2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2007
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 * Author: Artem Bityutskiy (Битюцкий Артём),
24 * This file includes UBI initialization and building of UBI devices.
26 * When UBI is initialized, it attaches all the MTD devices specified as the
27 * module load parameters or the kernel boot parameters. If MTD devices were
28 * specified, UBI does not attach any MTD device, but it is possible to do
29 * later using the "UBI control device".
31 * At the moment we only attach UBI devices by scanning, which will become a
32 * bottleneck when flashes reach certain large size. Then one may improve UBI
33 * and add other methods, although it does not seem to be easy to do.
36 #include <linux/err.h>
37 #include <linux/module.h>
38 #include <linux/moduleparam.h>
39 #include <linux/stringify.h>
40 #include <linux/stat.h>
41 #include <linux/miscdevice.h>
42 #include <linux/log2.h>
43 #include <linux/kthread.h>
46 /* Maximum length of the 'mtd=' parameter */
47 #define MTD_PARAM_LEN_MAX 64
50 * struct mtd_dev_param - MTD device parameter description data structure.
51 * @name: MTD device name or number string
52 * @vid_hdr_offs: VID header offset
54 struct mtd_dev_param {
55 char name[MTD_PARAM_LEN_MAX];
59 /* Numbers of elements set in the @mtd_dev_param array */
62 /* MTD devices specification parameters */
63 static struct mtd_dev_param mtd_dev_param[UBI_MAX_DEVICES];
65 /* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */
66 struct class *ubi_class;
68 /* Slab cache for wear-leveling entries */
69 struct kmem_cache *ubi_wl_entry_slab;
71 /* UBI control character device */
72 static struct miscdevice ubi_ctrl_cdev = {
73 .minor = MISC_DYNAMIC_MINOR,
75 .fops = &ubi_ctrl_cdev_operations,
78 /* All UBI devices in system */
79 static struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
81 /* Serializes UBI devices creations and removals */
82 DEFINE_MUTEX(ubi_devices_mutex);
84 /* Protects @ubi_devices and @ubi->ref_count */
85 static DEFINE_SPINLOCK(ubi_devices_lock);
87 /* "Show" method for files in '/<sysfs>/class/ubi/' */
88 static ssize_t ubi_version_show(struct class *class, char *buf)
90 return sprintf(buf, "%d\n", UBI_VERSION);
93 /* UBI version attribute ('/<sysfs>/class/ubi/version') */
94 static struct class_attribute ubi_version =
95 __ATTR(version, S_IRUGO, ubi_version_show, NULL);
97 static ssize_t dev_attribute_show(struct device *dev,
98 struct device_attribute *attr, char *buf);
100 /* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */
101 static struct device_attribute dev_eraseblock_size =
102 __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL);
103 static struct device_attribute dev_avail_eraseblocks =
104 __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
105 static struct device_attribute dev_total_eraseblocks =
106 __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
107 static struct device_attribute dev_volumes_count =
108 __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL);
109 static struct device_attribute dev_max_ec =
110 __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL);
111 static struct device_attribute dev_reserved_for_bad =
112 __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL);
113 static struct device_attribute dev_bad_peb_count =
114 __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL);
115 static struct device_attribute dev_max_vol_count =
116 __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL);
117 static struct device_attribute dev_min_io_size =
118 __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL);
119 static struct device_attribute dev_bgt_enabled =
120 __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL);
121 static struct device_attribute dev_mtd_num =
122 __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL);
125 * ubi_get_device - get UBI device.
126 * @ubi_num: UBI device number
128 * This function returns UBI device description object for UBI device number
129 * @ubi_num, or %NULL if the device does not exist. This function increases the
130 * device reference count to prevent removal of the device. In other words, the
131 * device cannot be removed if its reference count is not zero.
133 struct ubi_device *ubi_get_device(int ubi_num)
135 struct ubi_device *ubi;
137 spin_lock(&ubi_devices_lock);
138 ubi = ubi_devices[ubi_num];
140 ubi_assert(ubi->ref_count >= 0);
142 get_device(&ubi->dev);
144 spin_unlock(&ubi_devices_lock);
150 * ubi_put_device - drop an UBI device reference.
151 * @ubi: UBI device description object
153 void ubi_put_device(struct ubi_device *ubi)
155 spin_lock(&ubi_devices_lock);
157 put_device(&ubi->dev);
158 spin_unlock(&ubi_devices_lock);
162 * ubi_get_by_major - get UBI device by character device major number.
163 * @major: major number
165 * This function is similar to 'ubi_get_device()', but it searches the device
166 * by its major number.
168 struct ubi_device *ubi_get_by_major(int major)
171 struct ubi_device *ubi;
173 spin_lock(&ubi_devices_lock);
174 for (i = 0; i < UBI_MAX_DEVICES; i++) {
175 ubi = ubi_devices[i];
176 if (ubi && MAJOR(ubi->cdev.dev) == major) {
177 ubi_assert(ubi->ref_count >= 0);
179 get_device(&ubi->dev);
180 spin_unlock(&ubi_devices_lock);
184 spin_unlock(&ubi_devices_lock);
190 * ubi_major2num - get UBI device number by character device major number.
191 * @major: major number
193 * This function searches UBI device number object by its major number. If UBI
194 * device was not found, this function returns -ENODEV, otherwise the UBI device
195 * number is returned.
197 int ubi_major2num(int major)
199 int i, ubi_num = -ENODEV;
201 spin_lock(&ubi_devices_lock);
202 for (i = 0; i < UBI_MAX_DEVICES; i++) {
203 struct ubi_device *ubi = ubi_devices[i];
205 if (ubi && MAJOR(ubi->cdev.dev) == major) {
206 ubi_num = ubi->ubi_num;
210 spin_unlock(&ubi_devices_lock);
215 /* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */
216 static ssize_t dev_attribute_show(struct device *dev,
217 struct device_attribute *attr, char *buf)
220 struct ubi_device *ubi;
223 * The below code looks weird, but it actually makes sense. We get the
224 * UBI device reference from the contained 'struct ubi_device'. But it
225 * is unclear if the device was removed or not yet. Indeed, if the
226 * device was removed before we increased its reference count,
227 * 'ubi_get_device()' will return -ENODEV and we fail.
229 * Remember, 'struct ubi_device' is freed in the release function, so
230 * we still can use 'ubi->ubi_num'.
232 ubi = container_of(dev, struct ubi_device, dev);
233 ubi = ubi_get_device(ubi->ubi_num);
237 if (attr == &dev_eraseblock_size)
238 ret = sprintf(buf, "%d\n", ubi->leb_size);
239 else if (attr == &dev_avail_eraseblocks)
240 ret = sprintf(buf, "%d\n", ubi->avail_pebs);
241 else if (attr == &dev_total_eraseblocks)
242 ret = sprintf(buf, "%d\n", ubi->good_peb_count);
243 else if (attr == &dev_volumes_count)
244 ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT);
245 else if (attr == &dev_max_ec)
246 ret = sprintf(buf, "%d\n", ubi->max_ec);
247 else if (attr == &dev_reserved_for_bad)
248 ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs);
249 else if (attr == &dev_bad_peb_count)
250 ret = sprintf(buf, "%d\n", ubi->bad_peb_count);
251 else if (attr == &dev_max_vol_count)
252 ret = sprintf(buf, "%d\n", ubi->vtbl_slots);
253 else if (attr == &dev_min_io_size)
254 ret = sprintf(buf, "%d\n", ubi->min_io_size);
255 else if (attr == &dev_bgt_enabled)
256 ret = sprintf(buf, "%d\n", ubi->thread_enabled);
257 else if (attr == &dev_mtd_num)
258 ret = sprintf(buf, "%d\n", ubi->mtd->index);
266 /* Fake "release" method for UBI devices */
267 static void dev_release(struct device *dev) { }
270 * ubi_sysfs_init - initialize sysfs for an UBI device.
271 * @ubi: UBI device description object
273 * This function returns zero in case of success and a negative error code in
276 static int ubi_sysfs_init(struct ubi_device *ubi)
280 ubi->dev.release = dev_release;
281 ubi->dev.devt = ubi->cdev.dev;
282 ubi->dev.class = ubi_class;
283 sprintf(&ubi->dev.bus_id[0], UBI_NAME_STR"%d", ubi->ubi_num);
284 err = device_register(&ubi->dev);
288 err = device_create_file(&ubi->dev, &dev_eraseblock_size);
291 err = device_create_file(&ubi->dev, &dev_avail_eraseblocks);
294 err = device_create_file(&ubi->dev, &dev_total_eraseblocks);
297 err = device_create_file(&ubi->dev, &dev_volumes_count);
300 err = device_create_file(&ubi->dev, &dev_max_ec);
303 err = device_create_file(&ubi->dev, &dev_reserved_for_bad);
306 err = device_create_file(&ubi->dev, &dev_bad_peb_count);
309 err = device_create_file(&ubi->dev, &dev_max_vol_count);
312 err = device_create_file(&ubi->dev, &dev_min_io_size);
315 err = device_create_file(&ubi->dev, &dev_bgt_enabled);
318 err = device_create_file(&ubi->dev, &dev_mtd_num);
323 * ubi_sysfs_close - close sysfs for an UBI device.
324 * @ubi: UBI device description object
326 static void ubi_sysfs_close(struct ubi_device *ubi)
328 device_remove_file(&ubi->dev, &dev_mtd_num);
329 device_remove_file(&ubi->dev, &dev_bgt_enabled);
330 device_remove_file(&ubi->dev, &dev_min_io_size);
331 device_remove_file(&ubi->dev, &dev_max_vol_count);
332 device_remove_file(&ubi->dev, &dev_bad_peb_count);
333 device_remove_file(&ubi->dev, &dev_reserved_for_bad);
334 device_remove_file(&ubi->dev, &dev_max_ec);
335 device_remove_file(&ubi->dev, &dev_volumes_count);
336 device_remove_file(&ubi->dev, &dev_total_eraseblocks);
337 device_remove_file(&ubi->dev, &dev_avail_eraseblocks);
338 device_remove_file(&ubi->dev, &dev_eraseblock_size);
339 device_unregister(&ubi->dev);
343 * kill_volumes - destroy all volumes.
344 * @ubi: UBI device description object
346 static void kill_volumes(struct ubi_device *ubi)
350 for (i = 0; i < ubi->vtbl_slots; i++)
352 ubi_free_volume(ubi, ubi->volumes[i]);
356 * free_user_volumes - free all user volumes.
357 * @ubi: UBI device description object
359 * Normally the volumes are freed at the release function of the volume device
360 * objects. However, on error paths the volumes have to be freed before the
361 * device objects have been initialized.
363 static void free_user_volumes(struct ubi_device *ubi)
367 for (i = 0; i < ubi->vtbl_slots; i++)
368 if (ubi->volumes[i]) {
369 kfree(ubi->volumes[i]->eba_tbl);
370 kfree(ubi->volumes[i]);
375 * uif_init - initialize user interfaces for an UBI device.
376 * @ubi: UBI device description object
378 * This function returns zero in case of success and a negative error code in
379 * case of failure. Note, this function destroys all volumes if it failes.
381 static int uif_init(struct ubi_device *ubi)
383 int i, err, do_free = 0;
386 sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num);
389 * Major numbers for the UBI character devices are allocated
390 * dynamically. Major numbers of volume character devices are
391 * equivalent to ones of the corresponding UBI character device. Minor
392 * numbers of UBI character devices are 0, while minor numbers of
393 * volume character devices start from 1. Thus, we allocate one major
394 * number and ubi->vtbl_slots + 1 minor numbers.
396 err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name);
398 ubi_err("cannot register UBI character devices");
402 ubi_assert(MINOR(dev) == 0);
403 cdev_init(&ubi->cdev, &ubi_cdev_operations);
404 dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev));
405 ubi->cdev.owner = THIS_MODULE;
407 err = cdev_add(&ubi->cdev, dev, 1);
409 ubi_err("cannot add character device");
413 err = ubi_sysfs_init(ubi);
417 for (i = 0; i < ubi->vtbl_slots; i++)
418 if (ubi->volumes[i]) {
419 err = ubi_add_volume(ubi, ubi->volumes[i]);
421 ubi_err("cannot add volume %d", i);
432 ubi_sysfs_close(ubi);
433 cdev_del(&ubi->cdev);
436 free_user_volumes(ubi);
437 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
438 ubi_err("cannot initialize UBI %s, error %d", ubi->ubi_name, err);
443 * uif_close - close user interfaces for an UBI device.
444 * @ubi: UBI device description object
446 * Note, since this function un-registers UBI volume device objects (@vol->dev),
447 * the memory allocated voe the volumes is freed as well (in the release
450 static void uif_close(struct ubi_device *ubi)
453 ubi_sysfs_close(ubi);
454 cdev_del(&ubi->cdev);
455 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
459 * free_internal_volumes - free internal volumes.
460 * @ubi: UBI device description object
462 static void free_internal_volumes(struct ubi_device *ubi)
466 for (i = ubi->vtbl_slots;
467 i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
468 kfree(ubi->volumes[i]->eba_tbl);
469 kfree(ubi->volumes[i]);
474 * attach_by_scanning - attach an MTD device using scanning method.
475 * @ubi: UBI device descriptor
477 * This function returns zero in case of success and a negative error code in
480 * Note, currently this is the only method to attach UBI devices. Hopefully in
481 * the future we'll have more scalable attaching methods and avoid full media
482 * scanning. But even in this case scanning will be needed as a fall-back
483 * attaching method if there are some on-flash table corruptions.
485 static int attach_by_scanning(struct ubi_device *ubi)
488 struct ubi_scan_info *si;
494 ubi->bad_peb_count = si->bad_peb_count;
495 ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count;
496 ubi->max_ec = si->max_ec;
497 ubi->mean_ec = si->mean_ec;
499 err = ubi_read_volume_table(ubi, si);
503 err = ubi_wl_init_scan(ubi, si);
507 err = ubi_eba_init_scan(ubi, si);
511 ubi_scan_destroy_si(si);
517 free_internal_volumes(ubi);
520 ubi_scan_destroy_si(si);
525 * io_init - initialize I/O sub-system for a given UBI device.
526 * @ubi: UBI device description object
528 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are
530 * o EC header is always at offset zero - this cannot be changed;
531 * o VID header starts just after the EC header at the closest address
532 * aligned to @io->hdrs_min_io_size;
533 * o data starts just after the VID header at the closest address aligned to
536 * This function returns zero in case of success and a negative error code in
539 static int io_init(struct ubi_device *ubi)
541 if (ubi->mtd->numeraseregions != 0) {
543 * Some flashes have several erase regions. Different regions
544 * may have different eraseblock size and other
545 * characteristics. It looks like mostly multi-region flashes
546 * have one "main" region and one or more small regions to
547 * store boot loader code or boot parameters or whatever. I
548 * guess we should just pick the largest region. But this is
551 ubi_err("multiple regions, not implemented");
555 if (ubi->vid_hdr_offset < 0)
559 * Note, in this implementation we support MTD devices with 0x7FFFFFFF
560 * physical eraseblocks maximum.
563 ubi->peb_size = ubi->mtd->erasesize;
564 ubi->peb_count = ubi->mtd->size / ubi->mtd->erasesize;
565 ubi->flash_size = ubi->mtd->size;
567 if (ubi->mtd->block_isbad && ubi->mtd->block_markbad)
568 ubi->bad_allowed = 1;
570 ubi->min_io_size = ubi->mtd->writesize;
571 ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft;
574 * Make sure minimal I/O unit is power of 2. Note, there is no
575 * fundamental reason for this assumption. It is just an optimization
576 * which allows us to avoid costly division operations.
578 if (!is_power_of_2(ubi->min_io_size)) {
579 ubi_err("min. I/O unit (%d) is not power of 2",
584 ubi_assert(ubi->hdrs_min_io_size > 0);
585 ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size);
586 ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0);
588 /* Calculate default aligned sizes of EC and VID headers */
589 ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size);
590 ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size);
592 dbg_msg("min_io_size %d", ubi->min_io_size);
593 dbg_msg("hdrs_min_io_size %d", ubi->hdrs_min_io_size);
594 dbg_msg("ec_hdr_alsize %d", ubi->ec_hdr_alsize);
595 dbg_msg("vid_hdr_alsize %d", ubi->vid_hdr_alsize);
597 if (ubi->vid_hdr_offset == 0)
599 ubi->vid_hdr_offset = ubi->vid_hdr_aloffset =
602 ubi->vid_hdr_aloffset = ubi->vid_hdr_offset &
603 ~(ubi->hdrs_min_io_size - 1);
604 ubi->vid_hdr_shift = ubi->vid_hdr_offset -
605 ubi->vid_hdr_aloffset;
608 /* Similar for the data offset */
609 ubi->leb_start = ubi->vid_hdr_offset + UBI_EC_HDR_SIZE;
610 ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size);
612 dbg_msg("vid_hdr_offset %d", ubi->vid_hdr_offset);
613 dbg_msg("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset);
614 dbg_msg("vid_hdr_shift %d", ubi->vid_hdr_shift);
615 dbg_msg("leb_start %d", ubi->leb_start);
617 /* The shift must be aligned to 32-bit boundary */
618 if (ubi->vid_hdr_shift % 4) {
619 ubi_err("unaligned VID header shift %d",
625 if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE ||
626 ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE ||
627 ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE ||
628 ubi->leb_start & (ubi->min_io_size - 1)) {
629 ubi_err("bad VID header (%d) or data offsets (%d)",
630 ubi->vid_hdr_offset, ubi->leb_start);
635 * It may happen that EC and VID headers are situated in one minimal
636 * I/O unit. In this case we can only accept this UBI image in
639 if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) {
640 ubi_warn("EC and VID headers are in the same minimal I/O unit, "
641 "switch to read-only mode");
645 ubi->leb_size = ubi->peb_size - ubi->leb_start;
647 if (!(ubi->mtd->flags & MTD_WRITEABLE)) {
648 ubi_msg("MTD device %d is write-protected, attach in "
649 "read-only mode", ubi->mtd->index);
653 ubi_msg("physical eraseblock size: %d bytes (%d KiB)",
654 ubi->peb_size, ubi->peb_size >> 10);
655 ubi_msg("logical eraseblock size: %d bytes", ubi->leb_size);
656 ubi_msg("smallest flash I/O unit: %d", ubi->min_io_size);
657 if (ubi->hdrs_min_io_size != ubi->min_io_size)
658 ubi_msg("sub-page size: %d",
659 ubi->hdrs_min_io_size);
660 ubi_msg("VID header offset: %d (aligned %d)",
661 ubi->vid_hdr_offset, ubi->vid_hdr_aloffset);
662 ubi_msg("data offset: %d", ubi->leb_start);
665 * Note, ideally, we have to initialize ubi->bad_peb_count here. But
666 * unfortunately, MTD does not provide this information. We should loop
667 * over all physical eraseblocks and invoke mtd->block_is_bad() for
668 * each physical eraseblock. So, we skip ubi->bad_peb_count
669 * uninitialized and initialize it after scanning.
676 * autoresize - re-size the volume which has the "auto-resize" flag set.
677 * @ubi: UBI device description object
678 * @vol_id: ID of the volume to re-size
680 * This function re-sizes the volume marked by the @UBI_VTBL_AUTORESIZE_FLG in
681 * the volume table to the largest possible size. See comments in ubi-header.h
682 * for more description of the flag. Returns zero in case of success and a
683 * negative error code in case of failure.
685 static int autoresize(struct ubi_device *ubi, int vol_id)
687 struct ubi_volume_desc desc;
688 struct ubi_volume *vol = ubi->volumes[vol_id];
689 int err, old_reserved_pebs = vol->reserved_pebs;
692 * Clear the auto-resize flag in the volume in-memory copy of the
693 * volume table, and 'ubi_resize_volume()' will propagate this change
696 ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG;
698 if (ubi->avail_pebs == 0) {
699 struct ubi_vtbl_record vtbl_rec;
702 * No available PEBs to re-size the volume, clear the flag on
705 memcpy(&vtbl_rec, &ubi->vtbl[vol_id],
706 sizeof(struct ubi_vtbl_record));
707 err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec);
709 ubi_err("cannot clean auto-resize flag for volume %d",
713 err = ubi_resize_volume(&desc,
714 old_reserved_pebs + ubi->avail_pebs);
716 ubi_err("cannot auto-resize volume %d", vol_id);
722 ubi_msg("volume %d (\"%s\") re-sized from %d to %d LEBs", vol_id,
723 vol->name, old_reserved_pebs, vol->reserved_pebs);
728 * ubi_attach_mtd_dev - attach an MTD device.
729 * @mtd: MTD device description object
730 * @ubi_num: number to assign to the new UBI device
731 * @vid_hdr_offset: VID header offset
733 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number
734 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in
735 * which case this function finds a vacant device number and assigns it
736 * automatically. Returns the new UBI device number in case of success and a
737 * negative error code in case of failure.
739 * Note, the invocations of this function has to be serialized by the
740 * @ubi_devices_mutex.
742 int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, int vid_hdr_offset)
744 struct ubi_device *ubi;
745 int i, err, do_free = 1;
748 * Check if we already have the same MTD device attached.
750 * Note, this function assumes that UBI devices creations and deletions
751 * are serialized, so it does not take the &ubi_devices_lock.
753 for (i = 0; i < UBI_MAX_DEVICES; i++) {
754 ubi = ubi_devices[i];
755 if (ubi && mtd->index == ubi->mtd->index) {
756 dbg_err("mtd%d is already attached to ubi%d",
763 * Make sure this MTD device is not emulated on top of an UBI volume
764 * already. Well, generally this recursion works fine, but there are
765 * different problems like the UBI module takes a reference to itself
766 * by attaching (and thus, opening) the emulated MTD device. This
767 * results in inability to unload the module. And in general it makes
768 * no sense to attach emulated MTD devices, so we prohibit this.
770 if (mtd->type == MTD_UBIVOLUME) {
771 ubi_err("refuse attaching mtd%d - it is already emulated on "
772 "top of UBI", mtd->index);
776 if (ubi_num == UBI_DEV_NUM_AUTO) {
777 /* Search for an empty slot in the @ubi_devices array */
778 for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++)
779 if (!ubi_devices[ubi_num])
781 if (ubi_num == UBI_MAX_DEVICES) {
782 dbg_err("only %d UBI devices may be created",
787 if (ubi_num >= UBI_MAX_DEVICES)
790 /* Make sure ubi_num is not busy */
791 if (ubi_devices[ubi_num]) {
792 dbg_err("ubi%d already exists", ubi_num);
797 ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL);
802 ubi->ubi_num = ubi_num;
803 ubi->vid_hdr_offset = vid_hdr_offset;
804 ubi->autoresize_vol_id = -1;
806 mutex_init(&ubi->buf_mutex);
807 mutex_init(&ubi->ckvol_mutex);
808 mutex_init(&ubi->mult_mutex);
809 mutex_init(&ubi->volumes_mutex);
810 spin_lock_init(&ubi->volumes_lock);
812 ubi_msg("attaching mtd%d to ubi%d", mtd->index, ubi_num);
818 ubi->peb_buf1 = vmalloc(ubi->peb_size);
822 ubi->peb_buf2 = vmalloc(ubi->peb_size);
826 #ifdef CONFIG_MTD_UBI_DEBUG
827 mutex_init(&ubi->dbg_buf_mutex);
828 ubi->dbg_peb_buf = vmalloc(ubi->peb_size);
829 if (!ubi->dbg_peb_buf)
833 err = attach_by_scanning(ubi);
835 dbg_err("failed to attach by scanning, error %d", err);
839 if (ubi->autoresize_vol_id != -1) {
840 err = autoresize(ubi, ubi->autoresize_vol_id);
849 ubi->bgt_thread = kthread_create(ubi_thread, ubi, ubi->bgt_name);
850 if (IS_ERR(ubi->bgt_thread)) {
851 err = PTR_ERR(ubi->bgt_thread);
852 ubi_err("cannot spawn \"%s\", error %d", ubi->bgt_name,
857 ubi_msg("attached mtd%d to ubi%d", mtd->index, ubi_num);
858 ubi_msg("MTD device name: \"%s\"", mtd->name);
859 ubi_msg("MTD device size: %llu MiB", ubi->flash_size >> 20);
860 ubi_msg("number of good PEBs: %d", ubi->good_peb_count);
861 ubi_msg("number of bad PEBs: %d", ubi->bad_peb_count);
862 ubi_msg("max. allowed volumes: %d", ubi->vtbl_slots);
863 ubi_msg("wear-leveling threshold: %d", CONFIG_MTD_UBI_WL_THRESHOLD);
864 ubi_msg("number of internal volumes: %d", UBI_INT_VOL_COUNT);
865 ubi_msg("number of user volumes: %d",
866 ubi->vol_count - UBI_INT_VOL_COUNT);
867 ubi_msg("available PEBs: %d", ubi->avail_pebs);
868 ubi_msg("total number of reserved PEBs: %d", ubi->rsvd_pebs);
869 ubi_msg("number of PEBs reserved for bad PEB handling: %d",
871 ubi_msg("max/mean erase counter: %d/%d", ubi->max_ec, ubi->mean_ec);
873 if (!DBG_DISABLE_BGT)
874 ubi->thread_enabled = 1;
875 wake_up_process(ubi->bgt_thread);
877 ubi_devices[ubi_num] = ubi;
887 free_user_volumes(ubi);
888 free_internal_volumes(ubi);
891 vfree(ubi->peb_buf1);
892 vfree(ubi->peb_buf2);
893 #ifdef CONFIG_MTD_UBI_DEBUG
894 vfree(ubi->dbg_peb_buf);
901 * ubi_detach_mtd_dev - detach an MTD device.
902 * @ubi_num: UBI device number to detach from
903 * @anyway: detach MTD even if device reference count is not zero
905 * This function destroys an UBI device number @ubi_num and detaches the
906 * underlying MTD device. Returns zero in case of success and %-EBUSY if the
907 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not
910 * Note, the invocations of this function has to be serialized by the
911 * @ubi_devices_mutex.
913 int ubi_detach_mtd_dev(int ubi_num, int anyway)
915 struct ubi_device *ubi;
917 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
920 spin_lock(&ubi_devices_lock);
921 ubi = ubi_devices[ubi_num];
923 spin_unlock(&ubi_devices_lock);
927 if (ubi->ref_count) {
929 spin_unlock(&ubi_devices_lock);
932 /* This may only happen if there is a bug */
933 ubi_err("%s reference count %d, destroy anyway",
934 ubi->ubi_name, ubi->ref_count);
936 ubi_devices[ubi_num] = NULL;
937 spin_unlock(&ubi_devices_lock);
939 ubi_assert(ubi_num == ubi->ubi_num);
940 dbg_msg("detaching mtd%d from ubi%d", ubi->mtd->index, ubi_num);
943 * Before freeing anything, we have to stop the background thread to
944 * prevent it from doing anything on this device while we are freeing.
947 kthread_stop(ubi->bgt_thread);
951 free_internal_volumes(ubi);
953 put_mtd_device(ubi->mtd);
954 vfree(ubi->peb_buf1);
955 vfree(ubi->peb_buf2);
956 #ifdef CONFIG_MTD_UBI_DEBUG
957 vfree(ubi->dbg_peb_buf);
959 ubi_msg("mtd%d is detached from ubi%d", ubi->mtd->index, ubi->ubi_num);
965 * find_mtd_device - open an MTD device by its name or number.
966 * @mtd_dev: name or number of the device
968 * This function tries to open and MTD device described by @mtd_dev string,
969 * which is first treated as an ASCII number, and if it is not true, it is
970 * treated as MTD device name. Returns MTD device description object in case of
971 * success and a negative error code in case of failure.
973 static struct mtd_info * __init open_mtd_device(const char *mtd_dev)
975 struct mtd_info *mtd;
979 mtd_num = simple_strtoul(mtd_dev, &endp, 0);
980 if (*endp != '\0' || mtd_dev == endp) {
982 * This does not look like an ASCII integer, probably this is
985 mtd = get_mtd_device_nm(mtd_dev);
987 mtd = get_mtd_device(NULL, mtd_num);
992 static int __init ubi_init(void)
996 /* Ensure that EC and VID headers have correct size */
997 BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64);
998 BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64);
1000 if (mtd_devs > UBI_MAX_DEVICES) {
1001 ubi_err("too many MTD devices, maximum is %d", UBI_MAX_DEVICES);
1005 /* Create base sysfs directory and sysfs files */
1006 ubi_class = class_create(THIS_MODULE, UBI_NAME_STR);
1007 if (IS_ERR(ubi_class)) {
1008 err = PTR_ERR(ubi_class);
1009 ubi_err("cannot create UBI class");
1013 err = class_create_file(ubi_class, &ubi_version);
1015 ubi_err("cannot create sysfs file");
1019 err = misc_register(&ubi_ctrl_cdev);
1021 ubi_err("cannot register device");
1025 ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab",
1026 sizeof(struct ubi_wl_entry),
1028 if (!ubi_wl_entry_slab)
1031 /* Attach MTD devices */
1032 for (i = 0; i < mtd_devs; i++) {
1033 struct mtd_dev_param *p = &mtd_dev_param[i];
1034 struct mtd_info *mtd;
1038 mtd = open_mtd_device(p->name);
1044 mutex_lock(&ubi_devices_mutex);
1045 err = ubi_attach_mtd_dev(mtd, UBI_DEV_NUM_AUTO,
1047 mutex_unlock(&ubi_devices_mutex);
1049 put_mtd_device(mtd);
1050 ubi_err("cannot attach mtd%d", mtd->index);
1058 for (k = 0; k < i; k++)
1059 if (ubi_devices[k]) {
1060 mutex_lock(&ubi_devices_mutex);
1061 ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1);
1062 mutex_unlock(&ubi_devices_mutex);
1064 kmem_cache_destroy(ubi_wl_entry_slab);
1066 misc_deregister(&ubi_ctrl_cdev);
1068 class_remove_file(ubi_class, &ubi_version);
1070 class_destroy(ubi_class);
1072 ubi_err("UBI error: cannot initialize UBI, error %d", err);
1075 module_init(ubi_init);
1077 static void __exit ubi_exit(void)
1081 for (i = 0; i < UBI_MAX_DEVICES; i++)
1082 if (ubi_devices[i]) {
1083 mutex_lock(&ubi_devices_mutex);
1084 ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1);
1085 mutex_unlock(&ubi_devices_mutex);
1087 kmem_cache_destroy(ubi_wl_entry_slab);
1088 misc_deregister(&ubi_ctrl_cdev);
1089 class_remove_file(ubi_class, &ubi_version);
1090 class_destroy(ubi_class);
1092 module_exit(ubi_exit);
1095 * bytes_str_to_int - convert a number of bytes string into an integer.
1096 * @str: the string to convert
1098 * This function returns positive resulting integer in case of success and a
1099 * negative error code in case of failure.
1101 static int __init bytes_str_to_int(const char *str)
1104 unsigned long result;
1106 result = simple_strtoul(str, &endp, 0);
1107 if (str == endp || result < 0) {
1108 printk(KERN_ERR "UBI error: incorrect bytes count: \"%s\"\n",
1120 if (endp[1] == 'i' && endp[2] == 'B')
1125 printk(KERN_ERR "UBI error: incorrect bytes count: \"%s\"\n",
1134 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter.
1135 * @val: the parameter value to parse
1138 * This function returns zero in case of success and a negative error code in
1141 static int __init ubi_mtd_param_parse(const char *val, struct kernel_param *kp)
1144 struct mtd_dev_param *p;
1145 char buf[MTD_PARAM_LEN_MAX];
1146 char *pbuf = &buf[0];
1147 char *tokens[2] = {NULL, NULL};
1152 if (mtd_devs == UBI_MAX_DEVICES) {
1153 printk(KERN_ERR "UBI error: too many parameters, max. is %d\n",
1158 len = strnlen(val, MTD_PARAM_LEN_MAX);
1159 if (len == MTD_PARAM_LEN_MAX) {
1160 printk(KERN_ERR "UBI error: parameter \"%s\" is too long, "
1161 "max. is %d\n", val, MTD_PARAM_LEN_MAX);
1166 printk(KERN_WARNING "UBI warning: empty 'mtd=' parameter - "
1173 /* Get rid of the final newline */
1174 if (buf[len - 1] == '\n')
1175 buf[len - 1] = '\0';
1177 for (i = 0; i < 2; i++)
1178 tokens[i] = strsep(&pbuf, ",");
1181 printk(KERN_ERR "UBI error: too many arguments at \"%s\"\n",
1186 p = &mtd_dev_param[mtd_devs];
1187 strcpy(&p->name[0], tokens[0]);
1190 p->vid_hdr_offs = bytes_str_to_int(tokens[1]);
1192 if (p->vid_hdr_offs < 0)
1193 return p->vid_hdr_offs;
1199 module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 000);
1200 MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: "
1201 "mtd=<name|num>[,<vid_hdr_offs>].\n"
1202 "Multiple \"mtd\" parameters may be specified.\n"
1203 "MTD devices may be specified by their number or name.\n"
1204 "Optional \"vid_hdr_offs\" parameter specifies UBI VID "
1205 "header position and data starting position to be used "
1207 "Example: mtd=content,1984 mtd=4 - attach MTD device"
1208 "with name \"content\" using VID header offset 1984, and "
1209 "MTD device number 4 with default VID header offset.");
1211 MODULE_VERSION(__stringify(UBI_VERSION));
1212 MODULE_DESCRIPTION("UBI - Unsorted Block Images");
1213 MODULE_AUTHOR("Artem Bityutskiy");
1214 MODULE_LICENSE("GPL");