4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * #!-checking implemented by tytso.
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/proc_fs.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
56 #include <asm/uaccess.h>
57 #include <asm/mmu_context.h>
62 char core_pattern[CORENAME_MAX_SIZE] = "core";
63 int suid_dumpable = 0;
65 /* The maximal length of core_pattern is also specified in sysctl.c */
67 static LIST_HEAD(formats);
68 static DEFINE_RWLOCK(binfmt_lock);
70 int register_binfmt(struct linux_binfmt * fmt)
74 write_lock(&binfmt_lock);
75 list_add(&fmt->lh, &formats);
76 write_unlock(&binfmt_lock);
80 EXPORT_SYMBOL(register_binfmt);
82 void unregister_binfmt(struct linux_binfmt * fmt)
84 write_lock(&binfmt_lock);
86 write_unlock(&binfmt_lock);
89 EXPORT_SYMBOL(unregister_binfmt);
91 static inline void put_binfmt(struct linux_binfmt * fmt)
93 module_put(fmt->module);
97 * Note that a shared library must be both readable and executable due to
100 * Also note that we take the address to load from from the file itself.
102 asmlinkage long sys_uselib(const char __user * library)
106 char *tmp = getname(library);
107 int error = PTR_ERR(tmp);
110 error = path_lookup_open(AT_FDCWD, tmp,
112 FMODE_READ|FMODE_EXEC);
119 if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
123 if (nd.path.mnt->mnt_flags & MNT_NOEXEC)
126 error = inode_permission(nd.path.dentry->d_inode,
127 MAY_READ | MAY_EXEC | MAY_OPEN);
131 file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
132 error = PTR_ERR(file);
136 fsnotify_open(file->f_path.dentry);
140 struct linux_binfmt * fmt;
142 read_lock(&binfmt_lock);
143 list_for_each_entry(fmt, &formats, lh) {
144 if (!fmt->load_shlib)
146 if (!try_module_get(fmt->module))
148 read_unlock(&binfmt_lock);
149 error = fmt->load_shlib(file);
150 read_lock(&binfmt_lock);
152 if (error != -ENOEXEC)
155 read_unlock(&binfmt_lock);
161 release_open_intent(&nd);
168 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
174 #ifdef CONFIG_STACK_GROWSUP
176 ret = expand_stack_downwards(bprm->vma, pos);
181 ret = get_user_pages(current, bprm->mm, pos,
182 1, write, 1, &page, NULL);
187 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
191 * We've historically supported up to 32 pages (ARG_MAX)
192 * of argument strings even with small stacks
198 * Limit to 1/4-th the stack size for the argv+env strings.
200 * - the remaining binfmt code will not run out of stack space,
201 * - the program will have a reasonable amount of stack left
204 rlim = current->signal->rlim;
205 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
214 static void put_arg_page(struct page *page)
219 static void free_arg_page(struct linux_binprm *bprm, int i)
223 static void free_arg_pages(struct linux_binprm *bprm)
227 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
230 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
233 static int __bprm_mm_init(struct linux_binprm *bprm)
236 struct vm_area_struct *vma = NULL;
237 struct mm_struct *mm = bprm->mm;
239 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
243 down_write(&mm->mmap_sem);
247 * Place the stack at the largest stack address the architecture
248 * supports. Later, we'll move this to an appropriate place. We don't
249 * use STACK_TOP because that can depend on attributes which aren't
252 vma->vm_end = STACK_TOP_MAX;
253 vma->vm_start = vma->vm_end - PAGE_SIZE;
254 vma->vm_flags = VM_STACK_FLAGS;
255 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
256 err = insert_vm_struct(mm, vma);
260 mm->stack_vm = mm->total_vm = 1;
261 up_write(&mm->mmap_sem);
262 bprm->p = vma->vm_end - sizeof(void *);
265 up_write(&mm->mmap_sem);
267 kmem_cache_free(vm_area_cachep, vma);
271 static bool valid_arg_len(struct linux_binprm *bprm, long len)
273 return len <= MAX_ARG_STRLEN;
278 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
283 page = bprm->page[pos / PAGE_SIZE];
284 if (!page && write) {
285 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
288 bprm->page[pos / PAGE_SIZE] = page;
294 static void put_arg_page(struct page *page)
298 static void free_arg_page(struct linux_binprm *bprm, int i)
301 __free_page(bprm->page[i]);
302 bprm->page[i] = NULL;
306 static void free_arg_pages(struct linux_binprm *bprm)
310 for (i = 0; i < MAX_ARG_PAGES; i++)
311 free_arg_page(bprm, i);
314 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
319 static int __bprm_mm_init(struct linux_binprm *bprm)
321 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
325 static bool valid_arg_len(struct linux_binprm *bprm, long len)
327 return len <= bprm->p;
330 #endif /* CONFIG_MMU */
333 * Create a new mm_struct and populate it with a temporary stack
334 * vm_area_struct. We don't have enough context at this point to set the stack
335 * flags, permissions, and offset, so we use temporary values. We'll update
336 * them later in setup_arg_pages().
338 int bprm_mm_init(struct linux_binprm *bprm)
341 struct mm_struct *mm = NULL;
343 bprm->mm = mm = mm_alloc();
348 err = init_new_context(current, mm);
352 err = __bprm_mm_init(bprm);
368 * count() counts the number of strings in array ARGV.
370 static int count(char __user * __user * argv, int max)
378 if (get_user(p, argv))
392 * 'copy_strings()' copies argument/environment strings from the old
393 * processes's memory to the new process's stack. The call to get_user_pages()
394 * ensures the destination page is created and not swapped out.
396 static int copy_strings(int argc, char __user * __user * argv,
397 struct linux_binprm *bprm)
399 struct page *kmapped_page = NULL;
401 unsigned long kpos = 0;
409 if (get_user(str, argv+argc) ||
410 !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
415 if (!valid_arg_len(bprm, len)) {
420 /* We're going to work our way backwords. */
426 int offset, bytes_to_copy;
428 offset = pos % PAGE_SIZE;
432 bytes_to_copy = offset;
433 if (bytes_to_copy > len)
436 offset -= bytes_to_copy;
437 pos -= bytes_to_copy;
438 str -= bytes_to_copy;
439 len -= bytes_to_copy;
441 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
444 page = get_arg_page(bprm, pos, 1);
451 flush_kernel_dcache_page(kmapped_page);
452 kunmap(kmapped_page);
453 put_arg_page(kmapped_page);
456 kaddr = kmap(kmapped_page);
457 kpos = pos & PAGE_MASK;
458 flush_arg_page(bprm, kpos, kmapped_page);
460 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
469 flush_kernel_dcache_page(kmapped_page);
470 kunmap(kmapped_page);
471 put_arg_page(kmapped_page);
477 * Like copy_strings, but get argv and its values from kernel memory.
479 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
482 mm_segment_t oldfs = get_fs();
484 r = copy_strings(argc, (char __user * __user *)argv, bprm);
488 EXPORT_SYMBOL(copy_strings_kernel);
493 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
494 * the binfmt code determines where the new stack should reside, we shift it to
495 * its final location. The process proceeds as follows:
497 * 1) Use shift to calculate the new vma endpoints.
498 * 2) Extend vma to cover both the old and new ranges. This ensures the
499 * arguments passed to subsequent functions are consistent.
500 * 3) Move vma's page tables to the new range.
501 * 4) Free up any cleared pgd range.
502 * 5) Shrink the vma to cover only the new range.
504 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
506 struct mm_struct *mm = vma->vm_mm;
507 unsigned long old_start = vma->vm_start;
508 unsigned long old_end = vma->vm_end;
509 unsigned long length = old_end - old_start;
510 unsigned long new_start = old_start - shift;
511 unsigned long new_end = old_end - shift;
512 struct mmu_gather *tlb;
514 BUG_ON(new_start > new_end);
517 * ensure there are no vmas between where we want to go
520 if (vma != find_vma(mm, new_start))
524 * cover the whole range: [new_start, old_end)
526 vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
529 * move the page tables downwards, on failure we rely on
530 * process cleanup to remove whatever mess we made.
532 if (length != move_page_tables(vma, old_start,
533 vma, new_start, length))
537 tlb = tlb_gather_mmu(mm, 0);
538 if (new_end > old_start) {
540 * when the old and new regions overlap clear from new_end.
542 free_pgd_range(tlb, new_end, old_end, new_end,
543 vma->vm_next ? vma->vm_next->vm_start : 0);
546 * otherwise, clean from old_start; this is done to not touch
547 * the address space in [new_end, old_start) some architectures
548 * have constraints on va-space that make this illegal (IA64) -
549 * for the others its just a little faster.
551 free_pgd_range(tlb, old_start, old_end, new_end,
552 vma->vm_next ? vma->vm_next->vm_start : 0);
554 tlb_finish_mmu(tlb, new_end, old_end);
557 * shrink the vma to just the new range.
559 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
564 #define EXTRA_STACK_VM_PAGES 20 /* random */
567 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
568 * the stack is optionally relocated, and some extra space is added.
570 int setup_arg_pages(struct linux_binprm *bprm,
571 unsigned long stack_top,
572 int executable_stack)
575 unsigned long stack_shift;
576 struct mm_struct *mm = current->mm;
577 struct vm_area_struct *vma = bprm->vma;
578 struct vm_area_struct *prev = NULL;
579 unsigned long vm_flags;
580 unsigned long stack_base;
582 #ifdef CONFIG_STACK_GROWSUP
583 /* Limit stack size to 1GB */
584 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
585 if (stack_base > (1 << 30))
586 stack_base = 1 << 30;
588 /* Make sure we didn't let the argument array grow too large. */
589 if (vma->vm_end - vma->vm_start > stack_base)
592 stack_base = PAGE_ALIGN(stack_top - stack_base);
594 stack_shift = vma->vm_start - stack_base;
595 mm->arg_start = bprm->p - stack_shift;
596 bprm->p = vma->vm_end - stack_shift;
598 stack_top = arch_align_stack(stack_top);
599 stack_top = PAGE_ALIGN(stack_top);
600 stack_shift = vma->vm_end - stack_top;
602 bprm->p -= stack_shift;
603 mm->arg_start = bprm->p;
607 bprm->loader -= stack_shift;
608 bprm->exec -= stack_shift;
610 down_write(&mm->mmap_sem);
611 vm_flags = VM_STACK_FLAGS;
614 * Adjust stack execute permissions; explicitly enable for
615 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
616 * (arch default) otherwise.
618 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
620 else if (executable_stack == EXSTACK_DISABLE_X)
621 vm_flags &= ~VM_EXEC;
622 vm_flags |= mm->def_flags;
624 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
630 /* Move stack pages down in memory. */
632 ret = shift_arg_pages(vma, stack_shift);
634 up_write(&mm->mmap_sem);
639 #ifdef CONFIG_STACK_GROWSUP
640 stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
642 stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
644 ret = expand_stack(vma, stack_base);
649 up_write(&mm->mmap_sem);
652 EXPORT_SYMBOL(setup_arg_pages);
654 #endif /* CONFIG_MMU */
656 struct file *open_exec(const char *name)
662 err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd,
663 FMODE_READ|FMODE_EXEC);
668 if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
671 if (nd.path.mnt->mnt_flags & MNT_NOEXEC)
674 err = inode_permission(nd.path.dentry->d_inode, MAY_EXEC | MAY_OPEN);
678 file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
682 fsnotify_open(file->f_path.dentry);
684 err = deny_write_access(file);
693 release_open_intent(&nd);
698 EXPORT_SYMBOL(open_exec);
700 int kernel_read(struct file *file, unsigned long offset,
701 char *addr, unsigned long count)
709 /* The cast to a user pointer is valid due to the set_fs() */
710 result = vfs_read(file, (void __user *)addr, count, &pos);
715 EXPORT_SYMBOL(kernel_read);
717 static int exec_mmap(struct mm_struct *mm)
719 struct task_struct *tsk;
720 struct mm_struct * old_mm, *active_mm;
722 /* Notify parent that we're no longer interested in the old VM */
724 old_mm = current->mm;
725 mm_release(tsk, old_mm);
729 * Make sure that if there is a core dump in progress
730 * for the old mm, we get out and die instead of going
731 * through with the exec. We must hold mmap_sem around
732 * checking core_state and changing tsk->mm.
734 down_read(&old_mm->mmap_sem);
735 if (unlikely(old_mm->core_state)) {
736 up_read(&old_mm->mmap_sem);
741 active_mm = tsk->active_mm;
744 activate_mm(active_mm, mm);
746 arch_pick_mmap_layout(mm);
748 up_read(&old_mm->mmap_sem);
749 BUG_ON(active_mm != old_mm);
750 mm_update_next_owner(old_mm);
759 * This function makes sure the current process has its own signal table,
760 * so that flush_signal_handlers can later reset the handlers without
761 * disturbing other processes. (Other processes might share the signal
762 * table via the CLONE_SIGHAND option to clone().)
764 static int de_thread(struct task_struct *tsk)
766 struct signal_struct *sig = tsk->signal;
767 struct sighand_struct *oldsighand = tsk->sighand;
768 spinlock_t *lock = &oldsighand->siglock;
771 if (thread_group_empty(tsk))
772 goto no_thread_group;
775 * Kill all other threads in the thread group.
778 if (signal_group_exit(sig)) {
780 * Another group action in progress, just
781 * return so that the signal is processed.
783 spin_unlock_irq(lock);
786 sig->group_exit_task = tsk;
787 zap_other_threads(tsk);
789 /* Account for the thread group leader hanging around: */
790 count = thread_group_leader(tsk) ? 1 : 2;
791 sig->notify_count = count;
792 while (atomic_read(&sig->count) > count) {
793 __set_current_state(TASK_UNINTERRUPTIBLE);
794 spin_unlock_irq(lock);
798 spin_unlock_irq(lock);
801 * At this point all other threads have exited, all we have to
802 * do is to wait for the thread group leader to become inactive,
803 * and to assume its PID:
805 if (!thread_group_leader(tsk)) {
806 struct task_struct *leader = tsk->group_leader;
808 sig->notify_count = -1; /* for exit_notify() */
810 write_lock_irq(&tasklist_lock);
811 if (likely(leader->exit_state))
813 __set_current_state(TASK_UNINTERRUPTIBLE);
814 write_unlock_irq(&tasklist_lock);
819 * The only record we have of the real-time age of a
820 * process, regardless of execs it's done, is start_time.
821 * All the past CPU time is accumulated in signal_struct
822 * from sister threads now dead. But in this non-leader
823 * exec, nothing survives from the original leader thread,
824 * whose birth marks the true age of this process now.
825 * When we take on its identity by switching to its PID, we
826 * also take its birthdate (always earlier than our own).
828 tsk->start_time = leader->start_time;
830 BUG_ON(!same_thread_group(leader, tsk));
831 BUG_ON(has_group_leader_pid(tsk));
833 * An exec() starts a new thread group with the
834 * TGID of the previous thread group. Rehash the
835 * two threads with a switched PID, and release
836 * the former thread group leader:
839 /* Become a process group leader with the old leader's pid.
840 * The old leader becomes a thread of the this thread group.
841 * Note: The old leader also uses this pid until release_task
842 * is called. Odd but simple and correct.
844 detach_pid(tsk, PIDTYPE_PID);
845 tsk->pid = leader->pid;
846 attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
847 transfer_pid(leader, tsk, PIDTYPE_PGID);
848 transfer_pid(leader, tsk, PIDTYPE_SID);
849 list_replace_rcu(&leader->tasks, &tsk->tasks);
851 tsk->group_leader = tsk;
852 leader->group_leader = tsk;
854 tsk->exit_signal = SIGCHLD;
856 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
857 leader->exit_state = EXIT_DEAD;
858 write_unlock_irq(&tasklist_lock);
860 release_task(leader);
863 sig->group_exit_task = NULL;
864 sig->notify_count = 0;
868 flush_itimer_signals();
870 if (atomic_read(&oldsighand->count) != 1) {
871 struct sighand_struct *newsighand;
873 * This ->sighand is shared with the CLONE_SIGHAND
874 * but not CLONE_THREAD task, switch to the new one.
876 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
880 atomic_set(&newsighand->count, 1);
881 memcpy(newsighand->action, oldsighand->action,
882 sizeof(newsighand->action));
884 write_lock_irq(&tasklist_lock);
885 spin_lock(&oldsighand->siglock);
886 rcu_assign_pointer(tsk->sighand, newsighand);
887 spin_unlock(&oldsighand->siglock);
888 write_unlock_irq(&tasklist_lock);
890 __cleanup_sighand(oldsighand);
893 BUG_ON(!thread_group_leader(tsk));
898 * These functions flushes out all traces of the currently running executable
899 * so that a new one can be started
901 static void flush_old_files(struct files_struct * files)
906 spin_lock(&files->file_lock);
908 unsigned long set, i;
912 fdt = files_fdtable(files);
913 if (i >= fdt->max_fds)
915 set = fdt->close_on_exec->fds_bits[j];
918 fdt->close_on_exec->fds_bits[j] = 0;
919 spin_unlock(&files->file_lock);
920 for ( ; set ; i++,set >>= 1) {
925 spin_lock(&files->file_lock);
928 spin_unlock(&files->file_lock);
931 char *get_task_comm(char *buf, struct task_struct *tsk)
933 /* buf must be at least sizeof(tsk->comm) in size */
935 strncpy(buf, tsk->comm, sizeof(tsk->comm));
940 void set_task_comm(struct task_struct *tsk, char *buf)
943 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
947 int flush_old_exec(struct linux_binprm * bprm)
951 char tcomm[sizeof(current->comm)];
954 * Make sure we have a private signal table and that
955 * we are unassociated from the previous thread group.
957 retval = de_thread(current);
961 set_mm_exe_file(bprm->mm, bprm->file);
964 * Release all of the old mmap stuff
966 retval = exec_mmap(bprm->mm);
970 bprm->mm = NULL; /* We're using it now */
972 /* This is the point of no return */
973 current->sas_ss_sp = current->sas_ss_size = 0;
975 if (current_euid() == current_uid() && current_egid() == current_gid())
976 set_dumpable(current->mm, 1);
978 set_dumpable(current->mm, suid_dumpable);
980 name = bprm->filename;
982 /* Copies the binary name from after last slash */
983 for (i=0; (ch = *(name++)) != '\0';) {
985 i = 0; /* overwrite what we wrote */
987 if (i < (sizeof(tcomm) - 1))
991 set_task_comm(current, tcomm);
993 current->flags &= ~PF_RANDOMIZE;
996 /* Set the new mm task size. We have to do that late because it may
997 * depend on TIF_32BIT which is only updated in flush_thread() on
998 * some architectures like powerpc
1000 current->mm->task_size = TASK_SIZE;
1002 /* install the new credentials */
1003 if (bprm->cred->uid != current_euid() ||
1004 bprm->cred->gid != current_egid()) {
1005 current->pdeath_signal = 0;
1006 } else if (file_permission(bprm->file, MAY_READ) ||
1007 bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
1008 set_dumpable(current->mm, suid_dumpable);
1011 current->personality &= ~bprm->per_clear;
1013 /* An exec changes our domain. We are no longer part of the thread
1016 current->self_exec_id++;
1018 flush_signal_handlers(current, 0);
1019 flush_old_files(current->files);
1027 EXPORT_SYMBOL(flush_old_exec);
1030 * install the new credentials for this executable
1032 void install_exec_creds(struct linux_binprm *bprm)
1034 security_bprm_committing_creds(bprm);
1036 commit_creds(bprm->cred);
1039 /* cred_exec_mutex must be held at least to this point to prevent
1040 * ptrace_attach() from altering our determination of the task's
1041 * credentials; any time after this it may be unlocked */
1043 security_bprm_committed_creds(bprm);
1045 EXPORT_SYMBOL(install_exec_creds);
1048 * determine how safe it is to execute the proposed program
1049 * - the caller must hold current->cred_exec_mutex to protect against
1052 void check_unsafe_exec(struct linux_binprm *bprm)
1054 struct task_struct *p = current;
1056 bprm->unsafe = tracehook_unsafe_exec(p);
1058 if (atomic_read(&p->fs->count) > 1 ||
1059 atomic_read(&p->files->count) > 1 ||
1060 atomic_read(&p->sighand->count) > 1)
1061 bprm->unsafe |= LSM_UNSAFE_SHARE;
1065 * Fill the binprm structure from the inode.
1066 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1068 * This may be called multiple times for binary chains (scripts for example).
1070 int prepare_binprm(struct linux_binprm *bprm)
1073 struct inode * inode = bprm->file->f_path.dentry->d_inode;
1076 mode = inode->i_mode;
1077 if (bprm->file->f_op == NULL)
1080 /* clear any previous set[ug]id data from a previous binary */
1081 bprm->cred->euid = current_euid();
1082 bprm->cred->egid = current_egid();
1084 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1086 if (mode & S_ISUID) {
1087 bprm->per_clear |= PER_CLEAR_ON_SETID;
1088 bprm->cred->euid = inode->i_uid;
1093 * If setgid is set but no group execute bit then this
1094 * is a candidate for mandatory locking, not a setgid
1097 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1098 bprm->per_clear |= PER_CLEAR_ON_SETID;
1099 bprm->cred->egid = inode->i_gid;
1103 /* fill in binprm security blob */
1104 retval = security_bprm_set_creds(bprm);
1107 bprm->cred_prepared = 1;
1109 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1110 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1113 EXPORT_SYMBOL(prepare_binprm);
1116 * Arguments are '\0' separated strings found at the location bprm->p
1117 * points to; chop off the first by relocating brpm->p to right after
1118 * the first '\0' encountered.
1120 int remove_arg_zero(struct linux_binprm *bprm)
1123 unsigned long offset;
1131 offset = bprm->p & ~PAGE_MASK;
1132 page = get_arg_page(bprm, bprm->p, 0);
1137 kaddr = kmap_atomic(page, KM_USER0);
1139 for (; offset < PAGE_SIZE && kaddr[offset];
1140 offset++, bprm->p++)
1143 kunmap_atomic(kaddr, KM_USER0);
1146 if (offset == PAGE_SIZE)
1147 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1148 } while (offset == PAGE_SIZE);
1157 EXPORT_SYMBOL(remove_arg_zero);
1160 * cycle the list of binary formats handler, until one recognizes the image
1162 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1164 unsigned int depth = bprm->recursion_depth;
1166 struct linux_binfmt *fmt;
1168 retval = security_bprm_check(bprm);
1172 /* kernel module loader fixup */
1173 /* so we don't try to load run modprobe in kernel space. */
1176 retval = audit_bprm(bprm);
1181 for (try=0; try<2; try++) {
1182 read_lock(&binfmt_lock);
1183 list_for_each_entry(fmt, &formats, lh) {
1184 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1187 if (!try_module_get(fmt->module))
1189 read_unlock(&binfmt_lock);
1190 retval = fn(bprm, regs);
1192 * Restore the depth counter to its starting value
1193 * in this call, so we don't have to rely on every
1194 * load_binary function to restore it on return.
1196 bprm->recursion_depth = depth;
1199 tracehook_report_exec(fmt, bprm, regs);
1201 allow_write_access(bprm->file);
1205 current->did_exec = 1;
1206 proc_exec_connector(current);
1209 read_lock(&binfmt_lock);
1211 if (retval != -ENOEXEC || bprm->mm == NULL)
1214 read_unlock(&binfmt_lock);
1218 read_unlock(&binfmt_lock);
1219 if (retval != -ENOEXEC || bprm->mm == NULL) {
1221 #ifdef CONFIG_MODULES
1223 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1224 if (printable(bprm->buf[0]) &&
1225 printable(bprm->buf[1]) &&
1226 printable(bprm->buf[2]) &&
1227 printable(bprm->buf[3]))
1228 break; /* -ENOEXEC */
1229 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1236 EXPORT_SYMBOL(search_binary_handler);
1238 void free_bprm(struct linux_binprm *bprm)
1240 free_arg_pages(bprm);
1242 abort_creds(bprm->cred);
1247 * sys_execve() executes a new program.
1249 int do_execve(char * filename,
1250 char __user *__user *argv,
1251 char __user *__user *envp,
1252 struct pt_regs * regs)
1254 struct linux_binprm *bprm;
1256 struct files_struct *displaced;
1259 retval = unshare_files(&displaced);
1264 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1268 retval = mutex_lock_interruptible(¤t->cred_exec_mutex);
1273 bprm->cred = prepare_exec_creds();
1276 check_unsafe_exec(bprm);
1278 file = open_exec(filename);
1279 retval = PTR_ERR(file);
1286 bprm->filename = filename;
1287 bprm->interp = filename;
1289 retval = bprm_mm_init(bprm);
1293 bprm->argc = count(argv, MAX_ARG_STRINGS);
1294 if ((retval = bprm->argc) < 0)
1297 bprm->envc = count(envp, MAX_ARG_STRINGS);
1298 if ((retval = bprm->envc) < 0)
1301 retval = prepare_binprm(bprm);
1305 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1309 bprm->exec = bprm->p;
1310 retval = copy_strings(bprm->envc, envp, bprm);
1314 retval = copy_strings(bprm->argc, argv, bprm);
1318 current->flags &= ~PF_KTHREAD;
1319 retval = search_binary_handler(bprm,regs);
1323 /* execve succeeded */
1324 mutex_unlock(¤t->cred_exec_mutex);
1325 acct_update_integrals(current);
1328 put_files_struct(displaced);
1337 allow_write_access(bprm->file);
1342 mutex_unlock(¤t->cred_exec_mutex);
1349 reset_files_struct(displaced);
1354 int set_binfmt(struct linux_binfmt *new)
1356 struct linux_binfmt *old = current->binfmt;
1359 if (!try_module_get(new->module))
1362 current->binfmt = new;
1364 module_put(old->module);
1368 EXPORT_SYMBOL(set_binfmt);
1370 /* format_corename will inspect the pattern parameter, and output a
1371 * name into corename, which must have space for at least
1372 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1374 static int format_corename(char *corename, long signr)
1376 const struct cred *cred = current_cred();
1377 const char *pat_ptr = core_pattern;
1378 int ispipe = (*pat_ptr == '|');
1379 char *out_ptr = corename;
1380 char *const out_end = corename + CORENAME_MAX_SIZE;
1382 int pid_in_pattern = 0;
1384 /* Repeat as long as we have more pattern to process and more output
1387 if (*pat_ptr != '%') {
1388 if (out_ptr == out_end)
1390 *out_ptr++ = *pat_ptr++;
1392 switch (*++pat_ptr) {
1395 /* Double percent, output one percent */
1397 if (out_ptr == out_end)
1404 rc = snprintf(out_ptr, out_end - out_ptr,
1405 "%d", task_tgid_vnr(current));
1406 if (rc > out_end - out_ptr)
1412 rc = snprintf(out_ptr, out_end - out_ptr,
1414 if (rc > out_end - out_ptr)
1420 rc = snprintf(out_ptr, out_end - out_ptr,
1422 if (rc > out_end - out_ptr)
1426 /* signal that caused the coredump */
1428 rc = snprintf(out_ptr, out_end - out_ptr,
1430 if (rc > out_end - out_ptr)
1434 /* UNIX time of coredump */
1437 do_gettimeofday(&tv);
1438 rc = snprintf(out_ptr, out_end - out_ptr,
1440 if (rc > out_end - out_ptr)
1447 down_read(&uts_sem);
1448 rc = snprintf(out_ptr, out_end - out_ptr,
1449 "%s", utsname()->nodename);
1451 if (rc > out_end - out_ptr)
1457 rc = snprintf(out_ptr, out_end - out_ptr,
1458 "%s", current->comm);
1459 if (rc > out_end - out_ptr)
1463 /* core limit size */
1465 rc = snprintf(out_ptr, out_end - out_ptr,
1466 "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1467 if (rc > out_end - out_ptr)
1477 /* Backward compatibility with core_uses_pid:
1479 * If core_pattern does not include a %p (as is the default)
1480 * and core_uses_pid is set, then .%pid will be appended to
1481 * the filename. Do not do this for piped commands. */
1482 if (!ispipe && !pid_in_pattern && core_uses_pid) {
1483 rc = snprintf(out_ptr, out_end - out_ptr,
1484 ".%d", task_tgid_vnr(current));
1485 if (rc > out_end - out_ptr)
1494 static int zap_process(struct task_struct *start)
1496 struct task_struct *t;
1499 start->signal->flags = SIGNAL_GROUP_EXIT;
1500 start->signal->group_stop_count = 0;
1504 if (t != current && t->mm) {
1505 sigaddset(&t->pending.signal, SIGKILL);
1506 signal_wake_up(t, 1);
1509 } while_each_thread(start, t);
1514 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1515 struct core_state *core_state, int exit_code)
1517 struct task_struct *g, *p;
1518 unsigned long flags;
1521 spin_lock_irq(&tsk->sighand->siglock);
1522 if (!signal_group_exit(tsk->signal)) {
1523 mm->core_state = core_state;
1524 tsk->signal->group_exit_code = exit_code;
1525 nr = zap_process(tsk);
1527 spin_unlock_irq(&tsk->sighand->siglock);
1528 if (unlikely(nr < 0))
1531 if (atomic_read(&mm->mm_users) == nr + 1)
1534 * We should find and kill all tasks which use this mm, and we should
1535 * count them correctly into ->nr_threads. We don't take tasklist
1536 * lock, but this is safe wrt:
1539 * None of sub-threads can fork after zap_process(leader). All
1540 * processes which were created before this point should be
1541 * visible to zap_threads() because copy_process() adds the new
1542 * process to the tail of init_task.tasks list, and lock/unlock
1543 * of ->siglock provides a memory barrier.
1546 * The caller holds mm->mmap_sem. This means that the task which
1547 * uses this mm can't pass exit_mm(), so it can't exit or clear
1551 * It does list_replace_rcu(&leader->tasks, ¤t->tasks),
1552 * we must see either old or new leader, this does not matter.
1553 * However, it can change p->sighand, so lock_task_sighand(p)
1554 * must be used. Since p->mm != NULL and we hold ->mmap_sem
1557 * Note also that "g" can be the old leader with ->mm == NULL
1558 * and already unhashed and thus removed from ->thread_group.
1559 * This is OK, __unhash_process()->list_del_rcu() does not
1560 * clear the ->next pointer, we will find the new leader via
1564 for_each_process(g) {
1565 if (g == tsk->group_leader)
1567 if (g->flags & PF_KTHREAD)
1572 if (unlikely(p->mm == mm)) {
1573 lock_task_sighand(p, &flags);
1574 nr += zap_process(p);
1575 unlock_task_sighand(p, &flags);
1579 } while_each_thread(g, p);
1583 atomic_set(&core_state->nr_threads, nr);
1587 static int coredump_wait(int exit_code, struct core_state *core_state)
1589 struct task_struct *tsk = current;
1590 struct mm_struct *mm = tsk->mm;
1591 struct completion *vfork_done;
1594 init_completion(&core_state->startup);
1595 core_state->dumper.task = tsk;
1596 core_state->dumper.next = NULL;
1597 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1598 up_write(&mm->mmap_sem);
1600 if (unlikely(core_waiters < 0))
1604 * Make sure nobody is waiting for us to release the VM,
1605 * otherwise we can deadlock when we wait on each other
1607 vfork_done = tsk->vfork_done;
1609 tsk->vfork_done = NULL;
1610 complete(vfork_done);
1614 wait_for_completion(&core_state->startup);
1616 return core_waiters;
1619 static void coredump_finish(struct mm_struct *mm)
1621 struct core_thread *curr, *next;
1622 struct task_struct *task;
1624 next = mm->core_state->dumper.next;
1625 while ((curr = next) != NULL) {
1629 * see exit_mm(), curr->task must not see
1630 * ->task == NULL before we read ->next.
1634 wake_up_process(task);
1637 mm->core_state = NULL;
1641 * set_dumpable converts traditional three-value dumpable to two flags and
1642 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1643 * these bits are not changed atomically. So get_dumpable can observe the
1644 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1645 * return either old dumpable or new one by paying attention to the order of
1646 * modifying the bits.
1648 * dumpable | mm->flags (binary)
1649 * old new | initial interim final
1650 * ---------+-----------------------
1658 * (*) get_dumpable regards interim value of 10 as 11.
1660 void set_dumpable(struct mm_struct *mm, int value)
1664 clear_bit(MMF_DUMPABLE, &mm->flags);
1666 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1669 set_bit(MMF_DUMPABLE, &mm->flags);
1671 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1674 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1676 set_bit(MMF_DUMPABLE, &mm->flags);
1681 int get_dumpable(struct mm_struct *mm)
1685 ret = mm->flags & 0x3;
1686 return (ret >= 2) ? 2 : ret;
1689 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
1691 struct core_state core_state;
1692 char corename[CORENAME_MAX_SIZE + 1];
1693 struct mm_struct *mm = current->mm;
1694 struct linux_binfmt * binfmt;
1695 struct inode * inode;
1697 const struct cred *old_cred;
1702 unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
1703 char **helper_argv = NULL;
1704 int helper_argc = 0;
1707 audit_core_dumps(signr);
1709 binfmt = current->binfmt;
1710 if (!binfmt || !binfmt->core_dump)
1713 cred = prepare_creds();
1719 down_write(&mm->mmap_sem);
1721 * If another thread got here first, or we are not dumpable, bail out.
1723 if (mm->core_state || !get_dumpable(mm)) {
1724 up_write(&mm->mmap_sem);
1730 * We cannot trust fsuid as being the "true" uid of the
1731 * process nor do we know its entire history. We only know it
1732 * was tainted so we dump it as root in mode 2.
1734 if (get_dumpable(mm) == 2) { /* Setuid core dump mode */
1735 flag = O_EXCL; /* Stop rewrite attacks */
1736 cred->fsuid = 0; /* Dump root private */
1739 retval = coredump_wait(exit_code, &core_state);
1745 old_cred = override_creds(cred);
1748 * Clear any false indication of pending signals that might
1749 * be seen by the filesystem code called to write the core file.
1751 clear_thread_flag(TIF_SIGPENDING);
1754 * lock_kernel() because format_corename() is controlled by sysctl, which
1755 * uses lock_kernel()
1758 ispipe = format_corename(corename, signr);
1761 * Don't bother to check the RLIMIT_CORE value if core_pattern points
1762 * to a pipe. Since we're not writing directly to the filesystem
1763 * RLIMIT_CORE doesn't really apply, as no actual core file will be
1764 * created unless the pipe reader choses to write out the core file
1765 * at which point file size limits and permissions will be imposed
1766 * as it does with any other process
1768 if ((!ispipe) && (core_limit < binfmt->min_coredump))
1772 helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1774 printk(KERN_WARNING "%s failed to allocate memory\n",
1778 /* Terminate the string before the first option */
1779 delimit = strchr(corename, ' ');
1782 delimit = strrchr(helper_argv[0], '/');
1786 delimit = helper_argv[0];
1787 if (!strcmp(delimit, current->comm)) {
1788 printk(KERN_NOTICE "Recursive core dump detected, "
1793 core_limit = RLIM_INFINITY;
1795 /* SIGPIPE can happen, but it's just never processed */
1796 if (call_usermodehelper_pipe(corename+1, helper_argv, NULL,
1798 printk(KERN_INFO "Core dump to %s pipe failed\n",
1803 file = filp_open(corename,
1804 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1808 inode = file->f_path.dentry->d_inode;
1809 if (inode->i_nlink > 1)
1810 goto close_fail; /* multiple links - don't dump */
1811 if (!ispipe && d_unhashed(file->f_path.dentry))
1814 /* AK: actually i see no reason to not allow this for named pipes etc.,
1815 but keep the previous behaviour for now. */
1816 if (!ispipe && !S_ISREG(inode->i_mode))
1819 * Dont allow local users get cute and trick others to coredump
1820 * into their pre-created files:
1822 if (inode->i_uid != current_fsuid())
1826 if (!file->f_op->write)
1828 if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1831 retval = binfmt->core_dump(signr, regs, file, core_limit);
1834 current->signal->group_exit_code |= 0x80;
1836 filp_close(file, NULL);
1839 argv_free(helper_argv);
1841 revert_creds(old_cred);
1843 coredump_finish(mm);