2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
8 * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2, or (at your option)
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; see the file COPYING. If not, write to
22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * Abstract: Contain all routines that are required for FSA host/adapter
32 #include <linux/kernel.h>
33 #include <linux/init.h>
34 #include <linux/types.h>
35 #include <linux/sched.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/blkdev.h>
41 #include <scsi/scsi_host.h>
42 #include <scsi/scsi_device.h>
43 #include <asm/semaphore.h>
44 #include <asm/delay.h>
49 * fib_map_alloc - allocate the fib objects
50 * @dev: Adapter to allocate for
52 * Allocate and map the shared PCI space for the FIB blocks used to
53 * talk to the Adaptec firmware.
56 static int fib_map_alloc(struct aac_dev *dev)
59 "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
60 dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
61 AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
62 if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, dev->max_fib_size
63 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
64 &dev->hw_fib_pa))==NULL)
70 * fib_map_free - free the fib objects
71 * @dev: Adapter to free
73 * Free the PCI mappings and the memory allocated for FIB blocks
77 void fib_map_free(struct aac_dev *dev)
79 pci_free_consistent(dev->pdev, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB), dev->hw_fib_va, dev->hw_fib_pa);
83 * fib_setup - setup the fibs
84 * @dev: Adapter to set up
86 * Allocate the PCI space for the fibs, map it and then intialise the
87 * fib area, the unmapped fib data and also the free list
90 int fib_setup(struct aac_dev * dev)
93 struct hw_fib *hw_fib_va;
97 while (((i = fib_map_alloc(dev)) == -ENOMEM)
98 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
99 dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
100 dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
105 hw_fib_va = dev->hw_fib_va;
106 hw_fib_pa = dev->hw_fib_pa;
107 memset(hw_fib_va, 0, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
109 * Initialise the fibs
111 for (i = 0, fibptr = &dev->fibs[i]; i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++, fibptr++)
114 fibptr->hw_fib = hw_fib_va;
115 fibptr->data = (void *) fibptr->hw_fib->data;
116 fibptr->next = fibptr+1; /* Forward chain the fibs */
117 init_MUTEX_LOCKED(&fibptr->event_wait);
118 spin_lock_init(&fibptr->event_lock);
119 hw_fib_va->header.XferState = cpu_to_le32(0xffffffff);
120 hw_fib_va->header.SenderSize = cpu_to_le16(dev->max_fib_size);
121 fibptr->hw_fib_pa = hw_fib_pa;
122 hw_fib_va = (struct hw_fib *)((unsigned char *)hw_fib_va + dev->max_fib_size);
123 hw_fib_pa = hw_fib_pa + dev->max_fib_size;
126 * Add the fib chain to the free list
128 dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
130 * Enable this to debug out of queue space
132 dev->free_fib = &dev->fibs[0];
137 * fib_alloc - allocate a fib
138 * @dev: Adapter to allocate the fib for
140 * Allocate a fib from the adapter fib pool. If the pool is empty we
144 struct fib * fib_alloc(struct aac_dev *dev)
148 spin_lock_irqsave(&dev->fib_lock, flags);
149 fibptr = dev->free_fib;
151 spin_unlock_irqrestore(&dev->fib_lock, flags);
154 dev->free_fib = fibptr->next;
155 spin_unlock_irqrestore(&dev->fib_lock, flags);
157 * Set the proper node type code and node byte size
159 fibptr->type = FSAFS_NTC_FIB_CONTEXT;
160 fibptr->size = sizeof(struct fib);
162 * Null out fields that depend on being zero at the start of
165 fibptr->hw_fib->header.XferState = 0;
166 fibptr->callback = NULL;
167 fibptr->callback_data = NULL;
173 * fib_free - free a fib
174 * @fibptr: fib to free up
176 * Frees up a fib and places it on the appropriate queue
177 * (either free or timed out)
180 void fib_free(struct fib * fibptr)
184 spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
185 if (fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT) {
186 aac_config.fib_timeouts++;
187 fibptr->next = fibptr->dev->timeout_fib;
188 fibptr->dev->timeout_fib = fibptr;
190 if (fibptr->hw_fib->header.XferState != 0) {
191 printk(KERN_WARNING "fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
193 le32_to_cpu(fibptr->hw_fib->header.XferState));
195 fibptr->next = fibptr->dev->free_fib;
196 fibptr->dev->free_fib = fibptr;
198 spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
202 * fib_init - initialise a fib
203 * @fibptr: The fib to initialize
205 * Set up the generic fib fields ready for use
208 void fib_init(struct fib *fibptr)
210 struct hw_fib *hw_fib = fibptr->hw_fib;
212 hw_fib->header.StructType = FIB_MAGIC;
213 hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
214 hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
215 hw_fib->header.SenderFibAddress = 0; /* Filled in later if needed */
216 hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
217 hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
221 * fib_deallocate - deallocate a fib
222 * @fibptr: fib to deallocate
224 * Will deallocate and return to the free pool the FIB pointed to by the
228 static void fib_dealloc(struct fib * fibptr)
230 struct hw_fib *hw_fib = fibptr->hw_fib;
231 if(hw_fib->header.StructType != FIB_MAGIC)
233 hw_fib->header.XferState = 0;
237 * Commuication primitives define and support the queuing method we use to
238 * support host to adapter commuication. All queue accesses happen through
239 * these routines and are the only routines which have a knowledge of the
240 * how these queues are implemented.
244 * aac_get_entry - get a queue entry
247 * @entry: Entry return
248 * @index: Index return
249 * @nonotify: notification control
251 * With a priority the routine returns a queue entry if the queue has free entries. If the queue
252 * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
256 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
258 struct aac_queue * q;
262 * All of the queues wrap when they reach the end, so we check
263 * to see if they have reached the end and if they have we just
264 * set the index back to zero. This is a wrap. You could or off
265 * the high bits in all updates but this is a bit faster I think.
268 q = &dev->queues->queue[qid];
270 idx = *index = le32_to_cpu(*(q->headers.producer));
271 /* Interrupt Moderation, only interrupt for first two entries */
272 if (idx != le32_to_cpu(*(q->headers.consumer))) {
274 if (qid == AdapNormCmdQueue)
275 idx = ADAP_NORM_CMD_ENTRIES;
277 idx = ADAP_NORM_RESP_ENTRIES;
279 if (idx != le32_to_cpu(*(q->headers.consumer)))
283 if (qid == AdapNormCmdQueue) {
284 if (*index >= ADAP_NORM_CMD_ENTRIES)
285 *index = 0; /* Wrap to front of the Producer Queue. */
287 if (*index >= ADAP_NORM_RESP_ENTRIES)
288 *index = 0; /* Wrap to front of the Producer Queue. */
291 if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { /* Queue is full */
292 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
296 *entry = q->base + *index;
302 * aac_queue_get - get the next free QE
304 * @index: Returned index
305 * @priority: Priority of fib
306 * @fib: Fib to associate with the queue entry
307 * @wait: Wait if queue full
308 * @fibptr: Driver fib object to go with fib
309 * @nonotify: Don't notify the adapter
311 * Gets the next free QE off the requested priorty adapter command
312 * queue and associates the Fib with the QE. The QE represented by
313 * index is ready to insert on the queue when this routine returns
317 static int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
319 struct aac_entry * entry = NULL;
322 if (qid == AdapNormCmdQueue) {
323 /* if no entries wait for some if caller wants to */
324 while (!aac_get_entry(dev, qid, &entry, index, nonotify))
326 printk(KERN_ERR "GetEntries failed\n");
329 * Setup queue entry with a command, status and fib mapped
331 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
334 while(!aac_get_entry(dev, qid, &entry, index, nonotify))
336 /* if no entries wait for some if caller wants to */
339 * Setup queue entry with command, status and fib mapped
341 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
342 entry->addr = hw_fib->header.SenderFibAddress;
343 /* Restore adapters pointer to the FIB */
344 hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */
348 * If MapFib is true than we need to map the Fib and put pointers
349 * in the queue entry.
352 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
357 * Define the highest level of host to adapter communication routines.
358 * These routines will support host to adapter FS commuication. These
359 * routines have no knowledge of the commuication method used. This level
360 * sends and receives FIBs. This level has no knowledge of how these FIBs
361 * get passed back and forth.
365 * fib_send - send a fib to the adapter
366 * @command: Command to send
368 * @size: Size of fib data area
369 * @priority: Priority of Fib
370 * @wait: Async/sync select
371 * @reply: True if a reply is wanted
372 * @callback: Called with reply
373 * @callback_data: Passed to callback
375 * Sends the requested FIB to the adapter and optionally will wait for a
376 * response FIB. If the caller does not wish to wait for a response than
377 * an event to wait on must be supplied. This event will be set when a
378 * response FIB is received from the adapter.
381 int fib_send(u16 command, struct fib * fibptr, unsigned long size, int priority, int wait, int reply, fib_callback callback, void * callback_data)
383 struct aac_dev * dev = fibptr->dev;
384 struct hw_fib * hw_fib = fibptr->hw_fib;
385 struct aac_queue * q;
386 unsigned long flags = 0;
387 unsigned long qflags;
389 if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
392 * There are 5 cases with the wait and reponse requested flags.
393 * The only invalid cases are if the caller requests to wait and
394 * does not request a response and if the caller does not want a
395 * response and the Fib is not allocated from pool. If a response
396 * is not requesed the Fib will just be deallocaed by the DPC
397 * routine when the response comes back from the adapter. No
398 * further processing will be done besides deleting the Fib. We
399 * will have a debug mode where the adapter can notify the host
400 * it had a problem and the host can log that fact.
402 if (wait && !reply) {
404 } else if (!wait && reply) {
405 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
406 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
407 } else if (!wait && !reply) {
408 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
409 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
410 } else if (wait && reply) {
411 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
412 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
415 * Map the fib into 32bits by using the fib number
418 hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
419 hw_fib->header.SenderData = (u32)(fibptr - dev->fibs);
421 * Set FIB state to indicate where it came from and if we want a
422 * response from the adapter. Also load the command from the
425 * Map the hw fib pointer as a 32bit value
427 hw_fib->header.Command = cpu_to_le16(command);
428 hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
429 fibptr->hw_fib->header.Flags = 0; /* 0 the flags field - internal only*/
431 * Set the size of the Fib we want to send to the adapter
433 hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
434 if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
438 * Get a queue entry connect the FIB to it and send an notify
439 * the adapter a command is ready.
441 hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
444 * Fill in the Callback and CallbackContext if we are not
448 fibptr->callback = callback;
449 fibptr->callback_data = callback_data;
455 FIB_COUNTER_INCREMENT(aac_config.FibsSent);
457 dprintk((KERN_DEBUG "Fib contents:.\n"));
458 dprintk((KERN_DEBUG " Command = %d.\n", le32_to_cpu(hw_fib->header.Command)));
459 dprintk((KERN_DEBUG " SubCommand = %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
460 dprintk((KERN_DEBUG " XferState = %x.\n", le32_to_cpu(hw_fib->header.XferState)));
461 dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib));
462 dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
463 dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr));
465 q = &dev->queues->queue[AdapNormCmdQueue];
468 spin_lock_irqsave(&fibptr->event_lock, flags);
469 spin_lock_irqsave(q->lock, qflags);
470 if (dev->new_comm_interface) {
471 unsigned long count = 10000000L; /* 50 seconds */
472 list_add_tail(&fibptr->queue, &q->pendingq);
474 spin_unlock_irqrestore(q->lock, qflags);
475 while (aac_adapter_send(fibptr) != 0) {
478 spin_unlock_irqrestore(&fibptr->event_lock, flags);
479 spin_lock_irqsave(q->lock, qflags);
481 list_del(&fibptr->queue);
482 spin_unlock_irqrestore(q->lock, qflags);
489 unsigned long nointr = 0;
490 aac_queue_get( dev, &index, AdapNormCmdQueue, hw_fib, 1, fibptr, &nointr);
492 list_add_tail(&fibptr->queue, &q->pendingq);
494 *(q->headers.producer) = cpu_to_le32(index + 1);
495 spin_unlock_irqrestore(q->lock, qflags);
496 dprintk((KERN_DEBUG "fib_send: inserting a queue entry at index %d.\n",index));
497 if (!(nointr & aac_config.irq_mod))
498 aac_adapter_notify(dev, AdapNormCmdQueue);
502 * If the caller wanted us to wait for response wait now.
506 spin_unlock_irqrestore(&fibptr->event_lock, flags);
507 /* Only set for first known interruptable command */
510 * *VERY* Dangerous to time out a command, the
511 * assumption is made that we have no hope of
512 * functioning because an interrupt routing or other
513 * hardware failure has occurred.
515 unsigned long count = 36000000L; /* 3 minutes */
516 while (down_trylock(&fibptr->event_wait)) {
518 spin_lock_irqsave(q->lock, qflags);
520 list_del(&fibptr->queue);
521 spin_unlock_irqrestore(q->lock, qflags);
523 printk(KERN_ERR "aacraid: fib_send: first asynchronous command timed out.\n"
524 "Usually a result of a PCI interrupt routing problem;\n"
525 "update mother board BIOS or consider utilizing one of\n"
526 "the SAFE mode kernel options (acpi, apic etc)\n");
533 down(&fibptr->event_wait);
534 if(fibptr->done == 0)
537 if((fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)){
544 * If the user does not want a response than return success otherwise
554 * aac_consumer_get - get the top of the queue
557 * @entry: Return entry
559 * Will return a pointer to the entry on the top of the queue requested that
560 * we are a consumer of, and return the address of the queue entry. It does
561 * not change the state of the queue.
564 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
568 if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
572 * The consumer index must be wrapped if we have reached
573 * the end of the queue, else we just use the entry
574 * pointed to by the header index
576 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
579 index = le32_to_cpu(*q->headers.consumer);
580 *entry = q->base + index;
587 * aac_consumer_free - free consumer entry
592 * Frees up the current top of the queue we are a consumer of. If the
593 * queue was full notify the producer that the queue is no longer full.
596 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
601 if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
604 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
605 *q->headers.consumer = cpu_to_le32(1);
607 *q->headers.consumer = cpu_to_le32(le32_to_cpu(*q->headers.consumer)+1);
612 case HostNormCmdQueue:
613 notify = HostNormCmdNotFull;
615 case HostNormRespQueue:
616 notify = HostNormRespNotFull;
622 aac_adapter_notify(dev, notify);
627 * fib_adapter_complete - complete adapter issued fib
628 * @fibptr: fib to complete
631 * Will do all necessary work to complete a FIB that was sent from
635 int fib_adapter_complete(struct fib * fibptr, unsigned short size)
637 struct hw_fib * hw_fib = fibptr->hw_fib;
638 struct aac_dev * dev = fibptr->dev;
639 struct aac_queue * q;
640 unsigned long nointr = 0;
641 unsigned long qflags;
643 if (hw_fib->header.XferState == 0) {
644 if (dev->new_comm_interface)
649 * If we plan to do anything check the structure type first.
651 if ( hw_fib->header.StructType != FIB_MAGIC ) {
652 if (dev->new_comm_interface)
657 * This block handles the case where the adapter had sent us a
658 * command and we have finished processing the command. We
659 * call completeFib when we are done processing the command
660 * and want to send a response back to the adapter. This will
661 * send the completed cdb to the adapter.
663 if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
664 if (dev->new_comm_interface) {
668 hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
670 size += sizeof(struct aac_fibhdr);
671 if (size > le16_to_cpu(hw_fib->header.SenderSize))
673 hw_fib->header.Size = cpu_to_le16(size);
675 q = &dev->queues->queue[AdapNormRespQueue];
676 spin_lock_irqsave(q->lock, qflags);
677 aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
678 *(q->headers.producer) = cpu_to_le32(index + 1);
679 spin_unlock_irqrestore(q->lock, qflags);
680 if (!(nointr & (int)aac_config.irq_mod))
681 aac_adapter_notify(dev, AdapNormRespQueue);
686 printk(KERN_WARNING "fib_adapter_complete: Unknown xferstate detected.\n");
693 * fib_complete - fib completion handler
694 * @fib: FIB to complete
696 * Will do all necessary work to complete a FIB.
699 int fib_complete(struct fib * fibptr)
701 struct hw_fib * hw_fib = fibptr->hw_fib;
704 * Check for a fib which has already been completed
707 if (hw_fib->header.XferState == 0)
710 * If we plan to do anything check the structure type first.
713 if (hw_fib->header.StructType != FIB_MAGIC)
716 * This block completes a cdb which orginated on the host and we
717 * just need to deallocate the cdb or reinit it. At this point the
718 * command is complete that we had sent to the adapter and this
719 * cdb could be reused.
721 if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
722 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
726 else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
729 * This handles the case when the host has aborted the I/O
730 * to the adapter because the adapter is not responding
733 } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
742 * aac_printf - handle printf from firmware
746 * Print a message passed to us by the controller firmware on the
750 void aac_printf(struct aac_dev *dev, u32 val)
752 char *cp = dev->printfbuf;
753 if (dev->printf_enabled)
755 int length = val & 0xffff;
756 int level = (val >> 16) & 0xffff;
759 * The size of the printfbuf is set in port.c
760 * There is no variable or define for it
766 if (level == LOG_AAC_HIGH_ERROR)
767 printk(KERN_WARNING "aacraid:%s", cp);
769 printk(KERN_INFO "aacraid:%s", cp);
776 * aac_handle_aif - Handle a message from the firmware
777 * @dev: Which adapter this fib is from
778 * @fibptr: Pointer to fibptr from adapter
780 * This routine handles a driver notify fib from the adapter and
781 * dispatches it to the appropriate routine for handling.
784 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
786 struct hw_fib * hw_fib = fibptr->hw_fib;
787 struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
790 struct scsi_device *device;
796 } device_config_needed;
798 /* Sniff for container changes */
805 * We have set this up to try and minimize the number of
806 * re-configures that take place. As a result of this when
807 * certain AIF's come in we will set a flag waiting for another
808 * type of AIF before setting the re-config flag.
810 switch (le32_to_cpu(aifcmd->command)) {
811 case AifCmdDriverNotify:
812 switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
814 * Morph or Expand complete
816 case AifDenMorphComplete:
817 case AifDenVolumeExtendComplete:
818 container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
819 if (container >= dev->maximum_num_containers)
823 * Find the Scsi_Device associated with the SCSI
824 * address. Make sure we have the right array, and if
825 * so set the flag to initiate a new re-config once we
826 * see an AifEnConfigChange AIF come through.
829 if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
830 device = scsi_device_lookup(dev->scsi_host_ptr,
831 CONTAINER_TO_CHANNEL(container),
832 CONTAINER_TO_ID(container),
833 CONTAINER_TO_LUN(container));
835 dev->fsa_dev[container].config_needed = CHANGE;
836 dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
837 scsi_device_put(device);
843 * If we are waiting on something and this happens to be
844 * that thing then set the re-configure flag.
846 if (container != (u32)-1) {
847 if (container >= dev->maximum_num_containers)
849 if (dev->fsa_dev[container].config_waiting_on ==
850 le32_to_cpu(*(u32 *)aifcmd->data))
851 dev->fsa_dev[container].config_waiting_on = 0;
852 } else for (container = 0;
853 container < dev->maximum_num_containers; ++container) {
854 if (dev->fsa_dev[container].config_waiting_on ==
855 le32_to_cpu(*(u32 *)aifcmd->data))
856 dev->fsa_dev[container].config_waiting_on = 0;
860 case AifCmdEventNotify:
861 switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
865 case AifEnAddContainer:
866 container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
867 if (container >= dev->maximum_num_containers)
869 dev->fsa_dev[container].config_needed = ADD;
870 dev->fsa_dev[container].config_waiting_on =
877 case AifEnDeleteContainer:
878 container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
879 if (container >= dev->maximum_num_containers)
881 dev->fsa_dev[container].config_needed = DELETE;
882 dev->fsa_dev[container].config_waiting_on =
887 * Container change detected. If we currently are not
888 * waiting on something else, setup to wait on a Config Change.
890 case AifEnContainerChange:
891 container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
892 if (container >= dev->maximum_num_containers)
894 if (dev->fsa_dev[container].config_waiting_on)
896 dev->fsa_dev[container].config_needed = CHANGE;
897 dev->fsa_dev[container].config_waiting_on =
901 case AifEnConfigChange:
907 * If we are waiting on something and this happens to be
908 * that thing then set the re-configure flag.
910 if (container != (u32)-1) {
911 if (container >= dev->maximum_num_containers)
913 if (dev->fsa_dev[container].config_waiting_on ==
914 le32_to_cpu(*(u32 *)aifcmd->data))
915 dev->fsa_dev[container].config_waiting_on = 0;
916 } else for (container = 0;
917 container < dev->maximum_num_containers; ++container) {
918 if (dev->fsa_dev[container].config_waiting_on ==
919 le32_to_cpu(*(u32 *)aifcmd->data))
920 dev->fsa_dev[container].config_waiting_on = 0;
924 case AifCmdJobProgress:
926 * These are job progress AIF's. When a Clear is being
927 * done on a container it is initially created then hidden from
928 * the OS. When the clear completes we don't get a config
929 * change so we monitor the job status complete on a clear then
930 * wait for a container change.
933 if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
934 && ((((u32 *)aifcmd->data)[6] == ((u32 *)aifcmd->data)[5])
935 || (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess)))) {
937 container < dev->maximum_num_containers;
940 * Stomp on all config sequencing for all
943 dev->fsa_dev[container].config_waiting_on =
944 AifEnContainerChange;
945 dev->fsa_dev[container].config_needed = ADD;
948 if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
949 && (((u32 *)aifcmd->data)[6] == 0)
950 && (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning))) {
952 container < dev->maximum_num_containers;
955 * Stomp on all config sequencing for all
958 dev->fsa_dev[container].config_waiting_on =
959 AifEnContainerChange;
960 dev->fsa_dev[container].config_needed = DELETE;
966 device_config_needed = NOTHING;
967 for (container = 0; container < dev->maximum_num_containers;
969 if ((dev->fsa_dev[container].config_waiting_on == 0)
970 && (dev->fsa_dev[container].config_needed != NOTHING)) {
971 device_config_needed =
972 dev->fsa_dev[container].config_needed;
973 dev->fsa_dev[container].config_needed = NOTHING;
977 if (device_config_needed == NOTHING)
981 * If we decided that a re-configuration needs to be done,
982 * schedule it here on the way out the door, please close the door
990 * Find the Scsi_Device associated with the SCSI address,
991 * and mark it as changed, invalidating the cache. This deals
992 * with changes to existing device IDs.
995 if (!dev || !dev->scsi_host_ptr)
998 * force reload of disk info via probe_container
1000 if ((device_config_needed == CHANGE)
1001 && (dev->fsa_dev[container].valid == 1))
1002 dev->fsa_dev[container].valid = 2;
1003 if ((device_config_needed == CHANGE) ||
1004 (device_config_needed == ADD))
1005 probe_container(dev, container);
1006 device = scsi_device_lookup(dev->scsi_host_ptr,
1007 CONTAINER_TO_CHANNEL(container),
1008 CONTAINER_TO_ID(container),
1009 CONTAINER_TO_LUN(container));
1011 switch (device_config_needed) {
1013 scsi_remove_device(device);
1016 if (!dev->fsa_dev[container].valid) {
1017 scsi_remove_device(device);
1020 scsi_rescan_device(&device->sdev_gendev);
1025 scsi_device_put(device);
1027 if (device_config_needed == ADD) {
1028 scsi_add_device(dev->scsi_host_ptr,
1029 CONTAINER_TO_CHANNEL(container),
1030 CONTAINER_TO_ID(container),
1031 CONTAINER_TO_LUN(container));
1037 * aac_command_thread - command processing thread
1038 * @dev: Adapter to monitor
1040 * Waits on the commandready event in it's queue. When the event gets set
1041 * it will pull FIBs off it's queue. It will continue to pull FIBs off
1042 * until the queue is empty. When the queue is empty it will wait for
1046 int aac_command_thread(struct aac_dev * dev)
1048 struct hw_fib *hw_fib, *hw_newfib;
1049 struct fib *fib, *newfib;
1050 struct aac_fib_context *fibctx;
1051 unsigned long flags;
1052 DECLARE_WAITQUEUE(wait, current);
1055 * We can only have one thread per adapter for AIF's.
1057 if (dev->aif_thread)
1060 * Set up the name that will appear in 'ps'
1061 * stored in task_struct.comm[16].
1063 daemonize("aacraid");
1064 allow_signal(SIGKILL);
1066 * Let the DPC know it has a place to send the AIF's to.
1068 dev->aif_thread = 1;
1069 add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1070 set_current_state(TASK_INTERRUPTIBLE);
1071 dprintk ((KERN_INFO "aac_command_thread start\n"));
1074 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1075 while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
1076 struct list_head *entry;
1077 struct aac_aifcmd * aifcmd;
1079 set_current_state(TASK_RUNNING);
1081 entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
1084 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1085 fib = list_entry(entry, struct fib, fiblink);
1087 * We will process the FIB here or pass it to a
1088 * worker thread that is TBD. We Really can't
1089 * do anything at this point since we don't have
1090 * anything defined for this thread to do.
1092 hw_fib = fib->hw_fib;
1093 memset(fib, 0, sizeof(struct fib));
1094 fib->type = FSAFS_NTC_FIB_CONTEXT;
1095 fib->size = sizeof( struct fib );
1096 fib->hw_fib = hw_fib;
1097 fib->data = hw_fib->data;
1100 * We only handle AifRequest fibs from the adapter.
1102 aifcmd = (struct aac_aifcmd *) hw_fib->data;
1103 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
1104 /* Handle Driver Notify Events */
1105 aac_handle_aif(dev, fib);
1106 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1107 fib_adapter_complete(fib, (u16)sizeof(u32));
1109 struct list_head *entry;
1110 /* The u32 here is important and intended. We are using
1111 32bit wrapping time to fit the adapter field */
1113 u32 time_now, time_last;
1114 unsigned long flagv;
1116 struct hw_fib ** hw_fib_pool, ** hw_fib_p;
1117 struct fib ** fib_pool, ** fib_p;
1120 if ((aifcmd->command ==
1121 cpu_to_le32(AifCmdEventNotify)) ||
1123 cpu_to_le32(AifCmdJobProgress))) {
1124 aac_handle_aif(dev, fib);
1127 time_now = jiffies/HZ;
1130 * Warning: no sleep allowed while
1131 * holding spinlock. We take the estimate
1132 * and pre-allocate a set of fibs outside the
1135 num = le32_to_cpu(dev->init->AdapterFibsSize)
1136 / sizeof(struct hw_fib); /* some extra */
1137 spin_lock_irqsave(&dev->fib_lock, flagv);
1138 entry = dev->fib_list.next;
1139 while (entry != &dev->fib_list) {
1140 entry = entry->next;
1143 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1147 && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
1148 && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
1149 hw_fib_p = hw_fib_pool;
1151 while (hw_fib_p < &hw_fib_pool[num]) {
1152 if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
1156 if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
1157 kfree(*(--hw_fib_p));
1161 if ((num = hw_fib_p - hw_fib_pool) == 0) {
1167 } else if (hw_fib_pool) {
1171 spin_lock_irqsave(&dev->fib_lock, flagv);
1172 entry = dev->fib_list.next;
1174 * For each Context that is on the
1175 * fibctxList, make a copy of the
1176 * fib, and then set the event to wake up the
1177 * thread that is waiting for it.
1179 hw_fib_p = hw_fib_pool;
1181 while (entry != &dev->fib_list) {
1183 * Extract the fibctx
1185 fibctx = list_entry(entry, struct aac_fib_context, next);
1187 * Check if the queue is getting
1190 if (fibctx->count > 20)
1193 * It's *not* jiffies folks,
1194 * but jiffies / HZ so do not
1197 time_last = fibctx->jiffies;
1199 * Has it been > 2 minutes
1200 * since the last read off
1203 if ((time_now - time_last) > 120) {
1204 entry = entry->next;
1205 aac_close_fib_context(dev, fibctx);
1210 * Warning: no sleep allowed while
1213 if (hw_fib_p < &hw_fib_pool[num]) {
1214 hw_newfib = *hw_fib_p;
1215 *(hw_fib_p++) = NULL;
1219 * Make the copy of the FIB
1221 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
1222 memcpy(newfib, fib, sizeof(struct fib));
1223 newfib->hw_fib = hw_newfib;
1225 * Put the FIB onto the
1228 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
1231 * Set the event to wake up the
1232 * thread that is waiting.
1234 up(&fibctx->wait_sem);
1236 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1238 entry = entry->next;
1241 * Set the status of this FIB
1243 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1244 fib_adapter_complete(fib, sizeof(u32));
1245 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1246 /* Free up the remaining resources */
1247 hw_fib_p = hw_fib_pool;
1249 while (hw_fib_p < &hw_fib_pool[num]) {
1263 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1266 * There are no more AIF's
1268 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1271 if(signal_pending(current))
1273 set_current_state(TASK_INTERRUPTIBLE);
1276 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1277 dev->aif_thread = 0;
1278 complete_and_exit(&dev->aif_completion, 0);