2 * Copyright 2002 Andi Kleen, SuSE Labs.
3 * Thanks to Ben LaHaise for precious feedback.
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/slab.h>
11 #include <linux/interrupt.h>
14 #include <asm/processor.h>
15 #include <asm/tlbflush.h>
16 #include <asm/sections.h>
17 #include <asm/uaccess.h>
18 #include <asm/pgalloc.h>
19 #include <asm/proto.h>
22 * The current flushing context - we pass it instead of 5 arguments:
36 static inline unsigned long highmap_start_pfn(void)
38 return __pa(_text) >> PAGE_SHIFT;
41 static inline unsigned long highmap_end_pfn(void)
43 return __pa(round_up((unsigned long)_end, PMD_SIZE)) >> PAGE_SHIFT;
48 #ifdef CONFIG_DEBUG_PAGEALLOC
49 # define debug_pagealloc 1
51 # define debug_pagealloc 0
55 within(unsigned long addr, unsigned long start, unsigned long end)
57 return addr >= start && addr < end;
65 * clflush_cache_range - flush a cache range with clflush
66 * @addr: virtual start address
67 * @size: number of bytes to flush
69 * clflush is an unordered instruction which needs fencing with mfence
70 * to avoid ordering issues.
72 void clflush_cache_range(void *vaddr, unsigned int size)
74 void *vend = vaddr + size - 1;
78 for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
81 * Flush any possible final partial cacheline:
88 static void __cpa_flush_all(void *arg)
90 unsigned long cache = (unsigned long)arg;
93 * Flush all to work around Errata in early athlons regarding
94 * large page flushing.
98 if (cache && boot_cpu_data.x86_model >= 4)
102 static void cpa_flush_all(unsigned long cache)
104 BUG_ON(irqs_disabled());
106 on_each_cpu(__cpa_flush_all, (void *) cache, 1, 1);
109 static void __cpa_flush_range(void *arg)
112 * We could optimize that further and do individual per page
113 * tlb invalidates for a low number of pages. Caveat: we must
114 * flush the high aliases on 64bit as well.
119 static void cpa_flush_range(unsigned long start, int numpages, int cache)
121 unsigned int i, level;
124 BUG_ON(irqs_disabled());
125 WARN_ON(PAGE_ALIGN(start) != start);
127 on_each_cpu(__cpa_flush_range, NULL, 1, 1);
133 * We only need to flush on one CPU,
134 * clflush is a MESI-coherent instruction that
135 * will cause all other CPUs to flush the same
138 for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
139 pte_t *pte = lookup_address(addr, &level);
142 * Only flush present addresses:
144 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
145 clflush_cache_range((void *) addr, PAGE_SIZE);
150 * Certain areas of memory on x86 require very specific protection flags,
151 * for example the BIOS area or kernel text. Callers don't always get this
152 * right (again, ioremap() on BIOS memory is not uncommon) so this function
153 * checks and fixes these known static required protection bits.
155 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
158 pgprot_t forbidden = __pgprot(0);
161 * The BIOS area between 640k and 1Mb needs to be executable for
162 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
164 if (within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
165 pgprot_val(forbidden) |= _PAGE_NX;
168 * The kernel text needs to be executable for obvious reasons
169 * Does not cover __inittext since that is gone later on. On
170 * 64bit we do not enforce !NX on the low mapping
172 if (within(address, (unsigned long)_text, (unsigned long)_etext))
173 pgprot_val(forbidden) |= _PAGE_NX;
176 * The .rodata section needs to be read-only. Using the pfn
177 * catches all aliases.
179 if (within(pfn, __pa((unsigned long)__start_rodata) >> PAGE_SHIFT,
180 __pa((unsigned long)__end_rodata) >> PAGE_SHIFT))
181 pgprot_val(forbidden) |= _PAGE_RW;
183 prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
189 * Lookup the page table entry for a virtual address. Return a pointer
190 * to the entry and the level of the mapping.
192 * Note: We return pud and pmd either when the entry is marked large
193 * or when the present bit is not set. Otherwise we would return a
194 * pointer to a nonexisting mapping.
196 pte_t *lookup_address(unsigned long address, unsigned int *level)
198 pgd_t *pgd = pgd_offset_k(address);
202 *level = PG_LEVEL_NONE;
207 pud = pud_offset(pgd, address);
211 *level = PG_LEVEL_1G;
212 if (pud_large(*pud) || !pud_present(*pud))
215 pmd = pmd_offset(pud, address);
219 *level = PG_LEVEL_2M;
220 if (pmd_large(*pmd) || !pmd_present(*pmd))
223 *level = PG_LEVEL_4K;
225 return pte_offset_kernel(pmd, address);
229 * Set the new pmd in all the pgds we know about:
231 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
234 set_pte_atomic(kpte, pte);
236 if (!SHARED_KERNEL_PMD) {
239 list_for_each_entry(page, &pgd_list, lru) {
244 pgd = (pgd_t *)page_address(page) + pgd_index(address);
245 pud = pud_offset(pgd, address);
246 pmd = pmd_offset(pud, address);
247 set_pte_atomic((pte_t *)pmd, pte);
254 try_preserve_large_page(pte_t *kpte, unsigned long address,
255 struct cpa_data *cpa)
257 unsigned long nextpage_addr, numpages, pmask, psize, flags, addr, pfn;
258 pte_t new_pte, old_pte, *tmp;
259 pgprot_t old_prot, new_prot;
263 spin_lock_irqsave(&pgd_lock, flags);
265 * Check for races, another CPU might have split this page
268 tmp = lookup_address(address, &level);
274 psize = PMD_PAGE_SIZE;
275 pmask = PMD_PAGE_MASK;
279 psize = PUD_PAGE_SIZE;
280 pmask = PUD_PAGE_MASK;
289 * Calculate the number of pages, which fit into this large
290 * page starting at address:
292 nextpage_addr = (address + psize) & pmask;
293 numpages = (nextpage_addr - address) >> PAGE_SHIFT;
294 if (numpages < cpa->processed)
295 cpa->processed = numpages;
298 * We are safe now. Check whether the new pgprot is the same:
301 old_prot = new_prot = pte_pgprot(old_pte);
303 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
304 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
307 * old_pte points to the large page base address. So we need
308 * to add the offset of the virtual address:
310 pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
313 new_prot = static_protections(new_prot, address, pfn);
316 * We need to check the full range, whether
317 * static_protection() requires a different pgprot for one of
318 * the pages in the range we try to preserve:
320 addr = address + PAGE_SIZE;
322 for (i = 1; i < cpa->processed; i++, addr += PAGE_SIZE, pfn++) {
323 pgprot_t chk_prot = static_protections(new_prot, addr, pfn);
325 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
330 * If there are no changes, return. maxpages has been updated
333 if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
339 * We need to change the attributes. Check, whether we can
340 * change the large page in one go. We request a split, when
341 * the address is not aligned and the number of pages is
342 * smaller than the number of pages in the large page. Note
343 * that we limited the number of possible pages already to
344 * the number of pages in the large page.
346 if (address == (nextpage_addr - psize) && cpa->processed == numpages) {
348 * The address is aligned and the number of pages
349 * covers the full page.
351 new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
352 __set_pmd_pte(kpte, address, new_pte);
358 spin_unlock_irqrestore(&pgd_lock, flags);
363 static LIST_HEAD(page_pool);
364 static unsigned long pool_size, pool_pages, pool_low;
365 static unsigned long pool_used, pool_failed;
367 static void cpa_fill_pool(struct page **ret)
369 gfp_t gfp = GFP_KERNEL;
374 * Avoid recursion (on debug-pagealloc) and also signal
375 * our priority to get to these pagetables:
377 if (current->flags & PF_MEMALLOC)
379 current->flags |= PF_MEMALLOC;
382 * Allocate atomically from atomic contexts:
384 if (in_atomic() || irqs_disabled() || debug_pagealloc)
385 gfp = GFP_ATOMIC | __GFP_NORETRY | __GFP_NOWARN;
387 while (pool_pages < pool_size || (ret && !*ret)) {
388 p = alloc_pages(gfp, 0);
394 * If the call site needs a page right now, provide it:
400 spin_lock_irqsave(&pgd_lock, flags);
401 list_add(&p->lru, &page_pool);
403 spin_unlock_irqrestore(&pgd_lock, flags);
406 current->flags &= ~PF_MEMALLOC;
409 #define SHIFT_MB (20 - PAGE_SHIFT)
410 #define ROUND_MB_GB ((1 << 10) - 1)
411 #define SHIFT_MB_GB 10
412 #define POOL_PAGES_PER_GB 16
414 void __init cpa_init(void)
421 * Calculate the number of pool pages:
423 * Convert totalram (nr of pages) to MiB and round to the next
424 * GiB. Shift MiB to Gib and multiply the result by
427 if (debug_pagealloc) {
428 gb = ((si.totalram >> SHIFT_MB) + ROUND_MB_GB) >> SHIFT_MB_GB;
429 pool_size = POOL_PAGES_PER_GB * gb;
433 pool_low = pool_size;
437 "CPA: page pool initialized %lu of %lu pages preallocated\n",
438 pool_pages, pool_size);
441 static int split_large_page(pte_t *kpte, unsigned long address)
443 unsigned long flags, pfn, pfninc = 1;
444 unsigned int i, level;
450 * Get a page from the pool. The pool list is protected by the
451 * pgd_lock, which we have to take anyway for the split
454 spin_lock_irqsave(&pgd_lock, flags);
455 if (list_empty(&page_pool)) {
456 spin_unlock_irqrestore(&pgd_lock, flags);
458 cpa_fill_pool(&base);
461 spin_lock_irqsave(&pgd_lock, flags);
463 base = list_first_entry(&page_pool, struct page, lru);
464 list_del(&base->lru);
467 if (pool_pages < pool_low)
468 pool_low = pool_pages;
472 * Check for races, another CPU might have split this page
475 tmp = lookup_address(address, &level);
479 pbase = (pte_t *)page_address(base);
481 paravirt_alloc_pt(&init_mm, page_to_pfn(base));
483 ref_prot = pte_pgprot(pte_clrhuge(*kpte));
486 if (level == PG_LEVEL_1G) {
487 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
488 pgprot_val(ref_prot) |= _PAGE_PSE;
493 * Get the target pfn from the original entry:
495 pfn = pte_pfn(*kpte);
496 for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
497 set_pte(&pbase[i], pfn_pte(pfn, ref_prot));
500 * Install the new, split up pagetable. Important details here:
502 * On Intel the NX bit of all levels must be cleared to make a
503 * page executable. See section 4.13.2 of Intel 64 and IA-32
504 * Architectures Software Developer's Manual).
506 * Mark the entry present. The current mapping might be
507 * set to not present, which we preserved above.
509 ref_prot = pte_pgprot(pte_mkexec(pte_clrhuge(*kpte)));
510 pgprot_val(ref_prot) |= _PAGE_PRESENT;
511 __set_pmd_pte(kpte, address, mk_pte(base, ref_prot));
516 * If we dropped out via the lookup_address check under
517 * pgd_lock then stick the page back into the pool:
520 list_add(&base->lru, &page_pool);
524 spin_unlock_irqrestore(&pgd_lock, flags);
529 static int __change_page_attr(struct cpa_data *cpa, int primary)
531 unsigned long address = cpa->vaddr;
534 pte_t *kpte, old_pte;
537 kpte = lookup_address(address, &level);
539 return primary ? -EINVAL : 0;
542 if (!pte_val(old_pte)) {
545 printk(KERN_WARNING "CPA: called for zero pte. "
546 "vaddr = %lx cpa->vaddr = %lx\n", address,
552 if (level == PG_LEVEL_4K) {
554 pgprot_t new_prot = pte_pgprot(old_pte);
555 unsigned long pfn = pte_pfn(old_pte);
557 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
558 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
560 new_prot = static_protections(new_prot, address, pfn);
563 * We need to keep the pfn from the existing PTE,
564 * after all we're only going to change it's attributes
565 * not the memory it points to
567 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
570 * Do we really change anything ?
572 if (pte_val(old_pte) != pte_val(new_pte)) {
573 set_pte_atomic(kpte, new_pte);
581 * Check, whether we can keep the large page intact
582 * and just change the pte:
584 do_split = try_preserve_large_page(kpte, address, cpa);
586 * When the range fits into the existing large page,
587 * return. cp->processed and cpa->tlbflush have been updated in
594 * We have to split the large page:
596 err = split_large_page(kpte, address);
605 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
607 static int cpa_process_alias(struct cpa_data *cpa)
609 struct cpa_data alias_cpa;
612 if (cpa->pfn > max_pfn_mapped)
616 * No need to redo, when the primary call touched the direct
619 if (!within(cpa->vaddr, PAGE_OFFSET,
620 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
623 alias_cpa.vaddr = (unsigned long) __va(cpa->pfn << PAGE_SHIFT);
625 ret = __change_page_attr_set_clr(&alias_cpa, 0);
632 * No need to redo, when the primary call touched the high
635 if (within(cpa->vaddr, (unsigned long) _text, (unsigned long) _end))
639 * If the physical address is inside the kernel map, we need
640 * to touch the high mapped kernel as well:
642 if (!within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn()))
647 (cpa->pfn << PAGE_SHIFT) + __START_KERNEL_map - phys_base;
650 * The high mapping range is imprecise, so ignore the return value.
652 __change_page_attr_set_clr(&alias_cpa, 0);
657 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
659 int ret, numpages = cpa->numpages;
663 * Store the remaining nr of pages for the large page
664 * preservation check.
666 cpa->numpages = cpa->processed = numpages;
668 ret = __change_page_attr(cpa, checkalias);
673 ret = cpa_process_alias(cpa);
679 * Adjust the number of pages with the result of the
680 * CPA operation. Either a large page has been
681 * preserved or a single page update happened.
683 BUG_ON(cpa->processed > numpages);
684 numpages -= cpa->processed;
685 cpa->vaddr += cpa->processed * PAGE_SIZE;
690 static inline int cache_attr(pgprot_t attr)
692 return pgprot_val(attr) &
693 (_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
696 static int change_page_attr_set_clr(unsigned long addr, int numpages,
697 pgprot_t mask_set, pgprot_t mask_clr)
700 int ret, cache, checkalias;
703 * Check, if we are requested to change a not supported
706 mask_set = canon_pgprot(mask_set);
707 mask_clr = canon_pgprot(mask_clr);
708 if (!pgprot_val(mask_set) && !pgprot_val(mask_clr))
711 /* Ensure we are PAGE_SIZE aligned */
712 if (addr & ~PAGE_MASK) {
715 * People should not be passing in unaligned addresses:
721 cpa.numpages = numpages;
722 cpa.mask_set = mask_set;
723 cpa.mask_clr = mask_clr;
726 /* No alias checking for _NX bit modifications */
727 checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
729 ret = __change_page_attr_set_clr(&cpa, checkalias);
732 * Check whether we really changed something:
738 * No need to flush, when we did not set any of the caching
741 cache = cache_attr(mask_set);
744 * On success we use clflush, when the CPU supports it to
745 * avoid the wbindv. If the CPU does not support it and in the
746 * error case we fall back to cpa_flush_all (which uses
749 if (!ret && cpu_has_clflush)
750 cpa_flush_range(addr, numpages, cache);
752 cpa_flush_all(cache);
760 static inline int change_page_attr_set(unsigned long addr, int numpages,
763 return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0));
766 static inline int change_page_attr_clear(unsigned long addr, int numpages,
769 return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask);
772 int set_memory_uc(unsigned long addr, int numpages)
774 return change_page_attr_set(addr, numpages,
775 __pgprot(_PAGE_PCD | _PAGE_PWT));
777 EXPORT_SYMBOL(set_memory_uc);
779 int set_memory_wb(unsigned long addr, int numpages)
781 return change_page_attr_clear(addr, numpages,
782 __pgprot(_PAGE_PCD | _PAGE_PWT));
784 EXPORT_SYMBOL(set_memory_wb);
786 int set_memory_x(unsigned long addr, int numpages)
788 return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_NX));
790 EXPORT_SYMBOL(set_memory_x);
792 int set_memory_nx(unsigned long addr, int numpages)
794 return change_page_attr_set(addr, numpages, __pgprot(_PAGE_NX));
796 EXPORT_SYMBOL(set_memory_nx);
798 int set_memory_ro(unsigned long addr, int numpages)
800 return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_RW));
803 int set_memory_rw(unsigned long addr, int numpages)
805 return change_page_attr_set(addr, numpages, __pgprot(_PAGE_RW));
808 int set_memory_np(unsigned long addr, int numpages)
810 return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_PRESENT));
813 int set_pages_uc(struct page *page, int numpages)
815 unsigned long addr = (unsigned long)page_address(page);
817 return set_memory_uc(addr, numpages);
819 EXPORT_SYMBOL(set_pages_uc);
821 int set_pages_wb(struct page *page, int numpages)
823 unsigned long addr = (unsigned long)page_address(page);
825 return set_memory_wb(addr, numpages);
827 EXPORT_SYMBOL(set_pages_wb);
829 int set_pages_x(struct page *page, int numpages)
831 unsigned long addr = (unsigned long)page_address(page);
833 return set_memory_x(addr, numpages);
835 EXPORT_SYMBOL(set_pages_x);
837 int set_pages_nx(struct page *page, int numpages)
839 unsigned long addr = (unsigned long)page_address(page);
841 return set_memory_nx(addr, numpages);
843 EXPORT_SYMBOL(set_pages_nx);
845 int set_pages_ro(struct page *page, int numpages)
847 unsigned long addr = (unsigned long)page_address(page);
849 return set_memory_ro(addr, numpages);
852 int set_pages_rw(struct page *page, int numpages)
854 unsigned long addr = (unsigned long)page_address(page);
856 return set_memory_rw(addr, numpages);
859 #ifdef CONFIG_DEBUG_PAGEALLOC
861 static int __set_pages_p(struct page *page, int numpages)
863 struct cpa_data cpa = { .vaddr = (unsigned long) page_address(page),
864 .numpages = numpages,
865 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
866 .mask_clr = __pgprot(0)};
868 return __change_page_attr_set_clr(&cpa, 1);
871 static int __set_pages_np(struct page *page, int numpages)
873 struct cpa_data cpa = { .vaddr = (unsigned long) page_address(page),
874 .numpages = numpages,
875 .mask_set = __pgprot(0),
876 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW)};
878 return __change_page_attr_set_clr(&cpa, 1);
881 void kernel_map_pages(struct page *page, int numpages, int enable)
883 if (PageHighMem(page))
886 debug_check_no_locks_freed(page_address(page),
887 numpages * PAGE_SIZE);
891 * If page allocator is not up yet then do not call c_p_a():
893 if (!debug_pagealloc_enabled)
897 * The return value is ignored as the calls cannot fail.
898 * Large pages are kept enabled at boot time, and are
899 * split up quickly with DEBUG_PAGEALLOC. If a splitup
900 * fails here (due to temporary memory shortage) no damage
901 * is done because we just keep the largepage intact up
902 * to the next attempt when it will likely be split up:
905 __set_pages_p(page, numpages);
907 __set_pages_np(page, numpages);
910 * We should perform an IPI and flush all tlbs,
911 * but that can deadlock->flush only current cpu:
916 * Try to refill the page pool here. We can do this only after
922 #ifdef CONFIG_HIBERNATION
924 bool kernel_page_present(struct page *page)
929 if (PageHighMem(page))
932 pte = lookup_address((unsigned long)page_address(page), &level);
933 return (pte_val(*pte) & _PAGE_PRESENT);
936 #endif /* CONFIG_HIBERNATION */
938 #endif /* CONFIG_DEBUG_PAGEALLOC */
941 * The testcases use internal knowledge of the implementation that shouldn't
942 * be exposed to the rest of the kernel. Include these directly here.
944 #ifdef CONFIG_CPA_DEBUG
945 #include "pageattr-test.c"