Merge branch 'next-i2c' of git://aeryn.fluff.org.uk/bjdooks/linux
[linux-2.6] / fs / splice.c
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/buffer_head.h>
29 #include <linux/module.h>
30 #include <linux/syscalls.h>
31 #include <linux/uio.h>
32 #include <linux/security.h>
33
34 /*
35  * Attempt to steal a page from a pipe buffer. This should perhaps go into
36  * a vm helper function, it's already simplified quite a bit by the
37  * addition of remove_mapping(). If success is returned, the caller may
38  * attempt to reuse this page for another destination.
39  */
40 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
41                                      struct pipe_buffer *buf)
42 {
43         struct page *page = buf->page;
44         struct address_space *mapping;
45
46         lock_page(page);
47
48         mapping = page_mapping(page);
49         if (mapping) {
50                 WARN_ON(!PageUptodate(page));
51
52                 /*
53                  * At least for ext2 with nobh option, we need to wait on
54                  * writeback completing on this page, since we'll remove it
55                  * from the pagecache.  Otherwise truncate wont wait on the
56                  * page, allowing the disk blocks to be reused by someone else
57                  * before we actually wrote our data to them. fs corruption
58                  * ensues.
59                  */
60                 wait_on_page_writeback(page);
61
62                 if (page_has_private(page) &&
63                     !try_to_release_page(page, GFP_KERNEL))
64                         goto out_unlock;
65
66                 /*
67                  * If we succeeded in removing the mapping, set LRU flag
68                  * and return good.
69                  */
70                 if (remove_mapping(mapping, page)) {
71                         buf->flags |= PIPE_BUF_FLAG_LRU;
72                         return 0;
73                 }
74         }
75
76         /*
77          * Raced with truncate or failed to remove page from current
78          * address space, unlock and return failure.
79          */
80 out_unlock:
81         unlock_page(page);
82         return 1;
83 }
84
85 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
86                                         struct pipe_buffer *buf)
87 {
88         page_cache_release(buf->page);
89         buf->flags &= ~PIPE_BUF_FLAG_LRU;
90 }
91
92 /*
93  * Check whether the contents of buf is OK to access. Since the content
94  * is a page cache page, IO may be in flight.
95  */
96 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
97                                        struct pipe_buffer *buf)
98 {
99         struct page *page = buf->page;
100         int err;
101
102         if (!PageUptodate(page)) {
103                 lock_page(page);
104
105                 /*
106                  * Page got truncated/unhashed. This will cause a 0-byte
107                  * splice, if this is the first page.
108                  */
109                 if (!page->mapping) {
110                         err = -ENODATA;
111                         goto error;
112                 }
113
114                 /*
115                  * Uh oh, read-error from disk.
116                  */
117                 if (!PageUptodate(page)) {
118                         err = -EIO;
119                         goto error;
120                 }
121
122                 /*
123                  * Page is ok afterall, we are done.
124                  */
125                 unlock_page(page);
126         }
127
128         return 0;
129 error:
130         unlock_page(page);
131         return err;
132 }
133
134 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
135         .can_merge = 0,
136         .map = generic_pipe_buf_map,
137         .unmap = generic_pipe_buf_unmap,
138         .confirm = page_cache_pipe_buf_confirm,
139         .release = page_cache_pipe_buf_release,
140         .steal = page_cache_pipe_buf_steal,
141         .get = generic_pipe_buf_get,
142 };
143
144 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
145                                     struct pipe_buffer *buf)
146 {
147         if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
148                 return 1;
149
150         buf->flags |= PIPE_BUF_FLAG_LRU;
151         return generic_pipe_buf_steal(pipe, buf);
152 }
153
154 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
155         .can_merge = 0,
156         .map = generic_pipe_buf_map,
157         .unmap = generic_pipe_buf_unmap,
158         .confirm = generic_pipe_buf_confirm,
159         .release = page_cache_pipe_buf_release,
160         .steal = user_page_pipe_buf_steal,
161         .get = generic_pipe_buf_get,
162 };
163
164 /**
165  * splice_to_pipe - fill passed data into a pipe
166  * @pipe:       pipe to fill
167  * @spd:        data to fill
168  *
169  * Description:
170  *    @spd contains a map of pages and len/offset tuples, along with
171  *    the struct pipe_buf_operations associated with these pages. This
172  *    function will link that data to the pipe.
173  *
174  */
175 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
176                        struct splice_pipe_desc *spd)
177 {
178         unsigned int spd_pages = spd->nr_pages;
179         int ret, do_wakeup, page_nr;
180
181         ret = 0;
182         do_wakeup = 0;
183         page_nr = 0;
184
185         pipe_lock(pipe);
186
187         for (;;) {
188                 if (!pipe->readers) {
189                         send_sig(SIGPIPE, current, 0);
190                         if (!ret)
191                                 ret = -EPIPE;
192                         break;
193                 }
194
195                 if (pipe->nrbufs < PIPE_BUFFERS) {
196                         int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
197                         struct pipe_buffer *buf = pipe->bufs + newbuf;
198
199                         buf->page = spd->pages[page_nr];
200                         buf->offset = spd->partial[page_nr].offset;
201                         buf->len = spd->partial[page_nr].len;
202                         buf->private = spd->partial[page_nr].private;
203                         buf->ops = spd->ops;
204                         if (spd->flags & SPLICE_F_GIFT)
205                                 buf->flags |= PIPE_BUF_FLAG_GIFT;
206
207                         pipe->nrbufs++;
208                         page_nr++;
209                         ret += buf->len;
210
211                         if (pipe->inode)
212                                 do_wakeup = 1;
213
214                         if (!--spd->nr_pages)
215                                 break;
216                         if (pipe->nrbufs < PIPE_BUFFERS)
217                                 continue;
218
219                         break;
220                 }
221
222                 if (spd->flags & SPLICE_F_NONBLOCK) {
223                         if (!ret)
224                                 ret = -EAGAIN;
225                         break;
226                 }
227
228                 if (signal_pending(current)) {
229                         if (!ret)
230                                 ret = -ERESTARTSYS;
231                         break;
232                 }
233
234                 if (do_wakeup) {
235                         smp_mb();
236                         if (waitqueue_active(&pipe->wait))
237                                 wake_up_interruptible_sync(&pipe->wait);
238                         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
239                         do_wakeup = 0;
240                 }
241
242                 pipe->waiting_writers++;
243                 pipe_wait(pipe);
244                 pipe->waiting_writers--;
245         }
246
247         pipe_unlock(pipe);
248
249         if (do_wakeup) {
250                 smp_mb();
251                 if (waitqueue_active(&pipe->wait))
252                         wake_up_interruptible(&pipe->wait);
253                 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
254         }
255
256         while (page_nr < spd_pages)
257                 spd->spd_release(spd, page_nr++);
258
259         return ret;
260 }
261
262 static void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
263 {
264         page_cache_release(spd->pages[i]);
265 }
266
267 static int
268 __generic_file_splice_read(struct file *in, loff_t *ppos,
269                            struct pipe_inode_info *pipe, size_t len,
270                            unsigned int flags)
271 {
272         struct address_space *mapping = in->f_mapping;
273         unsigned int loff, nr_pages, req_pages;
274         struct page *pages[PIPE_BUFFERS];
275         struct partial_page partial[PIPE_BUFFERS];
276         struct page *page;
277         pgoff_t index, end_index;
278         loff_t isize;
279         int error, page_nr;
280         struct splice_pipe_desc spd = {
281                 .pages = pages,
282                 .partial = partial,
283                 .flags = flags,
284                 .ops = &page_cache_pipe_buf_ops,
285                 .spd_release = spd_release_page,
286         };
287
288         index = *ppos >> PAGE_CACHE_SHIFT;
289         loff = *ppos & ~PAGE_CACHE_MASK;
290         req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
291         nr_pages = min(req_pages, (unsigned)PIPE_BUFFERS);
292
293         /*
294          * Lookup the (hopefully) full range of pages we need.
295          */
296         spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
297         index += spd.nr_pages;
298
299         /*
300          * If find_get_pages_contig() returned fewer pages than we needed,
301          * readahead/allocate the rest and fill in the holes.
302          */
303         if (spd.nr_pages < nr_pages)
304                 page_cache_sync_readahead(mapping, &in->f_ra, in,
305                                 index, req_pages - spd.nr_pages);
306
307         error = 0;
308         while (spd.nr_pages < nr_pages) {
309                 /*
310                  * Page could be there, find_get_pages_contig() breaks on
311                  * the first hole.
312                  */
313                 page = find_get_page(mapping, index);
314                 if (!page) {
315                         /*
316                          * page didn't exist, allocate one.
317                          */
318                         page = page_cache_alloc_cold(mapping);
319                         if (!page)
320                                 break;
321
322                         error = add_to_page_cache_lru(page, mapping, index,
323                                                 mapping_gfp_mask(mapping));
324                         if (unlikely(error)) {
325                                 page_cache_release(page);
326                                 if (error == -EEXIST)
327                                         continue;
328                                 break;
329                         }
330                         /*
331                          * add_to_page_cache() locks the page, unlock it
332                          * to avoid convoluting the logic below even more.
333                          */
334                         unlock_page(page);
335                 }
336
337                 pages[spd.nr_pages++] = page;
338                 index++;
339         }
340
341         /*
342          * Now loop over the map and see if we need to start IO on any
343          * pages, fill in the partial map, etc.
344          */
345         index = *ppos >> PAGE_CACHE_SHIFT;
346         nr_pages = spd.nr_pages;
347         spd.nr_pages = 0;
348         for (page_nr = 0; page_nr < nr_pages; page_nr++) {
349                 unsigned int this_len;
350
351                 if (!len)
352                         break;
353
354                 /*
355                  * this_len is the max we'll use from this page
356                  */
357                 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
358                 page = pages[page_nr];
359
360                 if (PageReadahead(page))
361                         page_cache_async_readahead(mapping, &in->f_ra, in,
362                                         page, index, req_pages - page_nr);
363
364                 /*
365                  * If the page isn't uptodate, we may need to start io on it
366                  */
367                 if (!PageUptodate(page)) {
368                         /*
369                          * If in nonblock mode then dont block on waiting
370                          * for an in-flight io page
371                          */
372                         if (flags & SPLICE_F_NONBLOCK) {
373                                 if (!trylock_page(page)) {
374                                         error = -EAGAIN;
375                                         break;
376                                 }
377                         } else
378                                 lock_page(page);
379
380                         /*
381                          * Page was truncated, or invalidated by the
382                          * filesystem.  Redo the find/create, but this time the
383                          * page is kept locked, so there's no chance of another
384                          * race with truncate/invalidate.
385                          */
386                         if (!page->mapping) {
387                                 unlock_page(page);
388                                 page = find_or_create_page(mapping, index,
389                                                 mapping_gfp_mask(mapping));
390
391                                 if (!page) {
392                                         error = -ENOMEM;
393                                         break;
394                                 }
395                                 page_cache_release(pages[page_nr]);
396                                 pages[page_nr] = page;
397                         }
398                         /*
399                          * page was already under io and is now done, great
400                          */
401                         if (PageUptodate(page)) {
402                                 unlock_page(page);
403                                 goto fill_it;
404                         }
405
406                         /*
407                          * need to read in the page
408                          */
409                         error = mapping->a_ops->readpage(in, page);
410                         if (unlikely(error)) {
411                                 /*
412                                  * We really should re-lookup the page here,
413                                  * but it complicates things a lot. Instead
414                                  * lets just do what we already stored, and
415                                  * we'll get it the next time we are called.
416                                  */
417                                 if (error == AOP_TRUNCATED_PAGE)
418                                         error = 0;
419
420                                 break;
421                         }
422                 }
423 fill_it:
424                 /*
425                  * i_size must be checked after PageUptodate.
426                  */
427                 isize = i_size_read(mapping->host);
428                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
429                 if (unlikely(!isize || index > end_index))
430                         break;
431
432                 /*
433                  * if this is the last page, see if we need to shrink
434                  * the length and stop
435                  */
436                 if (end_index == index) {
437                         unsigned int plen;
438
439                         /*
440                          * max good bytes in this page
441                          */
442                         plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
443                         if (plen <= loff)
444                                 break;
445
446                         /*
447                          * force quit after adding this page
448                          */
449                         this_len = min(this_len, plen - loff);
450                         len = this_len;
451                 }
452
453                 partial[page_nr].offset = loff;
454                 partial[page_nr].len = this_len;
455                 len -= this_len;
456                 loff = 0;
457                 spd.nr_pages++;
458                 index++;
459         }
460
461         /*
462          * Release any pages at the end, if we quit early. 'page_nr' is how far
463          * we got, 'nr_pages' is how many pages are in the map.
464          */
465         while (page_nr < nr_pages)
466                 page_cache_release(pages[page_nr++]);
467         in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
468
469         if (spd.nr_pages)
470                 return splice_to_pipe(pipe, &spd);
471
472         return error;
473 }
474
475 /**
476  * generic_file_splice_read - splice data from file to a pipe
477  * @in:         file to splice from
478  * @ppos:       position in @in
479  * @pipe:       pipe to splice to
480  * @len:        number of bytes to splice
481  * @flags:      splice modifier flags
482  *
483  * Description:
484  *    Will read pages from given file and fill them into a pipe. Can be
485  *    used as long as the address_space operations for the source implements
486  *    a readpage() hook.
487  *
488  */
489 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
490                                  struct pipe_inode_info *pipe, size_t len,
491                                  unsigned int flags)
492 {
493         loff_t isize, left;
494         int ret;
495
496         isize = i_size_read(in->f_mapping->host);
497         if (unlikely(*ppos >= isize))
498                 return 0;
499
500         left = isize - *ppos;
501         if (unlikely(left < len))
502                 len = left;
503
504         ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
505         if (ret > 0)
506                 *ppos += ret;
507
508         return ret;
509 }
510 EXPORT_SYMBOL(generic_file_splice_read);
511
512 static const struct pipe_buf_operations default_pipe_buf_ops = {
513         .can_merge = 0,
514         .map = generic_pipe_buf_map,
515         .unmap = generic_pipe_buf_unmap,
516         .confirm = generic_pipe_buf_confirm,
517         .release = generic_pipe_buf_release,
518         .steal = generic_pipe_buf_steal,
519         .get = generic_pipe_buf_get,
520 };
521
522 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
523                             unsigned long vlen, loff_t offset)
524 {
525         mm_segment_t old_fs;
526         loff_t pos = offset;
527         ssize_t res;
528
529         old_fs = get_fs();
530         set_fs(get_ds());
531         /* The cast to a user pointer is valid due to the set_fs() */
532         res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
533         set_fs(old_fs);
534
535         return res;
536 }
537
538 static ssize_t kernel_write(struct file *file, const char *buf, size_t count,
539                             loff_t pos)
540 {
541         mm_segment_t old_fs;
542         ssize_t res;
543
544         old_fs = get_fs();
545         set_fs(get_ds());
546         /* The cast to a user pointer is valid due to the set_fs() */
547         res = vfs_write(file, (const char __user *)buf, count, &pos);
548         set_fs(old_fs);
549
550         return res;
551 }
552
553 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
554                                  struct pipe_inode_info *pipe, size_t len,
555                                  unsigned int flags)
556 {
557         unsigned int nr_pages;
558         unsigned int nr_freed;
559         size_t offset;
560         struct page *pages[PIPE_BUFFERS];
561         struct partial_page partial[PIPE_BUFFERS];
562         struct iovec vec[PIPE_BUFFERS];
563         pgoff_t index;
564         ssize_t res;
565         size_t this_len;
566         int error;
567         int i;
568         struct splice_pipe_desc spd = {
569                 .pages = pages,
570                 .partial = partial,
571                 .flags = flags,
572                 .ops = &default_pipe_buf_ops,
573                 .spd_release = spd_release_page,
574         };
575
576         index = *ppos >> PAGE_CACHE_SHIFT;
577         offset = *ppos & ~PAGE_CACHE_MASK;
578         nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
579
580         for (i = 0; i < nr_pages && i < PIPE_BUFFERS && len; i++) {
581                 struct page *page;
582
583                 page = alloc_page(GFP_USER);
584                 error = -ENOMEM;
585                 if (!page)
586                         goto err;
587
588                 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
589                 vec[i].iov_base = (void __user *) page_address(page);
590                 vec[i].iov_len = this_len;
591                 pages[i] = page;
592                 spd.nr_pages++;
593                 len -= this_len;
594                 offset = 0;
595         }
596
597         res = kernel_readv(in, vec, spd.nr_pages, *ppos);
598         if (res < 0) {
599                 error = res;
600                 goto err;
601         }
602
603         error = 0;
604         if (!res)
605                 goto err;
606
607         nr_freed = 0;
608         for (i = 0; i < spd.nr_pages; i++) {
609                 this_len = min_t(size_t, vec[i].iov_len, res);
610                 partial[i].offset = 0;
611                 partial[i].len = this_len;
612                 if (!this_len) {
613                         __free_page(pages[i]);
614                         pages[i] = NULL;
615                         nr_freed++;
616                 }
617                 res -= this_len;
618         }
619         spd.nr_pages -= nr_freed;
620
621         res = splice_to_pipe(pipe, &spd);
622         if (res > 0)
623                 *ppos += res;
624
625         return res;
626
627 err:
628         for (i = 0; i < spd.nr_pages; i++)
629                 __free_page(pages[i]);
630
631         return error;
632 }
633 EXPORT_SYMBOL(default_file_splice_read);
634
635 /*
636  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
637  * using sendpage(). Return the number of bytes sent.
638  */
639 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
640                             struct pipe_buffer *buf, struct splice_desc *sd)
641 {
642         struct file *file = sd->u.file;
643         loff_t pos = sd->pos;
644         int ret, more;
645
646         ret = buf->ops->confirm(pipe, buf);
647         if (!ret) {
648                 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
649
650                 ret = file->f_op->sendpage(file, buf->page, buf->offset,
651                                            sd->len, &pos, more);
652         }
653
654         return ret;
655 }
656
657 /*
658  * This is a little more tricky than the file -> pipe splicing. There are
659  * basically three cases:
660  *
661  *      - Destination page already exists in the address space and there
662  *        are users of it. For that case we have no other option that
663  *        copying the data. Tough luck.
664  *      - Destination page already exists in the address space, but there
665  *        are no users of it. Make sure it's uptodate, then drop it. Fall
666  *        through to last case.
667  *      - Destination page does not exist, we can add the pipe page to
668  *        the page cache and avoid the copy.
669  *
670  * If asked to move pages to the output file (SPLICE_F_MOVE is set in
671  * sd->flags), we attempt to migrate pages from the pipe to the output
672  * file address space page cache. This is possible if no one else has
673  * the pipe page referenced outside of the pipe and page cache. If
674  * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
675  * a new page in the output file page cache and fill/dirty that.
676  */
677 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
678                  struct splice_desc *sd)
679 {
680         struct file *file = sd->u.file;
681         struct address_space *mapping = file->f_mapping;
682         unsigned int offset, this_len;
683         struct page *page;
684         void *fsdata;
685         int ret;
686
687         /*
688          * make sure the data in this buffer is uptodate
689          */
690         ret = buf->ops->confirm(pipe, buf);
691         if (unlikely(ret))
692                 return ret;
693
694         offset = sd->pos & ~PAGE_CACHE_MASK;
695
696         this_len = sd->len;
697         if (this_len + offset > PAGE_CACHE_SIZE)
698                 this_len = PAGE_CACHE_SIZE - offset;
699
700         ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
701                                 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
702         if (unlikely(ret))
703                 goto out;
704
705         if (buf->page != page) {
706                 /*
707                  * Careful, ->map() uses KM_USER0!
708                  */
709                 char *src = buf->ops->map(pipe, buf, 1);
710                 char *dst = kmap_atomic(page, KM_USER1);
711
712                 memcpy(dst + offset, src + buf->offset, this_len);
713                 flush_dcache_page(page);
714                 kunmap_atomic(dst, KM_USER1);
715                 buf->ops->unmap(pipe, buf, src);
716         }
717         ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
718                                 page, fsdata);
719 out:
720         return ret;
721 }
722 EXPORT_SYMBOL(pipe_to_file);
723
724 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
725 {
726         smp_mb();
727         if (waitqueue_active(&pipe->wait))
728                 wake_up_interruptible(&pipe->wait);
729         kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
730 }
731
732 /**
733  * splice_from_pipe_feed - feed available data from a pipe to a file
734  * @pipe:       pipe to splice from
735  * @sd:         information to @actor
736  * @actor:      handler that splices the data
737  *
738  * Description:
739  *    This function loops over the pipe and calls @actor to do the
740  *    actual moving of a single struct pipe_buffer to the desired
741  *    destination.  It returns when there's no more buffers left in
742  *    the pipe or if the requested number of bytes (@sd->total_len)
743  *    have been copied.  It returns a positive number (one) if the
744  *    pipe needs to be filled with more data, zero if the required
745  *    number of bytes have been copied and -errno on error.
746  *
747  *    This, together with splice_from_pipe_{begin,end,next}, may be
748  *    used to implement the functionality of __splice_from_pipe() when
749  *    locking is required around copying the pipe buffers to the
750  *    destination.
751  */
752 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
753                           splice_actor *actor)
754 {
755         int ret;
756
757         while (pipe->nrbufs) {
758                 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
759                 const struct pipe_buf_operations *ops = buf->ops;
760
761                 sd->len = buf->len;
762                 if (sd->len > sd->total_len)
763                         sd->len = sd->total_len;
764
765                 ret = actor(pipe, buf, sd);
766                 if (ret <= 0) {
767                         if (ret == -ENODATA)
768                                 ret = 0;
769                         return ret;
770                 }
771                 buf->offset += ret;
772                 buf->len -= ret;
773
774                 sd->num_spliced += ret;
775                 sd->len -= ret;
776                 sd->pos += ret;
777                 sd->total_len -= ret;
778
779                 if (!buf->len) {
780                         buf->ops = NULL;
781                         ops->release(pipe, buf);
782                         pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
783                         pipe->nrbufs--;
784                         if (pipe->inode)
785                                 sd->need_wakeup = true;
786                 }
787
788                 if (!sd->total_len)
789                         return 0;
790         }
791
792         return 1;
793 }
794 EXPORT_SYMBOL(splice_from_pipe_feed);
795
796 /**
797  * splice_from_pipe_next - wait for some data to splice from
798  * @pipe:       pipe to splice from
799  * @sd:         information about the splice operation
800  *
801  * Description:
802  *    This function will wait for some data and return a positive
803  *    value (one) if pipe buffers are available.  It will return zero
804  *    or -errno if no more data needs to be spliced.
805  */
806 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
807 {
808         while (!pipe->nrbufs) {
809                 if (!pipe->writers)
810                         return 0;
811
812                 if (!pipe->waiting_writers && sd->num_spliced)
813                         return 0;
814
815                 if (sd->flags & SPLICE_F_NONBLOCK)
816                         return -EAGAIN;
817
818                 if (signal_pending(current))
819                         return -ERESTARTSYS;
820
821                 if (sd->need_wakeup) {
822                         wakeup_pipe_writers(pipe);
823                         sd->need_wakeup = false;
824                 }
825
826                 pipe_wait(pipe);
827         }
828
829         return 1;
830 }
831 EXPORT_SYMBOL(splice_from_pipe_next);
832
833 /**
834  * splice_from_pipe_begin - start splicing from pipe
835  * @sd:         information about the splice operation
836  *
837  * Description:
838  *    This function should be called before a loop containing
839  *    splice_from_pipe_next() and splice_from_pipe_feed() to
840  *    initialize the necessary fields of @sd.
841  */
842 void splice_from_pipe_begin(struct splice_desc *sd)
843 {
844         sd->num_spliced = 0;
845         sd->need_wakeup = false;
846 }
847 EXPORT_SYMBOL(splice_from_pipe_begin);
848
849 /**
850  * splice_from_pipe_end - finish splicing from pipe
851  * @pipe:       pipe to splice from
852  * @sd:         information about the splice operation
853  *
854  * Description:
855  *    This function will wake up pipe writers if necessary.  It should
856  *    be called after a loop containing splice_from_pipe_next() and
857  *    splice_from_pipe_feed().
858  */
859 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
860 {
861         if (sd->need_wakeup)
862                 wakeup_pipe_writers(pipe);
863 }
864 EXPORT_SYMBOL(splice_from_pipe_end);
865
866 /**
867  * __splice_from_pipe - splice data from a pipe to given actor
868  * @pipe:       pipe to splice from
869  * @sd:         information to @actor
870  * @actor:      handler that splices the data
871  *
872  * Description:
873  *    This function does little more than loop over the pipe and call
874  *    @actor to do the actual moving of a single struct pipe_buffer to
875  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
876  *    pipe_to_user.
877  *
878  */
879 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
880                            splice_actor *actor)
881 {
882         int ret;
883
884         splice_from_pipe_begin(sd);
885         do {
886                 ret = splice_from_pipe_next(pipe, sd);
887                 if (ret > 0)
888                         ret = splice_from_pipe_feed(pipe, sd, actor);
889         } while (ret > 0);
890         splice_from_pipe_end(pipe, sd);
891
892         return sd->num_spliced ? sd->num_spliced : ret;
893 }
894 EXPORT_SYMBOL(__splice_from_pipe);
895
896 /**
897  * splice_from_pipe - splice data from a pipe to a file
898  * @pipe:       pipe to splice from
899  * @out:        file to splice to
900  * @ppos:       position in @out
901  * @len:        how many bytes to splice
902  * @flags:      splice modifier flags
903  * @actor:      handler that splices the data
904  *
905  * Description:
906  *    See __splice_from_pipe. This function locks the pipe inode,
907  *    otherwise it's identical to __splice_from_pipe().
908  *
909  */
910 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
911                          loff_t *ppos, size_t len, unsigned int flags,
912                          splice_actor *actor)
913 {
914         ssize_t ret;
915         struct splice_desc sd = {
916                 .total_len = len,
917                 .flags = flags,
918                 .pos = *ppos,
919                 .u.file = out,
920         };
921
922         pipe_lock(pipe);
923         ret = __splice_from_pipe(pipe, &sd, actor);
924         pipe_unlock(pipe);
925
926         return ret;
927 }
928
929 /**
930  * generic_file_splice_write - splice data from a pipe to a file
931  * @pipe:       pipe info
932  * @out:        file to write to
933  * @ppos:       position in @out
934  * @len:        number of bytes to splice
935  * @flags:      splice modifier flags
936  *
937  * Description:
938  *    Will either move or copy pages (determined by @flags options) from
939  *    the given pipe inode to the given file.
940  *
941  */
942 ssize_t
943 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
944                           loff_t *ppos, size_t len, unsigned int flags)
945 {
946         struct address_space *mapping = out->f_mapping;
947         struct inode *inode = mapping->host;
948         struct splice_desc sd = {
949                 .total_len = len,
950                 .flags = flags,
951                 .pos = *ppos,
952                 .u.file = out,
953         };
954         ssize_t ret;
955
956         pipe_lock(pipe);
957
958         splice_from_pipe_begin(&sd);
959         do {
960                 ret = splice_from_pipe_next(pipe, &sd);
961                 if (ret <= 0)
962                         break;
963
964                 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
965                 ret = file_remove_suid(out);
966                 if (!ret)
967                         ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file);
968                 mutex_unlock(&inode->i_mutex);
969         } while (ret > 0);
970         splice_from_pipe_end(pipe, &sd);
971
972         pipe_unlock(pipe);
973
974         if (sd.num_spliced)
975                 ret = sd.num_spliced;
976
977         if (ret > 0) {
978                 unsigned long nr_pages;
979
980                 *ppos += ret;
981                 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
982
983                 /*
984                  * If file or inode is SYNC and we actually wrote some data,
985                  * sync it.
986                  */
987                 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
988                         int err;
989
990                         mutex_lock(&inode->i_mutex);
991                         err = generic_osync_inode(inode, mapping,
992                                                   OSYNC_METADATA|OSYNC_DATA);
993                         mutex_unlock(&inode->i_mutex);
994
995                         if (err)
996                                 ret = err;
997                 }
998                 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
999         }
1000
1001         return ret;
1002 }
1003
1004 EXPORT_SYMBOL(generic_file_splice_write);
1005
1006 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1007                           struct splice_desc *sd)
1008 {
1009         int ret;
1010         void *data;
1011
1012         ret = buf->ops->confirm(pipe, buf);
1013         if (ret)
1014                 return ret;
1015
1016         data = buf->ops->map(pipe, buf, 0);
1017         ret = kernel_write(sd->u.file, data + buf->offset, sd->len, sd->pos);
1018         buf->ops->unmap(pipe, buf, data);
1019
1020         return ret;
1021 }
1022
1023 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1024                                          struct file *out, loff_t *ppos,
1025                                          size_t len, unsigned int flags)
1026 {
1027         ssize_t ret;
1028
1029         ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1030         if (ret > 0)
1031                 *ppos += ret;
1032
1033         return ret;
1034 }
1035
1036 /**
1037  * generic_splice_sendpage - splice data from a pipe to a socket
1038  * @pipe:       pipe to splice from
1039  * @out:        socket to write to
1040  * @ppos:       position in @out
1041  * @len:        number of bytes to splice
1042  * @flags:      splice modifier flags
1043  *
1044  * Description:
1045  *    Will send @len bytes from the pipe to a network socket. No data copying
1046  *    is involved.
1047  *
1048  */
1049 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1050                                 loff_t *ppos, size_t len, unsigned int flags)
1051 {
1052         return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1053 }
1054
1055 EXPORT_SYMBOL(generic_splice_sendpage);
1056
1057 /*
1058  * Attempt to initiate a splice from pipe to file.
1059  */
1060 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1061                            loff_t *ppos, size_t len, unsigned int flags)
1062 {
1063         ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1064                                 loff_t *, size_t, unsigned int);
1065         int ret;
1066
1067         if (unlikely(!(out->f_mode & FMODE_WRITE)))
1068                 return -EBADF;
1069
1070         if (unlikely(out->f_flags & O_APPEND))
1071                 return -EINVAL;
1072
1073         ret = rw_verify_area(WRITE, out, ppos, len);
1074         if (unlikely(ret < 0))
1075                 return ret;
1076
1077         splice_write = out->f_op->splice_write;
1078         if (!splice_write)
1079                 splice_write = default_file_splice_write;
1080
1081         return splice_write(pipe, out, ppos, len, flags);
1082 }
1083
1084 /*
1085  * Attempt to initiate a splice from a file to a pipe.
1086  */
1087 static long do_splice_to(struct file *in, loff_t *ppos,
1088                          struct pipe_inode_info *pipe, size_t len,
1089                          unsigned int flags)
1090 {
1091         ssize_t (*splice_read)(struct file *, loff_t *,
1092                                struct pipe_inode_info *, size_t, unsigned int);
1093         int ret;
1094
1095         if (unlikely(!(in->f_mode & FMODE_READ)))
1096                 return -EBADF;
1097
1098         ret = rw_verify_area(READ, in, ppos, len);
1099         if (unlikely(ret < 0))
1100                 return ret;
1101
1102         splice_read = in->f_op->splice_read;
1103         if (!splice_read)
1104                 splice_read = default_file_splice_read;
1105
1106         return splice_read(in, ppos, pipe, len, flags);
1107 }
1108
1109 /**
1110  * splice_direct_to_actor - splices data directly between two non-pipes
1111  * @in:         file to splice from
1112  * @sd:         actor information on where to splice to
1113  * @actor:      handles the data splicing
1114  *
1115  * Description:
1116  *    This is a special case helper to splice directly between two
1117  *    points, without requiring an explicit pipe. Internally an allocated
1118  *    pipe is cached in the process, and reused during the lifetime of
1119  *    that process.
1120  *
1121  */
1122 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1123                                splice_direct_actor *actor)
1124 {
1125         struct pipe_inode_info *pipe;
1126         long ret, bytes;
1127         umode_t i_mode;
1128         size_t len;
1129         int i, flags;
1130
1131         /*
1132          * We require the input being a regular file, as we don't want to
1133          * randomly drop data for eg socket -> socket splicing. Use the
1134          * piped splicing for that!
1135          */
1136         i_mode = in->f_path.dentry->d_inode->i_mode;
1137         if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1138                 return -EINVAL;
1139
1140         /*
1141          * neither in nor out is a pipe, setup an internal pipe attached to
1142          * 'out' and transfer the wanted data from 'in' to 'out' through that
1143          */
1144         pipe = current->splice_pipe;
1145         if (unlikely(!pipe)) {
1146                 pipe = alloc_pipe_info(NULL);
1147                 if (!pipe)
1148                         return -ENOMEM;
1149
1150                 /*
1151                  * We don't have an immediate reader, but we'll read the stuff
1152                  * out of the pipe right after the splice_to_pipe(). So set
1153                  * PIPE_READERS appropriately.
1154                  */
1155                 pipe->readers = 1;
1156
1157                 current->splice_pipe = pipe;
1158         }
1159
1160         /*
1161          * Do the splice.
1162          */
1163         ret = 0;
1164         bytes = 0;
1165         len = sd->total_len;
1166         flags = sd->flags;
1167
1168         /*
1169          * Don't block on output, we have to drain the direct pipe.
1170          */
1171         sd->flags &= ~SPLICE_F_NONBLOCK;
1172
1173         while (len) {
1174                 size_t read_len;
1175                 loff_t pos = sd->pos, prev_pos = pos;
1176
1177                 ret = do_splice_to(in, &pos, pipe, len, flags);
1178                 if (unlikely(ret <= 0))
1179                         goto out_release;
1180
1181                 read_len = ret;
1182                 sd->total_len = read_len;
1183
1184                 /*
1185                  * NOTE: nonblocking mode only applies to the input. We
1186                  * must not do the output in nonblocking mode as then we
1187                  * could get stuck data in the internal pipe:
1188                  */
1189                 ret = actor(pipe, sd);
1190                 if (unlikely(ret <= 0)) {
1191                         sd->pos = prev_pos;
1192                         goto out_release;
1193                 }
1194
1195                 bytes += ret;
1196                 len -= ret;
1197                 sd->pos = pos;
1198
1199                 if (ret < read_len) {
1200                         sd->pos = prev_pos + ret;
1201                         goto out_release;
1202                 }
1203         }
1204
1205 done:
1206         pipe->nrbufs = pipe->curbuf = 0;
1207         file_accessed(in);
1208         return bytes;
1209
1210 out_release:
1211         /*
1212          * If we did an incomplete transfer we must release
1213          * the pipe buffers in question:
1214          */
1215         for (i = 0; i < PIPE_BUFFERS; i++) {
1216                 struct pipe_buffer *buf = pipe->bufs + i;
1217
1218                 if (buf->ops) {
1219                         buf->ops->release(pipe, buf);
1220                         buf->ops = NULL;
1221                 }
1222         }
1223
1224         if (!bytes)
1225                 bytes = ret;
1226
1227         goto done;
1228 }
1229 EXPORT_SYMBOL(splice_direct_to_actor);
1230
1231 static int direct_splice_actor(struct pipe_inode_info *pipe,
1232                                struct splice_desc *sd)
1233 {
1234         struct file *file = sd->u.file;
1235
1236         return do_splice_from(pipe, file, &sd->pos, sd->total_len, sd->flags);
1237 }
1238
1239 /**
1240  * do_splice_direct - splices data directly between two files
1241  * @in:         file to splice from
1242  * @ppos:       input file offset
1243  * @out:        file to splice to
1244  * @len:        number of bytes to splice
1245  * @flags:      splice modifier flags
1246  *
1247  * Description:
1248  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1249  *    doing it in the application would incur an extra system call
1250  *    (splice in + splice out, as compared to just sendfile()). So this helper
1251  *    can splice directly through a process-private pipe.
1252  *
1253  */
1254 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1255                       size_t len, unsigned int flags)
1256 {
1257         struct splice_desc sd = {
1258                 .len            = len,
1259                 .total_len      = len,
1260                 .flags          = flags,
1261                 .pos            = *ppos,
1262                 .u.file         = out,
1263         };
1264         long ret;
1265
1266         ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1267         if (ret > 0)
1268                 *ppos = sd.pos;
1269
1270         return ret;
1271 }
1272
1273 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1274                                struct pipe_inode_info *opipe,
1275                                size_t len, unsigned int flags);
1276 /*
1277  * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1278  * location, so checking ->i_pipe is not enough to verify that this is a
1279  * pipe.
1280  */
1281 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1282 {
1283         if (S_ISFIFO(inode->i_mode))
1284                 return inode->i_pipe;
1285
1286         return NULL;
1287 }
1288
1289 /*
1290  * Determine where to splice to/from.
1291  */
1292 static long do_splice(struct file *in, loff_t __user *off_in,
1293                       struct file *out, loff_t __user *off_out,
1294                       size_t len, unsigned int flags)
1295 {
1296         struct pipe_inode_info *ipipe;
1297         struct pipe_inode_info *opipe;
1298         loff_t offset, *off;
1299         long ret;
1300
1301         ipipe = pipe_info(in->f_path.dentry->d_inode);
1302         opipe = pipe_info(out->f_path.dentry->d_inode);
1303
1304         if (ipipe && opipe) {
1305                 if (off_in || off_out)
1306                         return -ESPIPE;
1307
1308                 if (!(in->f_mode & FMODE_READ))
1309                         return -EBADF;
1310
1311                 if (!(out->f_mode & FMODE_WRITE))
1312                         return -EBADF;
1313
1314                 /* Splicing to self would be fun, but... */
1315                 if (ipipe == opipe)
1316                         return -EINVAL;
1317
1318                 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1319         }
1320
1321         if (ipipe) {
1322                 if (off_in)
1323                         return -ESPIPE;
1324                 if (off_out) {
1325                         if (out->f_op->llseek == no_llseek)
1326                                 return -EINVAL;
1327                         if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1328                                 return -EFAULT;
1329                         off = &offset;
1330                 } else
1331                         off = &out->f_pos;
1332
1333                 ret = do_splice_from(ipipe, out, off, len, flags);
1334
1335                 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1336                         ret = -EFAULT;
1337
1338                 return ret;
1339         }
1340
1341         if (opipe) {
1342                 if (off_out)
1343                         return -ESPIPE;
1344                 if (off_in) {
1345                         if (in->f_op->llseek == no_llseek)
1346                                 return -EINVAL;
1347                         if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1348                                 return -EFAULT;
1349                         off = &offset;
1350                 } else
1351                         off = &in->f_pos;
1352
1353                 ret = do_splice_to(in, off, opipe, len, flags);
1354
1355                 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1356                         ret = -EFAULT;
1357
1358                 return ret;
1359         }
1360
1361         return -EINVAL;
1362 }
1363
1364 /*
1365  * Map an iov into an array of pages and offset/length tupples. With the
1366  * partial_page structure, we can map several non-contiguous ranges into
1367  * our ones pages[] map instead of splitting that operation into pieces.
1368  * Could easily be exported as a generic helper for other users, in which
1369  * case one would probably want to add a 'max_nr_pages' parameter as well.
1370  */
1371 static int get_iovec_page_array(const struct iovec __user *iov,
1372                                 unsigned int nr_vecs, struct page **pages,
1373                                 struct partial_page *partial, int aligned)
1374 {
1375         int buffers = 0, error = 0;
1376
1377         while (nr_vecs) {
1378                 unsigned long off, npages;
1379                 struct iovec entry;
1380                 void __user *base;
1381                 size_t len;
1382                 int i;
1383
1384                 error = -EFAULT;
1385                 if (copy_from_user(&entry, iov, sizeof(entry)))
1386                         break;
1387
1388                 base = entry.iov_base;
1389                 len = entry.iov_len;
1390
1391                 /*
1392                  * Sanity check this iovec. 0 read succeeds.
1393                  */
1394                 error = 0;
1395                 if (unlikely(!len))
1396                         break;
1397                 error = -EFAULT;
1398                 if (!access_ok(VERIFY_READ, base, len))
1399                         break;
1400
1401                 /*
1402                  * Get this base offset and number of pages, then map
1403                  * in the user pages.
1404                  */
1405                 off = (unsigned long) base & ~PAGE_MASK;
1406
1407                 /*
1408                  * If asked for alignment, the offset must be zero and the
1409                  * length a multiple of the PAGE_SIZE.
1410                  */
1411                 error = -EINVAL;
1412                 if (aligned && (off || len & ~PAGE_MASK))
1413                         break;
1414
1415                 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1416                 if (npages > PIPE_BUFFERS - buffers)
1417                         npages = PIPE_BUFFERS - buffers;
1418
1419                 error = get_user_pages_fast((unsigned long)base, npages,
1420                                         0, &pages[buffers]);
1421
1422                 if (unlikely(error <= 0))
1423                         break;
1424
1425                 /*
1426                  * Fill this contiguous range into the partial page map.
1427                  */
1428                 for (i = 0; i < error; i++) {
1429                         const int plen = min_t(size_t, len, PAGE_SIZE - off);
1430
1431                         partial[buffers].offset = off;
1432                         partial[buffers].len = plen;
1433
1434                         off = 0;
1435                         len -= plen;
1436                         buffers++;
1437                 }
1438
1439                 /*
1440                  * We didn't complete this iov, stop here since it probably
1441                  * means we have to move some of this into a pipe to
1442                  * be able to continue.
1443                  */
1444                 if (len)
1445                         break;
1446
1447                 /*
1448                  * Don't continue if we mapped fewer pages than we asked for,
1449                  * or if we mapped the max number of pages that we have
1450                  * room for.
1451                  */
1452                 if (error < npages || buffers == PIPE_BUFFERS)
1453                         break;
1454
1455                 nr_vecs--;
1456                 iov++;
1457         }
1458
1459         if (buffers)
1460                 return buffers;
1461
1462         return error;
1463 }
1464
1465 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1466                         struct splice_desc *sd)
1467 {
1468         char *src;
1469         int ret;
1470
1471         ret = buf->ops->confirm(pipe, buf);
1472         if (unlikely(ret))
1473                 return ret;
1474
1475         /*
1476          * See if we can use the atomic maps, by prefaulting in the
1477          * pages and doing an atomic copy
1478          */
1479         if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1480                 src = buf->ops->map(pipe, buf, 1);
1481                 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1482                                                         sd->len);
1483                 buf->ops->unmap(pipe, buf, src);
1484                 if (!ret) {
1485                         ret = sd->len;
1486                         goto out;
1487                 }
1488         }
1489
1490         /*
1491          * No dice, use slow non-atomic map and copy
1492          */
1493         src = buf->ops->map(pipe, buf, 0);
1494
1495         ret = sd->len;
1496         if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1497                 ret = -EFAULT;
1498
1499         buf->ops->unmap(pipe, buf, src);
1500 out:
1501         if (ret > 0)
1502                 sd->u.userptr += ret;
1503         return ret;
1504 }
1505
1506 /*
1507  * For lack of a better implementation, implement vmsplice() to userspace
1508  * as a simple copy of the pipes pages to the user iov.
1509  */
1510 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1511                              unsigned long nr_segs, unsigned int flags)
1512 {
1513         struct pipe_inode_info *pipe;
1514         struct splice_desc sd;
1515         ssize_t size;
1516         int error;
1517         long ret;
1518
1519         pipe = pipe_info(file->f_path.dentry->d_inode);
1520         if (!pipe)
1521                 return -EBADF;
1522
1523         pipe_lock(pipe);
1524
1525         error = ret = 0;
1526         while (nr_segs) {
1527                 void __user *base;
1528                 size_t len;
1529
1530                 /*
1531                  * Get user address base and length for this iovec.
1532                  */
1533                 error = get_user(base, &iov->iov_base);
1534                 if (unlikely(error))
1535                         break;
1536                 error = get_user(len, &iov->iov_len);
1537                 if (unlikely(error))
1538                         break;
1539
1540                 /*
1541                  * Sanity check this iovec. 0 read succeeds.
1542                  */
1543                 if (unlikely(!len))
1544                         break;
1545                 if (unlikely(!base)) {
1546                         error = -EFAULT;
1547                         break;
1548                 }
1549
1550                 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1551                         error = -EFAULT;
1552                         break;
1553                 }
1554
1555                 sd.len = 0;
1556                 sd.total_len = len;
1557                 sd.flags = flags;
1558                 sd.u.userptr = base;
1559                 sd.pos = 0;
1560
1561                 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1562                 if (size < 0) {
1563                         if (!ret)
1564                                 ret = size;
1565
1566                         break;
1567                 }
1568
1569                 ret += size;
1570
1571                 if (size < len)
1572                         break;
1573
1574                 nr_segs--;
1575                 iov++;
1576         }
1577
1578         pipe_unlock(pipe);
1579
1580         if (!ret)
1581                 ret = error;
1582
1583         return ret;
1584 }
1585
1586 /*
1587  * vmsplice splices a user address range into a pipe. It can be thought of
1588  * as splice-from-memory, where the regular splice is splice-from-file (or
1589  * to file). In both cases the output is a pipe, naturally.
1590  */
1591 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1592                              unsigned long nr_segs, unsigned int flags)
1593 {
1594         struct pipe_inode_info *pipe;
1595         struct page *pages[PIPE_BUFFERS];
1596         struct partial_page partial[PIPE_BUFFERS];
1597         struct splice_pipe_desc spd = {
1598                 .pages = pages,
1599                 .partial = partial,
1600                 .flags = flags,
1601                 .ops = &user_page_pipe_buf_ops,
1602                 .spd_release = spd_release_page,
1603         };
1604
1605         pipe = pipe_info(file->f_path.dentry->d_inode);
1606         if (!pipe)
1607                 return -EBADF;
1608
1609         spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1610                                             flags & SPLICE_F_GIFT);
1611         if (spd.nr_pages <= 0)
1612                 return spd.nr_pages;
1613
1614         return splice_to_pipe(pipe, &spd);
1615 }
1616
1617 /*
1618  * Note that vmsplice only really supports true splicing _from_ user memory
1619  * to a pipe, not the other way around. Splicing from user memory is a simple
1620  * operation that can be supported without any funky alignment restrictions
1621  * or nasty vm tricks. We simply map in the user memory and fill them into
1622  * a pipe. The reverse isn't quite as easy, though. There are two possible
1623  * solutions for that:
1624  *
1625  *      - memcpy() the data internally, at which point we might as well just
1626  *        do a regular read() on the buffer anyway.
1627  *      - Lots of nasty vm tricks, that are neither fast nor flexible (it
1628  *        has restriction limitations on both ends of the pipe).
1629  *
1630  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1631  *
1632  */
1633 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1634                 unsigned long, nr_segs, unsigned int, flags)
1635 {
1636         struct file *file;
1637         long error;
1638         int fput;
1639
1640         if (unlikely(nr_segs > UIO_MAXIOV))
1641                 return -EINVAL;
1642         else if (unlikely(!nr_segs))
1643                 return 0;
1644
1645         error = -EBADF;
1646         file = fget_light(fd, &fput);
1647         if (file) {
1648                 if (file->f_mode & FMODE_WRITE)
1649                         error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1650                 else if (file->f_mode & FMODE_READ)
1651                         error = vmsplice_to_user(file, iov, nr_segs, flags);
1652
1653                 fput_light(file, fput);
1654         }
1655
1656         return error;
1657 }
1658
1659 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1660                 int, fd_out, loff_t __user *, off_out,
1661                 size_t, len, unsigned int, flags)
1662 {
1663         long error;
1664         struct file *in, *out;
1665         int fput_in, fput_out;
1666
1667         if (unlikely(!len))
1668                 return 0;
1669
1670         error = -EBADF;
1671         in = fget_light(fd_in, &fput_in);
1672         if (in) {
1673                 if (in->f_mode & FMODE_READ) {
1674                         out = fget_light(fd_out, &fput_out);
1675                         if (out) {
1676                                 if (out->f_mode & FMODE_WRITE)
1677                                         error = do_splice(in, off_in,
1678                                                           out, off_out,
1679                                                           len, flags);
1680                                 fput_light(out, fput_out);
1681                         }
1682                 }
1683
1684                 fput_light(in, fput_in);
1685         }
1686
1687         return error;
1688 }
1689
1690 /*
1691  * Make sure there's data to read. Wait for input if we can, otherwise
1692  * return an appropriate error.
1693  */
1694 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1695 {
1696         int ret;
1697
1698         /*
1699          * Check ->nrbufs without the inode lock first. This function
1700          * is speculative anyways, so missing one is ok.
1701          */
1702         if (pipe->nrbufs)
1703                 return 0;
1704
1705         ret = 0;
1706         pipe_lock(pipe);
1707
1708         while (!pipe->nrbufs) {
1709                 if (signal_pending(current)) {
1710                         ret = -ERESTARTSYS;
1711                         break;
1712                 }
1713                 if (!pipe->writers)
1714                         break;
1715                 if (!pipe->waiting_writers) {
1716                         if (flags & SPLICE_F_NONBLOCK) {
1717                                 ret = -EAGAIN;
1718                                 break;
1719                         }
1720                 }
1721                 pipe_wait(pipe);
1722         }
1723
1724         pipe_unlock(pipe);
1725         return ret;
1726 }
1727
1728 /*
1729  * Make sure there's writeable room. Wait for room if we can, otherwise
1730  * return an appropriate error.
1731  */
1732 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1733 {
1734         int ret;
1735
1736         /*
1737          * Check ->nrbufs without the inode lock first. This function
1738          * is speculative anyways, so missing one is ok.
1739          */
1740         if (pipe->nrbufs < PIPE_BUFFERS)
1741                 return 0;
1742
1743         ret = 0;
1744         pipe_lock(pipe);
1745
1746         while (pipe->nrbufs >= PIPE_BUFFERS) {
1747                 if (!pipe->readers) {
1748                         send_sig(SIGPIPE, current, 0);
1749                         ret = -EPIPE;
1750                         break;
1751                 }
1752                 if (flags & SPLICE_F_NONBLOCK) {
1753                         ret = -EAGAIN;
1754                         break;
1755                 }
1756                 if (signal_pending(current)) {
1757                         ret = -ERESTARTSYS;
1758                         break;
1759                 }
1760                 pipe->waiting_writers++;
1761                 pipe_wait(pipe);
1762                 pipe->waiting_writers--;
1763         }
1764
1765         pipe_unlock(pipe);
1766         return ret;
1767 }
1768
1769 /*
1770  * Splice contents of ipipe to opipe.
1771  */
1772 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1773                                struct pipe_inode_info *opipe,
1774                                size_t len, unsigned int flags)
1775 {
1776         struct pipe_buffer *ibuf, *obuf;
1777         int ret = 0, nbuf;
1778         bool input_wakeup = false;
1779
1780
1781 retry:
1782         ret = ipipe_prep(ipipe, flags);
1783         if (ret)
1784                 return ret;
1785
1786         ret = opipe_prep(opipe, flags);
1787         if (ret)
1788                 return ret;
1789
1790         /*
1791          * Potential ABBA deadlock, work around it by ordering lock
1792          * grabbing by pipe info address. Otherwise two different processes
1793          * could deadlock (one doing tee from A -> B, the other from B -> A).
1794          */
1795         pipe_double_lock(ipipe, opipe);
1796
1797         do {
1798                 if (!opipe->readers) {
1799                         send_sig(SIGPIPE, current, 0);
1800                         if (!ret)
1801                                 ret = -EPIPE;
1802                         break;
1803                 }
1804
1805                 if (!ipipe->nrbufs && !ipipe->writers)
1806                         break;
1807
1808                 /*
1809                  * Cannot make any progress, because either the input
1810                  * pipe is empty or the output pipe is full.
1811                  */
1812                 if (!ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS) {
1813                         /* Already processed some buffers, break */
1814                         if (ret)
1815                                 break;
1816
1817                         if (flags & SPLICE_F_NONBLOCK) {
1818                                 ret = -EAGAIN;
1819                                 break;
1820                         }
1821
1822                         /*
1823                          * We raced with another reader/writer and haven't
1824                          * managed to process any buffers.  A zero return
1825                          * value means EOF, so retry instead.
1826                          */
1827                         pipe_unlock(ipipe);
1828                         pipe_unlock(opipe);
1829                         goto retry;
1830                 }
1831
1832                 ibuf = ipipe->bufs + ipipe->curbuf;
1833                 nbuf = (opipe->curbuf + opipe->nrbufs) % PIPE_BUFFERS;
1834                 obuf = opipe->bufs + nbuf;
1835
1836                 if (len >= ibuf->len) {
1837                         /*
1838                          * Simply move the whole buffer from ipipe to opipe
1839                          */
1840                         *obuf = *ibuf;
1841                         ibuf->ops = NULL;
1842                         opipe->nrbufs++;
1843                         ipipe->curbuf = (ipipe->curbuf + 1) % PIPE_BUFFERS;
1844                         ipipe->nrbufs--;
1845                         input_wakeup = true;
1846                 } else {
1847                         /*
1848                          * Get a reference to this pipe buffer,
1849                          * so we can copy the contents over.
1850                          */
1851                         ibuf->ops->get(ipipe, ibuf);
1852                         *obuf = *ibuf;
1853
1854                         /*
1855                          * Don't inherit the gift flag, we need to
1856                          * prevent multiple steals of this page.
1857                          */
1858                         obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1859
1860                         obuf->len = len;
1861                         opipe->nrbufs++;
1862                         ibuf->offset += obuf->len;
1863                         ibuf->len -= obuf->len;
1864                 }
1865                 ret += obuf->len;
1866                 len -= obuf->len;
1867         } while (len);
1868
1869         pipe_unlock(ipipe);
1870         pipe_unlock(opipe);
1871
1872         /*
1873          * If we put data in the output pipe, wakeup any potential readers.
1874          */
1875         if (ret > 0) {
1876                 smp_mb();
1877                 if (waitqueue_active(&opipe->wait))
1878                         wake_up_interruptible(&opipe->wait);
1879                 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1880         }
1881         if (input_wakeup)
1882                 wakeup_pipe_writers(ipipe);
1883
1884         return ret;
1885 }
1886
1887 /*
1888  * Link contents of ipipe to opipe.
1889  */
1890 static int link_pipe(struct pipe_inode_info *ipipe,
1891                      struct pipe_inode_info *opipe,
1892                      size_t len, unsigned int flags)
1893 {
1894         struct pipe_buffer *ibuf, *obuf;
1895         int ret = 0, i = 0, nbuf;
1896
1897         /*
1898          * Potential ABBA deadlock, work around it by ordering lock
1899          * grabbing by pipe info address. Otherwise two different processes
1900          * could deadlock (one doing tee from A -> B, the other from B -> A).
1901          */
1902         pipe_double_lock(ipipe, opipe);
1903
1904         do {
1905                 if (!opipe->readers) {
1906                         send_sig(SIGPIPE, current, 0);
1907                         if (!ret)
1908                                 ret = -EPIPE;
1909                         break;
1910                 }
1911
1912                 /*
1913                  * If we have iterated all input buffers or ran out of
1914                  * output room, break.
1915                  */
1916                 if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
1917                         break;
1918
1919                 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1920                 nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1921
1922                 /*
1923                  * Get a reference to this pipe buffer,
1924                  * so we can copy the contents over.
1925                  */
1926                 ibuf->ops->get(ipipe, ibuf);
1927
1928                 obuf = opipe->bufs + nbuf;
1929                 *obuf = *ibuf;
1930
1931                 /*
1932                  * Don't inherit the gift flag, we need to
1933                  * prevent multiple steals of this page.
1934                  */
1935                 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1936
1937                 if (obuf->len > len)
1938                         obuf->len = len;
1939
1940                 opipe->nrbufs++;
1941                 ret += obuf->len;
1942                 len -= obuf->len;
1943                 i++;
1944         } while (len);
1945
1946         /*
1947          * return EAGAIN if we have the potential of some data in the
1948          * future, otherwise just return 0
1949          */
1950         if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1951                 ret = -EAGAIN;
1952
1953         pipe_unlock(ipipe);
1954         pipe_unlock(opipe);
1955
1956         /*
1957          * If we put data in the output pipe, wakeup any potential readers.
1958          */
1959         if (ret > 0) {
1960                 smp_mb();
1961                 if (waitqueue_active(&opipe->wait))
1962                         wake_up_interruptible(&opipe->wait);
1963                 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1964         }
1965
1966         return ret;
1967 }
1968
1969 /*
1970  * This is a tee(1) implementation that works on pipes. It doesn't copy
1971  * any data, it simply references the 'in' pages on the 'out' pipe.
1972  * The 'flags' used are the SPLICE_F_* variants, currently the only
1973  * applicable one is SPLICE_F_NONBLOCK.
1974  */
1975 static long do_tee(struct file *in, struct file *out, size_t len,
1976                    unsigned int flags)
1977 {
1978         struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
1979         struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
1980         int ret = -EINVAL;
1981
1982         /*
1983          * Duplicate the contents of ipipe to opipe without actually
1984          * copying the data.
1985          */
1986         if (ipipe && opipe && ipipe != opipe) {
1987                 /*
1988                  * Keep going, unless we encounter an error. The ipipe/opipe
1989                  * ordering doesn't really matter.
1990                  */
1991                 ret = ipipe_prep(ipipe, flags);
1992                 if (!ret) {
1993                         ret = opipe_prep(opipe, flags);
1994                         if (!ret)
1995                                 ret = link_pipe(ipipe, opipe, len, flags);
1996                 }
1997         }
1998
1999         return ret;
2000 }
2001
2002 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2003 {
2004         struct file *in;
2005         int error, fput_in;
2006
2007         if (unlikely(!len))
2008                 return 0;
2009
2010         error = -EBADF;
2011         in = fget_light(fdin, &fput_in);
2012         if (in) {
2013                 if (in->f_mode & FMODE_READ) {
2014                         int fput_out;
2015                         struct file *out = fget_light(fdout, &fput_out);
2016
2017                         if (out) {
2018                                 if (out->f_mode & FMODE_WRITE)
2019                                         error = do_tee(in, out, len, flags);
2020                                 fput_light(out, fput_out);
2021                         }
2022                 }
2023                 fput_light(in, fput_in);
2024         }
2025
2026         return error;
2027 }