Merge master.kernel.org:/pub/scm/linux/kernel/git/davej/agpgart
[linux-2.6] / drivers / net / ns83820.c
1 #define VERSION "0.22"
2 /* ns83820.c by Benjamin LaHaise with contributions.
3  *
4  * Questions/comments/discussion to linux-ns83820@kvack.org.
5  *
6  * $Revision: 1.34.2.23 $
7  *
8  * Copyright 2001 Benjamin LaHaise.
9  * Copyright 2001, 2002 Red Hat.
10  *
11  * Mmmm, chocolate vanilla mocha...
12  *
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License as published by
16  * the Free Software Foundation; either version 2 of the License, or
17  * (at your option) any later version.
18  *
19  * This program is distributed in the hope that it will be useful,
20  * but WITHOUT ANY WARRANTY; without even the implied warranty of
21  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22  * GNU General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License
25  * along with this program; if not, write to the Free Software
26  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
27  *
28  *
29  * ChangeLog
30  * =========
31  *      20010414        0.1 - created
32  *      20010622        0.2 - basic rx and tx.
33  *      20010711        0.3 - added duplex and link state detection support.
34  *      20010713        0.4 - zero copy, no hangs.
35  *                      0.5 - 64 bit dma support (davem will hate me for this)
36  *                          - disable jumbo frames to avoid tx hangs
37  *                          - work around tx deadlocks on my 1.02 card via
38  *                            fiddling with TXCFG
39  *      20010810        0.6 - use pci dma api for ringbuffers, work on ia64
40  *      20010816        0.7 - misc cleanups
41  *      20010826        0.8 - fix critical zero copy bugs
42  *                      0.9 - internal experiment
43  *      20010827        0.10 - fix ia64 unaligned access.
44  *      20010906        0.11 - accept all packets with checksum errors as
45  *                             otherwise fragments get lost
46  *                           - fix >> 32 bugs
47  *                      0.12 - add statistics counters
48  *                           - add allmulti/promisc support
49  *      20011009        0.13 - hotplug support, other smaller pci api cleanups
50  *      20011204        0.13a - optical transceiver support added
51  *                              by Michael Clark <michael@metaparadigm.com>
52  *      20011205        0.13b - call register_netdev earlier in initialization
53  *                              suppress duplicate link status messages
54  *      20011117        0.14 - ethtool GDRVINFO, GLINK support from jgarzik
55  *      20011204        0.15    get ppc (big endian) working
56  *      20011218        0.16    various cleanups
57  *      20020310        0.17    speedups
58  *      20020610        0.18 -  actually use the pci dma api for highmem
59  *                           -  remove pci latency register fiddling
60  *                      0.19 -  better bist support
61  *                           -  add ihr and reset_phy parameters
62  *                           -  gmii bus probing
63  *                           -  fix missed txok introduced during performance
64  *                              tuning
65  *                      0.20 -  fix stupid RFEN thinko.  i am such a smurf.
66  *      20040828        0.21 -  add hardware vlan accleration
67  *                              by Neil Horman <nhorman@redhat.com>
68  *      20050406        0.22 -  improved DAC ifdefs from Andi Kleen
69  *                           -  removal of dead code from Adrian Bunk
70  *                           -  fix half duplex collision behaviour
71  * Driver Overview
72  * ===============
73  *
74  * This driver was originally written for the National Semiconductor
75  * 83820 chip, a 10/100/1000 Mbps 64 bit PCI ethernet NIC.  Hopefully
76  * this code will turn out to be a) clean, b) correct, and c) fast.
77  * With that in mind, I'm aiming to split the code up as much as
78  * reasonably possible.  At present there are X major sections that
79  * break down into a) packet receive, b) packet transmit, c) link
80  * management, d) initialization and configuration.  Where possible,
81  * these code paths are designed to run in parallel.
82  *
83  * This driver has been tested and found to work with the following
84  * cards (in no particular order):
85  *
86  *      Cameo           SOHO-GA2000T    SOHO-GA2500T
87  *      D-Link          DGE-500T
88  *      PureData        PDP8023Z-TG
89  *      SMC             SMC9452TX       SMC9462TX
90  *      Netgear         GA621
91  *
92  * Special thanks to SMC for providing hardware to test this driver on.
93  *
94  * Reports of success or failure would be greatly appreciated.
95  */
96 //#define dprintk               printk
97 #define dprintk(x...)           do { } while (0)
98
99 #include <linux/module.h>
100 #include <linux/moduleparam.h>
101 #include <linux/types.h>
102 #include <linux/pci.h>
103 #include <linux/dma-mapping.h>
104 #include <linux/netdevice.h>
105 #include <linux/etherdevice.h>
106 #include <linux/delay.h>
107 #include <linux/smp_lock.h>
108 #include <linux/workqueue.h>
109 #include <linux/init.h>
110 #include <linux/ip.h>   /* for iph */
111 #include <linux/in.h>   /* for IPPROTO_... */
112 #include <linux/compiler.h>
113 #include <linux/prefetch.h>
114 #include <linux/ethtool.h>
115 #include <linux/timer.h>
116 #include <linux/if_vlan.h>
117 #include <linux/rtnetlink.h>
118 #include <linux/jiffies.h>
119
120 #include <asm/io.h>
121 #include <asm/uaccess.h>
122 #include <asm/system.h>
123
124 #define DRV_NAME "ns83820"
125
126 /* Global parameters.  See module_param near the bottom. */
127 static int ihr = 2;
128 static int reset_phy = 0;
129 static int lnksts = 0;          /* CFG_LNKSTS bit polarity */
130
131 /* Dprintk is used for more interesting debug events */
132 #undef Dprintk
133 #define Dprintk                 dprintk
134
135 /* tunables */
136 #define RX_BUF_SIZE     1500    /* 8192 */
137 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
138 #define NS83820_VLAN_ACCEL_SUPPORT
139 #endif
140
141 /* Must not exceed ~65000. */
142 #define NR_RX_DESC      64
143 #define NR_TX_DESC      128
144
145 /* not tunable */
146 #define REAL_RX_BUF_SIZE (RX_BUF_SIZE + 14)     /* rx/tx mac addr + type */
147
148 #define MIN_TX_DESC_FREE        8
149
150 /* register defines */
151 #define CFGCS           0x04
152
153 #define CR_TXE          0x00000001
154 #define CR_TXD          0x00000002
155 /* Ramit : Here's a tip, don't do a RXD immediately followed by an RXE
156  * The Receive engine skips one descriptor and moves
157  * onto the next one!! */
158 #define CR_RXE          0x00000004
159 #define CR_RXD          0x00000008
160 #define CR_TXR          0x00000010
161 #define CR_RXR          0x00000020
162 #define CR_SWI          0x00000080
163 #define CR_RST          0x00000100
164
165 #define PTSCR_EEBIST_FAIL       0x00000001
166 #define PTSCR_EEBIST_EN         0x00000002
167 #define PTSCR_EELOAD_EN         0x00000004
168 #define PTSCR_RBIST_FAIL        0x000001b8
169 #define PTSCR_RBIST_DONE        0x00000200
170 #define PTSCR_RBIST_EN          0x00000400
171 #define PTSCR_RBIST_RST         0x00002000
172
173 #define MEAR_EEDI               0x00000001
174 #define MEAR_EEDO               0x00000002
175 #define MEAR_EECLK              0x00000004
176 #define MEAR_EESEL              0x00000008
177 #define MEAR_MDIO               0x00000010
178 #define MEAR_MDDIR              0x00000020
179 #define MEAR_MDC                0x00000040
180
181 #define ISR_TXDESC3     0x40000000
182 #define ISR_TXDESC2     0x20000000
183 #define ISR_TXDESC1     0x10000000
184 #define ISR_TXDESC0     0x08000000
185 #define ISR_RXDESC3     0x04000000
186 #define ISR_RXDESC2     0x02000000
187 #define ISR_RXDESC1     0x01000000
188 #define ISR_RXDESC0     0x00800000
189 #define ISR_TXRCMP      0x00400000
190 #define ISR_RXRCMP      0x00200000
191 #define ISR_DPERR       0x00100000
192 #define ISR_SSERR       0x00080000
193 #define ISR_RMABT       0x00040000
194 #define ISR_RTABT       0x00020000
195 #define ISR_RXSOVR      0x00010000
196 #define ISR_HIBINT      0x00008000
197 #define ISR_PHY         0x00004000
198 #define ISR_PME         0x00002000
199 #define ISR_SWI         0x00001000
200 #define ISR_MIB         0x00000800
201 #define ISR_TXURN       0x00000400
202 #define ISR_TXIDLE      0x00000200
203 #define ISR_TXERR       0x00000100
204 #define ISR_TXDESC      0x00000080
205 #define ISR_TXOK        0x00000040
206 #define ISR_RXORN       0x00000020
207 #define ISR_RXIDLE      0x00000010
208 #define ISR_RXEARLY     0x00000008
209 #define ISR_RXERR       0x00000004
210 #define ISR_RXDESC      0x00000002
211 #define ISR_RXOK        0x00000001
212
213 #define TXCFG_CSI       0x80000000
214 #define TXCFG_HBI       0x40000000
215 #define TXCFG_MLB       0x20000000
216 #define TXCFG_ATP       0x10000000
217 #define TXCFG_ECRETRY   0x00800000
218 #define TXCFG_BRST_DIS  0x00080000
219 #define TXCFG_MXDMA1024 0x00000000
220 #define TXCFG_MXDMA512  0x00700000
221 #define TXCFG_MXDMA256  0x00600000
222 #define TXCFG_MXDMA128  0x00500000
223 #define TXCFG_MXDMA64   0x00400000
224 #define TXCFG_MXDMA32   0x00300000
225 #define TXCFG_MXDMA16   0x00200000
226 #define TXCFG_MXDMA8    0x00100000
227
228 #define CFG_LNKSTS      0x80000000
229 #define CFG_SPDSTS      0x60000000
230 #define CFG_SPDSTS1     0x40000000
231 #define CFG_SPDSTS0     0x20000000
232 #define CFG_DUPSTS      0x10000000
233 #define CFG_TBI_EN      0x01000000
234 #define CFG_MODE_1000   0x00400000
235 /* Ramit : Dont' ever use AUTO_1000, it never works and is buggy.
236  * Read the Phy response and then configure the MAC accordingly */
237 #define CFG_AUTO_1000   0x00200000
238 #define CFG_PINT_CTL    0x001c0000
239 #define CFG_PINT_DUPSTS 0x00100000
240 #define CFG_PINT_LNKSTS 0x00080000
241 #define CFG_PINT_SPDSTS 0x00040000
242 #define CFG_TMRTEST     0x00020000
243 #define CFG_MRM_DIS     0x00010000
244 #define CFG_MWI_DIS     0x00008000
245 #define CFG_T64ADDR     0x00004000
246 #define CFG_PCI64_DET   0x00002000
247 #define CFG_DATA64_EN   0x00001000
248 #define CFG_M64ADDR     0x00000800
249 #define CFG_PHY_RST     0x00000400
250 #define CFG_PHY_DIS     0x00000200
251 #define CFG_EXTSTS_EN   0x00000100
252 #define CFG_REQALG      0x00000080
253 #define CFG_SB          0x00000040
254 #define CFG_POW         0x00000020
255 #define CFG_EXD         0x00000010
256 #define CFG_PESEL       0x00000008
257 #define CFG_BROM_DIS    0x00000004
258 #define CFG_EXT_125     0x00000002
259 #define CFG_BEM         0x00000001
260
261 #define EXTSTS_UDPPKT   0x00200000
262 #define EXTSTS_TCPPKT   0x00080000
263 #define EXTSTS_IPPKT    0x00020000
264 #define EXTSTS_VPKT     0x00010000
265 #define EXTSTS_VTG_MASK 0x0000ffff
266
267 #define SPDSTS_POLARITY (CFG_SPDSTS1 | CFG_SPDSTS0 | CFG_DUPSTS | (lnksts ? CFG_LNKSTS : 0))
268
269 #define MIBC_MIBS       0x00000008
270 #define MIBC_ACLR       0x00000004
271 #define MIBC_FRZ        0x00000002
272 #define MIBC_WRN        0x00000001
273
274 #define PCR_PSEN        (1 << 31)
275 #define PCR_PS_MCAST    (1 << 30)
276 #define PCR_PS_DA       (1 << 29)
277 #define PCR_STHI_8      (3 << 23)
278 #define PCR_STLO_4      (1 << 23)
279 #define PCR_FFHI_8K     (3 << 21)
280 #define PCR_FFLO_4K     (1 << 21)
281 #define PCR_PAUSE_CNT   0xFFFE
282
283 #define RXCFG_AEP       0x80000000
284 #define RXCFG_ARP       0x40000000
285 #define RXCFG_STRIPCRC  0x20000000
286 #define RXCFG_RX_FD     0x10000000
287 #define RXCFG_ALP       0x08000000
288 #define RXCFG_AIRL      0x04000000
289 #define RXCFG_MXDMA512  0x00700000
290 #define RXCFG_DRTH      0x0000003e
291 #define RXCFG_DRTH0     0x00000002
292
293 #define RFCR_RFEN       0x80000000
294 #define RFCR_AAB        0x40000000
295 #define RFCR_AAM        0x20000000
296 #define RFCR_AAU        0x10000000
297 #define RFCR_APM        0x08000000
298 #define RFCR_APAT       0x07800000
299 #define RFCR_APAT3      0x04000000
300 #define RFCR_APAT2      0x02000000
301 #define RFCR_APAT1      0x01000000
302 #define RFCR_APAT0      0x00800000
303 #define RFCR_AARP       0x00400000
304 #define RFCR_MHEN       0x00200000
305 #define RFCR_UHEN       0x00100000
306 #define RFCR_ULM        0x00080000
307
308 #define VRCR_RUDPE      0x00000080
309 #define VRCR_RTCPE      0x00000040
310 #define VRCR_RIPE       0x00000020
311 #define VRCR_IPEN       0x00000010
312 #define VRCR_DUTF       0x00000008
313 #define VRCR_DVTF       0x00000004
314 #define VRCR_VTREN      0x00000002
315 #define VRCR_VTDEN      0x00000001
316
317 #define VTCR_PPCHK      0x00000008
318 #define VTCR_GCHK       0x00000004
319 #define VTCR_VPPTI      0x00000002
320 #define VTCR_VGTI       0x00000001
321
322 #define CR              0x00
323 #define CFG             0x04
324 #define MEAR            0x08
325 #define PTSCR           0x0c
326 #define ISR             0x10
327 #define IMR             0x14
328 #define IER             0x18
329 #define IHR             0x1c
330 #define TXDP            0x20
331 #define TXDP_HI         0x24
332 #define TXCFG           0x28
333 #define GPIOR           0x2c
334 #define RXDP            0x30
335 #define RXDP_HI         0x34
336 #define RXCFG           0x38
337 #define PQCR            0x3c
338 #define WCSR            0x40
339 #define PCR             0x44
340 #define RFCR            0x48
341 #define RFDR            0x4c
342
343 #define SRR             0x58
344
345 #define VRCR            0xbc
346 #define VTCR            0xc0
347 #define VDR             0xc4
348 #define CCSR            0xcc
349
350 #define TBICR           0xe0
351 #define TBISR           0xe4
352 #define TANAR           0xe8
353 #define TANLPAR         0xec
354 #define TANER           0xf0
355 #define TESR            0xf4
356
357 #define TBICR_MR_AN_ENABLE      0x00001000
358 #define TBICR_MR_RESTART_AN     0x00000200
359
360 #define TBISR_MR_LINK_STATUS    0x00000020
361 #define TBISR_MR_AN_COMPLETE    0x00000004
362
363 #define TANAR_PS2               0x00000100
364 #define TANAR_PS1               0x00000080
365 #define TANAR_HALF_DUP          0x00000040
366 #define TANAR_FULL_DUP          0x00000020
367
368 #define GPIOR_GP5_OE            0x00000200
369 #define GPIOR_GP4_OE            0x00000100
370 #define GPIOR_GP3_OE            0x00000080
371 #define GPIOR_GP2_OE            0x00000040
372 #define GPIOR_GP1_OE            0x00000020
373 #define GPIOR_GP3_OUT           0x00000004
374 #define GPIOR_GP1_OUT           0x00000001
375
376 #define LINK_AUTONEGOTIATE      0x01
377 #define LINK_DOWN               0x02
378 #define LINK_UP                 0x04
379
380 #define HW_ADDR_LEN     sizeof(dma_addr_t)
381 #define desc_addr_set(desc, addr)                               \
382         do {                                                    \
383                 ((desc)[0] = cpu_to_le32(addr));                \
384                 if (HW_ADDR_LEN == 8)                           \
385                         (desc)[1] = cpu_to_le32(((u64)addr) >> 32);     \
386         } while(0)
387 #define desc_addr_get(desc)                                     \
388         (le32_to_cpu((desc)[0]) | \
389         (HW_ADDR_LEN == 8 ? ((dma_addr_t)le32_to_cpu((desc)[1]))<<32 : 0))
390
391 #define DESC_LINK               0
392 #define DESC_BUFPTR             (DESC_LINK + HW_ADDR_LEN/4)
393 #define DESC_CMDSTS             (DESC_BUFPTR + HW_ADDR_LEN/4)
394 #define DESC_EXTSTS             (DESC_CMDSTS + 4/4)
395
396 #define CMDSTS_OWN      0x80000000
397 #define CMDSTS_MORE     0x40000000
398 #define CMDSTS_INTR     0x20000000
399 #define CMDSTS_ERR      0x10000000
400 #define CMDSTS_OK       0x08000000
401 #define CMDSTS_RUNT     0x00200000
402 #define CMDSTS_LEN_MASK 0x0000ffff
403
404 #define CMDSTS_DEST_MASK        0x01800000
405 #define CMDSTS_DEST_SELF        0x00800000
406 #define CMDSTS_DEST_MULTI       0x01000000
407
408 #define DESC_SIZE       8               /* Should be cache line sized */
409
410 struct rx_info {
411         spinlock_t      lock;
412         int             up;
413         long            idle;
414
415         struct sk_buff  *skbs[NR_RX_DESC];
416
417         __le32          *next_rx_desc;
418         u16             next_rx, next_empty;
419
420         __le32          *descs;
421         dma_addr_t      phy_descs;
422 };
423
424
425 struct ns83820 {
426         struct net_device_stats stats;
427         u8                      __iomem *base;
428
429         struct pci_dev          *pci_dev;
430         struct net_device       *ndev;
431
432 #ifdef NS83820_VLAN_ACCEL_SUPPORT
433         struct vlan_group       *vlgrp;
434 #endif
435
436         struct rx_info          rx_info;
437         struct tasklet_struct   rx_tasklet;
438
439         unsigned                ihr;
440         struct work_struct      tq_refill;
441
442         /* protects everything below.  irqsave when using. */
443         spinlock_t              misc_lock;
444
445         u32                     CFG_cache;
446
447         u32                     MEAR_cache;
448         u32                     IMR_cache;
449
450         unsigned                linkstate;
451
452         spinlock_t      tx_lock;
453
454         u16             tx_done_idx;
455         u16             tx_idx;
456         volatile u16    tx_free_idx;    /* idx of free desc chain */
457         u16             tx_intr_idx;
458
459         atomic_t        nr_tx_skbs;
460         struct sk_buff  *tx_skbs[NR_TX_DESC];
461
462         char            pad[16] __attribute__((aligned(16)));
463         __le32          *tx_descs;
464         dma_addr_t      tx_phy_descs;
465
466         struct timer_list       tx_watchdog;
467 };
468
469 static inline struct ns83820 *PRIV(struct net_device *dev)
470 {
471         return netdev_priv(dev);
472 }
473
474 #define __kick_rx(dev)  writel(CR_RXE, dev->base + CR)
475
476 static inline void kick_rx(struct net_device *ndev)
477 {
478         struct ns83820 *dev = PRIV(ndev);
479         dprintk("kick_rx: maybe kicking\n");
480         if (test_and_clear_bit(0, &dev->rx_info.idle)) {
481                 dprintk("actually kicking\n");
482                 writel(dev->rx_info.phy_descs +
483                         (4 * DESC_SIZE * dev->rx_info.next_rx),
484                        dev->base + RXDP);
485                 if (dev->rx_info.next_rx == dev->rx_info.next_empty)
486                         printk(KERN_DEBUG "%s: uh-oh: next_rx == next_empty???\n",
487                                 ndev->name);
488                 __kick_rx(dev);
489         }
490 }
491
492 //free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC
493 #define start_tx_okay(dev)      \
494         (((NR_TX_DESC-2 + dev->tx_done_idx - dev->tx_free_idx) % NR_TX_DESC) > MIN_TX_DESC_FREE)
495
496
497 #ifdef NS83820_VLAN_ACCEL_SUPPORT
498 static void ns83820_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
499 {
500         struct ns83820 *dev = PRIV(ndev);
501
502         spin_lock_irq(&dev->misc_lock);
503         spin_lock(&dev->tx_lock);
504
505         dev->vlgrp = grp;
506
507         spin_unlock(&dev->tx_lock);
508         spin_unlock_irq(&dev->misc_lock);
509 }
510
511 static void ns83820_vlan_rx_kill_vid(struct net_device *ndev, unsigned short vid)
512 {
513         struct ns83820 *dev = PRIV(ndev);
514
515         spin_lock_irq(&dev->misc_lock);
516         spin_lock(&dev->tx_lock);
517         if (dev->vlgrp)
518                 dev->vlgrp->vlan_devices[vid] = NULL;
519         spin_unlock(&dev->tx_lock);
520         spin_unlock_irq(&dev->misc_lock);
521 }
522 #endif
523
524 /* Packet Receiver
525  *
526  * The hardware supports linked lists of receive descriptors for
527  * which ownership is transfered back and forth by means of an
528  * ownership bit.  While the hardware does support the use of a
529  * ring for receive descriptors, we only make use of a chain in
530  * an attempt to reduce bus traffic under heavy load scenarios.
531  * This will also make bugs a bit more obvious.  The current code
532  * only makes use of a single rx chain; I hope to implement
533  * priority based rx for version 1.0.  Goal: even under overload
534  * conditions, still route realtime traffic with as low jitter as
535  * possible.
536  */
537 static inline void build_rx_desc(struct ns83820 *dev, __le32 *desc, dma_addr_t link, dma_addr_t buf, u32 cmdsts, u32 extsts)
538 {
539         desc_addr_set(desc + DESC_LINK, link);
540         desc_addr_set(desc + DESC_BUFPTR, buf);
541         desc[DESC_EXTSTS] = cpu_to_le32(extsts);
542         mb();
543         desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
544 }
545
546 #define nr_rx_empty(dev) ((NR_RX_DESC-2 + dev->rx_info.next_rx - dev->rx_info.next_empty) % NR_RX_DESC)
547 static inline int ns83820_add_rx_skb(struct ns83820 *dev, struct sk_buff *skb)
548 {
549         unsigned next_empty;
550         u32 cmdsts;
551         __le32 *sg;
552         dma_addr_t buf;
553
554         next_empty = dev->rx_info.next_empty;
555
556         /* don't overrun last rx marker */
557         if (unlikely(nr_rx_empty(dev) <= 2)) {
558                 kfree_skb(skb);
559                 return 1;
560         }
561
562 #if 0
563         dprintk("next_empty[%d] nr_used[%d] next_rx[%d]\n",
564                 dev->rx_info.next_empty,
565                 dev->rx_info.nr_used,
566                 dev->rx_info.next_rx
567                 );
568 #endif
569
570         sg = dev->rx_info.descs + (next_empty * DESC_SIZE);
571         BUG_ON(NULL != dev->rx_info.skbs[next_empty]);
572         dev->rx_info.skbs[next_empty] = skb;
573
574         dev->rx_info.next_empty = (next_empty + 1) % NR_RX_DESC;
575         cmdsts = REAL_RX_BUF_SIZE | CMDSTS_INTR;
576         buf = pci_map_single(dev->pci_dev, skb->data,
577                              REAL_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
578         build_rx_desc(dev, sg, 0, buf, cmdsts, 0);
579         /* update link of previous rx */
580         if (likely(next_empty != dev->rx_info.next_rx))
581                 dev->rx_info.descs[((NR_RX_DESC + next_empty - 1) % NR_RX_DESC) * DESC_SIZE] = cpu_to_le32(dev->rx_info.phy_descs + (next_empty * DESC_SIZE * 4));
582
583         return 0;
584 }
585
586 static inline int rx_refill(struct net_device *ndev, gfp_t gfp)
587 {
588         struct ns83820 *dev = PRIV(ndev);
589         unsigned i;
590         unsigned long flags = 0;
591
592         if (unlikely(nr_rx_empty(dev) <= 2))
593                 return 0;
594
595         dprintk("rx_refill(%p)\n", ndev);
596         if (gfp == GFP_ATOMIC)
597                 spin_lock_irqsave(&dev->rx_info.lock, flags);
598         for (i=0; i<NR_RX_DESC; i++) {
599                 struct sk_buff *skb;
600                 long res;
601                 /* extra 16 bytes for alignment */
602                 skb = __dev_alloc_skb(REAL_RX_BUF_SIZE+16, gfp);
603                 if (unlikely(!skb))
604                         break;
605
606                 res = (long)skb->data & 0xf;
607                 res = 0x10 - res;
608                 res &= 0xf;
609                 skb_reserve(skb, res);
610
611                 skb->dev = ndev;
612                 if (gfp != GFP_ATOMIC)
613                         spin_lock_irqsave(&dev->rx_info.lock, flags);
614                 res = ns83820_add_rx_skb(dev, skb);
615                 if (gfp != GFP_ATOMIC)
616                         spin_unlock_irqrestore(&dev->rx_info.lock, flags);
617                 if (res) {
618                         i = 1;
619                         break;
620                 }
621         }
622         if (gfp == GFP_ATOMIC)
623                 spin_unlock_irqrestore(&dev->rx_info.lock, flags);
624
625         return i ? 0 : -ENOMEM;
626 }
627
628 static void FASTCALL(rx_refill_atomic(struct net_device *ndev));
629 static void fastcall rx_refill_atomic(struct net_device *ndev)
630 {
631         rx_refill(ndev, GFP_ATOMIC);
632 }
633
634 /* REFILL */
635 static inline void queue_refill(struct work_struct *work)
636 {
637         struct ns83820 *dev = container_of(work, struct ns83820, tq_refill);
638         struct net_device *ndev = dev->ndev;
639
640         rx_refill(ndev, GFP_KERNEL);
641         if (dev->rx_info.up)
642                 kick_rx(ndev);
643 }
644
645 static inline void clear_rx_desc(struct ns83820 *dev, unsigned i)
646 {
647         build_rx_desc(dev, dev->rx_info.descs + (DESC_SIZE * i), 0, 0, CMDSTS_OWN, 0);
648 }
649
650 static void FASTCALL(phy_intr(struct net_device *ndev));
651 static void fastcall phy_intr(struct net_device *ndev)
652 {
653         struct ns83820 *dev = PRIV(ndev);
654         static const char *speeds[] = { "10", "100", "1000", "1000(?)", "1000F" };
655         u32 cfg, new_cfg;
656         u32 tbisr, tanar, tanlpar;
657         int speed, fullduplex, newlinkstate;
658
659         cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
660
661         if (dev->CFG_cache & CFG_TBI_EN) {
662                 /* we have an optical transceiver */
663                 tbisr = readl(dev->base + TBISR);
664                 tanar = readl(dev->base + TANAR);
665                 tanlpar = readl(dev->base + TANLPAR);
666                 dprintk("phy_intr: tbisr=%08x, tanar=%08x, tanlpar=%08x\n",
667                         tbisr, tanar, tanlpar);
668
669                 if ( (fullduplex = (tanlpar & TANAR_FULL_DUP)
670                       && (tanar & TANAR_FULL_DUP)) ) {
671
672                         /* both of us are full duplex */
673                         writel(readl(dev->base + TXCFG)
674                                | TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
675                                dev->base + TXCFG);
676                         writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
677                                dev->base + RXCFG);
678                         /* Light up full duplex LED */
679                         writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
680                                dev->base + GPIOR);
681
682                 } else if(((tanlpar & TANAR_HALF_DUP)
683                            && (tanar & TANAR_HALF_DUP))
684                         || ((tanlpar & TANAR_FULL_DUP)
685                             && (tanar & TANAR_HALF_DUP))
686                         || ((tanlpar & TANAR_HALF_DUP)
687                             && (tanar & TANAR_FULL_DUP))) {
688
689                         /* one or both of us are half duplex */
690                         writel((readl(dev->base + TXCFG)
691                                 & ~(TXCFG_CSI | TXCFG_HBI)) | TXCFG_ATP,
692                                dev->base + TXCFG);
693                         writel(readl(dev->base + RXCFG) & ~RXCFG_RX_FD,
694                                dev->base + RXCFG);
695                         /* Turn off full duplex LED */
696                         writel(readl(dev->base + GPIOR) & ~GPIOR_GP1_OUT,
697                                dev->base + GPIOR);
698                 }
699
700                 speed = 4; /* 1000F */
701
702         } else {
703                 /* we have a copper transceiver */
704                 new_cfg = dev->CFG_cache & ~(CFG_SB | CFG_MODE_1000 | CFG_SPDSTS);
705
706                 if (cfg & CFG_SPDSTS1)
707                         new_cfg |= CFG_MODE_1000;
708                 else
709                         new_cfg &= ~CFG_MODE_1000;
710
711                 speed = ((cfg / CFG_SPDSTS0) & 3);
712                 fullduplex = (cfg & CFG_DUPSTS);
713
714                 if (fullduplex) {
715                         new_cfg |= CFG_SB;
716                         writel(readl(dev->base + TXCFG)
717                                         | TXCFG_CSI | TXCFG_HBI,
718                                dev->base + TXCFG);
719                         writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
720                                dev->base + RXCFG);
721                 } else {
722                         writel(readl(dev->base + TXCFG)
723                                         & ~(TXCFG_CSI | TXCFG_HBI),
724                                dev->base + TXCFG);
725                         writel(readl(dev->base + RXCFG) & ~(RXCFG_RX_FD),
726                                dev->base + RXCFG);
727                 }
728
729                 if ((cfg & CFG_LNKSTS) &&
730                     ((new_cfg ^ dev->CFG_cache) != 0)) {
731                         writel(new_cfg, dev->base + CFG);
732                         dev->CFG_cache = new_cfg;
733                 }
734
735                 dev->CFG_cache &= ~CFG_SPDSTS;
736                 dev->CFG_cache |= cfg & CFG_SPDSTS;
737         }
738
739         newlinkstate = (cfg & CFG_LNKSTS) ? LINK_UP : LINK_DOWN;
740
741         if (newlinkstate & LINK_UP
742             && dev->linkstate != newlinkstate) {
743                 netif_start_queue(ndev);
744                 netif_wake_queue(ndev);
745                 printk(KERN_INFO "%s: link now %s mbps, %s duplex and up.\n",
746                         ndev->name,
747                         speeds[speed],
748                         fullduplex ? "full" : "half");
749         } else if (newlinkstate & LINK_DOWN
750                    && dev->linkstate != newlinkstate) {
751                 netif_stop_queue(ndev);
752                 printk(KERN_INFO "%s: link now down.\n", ndev->name);
753         }
754
755         dev->linkstate = newlinkstate;
756 }
757
758 static int ns83820_setup_rx(struct net_device *ndev)
759 {
760         struct ns83820 *dev = PRIV(ndev);
761         unsigned i;
762         int ret;
763
764         dprintk("ns83820_setup_rx(%p)\n", ndev);
765
766         dev->rx_info.idle = 1;
767         dev->rx_info.next_rx = 0;
768         dev->rx_info.next_rx_desc = dev->rx_info.descs;
769         dev->rx_info.next_empty = 0;
770
771         for (i=0; i<NR_RX_DESC; i++)
772                 clear_rx_desc(dev, i);
773
774         writel(0, dev->base + RXDP_HI);
775         writel(dev->rx_info.phy_descs, dev->base + RXDP);
776
777         ret = rx_refill(ndev, GFP_KERNEL);
778         if (!ret) {
779                 dprintk("starting receiver\n");
780                 /* prevent the interrupt handler from stomping on us */
781                 spin_lock_irq(&dev->rx_info.lock);
782
783                 writel(0x0001, dev->base + CCSR);
784                 writel(0, dev->base + RFCR);
785                 writel(0x7fc00000, dev->base + RFCR);
786                 writel(0xffc00000, dev->base + RFCR);
787
788                 dev->rx_info.up = 1;
789
790                 phy_intr(ndev);
791
792                 /* Okay, let it rip */
793                 spin_lock_irq(&dev->misc_lock);
794                 dev->IMR_cache |= ISR_PHY;
795                 dev->IMR_cache |= ISR_RXRCMP;
796                 //dev->IMR_cache |= ISR_RXERR;
797                 //dev->IMR_cache |= ISR_RXOK;
798                 dev->IMR_cache |= ISR_RXORN;
799                 dev->IMR_cache |= ISR_RXSOVR;
800                 dev->IMR_cache |= ISR_RXDESC;
801                 dev->IMR_cache |= ISR_RXIDLE;
802                 dev->IMR_cache |= ISR_TXDESC;
803                 dev->IMR_cache |= ISR_TXIDLE;
804
805                 writel(dev->IMR_cache, dev->base + IMR);
806                 writel(1, dev->base + IER);
807                 spin_unlock(&dev->misc_lock);
808
809                 kick_rx(ndev);
810
811                 spin_unlock_irq(&dev->rx_info.lock);
812         }
813         return ret;
814 }
815
816 static void ns83820_cleanup_rx(struct ns83820 *dev)
817 {
818         unsigned i;
819         unsigned long flags;
820
821         dprintk("ns83820_cleanup_rx(%p)\n", dev);
822
823         /* disable receive interrupts */
824         spin_lock_irqsave(&dev->misc_lock, flags);
825         dev->IMR_cache &= ~(ISR_RXOK | ISR_RXDESC | ISR_RXERR | ISR_RXEARLY | ISR_RXIDLE);
826         writel(dev->IMR_cache, dev->base + IMR);
827         spin_unlock_irqrestore(&dev->misc_lock, flags);
828
829         /* synchronize with the interrupt handler and kill it */
830         dev->rx_info.up = 0;
831         synchronize_irq(dev->pci_dev->irq);
832
833         /* touch the pci bus... */
834         readl(dev->base + IMR);
835
836         /* assumes the transmitter is already disabled and reset */
837         writel(0, dev->base + RXDP_HI);
838         writel(0, dev->base + RXDP);
839
840         for (i=0; i<NR_RX_DESC; i++) {
841                 struct sk_buff *skb = dev->rx_info.skbs[i];
842                 dev->rx_info.skbs[i] = NULL;
843                 clear_rx_desc(dev, i);
844                 if (skb)
845                         kfree_skb(skb);
846         }
847 }
848
849 static void FASTCALL(ns83820_rx_kick(struct net_device *ndev));
850 static void fastcall ns83820_rx_kick(struct net_device *ndev)
851 {
852         struct ns83820 *dev = PRIV(ndev);
853         /*if (nr_rx_empty(dev) >= NR_RX_DESC/4)*/ {
854                 if (dev->rx_info.up) {
855                         rx_refill_atomic(ndev);
856                         kick_rx(ndev);
857                 }
858         }
859
860         if (dev->rx_info.up && nr_rx_empty(dev) > NR_RX_DESC*3/4)
861                 schedule_work(&dev->tq_refill);
862         else
863                 kick_rx(ndev);
864         if (dev->rx_info.idle)
865                 printk(KERN_DEBUG "%s: BAD\n", ndev->name);
866 }
867
868 /* rx_irq
869  *
870  */
871 static void FASTCALL(rx_irq(struct net_device *ndev));
872 static void fastcall rx_irq(struct net_device *ndev)
873 {
874         struct ns83820 *dev = PRIV(ndev);
875         struct rx_info *info = &dev->rx_info;
876         unsigned next_rx;
877         int rx_rc, len;
878         u32 cmdsts;
879         __le32 *desc;
880         unsigned long flags;
881         int nr = 0;
882
883         dprintk("rx_irq(%p)\n", ndev);
884         dprintk("rxdp: %08x, descs: %08lx next_rx[%d]: %p next_empty[%d]: %p\n",
885                 readl(dev->base + RXDP),
886                 (long)(dev->rx_info.phy_descs),
887                 (int)dev->rx_info.next_rx,
888                 (dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_rx)),
889                 (int)dev->rx_info.next_empty,
890                 (dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_empty))
891                 );
892
893         spin_lock_irqsave(&info->lock, flags);
894         if (!info->up)
895                 goto out;
896
897         dprintk("walking descs\n");
898         next_rx = info->next_rx;
899         desc = info->next_rx_desc;
900         while ((CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) &&
901                (cmdsts != CMDSTS_OWN)) {
902                 struct sk_buff *skb;
903                 u32 extsts = le32_to_cpu(desc[DESC_EXTSTS]);
904                 dma_addr_t bufptr = desc_addr_get(desc + DESC_BUFPTR);
905
906                 dprintk("cmdsts: %08x\n", cmdsts);
907                 dprintk("link: %08x\n", cpu_to_le32(desc[DESC_LINK]));
908                 dprintk("extsts: %08x\n", extsts);
909
910                 skb = info->skbs[next_rx];
911                 info->skbs[next_rx] = NULL;
912                 info->next_rx = (next_rx + 1) % NR_RX_DESC;
913
914                 mb();
915                 clear_rx_desc(dev, next_rx);
916
917                 pci_unmap_single(dev->pci_dev, bufptr,
918                                  RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
919                 len = cmdsts & CMDSTS_LEN_MASK;
920 #ifdef NS83820_VLAN_ACCEL_SUPPORT
921                 /* NH: As was mentioned below, this chip is kinda
922                  * brain dead about vlan tag stripping.  Frames
923                  * that are 64 bytes with a vlan header appended
924                  * like arp frames, or pings, are flagged as Runts
925                  * when the tag is stripped and hardware.  This
926                  * also means that the OK bit in the descriptor
927                  * is cleared when the frame comes in so we have
928                  * to do a specific length check here to make sure
929                  * the frame would have been ok, had we not stripped
930                  * the tag.
931                  */
932                 if (likely((CMDSTS_OK & cmdsts) ||
933                         ((cmdsts & CMDSTS_RUNT) && len >= 56))) {
934 #else
935                 if (likely(CMDSTS_OK & cmdsts)) {
936 #endif
937                         skb_put(skb, len);
938                         if (unlikely(!skb))
939                                 goto netdev_mangle_me_harder_failed;
940                         if (cmdsts & CMDSTS_DEST_MULTI)
941                                 dev->stats.multicast ++;
942                         dev->stats.rx_packets ++;
943                         dev->stats.rx_bytes += len;
944                         if ((extsts & 0x002a0000) && !(extsts & 0x00540000)) {
945                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
946                         } else {
947                                 skb->ip_summed = CHECKSUM_NONE;
948                         }
949                         skb->protocol = eth_type_trans(skb, ndev);
950 #ifdef NS83820_VLAN_ACCEL_SUPPORT
951                         if(extsts & EXTSTS_VPKT) {
952                                 unsigned short tag;
953                                 tag = ntohs(extsts & EXTSTS_VTG_MASK);
954                                 rx_rc = vlan_hwaccel_rx(skb,dev->vlgrp,tag);
955                         } else {
956                                 rx_rc = netif_rx(skb);
957                         }
958 #else
959                         rx_rc = netif_rx(skb);
960 #endif
961                         if (NET_RX_DROP == rx_rc) {
962 netdev_mangle_me_harder_failed:
963                                 dev->stats.rx_dropped ++;
964                         }
965                 } else {
966                         kfree_skb(skb);
967                 }
968
969                 nr++;
970                 next_rx = info->next_rx;
971                 desc = info->descs + (DESC_SIZE * next_rx);
972         }
973         info->next_rx = next_rx;
974         info->next_rx_desc = info->descs + (DESC_SIZE * next_rx);
975
976 out:
977         if (0 && !nr) {
978                 Dprintk("dazed: cmdsts_f: %08x\n", cmdsts);
979         }
980
981         spin_unlock_irqrestore(&info->lock, flags);
982 }
983
984 static void rx_action(unsigned long _dev)
985 {
986         struct net_device *ndev = (void *)_dev;
987         struct ns83820 *dev = PRIV(ndev);
988         rx_irq(ndev);
989         writel(ihr, dev->base + IHR);
990
991         spin_lock_irq(&dev->misc_lock);
992         dev->IMR_cache |= ISR_RXDESC;
993         writel(dev->IMR_cache, dev->base + IMR);
994         spin_unlock_irq(&dev->misc_lock);
995
996         rx_irq(ndev);
997         ns83820_rx_kick(ndev);
998 }
999
1000 /* Packet Transmit code
1001  */
1002 static inline void kick_tx(struct ns83820 *dev)
1003 {
1004         dprintk("kick_tx(%p): tx_idx=%d free_idx=%d\n",
1005                 dev, dev->tx_idx, dev->tx_free_idx);
1006         writel(CR_TXE, dev->base + CR);
1007 }
1008
1009 /* No spinlock needed on the transmit irq path as the interrupt handler is
1010  * serialized.
1011  */
1012 static void do_tx_done(struct net_device *ndev)
1013 {
1014         struct ns83820 *dev = PRIV(ndev);
1015         u32 cmdsts, tx_done_idx;
1016         __le32 *desc;
1017
1018         dprintk("do_tx_done(%p)\n", ndev);
1019         tx_done_idx = dev->tx_done_idx;
1020         desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1021
1022         dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1023                 tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1024         while ((tx_done_idx != dev->tx_free_idx) &&
1025                !(CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) ) {
1026                 struct sk_buff *skb;
1027                 unsigned len;
1028                 dma_addr_t addr;
1029
1030                 if (cmdsts & CMDSTS_ERR)
1031                         dev->stats.tx_errors ++;
1032                 if (cmdsts & CMDSTS_OK)
1033                         dev->stats.tx_packets ++;
1034                 if (cmdsts & CMDSTS_OK)
1035                         dev->stats.tx_bytes += cmdsts & 0xffff;
1036
1037                 dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1038                         tx_done_idx, dev->tx_free_idx, cmdsts);
1039                 skb = dev->tx_skbs[tx_done_idx];
1040                 dev->tx_skbs[tx_done_idx] = NULL;
1041                 dprintk("done(%p)\n", skb);
1042
1043                 len = cmdsts & CMDSTS_LEN_MASK;
1044                 addr = desc_addr_get(desc + DESC_BUFPTR);
1045                 if (skb) {
1046                         pci_unmap_single(dev->pci_dev,
1047                                         addr,
1048                                         len,
1049                                         PCI_DMA_TODEVICE);
1050                         dev_kfree_skb_irq(skb);
1051                         atomic_dec(&dev->nr_tx_skbs);
1052                 } else
1053                         pci_unmap_page(dev->pci_dev,
1054                                         addr,
1055                                         len,
1056                                         PCI_DMA_TODEVICE);
1057
1058                 tx_done_idx = (tx_done_idx + 1) % NR_TX_DESC;
1059                 dev->tx_done_idx = tx_done_idx;
1060                 desc[DESC_CMDSTS] = cpu_to_le32(0);
1061                 mb();
1062                 desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1063         }
1064
1065         /* Allow network stack to resume queueing packets after we've
1066          * finished transmitting at least 1/4 of the packets in the queue.
1067          */
1068         if (netif_queue_stopped(ndev) && start_tx_okay(dev)) {
1069                 dprintk("start_queue(%p)\n", ndev);
1070                 netif_start_queue(ndev);
1071                 netif_wake_queue(ndev);
1072         }
1073 }
1074
1075 static void ns83820_cleanup_tx(struct ns83820 *dev)
1076 {
1077         unsigned i;
1078
1079         for (i=0; i<NR_TX_DESC; i++) {
1080                 struct sk_buff *skb = dev->tx_skbs[i];
1081                 dev->tx_skbs[i] = NULL;
1082                 if (skb) {
1083                         __le32 *desc = dev->tx_descs + (i * DESC_SIZE);
1084                         pci_unmap_single(dev->pci_dev,
1085                                         desc_addr_get(desc + DESC_BUFPTR),
1086                                         le32_to_cpu(desc[DESC_CMDSTS]) & CMDSTS_LEN_MASK,
1087                                         PCI_DMA_TODEVICE);
1088                         dev_kfree_skb_irq(skb);
1089                         atomic_dec(&dev->nr_tx_skbs);
1090                 }
1091         }
1092
1093         memset(dev->tx_descs, 0, NR_TX_DESC * DESC_SIZE * 4);
1094 }
1095
1096 /* transmit routine.  This code relies on the network layer serializing
1097  * its calls in, but will run happily in parallel with the interrupt
1098  * handler.  This code currently has provisions for fragmenting tx buffers
1099  * while trying to track down a bug in either the zero copy code or
1100  * the tx fifo (hence the MAX_FRAG_LEN).
1101  */
1102 static int ns83820_hard_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1103 {
1104         struct ns83820 *dev = PRIV(ndev);
1105         u32 free_idx, cmdsts, extsts;
1106         int nr_free, nr_frags;
1107         unsigned tx_done_idx, last_idx;
1108         dma_addr_t buf;
1109         unsigned len;
1110         skb_frag_t *frag;
1111         int stopped = 0;
1112         int do_intr = 0;
1113         volatile __le32 *first_desc;
1114
1115         dprintk("ns83820_hard_start_xmit\n");
1116
1117         nr_frags =  skb_shinfo(skb)->nr_frags;
1118 again:
1119         if (unlikely(dev->CFG_cache & CFG_LNKSTS)) {
1120                 netif_stop_queue(ndev);
1121                 if (unlikely(dev->CFG_cache & CFG_LNKSTS))
1122                         return 1;
1123                 netif_start_queue(ndev);
1124         }
1125
1126         last_idx = free_idx = dev->tx_free_idx;
1127         tx_done_idx = dev->tx_done_idx;
1128         nr_free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC;
1129         nr_free -= 1;
1130         if (nr_free <= nr_frags) {
1131                 dprintk("stop_queue - not enough(%p)\n", ndev);
1132                 netif_stop_queue(ndev);
1133
1134                 /* Check again: we may have raced with a tx done irq */
1135                 if (dev->tx_done_idx != tx_done_idx) {
1136                         dprintk("restart queue(%p)\n", ndev);
1137                         netif_start_queue(ndev);
1138                         goto again;
1139                 }
1140                 return 1;
1141         }
1142
1143         if (free_idx == dev->tx_intr_idx) {
1144                 do_intr = 1;
1145                 dev->tx_intr_idx = (dev->tx_intr_idx + NR_TX_DESC/4) % NR_TX_DESC;
1146         }
1147
1148         nr_free -= nr_frags;
1149         if (nr_free < MIN_TX_DESC_FREE) {
1150                 dprintk("stop_queue - last entry(%p)\n", ndev);
1151                 netif_stop_queue(ndev);
1152                 stopped = 1;
1153         }
1154
1155         frag = skb_shinfo(skb)->frags;
1156         if (!nr_frags)
1157                 frag = NULL;
1158         extsts = 0;
1159         if (skb->ip_summed == CHECKSUM_PARTIAL) {
1160                 extsts |= EXTSTS_IPPKT;
1161                 if (IPPROTO_TCP == skb->nh.iph->protocol)
1162                         extsts |= EXTSTS_TCPPKT;
1163                 else if (IPPROTO_UDP == skb->nh.iph->protocol)
1164                         extsts |= EXTSTS_UDPPKT;
1165         }
1166
1167 #ifdef NS83820_VLAN_ACCEL_SUPPORT
1168         if(vlan_tx_tag_present(skb)) {
1169                 /* fetch the vlan tag info out of the
1170                  * ancilliary data if the vlan code
1171                  * is using hw vlan acceleration
1172                  */
1173                 short tag = vlan_tx_tag_get(skb);
1174                 extsts |= (EXTSTS_VPKT | htons(tag));
1175         }
1176 #endif
1177
1178         len = skb->len;
1179         if (nr_frags)
1180                 len -= skb->data_len;
1181         buf = pci_map_single(dev->pci_dev, skb->data, len, PCI_DMA_TODEVICE);
1182
1183         first_desc = dev->tx_descs + (free_idx * DESC_SIZE);
1184
1185         for (;;) {
1186                 volatile __le32 *desc = dev->tx_descs + (free_idx * DESC_SIZE);
1187
1188                 dprintk("frag[%3u]: %4u @ 0x%08Lx\n", free_idx, len,
1189                         (unsigned long long)buf);
1190                 last_idx = free_idx;
1191                 free_idx = (free_idx + 1) % NR_TX_DESC;
1192                 desc[DESC_LINK] = cpu_to_le32(dev->tx_phy_descs + (free_idx * DESC_SIZE * 4));
1193                 desc_addr_set(desc + DESC_BUFPTR, buf);
1194                 desc[DESC_EXTSTS] = cpu_to_le32(extsts);
1195
1196                 cmdsts = ((nr_frags) ? CMDSTS_MORE : do_intr ? CMDSTS_INTR : 0);
1197                 cmdsts |= (desc == first_desc) ? 0 : CMDSTS_OWN;
1198                 cmdsts |= len;
1199                 desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
1200
1201                 if (!nr_frags)
1202                         break;
1203
1204                 buf = pci_map_page(dev->pci_dev, frag->page,
1205                                    frag->page_offset,
1206                                    frag->size, PCI_DMA_TODEVICE);
1207                 dprintk("frag: buf=%08Lx  page=%08lx offset=%08lx\n",
1208                         (long long)buf, (long) page_to_pfn(frag->page),
1209                         frag->page_offset);
1210                 len = frag->size;
1211                 frag++;
1212                 nr_frags--;
1213         }
1214         dprintk("done pkt\n");
1215
1216         spin_lock_irq(&dev->tx_lock);
1217         dev->tx_skbs[last_idx] = skb;
1218         first_desc[DESC_CMDSTS] |= cpu_to_le32(CMDSTS_OWN);
1219         dev->tx_free_idx = free_idx;
1220         atomic_inc(&dev->nr_tx_skbs);
1221         spin_unlock_irq(&dev->tx_lock);
1222
1223         kick_tx(dev);
1224
1225         /* Check again: we may have raced with a tx done irq */
1226         if (stopped && (dev->tx_done_idx != tx_done_idx) && start_tx_okay(dev))
1227                 netif_start_queue(ndev);
1228
1229         /* set the transmit start time to catch transmit timeouts */
1230         ndev->trans_start = jiffies;
1231         return 0;
1232 }
1233
1234 static void ns83820_update_stats(struct ns83820 *dev)
1235 {
1236         u8 __iomem *base = dev->base;
1237
1238         /* the DP83820 will freeze counters, so we need to read all of them */
1239         dev->stats.rx_errors            += readl(base + 0x60) & 0xffff;
1240         dev->stats.rx_crc_errors        += readl(base + 0x64) & 0xffff;
1241         dev->stats.rx_missed_errors     += readl(base + 0x68) & 0xffff;
1242         dev->stats.rx_frame_errors      += readl(base + 0x6c) & 0xffff;
1243         /*dev->stats.rx_symbol_errors +=*/ readl(base + 0x70);
1244         dev->stats.rx_length_errors     += readl(base + 0x74) & 0xffff;
1245         dev->stats.rx_length_errors     += readl(base + 0x78) & 0xffff;
1246         /*dev->stats.rx_badopcode_errors += */ readl(base + 0x7c);
1247         /*dev->stats.rx_pause_count += */  readl(base + 0x80);
1248         /*dev->stats.tx_pause_count += */  readl(base + 0x84);
1249         dev->stats.tx_carrier_errors    += readl(base + 0x88) & 0xff;
1250 }
1251
1252 static struct net_device_stats *ns83820_get_stats(struct net_device *ndev)
1253 {
1254         struct ns83820 *dev = PRIV(ndev);
1255
1256         /* somewhat overkill */
1257         spin_lock_irq(&dev->misc_lock);
1258         ns83820_update_stats(dev);
1259         spin_unlock_irq(&dev->misc_lock);
1260
1261         return &dev->stats;
1262 }
1263
1264 static void ns83820_get_drvinfo(struct net_device *ndev, struct ethtool_drvinfo *info)
1265 {
1266         struct ns83820 *dev = PRIV(ndev);
1267         strcpy(info->driver, "ns83820");
1268         strcpy(info->version, VERSION);
1269         strcpy(info->bus_info, pci_name(dev->pci_dev));
1270 }
1271
1272 static u32 ns83820_get_link(struct net_device *ndev)
1273 {
1274         struct ns83820 *dev = PRIV(ndev);
1275         u32 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1276         return cfg & CFG_LNKSTS ? 1 : 0;
1277 }
1278
1279 static const struct ethtool_ops ops = {
1280         .get_drvinfo = ns83820_get_drvinfo,
1281         .get_link = ns83820_get_link
1282 };
1283
1284 /* this function is called in irq context from the ISR */
1285 static void ns83820_mib_isr(struct ns83820 *dev)
1286 {
1287         unsigned long flags;
1288         spin_lock_irqsave(&dev->misc_lock, flags);
1289         ns83820_update_stats(dev);
1290         spin_unlock_irqrestore(&dev->misc_lock, flags);
1291 }
1292
1293 static void ns83820_do_isr(struct net_device *ndev, u32 isr);
1294 static irqreturn_t ns83820_irq(int foo, void *data)
1295 {
1296         struct net_device *ndev = data;
1297         struct ns83820 *dev = PRIV(ndev);
1298         u32 isr;
1299         dprintk("ns83820_irq(%p)\n", ndev);
1300
1301         dev->ihr = 0;
1302
1303         isr = readl(dev->base + ISR);
1304         dprintk("irq: %08x\n", isr);
1305         ns83820_do_isr(ndev, isr);
1306         return IRQ_HANDLED;
1307 }
1308
1309 static void ns83820_do_isr(struct net_device *ndev, u32 isr)
1310 {
1311         struct ns83820 *dev = PRIV(ndev);
1312         unsigned long flags;
1313
1314 #ifdef DEBUG
1315         if (isr & ~(ISR_PHY | ISR_RXDESC | ISR_RXEARLY | ISR_RXOK | ISR_RXERR | ISR_TXIDLE | ISR_TXOK | ISR_TXDESC))
1316                 Dprintk("odd isr? 0x%08x\n", isr);
1317 #endif
1318
1319         if (ISR_RXIDLE & isr) {
1320                 dev->rx_info.idle = 1;
1321                 Dprintk("oh dear, we are idle\n");
1322                 ns83820_rx_kick(ndev);
1323         }
1324
1325         if ((ISR_RXDESC | ISR_RXOK) & isr) {
1326                 prefetch(dev->rx_info.next_rx_desc);
1327
1328                 spin_lock_irqsave(&dev->misc_lock, flags);
1329                 dev->IMR_cache &= ~(ISR_RXDESC | ISR_RXOK);
1330                 writel(dev->IMR_cache, dev->base + IMR);
1331                 spin_unlock_irqrestore(&dev->misc_lock, flags);
1332
1333                 tasklet_schedule(&dev->rx_tasklet);
1334                 //rx_irq(ndev);
1335                 //writel(4, dev->base + IHR);
1336         }
1337
1338         if ((ISR_RXIDLE | ISR_RXORN | ISR_RXDESC | ISR_RXOK | ISR_RXERR) & isr)
1339                 ns83820_rx_kick(ndev);
1340
1341         if (unlikely(ISR_RXSOVR & isr)) {
1342                 //printk("overrun: rxsovr\n");
1343                 dev->stats.rx_fifo_errors ++;
1344         }
1345
1346         if (unlikely(ISR_RXORN & isr)) {
1347                 //printk("overrun: rxorn\n");
1348                 dev->stats.rx_fifo_errors ++;
1349         }
1350
1351         if ((ISR_RXRCMP & isr) && dev->rx_info.up)
1352                 writel(CR_RXE, dev->base + CR);
1353
1354         if (ISR_TXIDLE & isr) {
1355                 u32 txdp;
1356                 txdp = readl(dev->base + TXDP);
1357                 dprintk("txdp: %08x\n", txdp);
1358                 txdp -= dev->tx_phy_descs;
1359                 dev->tx_idx = txdp / (DESC_SIZE * 4);
1360                 if (dev->tx_idx >= NR_TX_DESC) {
1361                         printk(KERN_ALERT "%s: BUG -- txdp out of range\n", ndev->name);
1362                         dev->tx_idx = 0;
1363                 }
1364                 /* The may have been a race between a pci originated read
1365                  * and the descriptor update from the cpu.  Just in case,
1366                  * kick the transmitter if the hardware thinks it is on a
1367                  * different descriptor than we are.
1368                  */
1369                 if (dev->tx_idx != dev->tx_free_idx)
1370                         kick_tx(dev);
1371         }
1372
1373         /* Defer tx ring processing until more than a minimum amount of
1374          * work has accumulated
1375          */
1376         if ((ISR_TXDESC | ISR_TXIDLE | ISR_TXOK | ISR_TXERR) & isr) {
1377                 spin_lock_irqsave(&dev->tx_lock, flags);
1378                 do_tx_done(ndev);
1379                 spin_unlock_irqrestore(&dev->tx_lock, flags);
1380
1381                 /* Disable TxOk if there are no outstanding tx packets.
1382                  */
1383                 if ((dev->tx_done_idx == dev->tx_free_idx) &&
1384                     (dev->IMR_cache & ISR_TXOK)) {
1385                         spin_lock_irqsave(&dev->misc_lock, flags);
1386                         dev->IMR_cache &= ~ISR_TXOK;
1387                         writel(dev->IMR_cache, dev->base + IMR);
1388                         spin_unlock_irqrestore(&dev->misc_lock, flags);
1389                 }
1390         }
1391
1392         /* The TxIdle interrupt can come in before the transmit has
1393          * completed.  Normally we reap packets off of the combination
1394          * of TxDesc and TxIdle and leave TxOk disabled (since it
1395          * occurs on every packet), but when no further irqs of this
1396          * nature are expected, we must enable TxOk.
1397          */
1398         if ((ISR_TXIDLE & isr) && (dev->tx_done_idx != dev->tx_free_idx)) {
1399                 spin_lock_irqsave(&dev->misc_lock, flags);
1400                 dev->IMR_cache |= ISR_TXOK;
1401                 writel(dev->IMR_cache, dev->base + IMR);
1402                 spin_unlock_irqrestore(&dev->misc_lock, flags);
1403         }
1404
1405         /* MIB interrupt: one of the statistics counters is about to overflow */
1406         if (unlikely(ISR_MIB & isr))
1407                 ns83820_mib_isr(dev);
1408
1409         /* PHY: Link up/down/negotiation state change */
1410         if (unlikely(ISR_PHY & isr))
1411                 phy_intr(ndev);
1412
1413 #if 0   /* Still working on the interrupt mitigation strategy */
1414         if (dev->ihr)
1415                 writel(dev->ihr, dev->base + IHR);
1416 #endif
1417 }
1418
1419 static void ns83820_do_reset(struct ns83820 *dev, u32 which)
1420 {
1421         Dprintk("resetting chip...\n");
1422         writel(which, dev->base + CR);
1423         do {
1424                 schedule();
1425         } while (readl(dev->base + CR) & which);
1426         Dprintk("okay!\n");
1427 }
1428
1429 static int ns83820_stop(struct net_device *ndev)
1430 {
1431         struct ns83820 *dev = PRIV(ndev);
1432
1433         /* FIXME: protect against interrupt handler? */
1434         del_timer_sync(&dev->tx_watchdog);
1435
1436         /* disable interrupts */
1437         writel(0, dev->base + IMR);
1438         writel(0, dev->base + IER);
1439         readl(dev->base + IER);
1440
1441         dev->rx_info.up = 0;
1442         synchronize_irq(dev->pci_dev->irq);
1443
1444         ns83820_do_reset(dev, CR_RST);
1445
1446         synchronize_irq(dev->pci_dev->irq);
1447
1448         spin_lock_irq(&dev->misc_lock);
1449         dev->IMR_cache &= ~(ISR_TXURN | ISR_TXIDLE | ISR_TXERR | ISR_TXDESC | ISR_TXOK);
1450         spin_unlock_irq(&dev->misc_lock);
1451
1452         ns83820_cleanup_rx(dev);
1453         ns83820_cleanup_tx(dev);
1454
1455         return 0;
1456 }
1457
1458 static void ns83820_tx_timeout(struct net_device *ndev)
1459 {
1460         struct ns83820 *dev = PRIV(ndev);
1461         u32 tx_done_idx;
1462         __le32 *desc;
1463         unsigned long flags;
1464
1465         spin_lock_irqsave(&dev->tx_lock, flags);
1466
1467         tx_done_idx = dev->tx_done_idx;
1468         desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1469
1470         printk(KERN_INFO "%s: tx_timeout: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1471                 ndev->name,
1472                 tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1473
1474 #if defined(DEBUG)
1475         {
1476                 u32 isr;
1477                 isr = readl(dev->base + ISR);
1478                 printk("irq: %08x imr: %08x\n", isr, dev->IMR_cache);
1479                 ns83820_do_isr(ndev, isr);
1480         }
1481 #endif
1482
1483         do_tx_done(ndev);
1484
1485         tx_done_idx = dev->tx_done_idx;
1486         desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1487
1488         printk(KERN_INFO "%s: after: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1489                 ndev->name,
1490                 tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1491
1492         spin_unlock_irqrestore(&dev->tx_lock, flags);
1493 }
1494
1495 static void ns83820_tx_watch(unsigned long data)
1496 {
1497         struct net_device *ndev = (void *)data;
1498         struct ns83820 *dev = PRIV(ndev);
1499
1500 #if defined(DEBUG)
1501         printk("ns83820_tx_watch: %u %u %d\n",
1502                 dev->tx_done_idx, dev->tx_free_idx, atomic_read(&dev->nr_tx_skbs)
1503                 );
1504 #endif
1505
1506         if (time_after(jiffies, ndev->trans_start + 1*HZ) &&
1507             dev->tx_done_idx != dev->tx_free_idx) {
1508                 printk(KERN_DEBUG "%s: ns83820_tx_watch: %u %u %d\n",
1509                         ndev->name,
1510                         dev->tx_done_idx, dev->tx_free_idx,
1511                         atomic_read(&dev->nr_tx_skbs));
1512                 ns83820_tx_timeout(ndev);
1513         }
1514
1515         mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
1516 }
1517
1518 static int ns83820_open(struct net_device *ndev)
1519 {
1520         struct ns83820 *dev = PRIV(ndev);
1521         unsigned i;
1522         u32 desc;
1523         int ret;
1524
1525         dprintk("ns83820_open\n");
1526
1527         writel(0, dev->base + PQCR);
1528
1529         ret = ns83820_setup_rx(ndev);
1530         if (ret)
1531                 goto failed;
1532
1533         memset(dev->tx_descs, 0, 4 * NR_TX_DESC * DESC_SIZE);
1534         for (i=0; i<NR_TX_DESC; i++) {
1535                 dev->tx_descs[(i * DESC_SIZE) + DESC_LINK]
1536                                 = cpu_to_le32(
1537                                   dev->tx_phy_descs
1538                                   + ((i+1) % NR_TX_DESC) * DESC_SIZE * 4);
1539         }
1540
1541         dev->tx_idx = 0;
1542         dev->tx_done_idx = 0;
1543         desc = dev->tx_phy_descs;
1544         writel(0, dev->base + TXDP_HI);
1545         writel(desc, dev->base + TXDP);
1546
1547         init_timer(&dev->tx_watchdog);
1548         dev->tx_watchdog.data = (unsigned long)ndev;
1549         dev->tx_watchdog.function = ns83820_tx_watch;
1550         mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
1551
1552         netif_start_queue(ndev);        /* FIXME: wait for phy to come up */
1553
1554         return 0;
1555
1556 failed:
1557         ns83820_stop(ndev);
1558         return ret;
1559 }
1560
1561 static void ns83820_getmac(struct ns83820 *dev, u8 *mac)
1562 {
1563         unsigned i;
1564         for (i=0; i<3; i++) {
1565                 u32 data;
1566
1567                 /* Read from the perfect match memory: this is loaded by
1568                  * the chip from the EEPROM via the EELOAD self test.
1569                  */
1570                 writel(i*2, dev->base + RFCR);
1571                 data = readl(dev->base + RFDR);
1572
1573                 *mac++ = data;
1574                 *mac++ = data >> 8;
1575         }
1576 }
1577
1578 static int ns83820_change_mtu(struct net_device *ndev, int new_mtu)
1579 {
1580         if (new_mtu > RX_BUF_SIZE)
1581                 return -EINVAL;
1582         ndev->mtu = new_mtu;
1583         return 0;
1584 }
1585
1586 static void ns83820_set_multicast(struct net_device *ndev)
1587 {
1588         struct ns83820 *dev = PRIV(ndev);
1589         u8 __iomem *rfcr = dev->base + RFCR;
1590         u32 and_mask = 0xffffffff;
1591         u32 or_mask = 0;
1592         u32 val;
1593
1594         if (ndev->flags & IFF_PROMISC)
1595                 or_mask |= RFCR_AAU | RFCR_AAM;
1596         else
1597                 and_mask &= ~(RFCR_AAU | RFCR_AAM);
1598
1599         if (ndev->flags & IFF_ALLMULTI)
1600                 or_mask |= RFCR_AAM;
1601         else
1602                 and_mask &= ~RFCR_AAM;
1603
1604         spin_lock_irq(&dev->misc_lock);
1605         val = (readl(rfcr) & and_mask) | or_mask;
1606         /* Ramit : RFCR Write Fix doc says RFEN must be 0 modify other bits */
1607         writel(val & ~RFCR_RFEN, rfcr);
1608         writel(val, rfcr);
1609         spin_unlock_irq(&dev->misc_lock);
1610 }
1611
1612 static void ns83820_run_bist(struct net_device *ndev, const char *name, u32 enable, u32 done, u32 fail)
1613 {
1614         struct ns83820 *dev = PRIV(ndev);
1615         int timed_out = 0;
1616         unsigned long start;
1617         u32 status;
1618         int loops = 0;
1619
1620         dprintk("%s: start %s\n", ndev->name, name);
1621
1622         start = jiffies;
1623
1624         writel(enable, dev->base + PTSCR);
1625         for (;;) {
1626                 loops++;
1627                 status = readl(dev->base + PTSCR);
1628                 if (!(status & enable))
1629                         break;
1630                 if (status & done)
1631                         break;
1632                 if (status & fail)
1633                         break;
1634                 if (time_after_eq(jiffies, start + HZ)) {
1635                         timed_out = 1;
1636                         break;
1637                 }
1638                 schedule_timeout_uninterruptible(1);
1639         }
1640
1641         if (status & fail)
1642                 printk(KERN_INFO "%s: %s failed! (0x%08x & 0x%08x)\n",
1643                         ndev->name, name, status, fail);
1644         else if (timed_out)
1645                 printk(KERN_INFO "%s: run_bist %s timed out! (%08x)\n",
1646                         ndev->name, name, status);
1647
1648         dprintk("%s: done %s in %d loops\n", ndev->name, name, loops);
1649 }
1650
1651 #ifdef PHY_CODE_IS_FINISHED
1652 static void ns83820_mii_write_bit(struct ns83820 *dev, int bit)
1653 {
1654         /* drive MDC low */
1655         dev->MEAR_cache &= ~MEAR_MDC;
1656         writel(dev->MEAR_cache, dev->base + MEAR);
1657         readl(dev->base + MEAR);
1658
1659         /* enable output, set bit */
1660         dev->MEAR_cache |= MEAR_MDDIR;
1661         if (bit)
1662                 dev->MEAR_cache |= MEAR_MDIO;
1663         else
1664                 dev->MEAR_cache &= ~MEAR_MDIO;
1665
1666         /* set the output bit */
1667         writel(dev->MEAR_cache, dev->base + MEAR);
1668         readl(dev->base + MEAR);
1669
1670         /* Wait.  Max clock rate is 2.5MHz, this way we come in under 1MHz */
1671         udelay(1);
1672
1673         /* drive MDC high causing the data bit to be latched */
1674         dev->MEAR_cache |= MEAR_MDC;
1675         writel(dev->MEAR_cache, dev->base + MEAR);
1676         readl(dev->base + MEAR);
1677
1678         /* Wait again... */
1679         udelay(1);
1680 }
1681
1682 static int ns83820_mii_read_bit(struct ns83820 *dev)
1683 {
1684         int bit;
1685
1686         /* drive MDC low, disable output */
1687         dev->MEAR_cache &= ~MEAR_MDC;
1688         dev->MEAR_cache &= ~MEAR_MDDIR;
1689         writel(dev->MEAR_cache, dev->base + MEAR);
1690         readl(dev->base + MEAR);
1691
1692         /* Wait.  Max clock rate is 2.5MHz, this way we come in under 1MHz */
1693         udelay(1);
1694
1695         /* drive MDC high causing the data bit to be latched */
1696         bit = (readl(dev->base + MEAR) & MEAR_MDIO) ? 1 : 0;
1697         dev->MEAR_cache |= MEAR_MDC;
1698         writel(dev->MEAR_cache, dev->base + MEAR);
1699
1700         /* Wait again... */
1701         udelay(1);
1702
1703         return bit;
1704 }
1705
1706 static unsigned ns83820_mii_read_reg(struct ns83820 *dev, unsigned phy, unsigned reg)
1707 {
1708         unsigned data = 0;
1709         int i;
1710
1711         /* read some garbage so that we eventually sync up */
1712         for (i=0; i<64; i++)
1713                 ns83820_mii_read_bit(dev);
1714
1715         ns83820_mii_write_bit(dev, 0);  /* start */
1716         ns83820_mii_write_bit(dev, 1);
1717         ns83820_mii_write_bit(dev, 1);  /* opcode read */
1718         ns83820_mii_write_bit(dev, 0);
1719
1720         /* write out the phy address: 5 bits, msb first */
1721         for (i=0; i<5; i++)
1722                 ns83820_mii_write_bit(dev, phy & (0x10 >> i));
1723
1724         /* write out the register address, 5 bits, msb first */
1725         for (i=0; i<5; i++)
1726                 ns83820_mii_write_bit(dev, reg & (0x10 >> i));
1727
1728         ns83820_mii_read_bit(dev);      /* turn around cycles */
1729         ns83820_mii_read_bit(dev);
1730
1731         /* read in the register data, 16 bits msb first */
1732         for (i=0; i<16; i++) {
1733                 data <<= 1;
1734                 data |= ns83820_mii_read_bit(dev);
1735         }
1736
1737         return data;
1738 }
1739
1740 static unsigned ns83820_mii_write_reg(struct ns83820 *dev, unsigned phy, unsigned reg, unsigned data)
1741 {
1742         int i;
1743
1744         /* read some garbage so that we eventually sync up */
1745         for (i=0; i<64; i++)
1746                 ns83820_mii_read_bit(dev);
1747
1748         ns83820_mii_write_bit(dev, 0);  /* start */
1749         ns83820_mii_write_bit(dev, 1);
1750         ns83820_mii_write_bit(dev, 0);  /* opcode read */
1751         ns83820_mii_write_bit(dev, 1);
1752
1753         /* write out the phy address: 5 bits, msb first */
1754         for (i=0; i<5; i++)
1755                 ns83820_mii_write_bit(dev, phy & (0x10 >> i));
1756
1757         /* write out the register address, 5 bits, msb first */
1758         for (i=0; i<5; i++)
1759                 ns83820_mii_write_bit(dev, reg & (0x10 >> i));
1760
1761         ns83820_mii_read_bit(dev);      /* turn around cycles */
1762         ns83820_mii_read_bit(dev);
1763
1764         /* read in the register data, 16 bits msb first */
1765         for (i=0; i<16; i++)
1766                 ns83820_mii_write_bit(dev, (data >> (15 - i)) & 1);
1767
1768         return data;
1769 }
1770
1771 static void ns83820_probe_phy(struct net_device *ndev)
1772 {
1773         struct ns83820 *dev = PRIV(ndev);
1774         static int first;
1775         int i;
1776 #define MII_PHYIDR1     0x02
1777 #define MII_PHYIDR2     0x03
1778
1779 #if 0
1780         if (!first) {
1781                 unsigned tmp;
1782                 ns83820_mii_read_reg(dev, 1, 0x09);
1783                 ns83820_mii_write_reg(dev, 1, 0x10, 0x0d3e);
1784
1785                 tmp = ns83820_mii_read_reg(dev, 1, 0x00);
1786                 ns83820_mii_write_reg(dev, 1, 0x00, tmp | 0x8000);
1787                 udelay(1300);
1788                 ns83820_mii_read_reg(dev, 1, 0x09);
1789         }
1790 #endif
1791         first = 1;
1792
1793         for (i=1; i<2; i++) {
1794                 int j;
1795                 unsigned a, b;
1796                 a = ns83820_mii_read_reg(dev, i, MII_PHYIDR1);
1797                 b = ns83820_mii_read_reg(dev, i, MII_PHYIDR2);
1798
1799                 //printk("%s: phy %d: 0x%04x 0x%04x\n",
1800                 //      ndev->name, i, a, b);
1801
1802                 for (j=0; j<0x16; j+=4) {
1803                         dprintk("%s: [0x%02x] %04x %04x %04x %04x\n",
1804                                 ndev->name, j,
1805                                 ns83820_mii_read_reg(dev, i, 0 + j),
1806                                 ns83820_mii_read_reg(dev, i, 1 + j),
1807                                 ns83820_mii_read_reg(dev, i, 2 + j),
1808                                 ns83820_mii_read_reg(dev, i, 3 + j)
1809                                 );
1810                 }
1811         }
1812         {
1813                 unsigned a, b;
1814                 /* read firmware version: memory addr is 0x8402 and 0x8403 */
1815                 ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
1816                 ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
1817                 a = ns83820_mii_read_reg(dev, 1, 0x1d);
1818
1819                 ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
1820                 ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
1821                 b = ns83820_mii_read_reg(dev, 1, 0x1d);
1822                 dprintk("version: 0x%04x 0x%04x\n", a, b);
1823         }
1824 }
1825 #endif
1826
1827 static int __devinit ns83820_init_one(struct pci_dev *pci_dev, const struct pci_device_id *id)
1828 {
1829         struct net_device *ndev;
1830         struct ns83820 *dev;
1831         long addr;
1832         int err;
1833         int using_dac = 0;
1834
1835         /* See if we can set the dma mask early on; failure is fatal. */
1836         if (sizeof(dma_addr_t) == 8 &&
1837                 !pci_set_dma_mask(pci_dev, DMA_64BIT_MASK)) {
1838                 using_dac = 1;
1839         } else if (!pci_set_dma_mask(pci_dev, DMA_32BIT_MASK)) {
1840                 using_dac = 0;
1841         } else {
1842                 dev_warn(&pci_dev->dev, "pci_set_dma_mask failed!\n");
1843                 return -ENODEV;
1844         }
1845
1846         ndev = alloc_etherdev(sizeof(struct ns83820));
1847         dev = PRIV(ndev);
1848         dev->ndev = ndev;
1849         err = -ENOMEM;
1850         if (!dev)
1851                 goto out;
1852
1853         spin_lock_init(&dev->rx_info.lock);
1854         spin_lock_init(&dev->tx_lock);
1855         spin_lock_init(&dev->misc_lock);
1856         dev->pci_dev = pci_dev;
1857
1858         SET_MODULE_OWNER(ndev);
1859         SET_NETDEV_DEV(ndev, &pci_dev->dev);
1860
1861         INIT_WORK(&dev->tq_refill, queue_refill);
1862         tasklet_init(&dev->rx_tasklet, rx_action, (unsigned long)ndev);
1863
1864         err = pci_enable_device(pci_dev);
1865         if (err) {
1866                 dev_info(&pci_dev->dev, "pci_enable_dev failed: %d\n", err);
1867                 goto out_free;
1868         }
1869
1870         pci_set_master(pci_dev);
1871         addr = pci_resource_start(pci_dev, 1);
1872         dev->base = ioremap_nocache(addr, PAGE_SIZE);
1873         dev->tx_descs = pci_alloc_consistent(pci_dev,
1874                         4 * DESC_SIZE * NR_TX_DESC, &dev->tx_phy_descs);
1875         dev->rx_info.descs = pci_alloc_consistent(pci_dev,
1876                         4 * DESC_SIZE * NR_RX_DESC, &dev->rx_info.phy_descs);
1877         err = -ENOMEM;
1878         if (!dev->base || !dev->tx_descs || !dev->rx_info.descs)
1879                 goto out_disable;
1880
1881         dprintk("%p: %08lx  %p: %08lx\n",
1882                 dev->tx_descs, (long)dev->tx_phy_descs,
1883                 dev->rx_info.descs, (long)dev->rx_info.phy_descs);
1884
1885         /* disable interrupts */
1886         writel(0, dev->base + IMR);
1887         writel(0, dev->base + IER);
1888         readl(dev->base + IER);
1889
1890         dev->IMR_cache = 0;
1891
1892         err = request_irq(pci_dev->irq, ns83820_irq, IRQF_SHARED,
1893                           DRV_NAME, ndev);
1894         if (err) {
1895                 dev_info(&pci_dev->dev, "unable to register irq %d, err %d\n",
1896                         pci_dev->irq, err);
1897                 goto out_disable;
1898         }
1899
1900         /*
1901          * FIXME: we are holding rtnl_lock() over obscenely long area only
1902          * because some of the setup code uses dev->name.  It's Wrong(tm) -
1903          * we should be using driver-specific names for all that stuff.
1904          * For now that will do, but we really need to come back and kill
1905          * most of the dev_alloc_name() users later.
1906          */
1907         rtnl_lock();
1908         err = dev_alloc_name(ndev, ndev->name);
1909         if (err < 0) {
1910                 dev_info(&pci_dev->dev, "unable to get netdev name: %d\n", err);
1911                 goto out_free_irq;
1912         }
1913
1914         printk("%s: ns83820.c: 0x22c: %08x, subsystem: %04x:%04x\n",
1915                 ndev->name, le32_to_cpu(readl(dev->base + 0x22c)),
1916                 pci_dev->subsystem_vendor, pci_dev->subsystem_device);
1917
1918         ndev->open = ns83820_open;
1919         ndev->stop = ns83820_stop;
1920         ndev->hard_start_xmit = ns83820_hard_start_xmit;
1921         ndev->get_stats = ns83820_get_stats;
1922         ndev->change_mtu = ns83820_change_mtu;
1923         ndev->set_multicast_list = ns83820_set_multicast;
1924         SET_ETHTOOL_OPS(ndev, &ops);
1925         ndev->tx_timeout = ns83820_tx_timeout;
1926         ndev->watchdog_timeo = 5 * HZ;
1927         pci_set_drvdata(pci_dev, ndev);
1928
1929         ns83820_do_reset(dev, CR_RST);
1930
1931         /* Must reset the ram bist before running it */
1932         writel(PTSCR_RBIST_RST, dev->base + PTSCR);
1933         ns83820_run_bist(ndev, "sram bist",   PTSCR_RBIST_EN,
1934                          PTSCR_RBIST_DONE, PTSCR_RBIST_FAIL);
1935         ns83820_run_bist(ndev, "eeprom bist", PTSCR_EEBIST_EN, 0,
1936                          PTSCR_EEBIST_FAIL);
1937         ns83820_run_bist(ndev, "eeprom load", PTSCR_EELOAD_EN, 0, 0);
1938
1939         /* I love config registers */
1940         dev->CFG_cache = readl(dev->base + CFG);
1941
1942         if ((dev->CFG_cache & CFG_PCI64_DET)) {
1943                 printk(KERN_INFO "%s: detected 64 bit PCI data bus.\n",
1944                         ndev->name);
1945                 /*dev->CFG_cache |= CFG_DATA64_EN;*/
1946                 if (!(dev->CFG_cache & CFG_DATA64_EN))
1947                         printk(KERN_INFO "%s: EEPROM did not enable 64 bit bus.  Disabled.\n",
1948                                 ndev->name);
1949         } else
1950                 dev->CFG_cache &= ~(CFG_DATA64_EN);
1951
1952         dev->CFG_cache &= (CFG_TBI_EN  | CFG_MRM_DIS   | CFG_MWI_DIS |
1953                            CFG_T64ADDR | CFG_DATA64_EN | CFG_EXT_125 |
1954                            CFG_M64ADDR);
1955         dev->CFG_cache |= CFG_PINT_DUPSTS | CFG_PINT_LNKSTS | CFG_PINT_SPDSTS |
1956                           CFG_EXTSTS_EN   | CFG_EXD         | CFG_PESEL;
1957         dev->CFG_cache |= CFG_REQALG;
1958         dev->CFG_cache |= CFG_POW;
1959         dev->CFG_cache |= CFG_TMRTEST;
1960
1961         /* When compiled with 64 bit addressing, we must always enable
1962          * the 64 bit descriptor format.
1963          */
1964         if (sizeof(dma_addr_t) == 8)
1965                 dev->CFG_cache |= CFG_M64ADDR;
1966         if (using_dac)
1967                 dev->CFG_cache |= CFG_T64ADDR;
1968
1969         /* Big endian mode does not seem to do what the docs suggest */
1970         dev->CFG_cache &= ~CFG_BEM;
1971
1972         /* setup optical transceiver if we have one */
1973         if (dev->CFG_cache & CFG_TBI_EN) {
1974                 printk(KERN_INFO "%s: enabling optical transceiver\n",
1975                         ndev->name);
1976                 writel(readl(dev->base + GPIOR) | 0x3e8, dev->base + GPIOR);
1977
1978                 /* setup auto negotiation feature advertisement */
1979                 writel(readl(dev->base + TANAR)
1980                        | TANAR_HALF_DUP | TANAR_FULL_DUP,
1981                        dev->base + TANAR);
1982
1983                 /* start auto negotiation */
1984                 writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
1985                        dev->base + TBICR);
1986                 writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
1987                 dev->linkstate = LINK_AUTONEGOTIATE;
1988
1989                 dev->CFG_cache |= CFG_MODE_1000;
1990         }
1991
1992         writel(dev->CFG_cache, dev->base + CFG);
1993         dprintk("CFG: %08x\n", dev->CFG_cache);
1994
1995         if (reset_phy) {
1996                 printk(KERN_INFO "%s: resetting phy\n", ndev->name);
1997                 writel(dev->CFG_cache | CFG_PHY_RST, dev->base + CFG);
1998                 msleep(10);
1999                 writel(dev->CFG_cache, dev->base + CFG);
2000         }
2001
2002 #if 0   /* Huh?  This sets the PCI latency register.  Should be done via
2003          * the PCI layer.  FIXME.
2004          */
2005         if (readl(dev->base + SRR))
2006                 writel(readl(dev->base+0x20c) | 0xfe00, dev->base + 0x20c);
2007 #endif
2008
2009         /* Note!  The DMA burst size interacts with packet
2010          * transmission, such that the largest packet that
2011          * can be transmitted is 8192 - FLTH - burst size.
2012          * If only the transmit fifo was larger...
2013          */
2014         /* Ramit : 1024 DMA is not a good idea, it ends up banging
2015          * some DELL and COMPAQ SMP systems */
2016         writel(TXCFG_CSI | TXCFG_HBI | TXCFG_ATP | TXCFG_MXDMA512
2017                 | ((1600 / 32) * 0x100),
2018                 dev->base + TXCFG);
2019
2020         /* Flush the interrupt holdoff timer */
2021         writel(0x000, dev->base + IHR);
2022         writel(0x100, dev->base + IHR);
2023         writel(0x000, dev->base + IHR);
2024
2025         /* Set Rx to full duplex, don't accept runt, errored, long or length
2026          * range errored packets.  Use 512 byte DMA.
2027          */
2028         /* Ramit : 1024 DMA is not a good idea, it ends up banging
2029          * some DELL and COMPAQ SMP systems
2030          * Turn on ALP, only we are accpeting Jumbo Packets */
2031         writel(RXCFG_AEP | RXCFG_ARP | RXCFG_AIRL | RXCFG_RX_FD
2032                 | RXCFG_STRIPCRC
2033                 //| RXCFG_ALP
2034                 | (RXCFG_MXDMA512) | 0, dev->base + RXCFG);
2035
2036         /* Disable priority queueing */
2037         writel(0, dev->base + PQCR);
2038
2039         /* Enable IP checksum validation and detetion of VLAN headers.
2040          * Note: do not set the reject options as at least the 0x102
2041          * revision of the chip does not properly accept IP fragments
2042          * at least for UDP.
2043          */
2044         /* Ramit : Be sure to turn on RXCFG_ARP if VLAN's are enabled, since
2045          * the MAC it calculates the packetsize AFTER stripping the VLAN
2046          * header, and if a VLAN Tagged packet of 64 bytes is received (like
2047          * a ping with a VLAN header) then the card, strips the 4 byte VLAN
2048          * tag and then checks the packet size, so if RXCFG_ARP is not enabled,
2049          * it discrards it!.  These guys......
2050          * also turn on tag stripping if hardware acceleration is enabled
2051          */
2052 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2053 #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN|VRCR_VTREN)
2054 #else
2055 #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN)
2056 #endif
2057         writel(VRCR_INIT_VALUE, dev->base + VRCR);
2058
2059         /* Enable per-packet TCP/UDP/IP checksumming
2060          * and per packet vlan tag insertion if
2061          * vlan hardware acceleration is enabled
2062          */
2063 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2064 #define VTCR_INIT_VALUE (VTCR_PPCHK|VTCR_VPPTI)
2065 #else
2066 #define VTCR_INIT_VALUE VTCR_PPCHK
2067 #endif
2068         writel(VTCR_INIT_VALUE, dev->base + VTCR);
2069
2070         /* Ramit : Enable async and sync pause frames */
2071         /* writel(0, dev->base + PCR); */
2072         writel((PCR_PS_MCAST | PCR_PS_DA | PCR_PSEN | PCR_FFLO_4K |
2073                 PCR_FFHI_8K | PCR_STLO_4 | PCR_STHI_8 | PCR_PAUSE_CNT),
2074                 dev->base + PCR);
2075
2076         /* Disable Wake On Lan */
2077         writel(0, dev->base + WCSR);
2078
2079         ns83820_getmac(dev, ndev->dev_addr);
2080
2081         /* Yes, we support dumb IP checksum on transmit */
2082         ndev->features |= NETIF_F_SG;
2083         ndev->features |= NETIF_F_IP_CSUM;
2084
2085 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2086         /* We also support hardware vlan acceleration */
2087         ndev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
2088         ndev->vlan_rx_register = ns83820_vlan_rx_register;
2089         ndev->vlan_rx_kill_vid = ns83820_vlan_rx_kill_vid;
2090 #endif
2091
2092         if (using_dac) {
2093                 printk(KERN_INFO "%s: using 64 bit addressing.\n",
2094                         ndev->name);
2095                 ndev->features |= NETIF_F_HIGHDMA;
2096         }
2097
2098         printk(KERN_INFO "%s: ns83820 v" VERSION ": DP83820 v%u.%u: %02x:%02x:%02x:%02x:%02x:%02x io=0x%08lx irq=%d f=%s\n",
2099                 ndev->name,
2100                 (unsigned)readl(dev->base + SRR) >> 8,
2101                 (unsigned)readl(dev->base + SRR) & 0xff,
2102                 ndev->dev_addr[0], ndev->dev_addr[1],
2103                 ndev->dev_addr[2], ndev->dev_addr[3],
2104                 ndev->dev_addr[4], ndev->dev_addr[5],
2105                 addr, pci_dev->irq,
2106                 (ndev->features & NETIF_F_HIGHDMA) ? "h,sg" : "sg"
2107                 );
2108
2109 #ifdef PHY_CODE_IS_FINISHED
2110         ns83820_probe_phy(ndev);
2111 #endif
2112
2113         err = register_netdevice(ndev);
2114         if (err) {
2115                 printk(KERN_INFO "ns83820: unable to register netdev: %d\n", err);
2116                 goto out_cleanup;
2117         }
2118         rtnl_unlock();
2119
2120         return 0;
2121
2122 out_cleanup:
2123         writel(0, dev->base + IMR);     /* paranoia */
2124         writel(0, dev->base + IER);
2125         readl(dev->base + IER);
2126 out_free_irq:
2127         rtnl_unlock();
2128         free_irq(pci_dev->irq, ndev);
2129 out_disable:
2130         if (dev->base)
2131                 iounmap(dev->base);
2132         pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_TX_DESC, dev->tx_descs, dev->tx_phy_descs);
2133         pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_RX_DESC, dev->rx_info.descs, dev->rx_info.phy_descs);
2134         pci_disable_device(pci_dev);
2135 out_free:
2136         free_netdev(ndev);
2137         pci_set_drvdata(pci_dev, NULL);
2138 out:
2139         return err;
2140 }
2141
2142 static void __devexit ns83820_remove_one(struct pci_dev *pci_dev)
2143 {
2144         struct net_device *ndev = pci_get_drvdata(pci_dev);
2145         struct ns83820 *dev = PRIV(ndev); /* ok even if NULL */
2146
2147         if (!ndev)                      /* paranoia */
2148                 return;
2149
2150         writel(0, dev->base + IMR);     /* paranoia */
2151         writel(0, dev->base + IER);
2152         readl(dev->base + IER);
2153
2154         unregister_netdev(ndev);
2155         free_irq(dev->pci_dev->irq, ndev);
2156         iounmap(dev->base);
2157         pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_TX_DESC,
2158                         dev->tx_descs, dev->tx_phy_descs);
2159         pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_RX_DESC,
2160                         dev->rx_info.descs, dev->rx_info.phy_descs);
2161         pci_disable_device(dev->pci_dev);
2162         free_netdev(ndev);
2163         pci_set_drvdata(pci_dev, NULL);
2164 }
2165
2166 static struct pci_device_id ns83820_pci_tbl[] = {
2167         { 0x100b, 0x0022, PCI_ANY_ID, PCI_ANY_ID, 0, .driver_data = 0, },
2168         { 0, },
2169 };
2170
2171 static struct pci_driver driver = {
2172         .name           = "ns83820",
2173         .id_table       = ns83820_pci_tbl,
2174         .probe          = ns83820_init_one,
2175         .remove         = __devexit_p(ns83820_remove_one),
2176 #if 0   /* FIXME: implement */
2177         .suspend        = ,
2178         .resume         = ,
2179 #endif
2180 };
2181
2182
2183 static int __init ns83820_init(void)
2184 {
2185         printk(KERN_INFO "ns83820.c: National Semiconductor DP83820 10/100/1000 driver.\n");
2186         return pci_register_driver(&driver);
2187 }
2188
2189 static void __exit ns83820_exit(void)
2190 {
2191         pci_unregister_driver(&driver);
2192 }
2193
2194 MODULE_AUTHOR("Benjamin LaHaise <bcrl@kvack.org>");
2195 MODULE_DESCRIPTION("National Semiconductor DP83820 10/100/1000 driver");
2196 MODULE_LICENSE("GPL");
2197
2198 MODULE_DEVICE_TABLE(pci, ns83820_pci_tbl);
2199
2200 module_param(lnksts, int, 0);
2201 MODULE_PARM_DESC(lnksts, "Polarity of LNKSTS bit");
2202
2203 module_param(ihr, int, 0);
2204 MODULE_PARM_DESC(ihr, "Time in 100 us increments to delay interrupts (range 0-127)");
2205
2206 module_param(reset_phy, int, 0);
2207 MODULE_PARM_DESC(reset_phy, "Set to 1 to reset the PHY on startup");
2208
2209 module_init(ns83820_init);
2210 module_exit(ns83820_exit);