extent_pages(eb->start, eb->len);
3771 for (i = 0; i < num_pages; i++)
3772 page_cache_release(extent_buffer_page(eb, i));
3773 rb_erase(&eb->rb_node, &tree->buffer);
3774 __free_extent_buffer(eb);
3776 spin_unlock(&tree->buffer_lock);