dm crypt: add merge
[linux-2.6] / net / socket.c
1 /*
2  * NET          An implementation of the SOCKET network access protocol.
3  *
4  * Version:     @(#)socket.c    1.1.93  18/02/95
5  *
6  * Authors:     Orest Zborowski, <obz@Kodak.COM>
7  *              Ross Biro
8  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *              Anonymous       :       NOTSOCK/BADF cleanup. Error fix in
12  *                                      shutdown()
13  *              Alan Cox        :       verify_area() fixes
14  *              Alan Cox        :       Removed DDI
15  *              Jonathan Kamens :       SOCK_DGRAM reconnect bug
16  *              Alan Cox        :       Moved a load of checks to the very
17  *                                      top level.
18  *              Alan Cox        :       Move address structures to/from user
19  *                                      mode above the protocol layers.
20  *              Rob Janssen     :       Allow 0 length sends.
21  *              Alan Cox        :       Asynchronous I/O support (cribbed from the
22  *                                      tty drivers).
23  *              Niibe Yutaka    :       Asynchronous I/O for writes (4.4BSD style)
24  *              Jeff Uphoff     :       Made max number of sockets command-line
25  *                                      configurable.
26  *              Matti Aarnio    :       Made the number of sockets dynamic,
27  *                                      to be allocated when needed, and mr.
28  *                                      Uphoff's max is used as max to be
29  *                                      allowed to allocate.
30  *              Linus           :       Argh. removed all the socket allocation
31  *                                      altogether: it's in the inode now.
32  *              Alan Cox        :       Made sock_alloc()/sock_release() public
33  *                                      for NetROM and future kernel nfsd type
34  *                                      stuff.
35  *              Alan Cox        :       sendmsg/recvmsg basics.
36  *              Tom Dyas        :       Export net symbols.
37  *              Marcin Dalecki  :       Fixed problems with CONFIG_NET="n".
38  *              Alan Cox        :       Added thread locking to sys_* calls
39  *                                      for sockets. May have errors at the
40  *                                      moment.
41  *              Kevin Buhr      :       Fixed the dumb errors in the above.
42  *              Andi Kleen      :       Some small cleanups, optimizations,
43  *                                      and fixed a copy_from_user() bug.
44  *              Tigran Aivazian :       sys_send(args) calls sys_sendto(args, NULL, 0)
45  *              Tigran Aivazian :       Made listen(2) backlog sanity checks
46  *                                      protocol-independent
47  *
48  *
49  *              This program is free software; you can redistribute it and/or
50  *              modify it under the terms of the GNU General Public License
51  *              as published by the Free Software Foundation; either version
52  *              2 of the License, or (at your option) any later version.
53  *
54  *
55  *      This module is effectively the top level interface to the BSD socket
56  *      paradigm.
57  *
58  *      Based upon Swansea University Computer Society NET3.039
59  */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/rcupdate.h>
67 #include <linux/netdevice.h>
68 #include <linux/proc_fs.h>
69 #include <linux/seq_file.h>
70 #include <linux/mutex.h>
71 #include <linux/wanrouter.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/mount.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/compat.h>
84 #include <linux/kmod.h>
85 #include <linux/audit.h>
86 #include <linux/wireless.h>
87 #include <linux/nsproxy.h>
88
89 #include <asm/uaccess.h>
90 #include <asm/unistd.h>
91
92 #include <net/compat.h>
93
94 #include <net/sock.h>
95 #include <linux/netfilter.h>
96
97 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
98 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
99                          unsigned long nr_segs, loff_t pos);
100 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
101                           unsigned long nr_segs, loff_t pos);
102 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
103
104 static int sock_close(struct inode *inode, struct file *file);
105 static unsigned int sock_poll(struct file *file,
106                               struct poll_table_struct *wait);
107 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
108 #ifdef CONFIG_COMPAT
109 static long compat_sock_ioctl(struct file *file,
110                               unsigned int cmd, unsigned long arg);
111 #endif
112 static int sock_fasync(int fd, struct file *filp, int on);
113 static ssize_t sock_sendpage(struct file *file, struct page *page,
114                              int offset, size_t size, loff_t *ppos, int more);
115 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
116                                 struct pipe_inode_info *pipe, size_t len,
117                                 unsigned int flags);
118
119 /*
120  *      Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
121  *      in the operation structures but are done directly via the socketcall() multiplexor.
122  */
123
124 static const struct file_operations socket_file_ops = {
125         .owner =        THIS_MODULE,
126         .llseek =       no_llseek,
127         .aio_read =     sock_aio_read,
128         .aio_write =    sock_aio_write,
129         .poll =         sock_poll,
130         .unlocked_ioctl = sock_ioctl,
131 #ifdef CONFIG_COMPAT
132         .compat_ioctl = compat_sock_ioctl,
133 #endif
134         .mmap =         sock_mmap,
135         .open =         sock_no_open,   /* special open code to disallow open via /proc */
136         .release =      sock_close,
137         .fasync =       sock_fasync,
138         .sendpage =     sock_sendpage,
139         .splice_write = generic_splice_sendpage,
140         .splice_read =  sock_splice_read,
141 };
142
143 /*
144  *      The protocol list. Each protocol is registered in here.
145  */
146
147 static DEFINE_SPINLOCK(net_family_lock);
148 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
149
150 /*
151  *      Statistics counters of the socket lists
152  */
153
154 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
155
156 /*
157  * Support routines.
158  * Move socket addresses back and forth across the kernel/user
159  * divide and look after the messy bits.
160  */
161
162 #define MAX_SOCK_ADDR   128             /* 108 for Unix domain -
163                                            16 for IP, 16 for IPX,
164                                            24 for IPv6,
165                                            about 80 for AX.25
166                                            must be at least one bigger than
167                                            the AF_UNIX size (see net/unix/af_unix.c
168                                            :unix_mkname()).
169                                          */
170
171 /**
172  *      move_addr_to_kernel     -       copy a socket address into kernel space
173  *      @uaddr: Address in user space
174  *      @kaddr: Address in kernel space
175  *      @ulen: Length in user space
176  *
177  *      The address is copied into kernel space. If the provided address is
178  *      too long an error code of -EINVAL is returned. If the copy gives
179  *      invalid addresses -EFAULT is returned. On a success 0 is returned.
180  */
181
182 int move_addr_to_kernel(void __user *uaddr, int ulen, void *kaddr)
183 {
184         if (ulen < 0 || ulen > MAX_SOCK_ADDR)
185                 return -EINVAL;
186         if (ulen == 0)
187                 return 0;
188         if (copy_from_user(kaddr, uaddr, ulen))
189                 return -EFAULT;
190         return audit_sockaddr(ulen, kaddr);
191 }
192
193 /**
194  *      move_addr_to_user       -       copy an address to user space
195  *      @kaddr: kernel space address
196  *      @klen: length of address in kernel
197  *      @uaddr: user space address
198  *      @ulen: pointer to user length field
199  *
200  *      The value pointed to by ulen on entry is the buffer length available.
201  *      This is overwritten with the buffer space used. -EINVAL is returned
202  *      if an overlong buffer is specified or a negative buffer size. -EFAULT
203  *      is returned if either the buffer or the length field are not
204  *      accessible.
205  *      After copying the data up to the limit the user specifies, the true
206  *      length of the data is written over the length limit the user
207  *      specified. Zero is returned for a success.
208  */
209
210 int move_addr_to_user(void *kaddr, int klen, void __user *uaddr,
211                       int __user *ulen)
212 {
213         int err;
214         int len;
215
216         err = get_user(len, ulen);
217         if (err)
218                 return err;
219         if (len > klen)
220                 len = klen;
221         if (len < 0 || len > MAX_SOCK_ADDR)
222                 return -EINVAL;
223         if (len) {
224                 if (audit_sockaddr(klen, kaddr))
225                         return -ENOMEM;
226                 if (copy_to_user(uaddr, kaddr, len))
227                         return -EFAULT;
228         }
229         /*
230          *      "fromlen shall refer to the value before truncation.."
231          *                      1003.1g
232          */
233         return __put_user(klen, ulen);
234 }
235
236 #define SOCKFS_MAGIC 0x534F434B
237
238 static struct kmem_cache *sock_inode_cachep __read_mostly;
239
240 static struct inode *sock_alloc_inode(struct super_block *sb)
241 {
242         struct socket_alloc *ei;
243
244         ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
245         if (!ei)
246                 return NULL;
247         init_waitqueue_head(&ei->socket.wait);
248
249         ei->socket.fasync_list = NULL;
250         ei->socket.state = SS_UNCONNECTED;
251         ei->socket.flags = 0;
252         ei->socket.ops = NULL;
253         ei->socket.sk = NULL;
254         ei->socket.file = NULL;
255
256         return &ei->vfs_inode;
257 }
258
259 static void sock_destroy_inode(struct inode *inode)
260 {
261         kmem_cache_free(sock_inode_cachep,
262                         container_of(inode, struct socket_alloc, vfs_inode));
263 }
264
265 static void init_once(struct kmem_cache *cachep, void *foo)
266 {
267         struct socket_alloc *ei = (struct socket_alloc *)foo;
268
269         inode_init_once(&ei->vfs_inode);
270 }
271
272 static int init_inodecache(void)
273 {
274         sock_inode_cachep = kmem_cache_create("sock_inode_cache",
275                                               sizeof(struct socket_alloc),
276                                               0,
277                                               (SLAB_HWCACHE_ALIGN |
278                                                SLAB_RECLAIM_ACCOUNT |
279                                                SLAB_MEM_SPREAD),
280                                               init_once);
281         if (sock_inode_cachep == NULL)
282                 return -ENOMEM;
283         return 0;
284 }
285
286 static struct super_operations sockfs_ops = {
287         .alloc_inode =  sock_alloc_inode,
288         .destroy_inode =sock_destroy_inode,
289         .statfs =       simple_statfs,
290 };
291
292 static int sockfs_get_sb(struct file_system_type *fs_type,
293                          int flags, const char *dev_name, void *data,
294                          struct vfsmount *mnt)
295 {
296         return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
297                              mnt);
298 }
299
300 static struct vfsmount *sock_mnt __read_mostly;
301
302 static struct file_system_type sock_fs_type = {
303         .name =         "sockfs",
304         .get_sb =       sockfs_get_sb,
305         .kill_sb =      kill_anon_super,
306 };
307
308 static int sockfs_delete_dentry(struct dentry *dentry)
309 {
310         /*
311          * At creation time, we pretended this dentry was hashed
312          * (by clearing DCACHE_UNHASHED bit in d_flags)
313          * At delete time, we restore the truth : not hashed.
314          * (so that dput() can proceed correctly)
315          */
316         dentry->d_flags |= DCACHE_UNHASHED;
317         return 0;
318 }
319
320 /*
321  * sockfs_dname() is called from d_path().
322  */
323 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
324 {
325         return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
326                                 dentry->d_inode->i_ino);
327 }
328
329 static struct dentry_operations sockfs_dentry_operations = {
330         .d_delete = sockfs_delete_dentry,
331         .d_dname  = sockfs_dname,
332 };
333
334 /*
335  *      Obtains the first available file descriptor and sets it up for use.
336  *
337  *      These functions create file structures and maps them to fd space
338  *      of the current process. On success it returns file descriptor
339  *      and file struct implicitly stored in sock->file.
340  *      Note that another thread may close file descriptor before we return
341  *      from this function. We use the fact that now we do not refer
342  *      to socket after mapping. If one day we will need it, this
343  *      function will increment ref. count on file by 1.
344  *
345  *      In any case returned fd MAY BE not valid!
346  *      This race condition is unavoidable
347  *      with shared fd spaces, we cannot solve it inside kernel,
348  *      but we take care of internal coherence yet.
349  */
350
351 static int sock_alloc_fd(struct file **filep)
352 {
353         int fd;
354
355         fd = get_unused_fd();
356         if (likely(fd >= 0)) {
357                 struct file *file = get_empty_filp();
358
359                 *filep = file;
360                 if (unlikely(!file)) {
361                         put_unused_fd(fd);
362                         return -ENFILE;
363                 }
364         } else
365                 *filep = NULL;
366         return fd;
367 }
368
369 static int sock_attach_fd(struct socket *sock, struct file *file)
370 {
371         struct dentry *dentry;
372         struct qstr name = { .name = "" };
373
374         dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name);
375         if (unlikely(!dentry))
376                 return -ENOMEM;
377
378         dentry->d_op = &sockfs_dentry_operations;
379         /*
380          * We dont want to push this dentry into global dentry hash table.
381          * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
382          * This permits a working /proc/$pid/fd/XXX on sockets
383          */
384         dentry->d_flags &= ~DCACHE_UNHASHED;
385         d_instantiate(dentry, SOCK_INODE(sock));
386
387         sock->file = file;
388         init_file(file, sock_mnt, dentry, FMODE_READ | FMODE_WRITE,
389                   &socket_file_ops);
390         SOCK_INODE(sock)->i_fop = &socket_file_ops;
391         file->f_flags = O_RDWR;
392         file->f_pos = 0;
393         file->private_data = sock;
394
395         return 0;
396 }
397
398 int sock_map_fd(struct socket *sock)
399 {
400         struct file *newfile;
401         int fd = sock_alloc_fd(&newfile);
402
403         if (likely(fd >= 0)) {
404                 int err = sock_attach_fd(sock, newfile);
405
406                 if (unlikely(err < 0)) {
407                         put_filp(newfile);
408                         put_unused_fd(fd);
409                         return err;
410                 }
411                 fd_install(fd, newfile);
412         }
413         return fd;
414 }
415
416 static struct socket *sock_from_file(struct file *file, int *err)
417 {
418         if (file->f_op == &socket_file_ops)
419                 return file->private_data;      /* set in sock_map_fd */
420
421         *err = -ENOTSOCK;
422         return NULL;
423 }
424
425 /**
426  *      sockfd_lookup   -       Go from a file number to its socket slot
427  *      @fd: file handle
428  *      @err: pointer to an error code return
429  *
430  *      The file handle passed in is locked and the socket it is bound
431  *      too is returned. If an error occurs the err pointer is overwritten
432  *      with a negative errno code and NULL is returned. The function checks
433  *      for both invalid handles and passing a handle which is not a socket.
434  *
435  *      On a success the socket object pointer is returned.
436  */
437
438 struct socket *sockfd_lookup(int fd, int *err)
439 {
440         struct file *file;
441         struct socket *sock;
442
443         file = fget(fd);
444         if (!file) {
445                 *err = -EBADF;
446                 return NULL;
447         }
448
449         sock = sock_from_file(file, err);
450         if (!sock)
451                 fput(file);
452         return sock;
453 }
454
455 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
456 {
457         struct file *file;
458         struct socket *sock;
459
460         *err = -EBADF;
461         file = fget_light(fd, fput_needed);
462         if (file) {
463                 sock = sock_from_file(file, err);
464                 if (sock)
465                         return sock;
466                 fput_light(file, *fput_needed);
467         }
468         return NULL;
469 }
470
471 /**
472  *      sock_alloc      -       allocate a socket
473  *
474  *      Allocate a new inode and socket object. The two are bound together
475  *      and initialised. The socket is then returned. If we are out of inodes
476  *      NULL is returned.
477  */
478
479 static struct socket *sock_alloc(void)
480 {
481         struct inode *inode;
482         struct socket *sock;
483
484         inode = new_inode(sock_mnt->mnt_sb);
485         if (!inode)
486                 return NULL;
487
488         sock = SOCKET_I(inode);
489
490         inode->i_mode = S_IFSOCK | S_IRWXUGO;
491         inode->i_uid = current->fsuid;
492         inode->i_gid = current->fsgid;
493
494         get_cpu_var(sockets_in_use)++;
495         put_cpu_var(sockets_in_use);
496         return sock;
497 }
498
499 /*
500  *      In theory you can't get an open on this inode, but /proc provides
501  *      a back door. Remember to keep it shut otherwise you'll let the
502  *      creepy crawlies in.
503  */
504
505 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
506 {
507         return -ENXIO;
508 }
509
510 const struct file_operations bad_sock_fops = {
511         .owner = THIS_MODULE,
512         .open = sock_no_open,
513 };
514
515 /**
516  *      sock_release    -       close a socket
517  *      @sock: socket to close
518  *
519  *      The socket is released from the protocol stack if it has a release
520  *      callback, and the inode is then released if the socket is bound to
521  *      an inode not a file.
522  */
523
524 void sock_release(struct socket *sock)
525 {
526         if (sock->ops) {
527                 struct module *owner = sock->ops->owner;
528
529                 sock->ops->release(sock);
530                 sock->ops = NULL;
531                 module_put(owner);
532         }
533
534         if (sock->fasync_list)
535                 printk(KERN_ERR "sock_release: fasync list not empty!\n");
536
537         get_cpu_var(sockets_in_use)--;
538         put_cpu_var(sockets_in_use);
539         if (!sock->file) {
540                 iput(SOCK_INODE(sock));
541                 return;
542         }
543         sock->file = NULL;
544 }
545
546 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
547                                  struct msghdr *msg, size_t size)
548 {
549         struct sock_iocb *si = kiocb_to_siocb(iocb);
550         int err;
551
552         si->sock = sock;
553         si->scm = NULL;
554         si->msg = msg;
555         si->size = size;
556
557         err = security_socket_sendmsg(sock, msg, size);
558         if (err)
559                 return err;
560
561         return sock->ops->sendmsg(iocb, sock, msg, size);
562 }
563
564 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
565 {
566         struct kiocb iocb;
567         struct sock_iocb siocb;
568         int ret;
569
570         init_sync_kiocb(&iocb, NULL);
571         iocb.private = &siocb;
572         ret = __sock_sendmsg(&iocb, sock, msg, size);
573         if (-EIOCBQUEUED == ret)
574                 ret = wait_on_sync_kiocb(&iocb);
575         return ret;
576 }
577
578 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
579                    struct kvec *vec, size_t num, size_t size)
580 {
581         mm_segment_t oldfs = get_fs();
582         int result;
583
584         set_fs(KERNEL_DS);
585         /*
586          * the following is safe, since for compiler definitions of kvec and
587          * iovec are identical, yielding the same in-core layout and alignment
588          */
589         msg->msg_iov = (struct iovec *)vec;
590         msg->msg_iovlen = num;
591         result = sock_sendmsg(sock, msg, size);
592         set_fs(oldfs);
593         return result;
594 }
595
596 /*
597  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
598  */
599 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
600         struct sk_buff *skb)
601 {
602         ktime_t kt = skb->tstamp;
603
604         if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
605                 struct timeval tv;
606                 /* Race occurred between timestamp enabling and packet
607                    receiving.  Fill in the current time for now. */
608                 if (kt.tv64 == 0)
609                         kt = ktime_get_real();
610                 skb->tstamp = kt;
611                 tv = ktime_to_timeval(kt);
612                 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, sizeof(tv), &tv);
613         } else {
614                 struct timespec ts;
615                 /* Race occurred between timestamp enabling and packet
616                    receiving.  Fill in the current time for now. */
617                 if (kt.tv64 == 0)
618                         kt = ktime_get_real();
619                 skb->tstamp = kt;
620                 ts = ktime_to_timespec(kt);
621                 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, sizeof(ts), &ts);
622         }
623 }
624
625 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
626
627 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
628                                  struct msghdr *msg, size_t size, int flags)
629 {
630         int err;
631         struct sock_iocb *si = kiocb_to_siocb(iocb);
632
633         si->sock = sock;
634         si->scm = NULL;
635         si->msg = msg;
636         si->size = size;
637         si->flags = flags;
638
639         err = security_socket_recvmsg(sock, msg, size, flags);
640         if (err)
641                 return err;
642
643         return sock->ops->recvmsg(iocb, sock, msg, size, flags);
644 }
645
646 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
647                  size_t size, int flags)
648 {
649         struct kiocb iocb;
650         struct sock_iocb siocb;
651         int ret;
652
653         init_sync_kiocb(&iocb, NULL);
654         iocb.private = &siocb;
655         ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
656         if (-EIOCBQUEUED == ret)
657                 ret = wait_on_sync_kiocb(&iocb);
658         return ret;
659 }
660
661 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
662                    struct kvec *vec, size_t num, size_t size, int flags)
663 {
664         mm_segment_t oldfs = get_fs();
665         int result;
666
667         set_fs(KERNEL_DS);
668         /*
669          * the following is safe, since for compiler definitions of kvec and
670          * iovec are identical, yielding the same in-core layout and alignment
671          */
672         msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
673         result = sock_recvmsg(sock, msg, size, flags);
674         set_fs(oldfs);
675         return result;
676 }
677
678 static void sock_aio_dtor(struct kiocb *iocb)
679 {
680         kfree(iocb->private);
681 }
682
683 static ssize_t sock_sendpage(struct file *file, struct page *page,
684                              int offset, size_t size, loff_t *ppos, int more)
685 {
686         struct socket *sock;
687         int flags;
688
689         sock = file->private_data;
690
691         flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
692         if (more)
693                 flags |= MSG_MORE;
694
695         return sock->ops->sendpage(sock, page, offset, size, flags);
696 }
697
698 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
699                                 struct pipe_inode_info *pipe, size_t len,
700                                 unsigned int flags)
701 {
702         struct socket *sock = file->private_data;
703
704         if (unlikely(!sock->ops->splice_read))
705                 return -EINVAL;
706
707         return sock->ops->splice_read(sock, ppos, pipe, len, flags);
708 }
709
710 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
711                                          struct sock_iocb *siocb)
712 {
713         if (!is_sync_kiocb(iocb)) {
714                 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
715                 if (!siocb)
716                         return NULL;
717                 iocb->ki_dtor = sock_aio_dtor;
718         }
719
720         siocb->kiocb = iocb;
721         iocb->private = siocb;
722         return siocb;
723 }
724
725 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
726                 struct file *file, const struct iovec *iov,
727                 unsigned long nr_segs)
728 {
729         struct socket *sock = file->private_data;
730         size_t size = 0;
731         int i;
732
733         for (i = 0; i < nr_segs; i++)
734                 size += iov[i].iov_len;
735
736         msg->msg_name = NULL;
737         msg->msg_namelen = 0;
738         msg->msg_control = NULL;
739         msg->msg_controllen = 0;
740         msg->msg_iov = (struct iovec *)iov;
741         msg->msg_iovlen = nr_segs;
742         msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
743
744         return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
745 }
746
747 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
748                                 unsigned long nr_segs, loff_t pos)
749 {
750         struct sock_iocb siocb, *x;
751
752         if (pos != 0)
753                 return -ESPIPE;
754
755         if (iocb->ki_left == 0) /* Match SYS5 behaviour */
756                 return 0;
757
758
759         x = alloc_sock_iocb(iocb, &siocb);
760         if (!x)
761                 return -ENOMEM;
762         return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
763 }
764
765 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
766                         struct file *file, const struct iovec *iov,
767                         unsigned long nr_segs)
768 {
769         struct socket *sock = file->private_data;
770         size_t size = 0;
771         int i;
772
773         for (i = 0; i < nr_segs; i++)
774                 size += iov[i].iov_len;
775
776         msg->msg_name = NULL;
777         msg->msg_namelen = 0;
778         msg->msg_control = NULL;
779         msg->msg_controllen = 0;
780         msg->msg_iov = (struct iovec *)iov;
781         msg->msg_iovlen = nr_segs;
782         msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
783         if (sock->type == SOCK_SEQPACKET)
784                 msg->msg_flags |= MSG_EOR;
785
786         return __sock_sendmsg(iocb, sock, msg, size);
787 }
788
789 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
790                           unsigned long nr_segs, loff_t pos)
791 {
792         struct sock_iocb siocb, *x;
793
794         if (pos != 0)
795                 return -ESPIPE;
796
797         x = alloc_sock_iocb(iocb, &siocb);
798         if (!x)
799                 return -ENOMEM;
800
801         return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
802 }
803
804 /*
805  * Atomic setting of ioctl hooks to avoid race
806  * with module unload.
807  */
808
809 static DEFINE_MUTEX(br_ioctl_mutex);
810 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg) = NULL;
811
812 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
813 {
814         mutex_lock(&br_ioctl_mutex);
815         br_ioctl_hook = hook;
816         mutex_unlock(&br_ioctl_mutex);
817 }
818
819 EXPORT_SYMBOL(brioctl_set);
820
821 static DEFINE_MUTEX(vlan_ioctl_mutex);
822 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
823
824 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
825 {
826         mutex_lock(&vlan_ioctl_mutex);
827         vlan_ioctl_hook = hook;
828         mutex_unlock(&vlan_ioctl_mutex);
829 }
830
831 EXPORT_SYMBOL(vlan_ioctl_set);
832
833 static DEFINE_MUTEX(dlci_ioctl_mutex);
834 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
835
836 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
837 {
838         mutex_lock(&dlci_ioctl_mutex);
839         dlci_ioctl_hook = hook;
840         mutex_unlock(&dlci_ioctl_mutex);
841 }
842
843 EXPORT_SYMBOL(dlci_ioctl_set);
844
845 /*
846  *      With an ioctl, arg may well be a user mode pointer, but we don't know
847  *      what to do with it - that's up to the protocol still.
848  */
849
850 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
851 {
852         struct socket *sock;
853         struct sock *sk;
854         void __user *argp = (void __user *)arg;
855         int pid, err;
856         struct net *net;
857
858         sock = file->private_data;
859         sk = sock->sk;
860         net = sock_net(sk);
861         if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
862                 err = dev_ioctl(net, cmd, argp);
863         } else
864 #ifdef CONFIG_WIRELESS_EXT
865         if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
866                 err = dev_ioctl(net, cmd, argp);
867         } else
868 #endif                          /* CONFIG_WIRELESS_EXT */
869                 switch (cmd) {
870                 case FIOSETOWN:
871                 case SIOCSPGRP:
872                         err = -EFAULT;
873                         if (get_user(pid, (int __user *)argp))
874                                 break;
875                         err = f_setown(sock->file, pid, 1);
876                         break;
877                 case FIOGETOWN:
878                 case SIOCGPGRP:
879                         err = put_user(f_getown(sock->file),
880                                        (int __user *)argp);
881                         break;
882                 case SIOCGIFBR:
883                 case SIOCSIFBR:
884                 case SIOCBRADDBR:
885                 case SIOCBRDELBR:
886                         err = -ENOPKG;
887                         if (!br_ioctl_hook)
888                                 request_module("bridge");
889
890                         mutex_lock(&br_ioctl_mutex);
891                         if (br_ioctl_hook)
892                                 err = br_ioctl_hook(net, cmd, argp);
893                         mutex_unlock(&br_ioctl_mutex);
894                         break;
895                 case SIOCGIFVLAN:
896                 case SIOCSIFVLAN:
897                         err = -ENOPKG;
898                         if (!vlan_ioctl_hook)
899                                 request_module("8021q");
900
901                         mutex_lock(&vlan_ioctl_mutex);
902                         if (vlan_ioctl_hook)
903                                 err = vlan_ioctl_hook(net, argp);
904                         mutex_unlock(&vlan_ioctl_mutex);
905                         break;
906                 case SIOCADDDLCI:
907                 case SIOCDELDLCI:
908                         err = -ENOPKG;
909                         if (!dlci_ioctl_hook)
910                                 request_module("dlci");
911
912                         mutex_lock(&dlci_ioctl_mutex);
913                         if (dlci_ioctl_hook)
914                                 err = dlci_ioctl_hook(cmd, argp);
915                         mutex_unlock(&dlci_ioctl_mutex);
916                         break;
917                 default:
918                         err = sock->ops->ioctl(sock, cmd, arg);
919
920                         /*
921                          * If this ioctl is unknown try to hand it down
922                          * to the NIC driver.
923                          */
924                         if (err == -ENOIOCTLCMD)
925                                 err = dev_ioctl(net, cmd, argp);
926                         break;
927                 }
928         return err;
929 }
930
931 int sock_create_lite(int family, int type, int protocol, struct socket **res)
932 {
933         int err;
934         struct socket *sock = NULL;
935
936         err = security_socket_create(family, type, protocol, 1);
937         if (err)
938                 goto out;
939
940         sock = sock_alloc();
941         if (!sock) {
942                 err = -ENOMEM;
943                 goto out;
944         }
945
946         sock->type = type;
947         err = security_socket_post_create(sock, family, type, protocol, 1);
948         if (err)
949                 goto out_release;
950
951 out:
952         *res = sock;
953         return err;
954 out_release:
955         sock_release(sock);
956         sock = NULL;
957         goto out;
958 }
959
960 /* No kernel lock held - perfect */
961 static unsigned int sock_poll(struct file *file, poll_table *wait)
962 {
963         struct socket *sock;
964
965         /*
966          *      We can't return errors to poll, so it's either yes or no.
967          */
968         sock = file->private_data;
969         return sock->ops->poll(file, sock, wait);
970 }
971
972 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
973 {
974         struct socket *sock = file->private_data;
975
976         return sock->ops->mmap(file, sock, vma);
977 }
978
979 static int sock_close(struct inode *inode, struct file *filp)
980 {
981         /*
982          *      It was possible the inode is NULL we were
983          *      closing an unfinished socket.
984          */
985
986         if (!inode) {
987                 printk(KERN_DEBUG "sock_close: NULL inode\n");
988                 return 0;
989         }
990         sock_fasync(-1, filp, 0);
991         sock_release(SOCKET_I(inode));
992         return 0;
993 }
994
995 /*
996  *      Update the socket async list
997  *
998  *      Fasync_list locking strategy.
999  *
1000  *      1. fasync_list is modified only under process context socket lock
1001  *         i.e. under semaphore.
1002  *      2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1003  *         or under socket lock.
1004  *      3. fasync_list can be used from softirq context, so that
1005  *         modification under socket lock have to be enhanced with
1006  *         write_lock_bh(&sk->sk_callback_lock).
1007  *                                                      --ANK (990710)
1008  */
1009
1010 static int sock_fasync(int fd, struct file *filp, int on)
1011 {
1012         struct fasync_struct *fa, *fna = NULL, **prev;
1013         struct socket *sock;
1014         struct sock *sk;
1015
1016         if (on) {
1017                 fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
1018                 if (fna == NULL)
1019                         return -ENOMEM;
1020         }
1021
1022         sock = filp->private_data;
1023
1024         sk = sock->sk;
1025         if (sk == NULL) {
1026                 kfree(fna);
1027                 return -EINVAL;
1028         }
1029
1030         lock_sock(sk);
1031
1032         prev = &(sock->fasync_list);
1033
1034         for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev)
1035                 if (fa->fa_file == filp)
1036                         break;
1037
1038         if (on) {
1039                 if (fa != NULL) {
1040                         write_lock_bh(&sk->sk_callback_lock);
1041                         fa->fa_fd = fd;
1042                         write_unlock_bh(&sk->sk_callback_lock);
1043
1044                         kfree(fna);
1045                         goto out;
1046                 }
1047                 fna->fa_file = filp;
1048                 fna->fa_fd = fd;
1049                 fna->magic = FASYNC_MAGIC;
1050                 fna->fa_next = sock->fasync_list;
1051                 write_lock_bh(&sk->sk_callback_lock);
1052                 sock->fasync_list = fna;
1053                 write_unlock_bh(&sk->sk_callback_lock);
1054         } else {
1055                 if (fa != NULL) {
1056                         write_lock_bh(&sk->sk_callback_lock);
1057                         *prev = fa->fa_next;
1058                         write_unlock_bh(&sk->sk_callback_lock);
1059                         kfree(fa);
1060                 }
1061         }
1062
1063 out:
1064         release_sock(sock->sk);
1065         return 0;
1066 }
1067
1068 /* This function may be called only under socket lock or callback_lock */
1069
1070 int sock_wake_async(struct socket *sock, int how, int band)
1071 {
1072         if (!sock || !sock->fasync_list)
1073                 return -1;
1074         switch (how) {
1075         case SOCK_WAKE_WAITD:
1076                 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1077                         break;
1078                 goto call_kill;
1079         case SOCK_WAKE_SPACE:
1080                 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1081                         break;
1082                 /* fall through */
1083         case SOCK_WAKE_IO:
1084 call_kill:
1085                 __kill_fasync(sock->fasync_list, SIGIO, band);
1086                 break;
1087         case SOCK_WAKE_URG:
1088                 __kill_fasync(sock->fasync_list, SIGURG, band);
1089         }
1090         return 0;
1091 }
1092
1093 static int __sock_create(struct net *net, int family, int type, int protocol,
1094                          struct socket **res, int kern)
1095 {
1096         int err;
1097         struct socket *sock;
1098         const struct net_proto_family *pf;
1099
1100         /*
1101          *      Check protocol is in range
1102          */
1103         if (family < 0 || family >= NPROTO)
1104                 return -EAFNOSUPPORT;
1105         if (type < 0 || type >= SOCK_MAX)
1106                 return -EINVAL;
1107
1108         /* Compatibility.
1109
1110            This uglymoron is moved from INET layer to here to avoid
1111            deadlock in module load.
1112          */
1113         if (family == PF_INET && type == SOCK_PACKET) {
1114                 static int warned;
1115                 if (!warned) {
1116                         warned = 1;
1117                         printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1118                                current->comm);
1119                 }
1120                 family = PF_PACKET;
1121         }
1122
1123         err = security_socket_create(family, type, protocol, kern);
1124         if (err)
1125                 return err;
1126
1127         /*
1128          *      Allocate the socket and allow the family to set things up. if
1129          *      the protocol is 0, the family is instructed to select an appropriate
1130          *      default.
1131          */
1132         sock = sock_alloc();
1133         if (!sock) {
1134                 if (net_ratelimit())
1135                         printk(KERN_WARNING "socket: no more sockets\n");
1136                 return -ENFILE; /* Not exactly a match, but its the
1137                                    closest posix thing */
1138         }
1139
1140         sock->type = type;
1141
1142 #if defined(CONFIG_KMOD)
1143         /* Attempt to load a protocol module if the find failed.
1144          *
1145          * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1146          * requested real, full-featured networking support upon configuration.
1147          * Otherwise module support will break!
1148          */
1149         if (net_families[family] == NULL)
1150                 request_module("net-pf-%d", family);
1151 #endif
1152
1153         rcu_read_lock();
1154         pf = rcu_dereference(net_families[family]);
1155         err = -EAFNOSUPPORT;
1156         if (!pf)
1157                 goto out_release;
1158
1159         /*
1160          * We will call the ->create function, that possibly is in a loadable
1161          * module, so we have to bump that loadable module refcnt first.
1162          */
1163         if (!try_module_get(pf->owner))
1164                 goto out_release;
1165
1166         /* Now protected by module ref count */
1167         rcu_read_unlock();
1168
1169         err = pf->create(net, sock, protocol);
1170         if (err < 0)
1171                 goto out_module_put;
1172
1173         /*
1174          * Now to bump the refcnt of the [loadable] module that owns this
1175          * socket at sock_release time we decrement its refcnt.
1176          */
1177         if (!try_module_get(sock->ops->owner))
1178                 goto out_module_busy;
1179
1180         /*
1181          * Now that we're done with the ->create function, the [loadable]
1182          * module can have its refcnt decremented
1183          */
1184         module_put(pf->owner);
1185         err = security_socket_post_create(sock, family, type, protocol, kern);
1186         if (err)
1187                 goto out_sock_release;
1188         *res = sock;
1189
1190         return 0;
1191
1192 out_module_busy:
1193         err = -EAFNOSUPPORT;
1194 out_module_put:
1195         sock->ops = NULL;
1196         module_put(pf->owner);
1197 out_sock_release:
1198         sock_release(sock);
1199         return err;
1200
1201 out_release:
1202         rcu_read_unlock();
1203         goto out_sock_release;
1204 }
1205
1206 int sock_create(int family, int type, int protocol, struct socket **res)
1207 {
1208         return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1209 }
1210
1211 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1212 {
1213         return __sock_create(&init_net, family, type, protocol, res, 1);
1214 }
1215
1216 asmlinkage long sys_socket(int family, int type, int protocol)
1217 {
1218         int retval;
1219         struct socket *sock;
1220
1221         retval = sock_create(family, type, protocol, &sock);
1222         if (retval < 0)
1223                 goto out;
1224
1225         retval = sock_map_fd(sock);
1226         if (retval < 0)
1227                 goto out_release;
1228
1229 out:
1230         /* It may be already another descriptor 8) Not kernel problem. */
1231         return retval;
1232
1233 out_release:
1234         sock_release(sock);
1235         return retval;
1236 }
1237
1238 /*
1239  *      Create a pair of connected sockets.
1240  */
1241
1242 asmlinkage long sys_socketpair(int family, int type, int protocol,
1243                                int __user *usockvec)
1244 {
1245         struct socket *sock1, *sock2;
1246         int fd1, fd2, err;
1247         struct file *newfile1, *newfile2;
1248
1249         /*
1250          * Obtain the first socket and check if the underlying protocol
1251          * supports the socketpair call.
1252          */
1253
1254         err = sock_create(family, type, protocol, &sock1);
1255         if (err < 0)
1256                 goto out;
1257
1258         err = sock_create(family, type, protocol, &sock2);
1259         if (err < 0)
1260                 goto out_release_1;
1261
1262         err = sock1->ops->socketpair(sock1, sock2);
1263         if (err < 0)
1264                 goto out_release_both;
1265
1266         fd1 = sock_alloc_fd(&newfile1);
1267         if (unlikely(fd1 < 0)) {
1268                 err = fd1;
1269                 goto out_release_both;
1270         }
1271
1272         fd2 = sock_alloc_fd(&newfile2);
1273         if (unlikely(fd2 < 0)) {
1274                 err = fd2;
1275                 put_filp(newfile1);
1276                 put_unused_fd(fd1);
1277                 goto out_release_both;
1278         }
1279
1280         err = sock_attach_fd(sock1, newfile1);
1281         if (unlikely(err < 0)) {
1282                 goto out_fd2;
1283         }
1284
1285         err = sock_attach_fd(sock2, newfile2);
1286         if (unlikely(err < 0)) {
1287                 fput(newfile1);
1288                 goto out_fd1;
1289         }
1290
1291         err = audit_fd_pair(fd1, fd2);
1292         if (err < 0) {
1293                 fput(newfile1);
1294                 fput(newfile2);
1295                 goto out_fd;
1296         }
1297
1298         fd_install(fd1, newfile1);
1299         fd_install(fd2, newfile2);
1300         /* fd1 and fd2 may be already another descriptors.
1301          * Not kernel problem.
1302          */
1303
1304         err = put_user(fd1, &usockvec[0]);
1305         if (!err)
1306                 err = put_user(fd2, &usockvec[1]);
1307         if (!err)
1308                 return 0;
1309
1310         sys_close(fd2);
1311         sys_close(fd1);
1312         return err;
1313
1314 out_release_both:
1315         sock_release(sock2);
1316 out_release_1:
1317         sock_release(sock1);
1318 out:
1319         return err;
1320
1321 out_fd2:
1322         put_filp(newfile1);
1323         sock_release(sock1);
1324 out_fd1:
1325         put_filp(newfile2);
1326         sock_release(sock2);
1327 out_fd:
1328         put_unused_fd(fd1);
1329         put_unused_fd(fd2);
1330         goto out;
1331 }
1332
1333 /*
1334  *      Bind a name to a socket. Nothing much to do here since it's
1335  *      the protocol's responsibility to handle the local address.
1336  *
1337  *      We move the socket address to kernel space before we call
1338  *      the protocol layer (having also checked the address is ok).
1339  */
1340
1341 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1342 {
1343         struct socket *sock;
1344         char address[MAX_SOCK_ADDR];
1345         int err, fput_needed;
1346
1347         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1348         if (sock) {
1349                 err = move_addr_to_kernel(umyaddr, addrlen, address);
1350                 if (err >= 0) {
1351                         err = security_socket_bind(sock,
1352                                                    (struct sockaddr *)address,
1353                                                    addrlen);
1354                         if (!err)
1355                                 err = sock->ops->bind(sock,
1356                                                       (struct sockaddr *)
1357                                                       address, addrlen);
1358                 }
1359                 fput_light(sock->file, fput_needed);
1360         }
1361         return err;
1362 }
1363
1364 /*
1365  *      Perform a listen. Basically, we allow the protocol to do anything
1366  *      necessary for a listen, and if that works, we mark the socket as
1367  *      ready for listening.
1368  */
1369
1370 asmlinkage long sys_listen(int fd, int backlog)
1371 {
1372         struct socket *sock;
1373         int err, fput_needed;
1374         int somaxconn;
1375
1376         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1377         if (sock) {
1378                 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1379                 if ((unsigned)backlog > somaxconn)
1380                         backlog = somaxconn;
1381
1382                 err = security_socket_listen(sock, backlog);
1383                 if (!err)
1384                         err = sock->ops->listen(sock, backlog);
1385
1386                 fput_light(sock->file, fput_needed);
1387         }
1388         return err;
1389 }
1390
1391 /*
1392  *      For accept, we attempt to create a new socket, set up the link
1393  *      with the client, wake up the client, then return the new
1394  *      connected fd. We collect the address of the connector in kernel
1395  *      space and move it to user at the very end. This is unclean because
1396  *      we open the socket then return an error.
1397  *
1398  *      1003.1g adds the ability to recvmsg() to query connection pending
1399  *      status to recvmsg. We need to add that support in a way thats
1400  *      clean when we restucture accept also.
1401  */
1402
1403 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr,
1404                            int __user *upeer_addrlen)
1405 {
1406         struct socket *sock, *newsock;
1407         struct file *newfile;
1408         int err, len, newfd, fput_needed;
1409         char address[MAX_SOCK_ADDR];
1410
1411         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1412         if (!sock)
1413                 goto out;
1414
1415         err = -ENFILE;
1416         if (!(newsock = sock_alloc()))
1417                 goto out_put;
1418
1419         newsock->type = sock->type;
1420         newsock->ops = sock->ops;
1421
1422         /*
1423          * We don't need try_module_get here, as the listening socket (sock)
1424          * has the protocol module (sock->ops->owner) held.
1425          */
1426         __module_get(newsock->ops->owner);
1427
1428         newfd = sock_alloc_fd(&newfile);
1429         if (unlikely(newfd < 0)) {
1430                 err = newfd;
1431                 sock_release(newsock);
1432                 goto out_put;
1433         }
1434
1435         err = sock_attach_fd(newsock, newfile);
1436         if (err < 0)
1437                 goto out_fd_simple;
1438
1439         err = security_socket_accept(sock, newsock);
1440         if (err)
1441                 goto out_fd;
1442
1443         err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1444         if (err < 0)
1445                 goto out_fd;
1446
1447         if (upeer_sockaddr) {
1448                 if (newsock->ops->getname(newsock, (struct sockaddr *)address,
1449                                           &len, 2) < 0) {
1450                         err = -ECONNABORTED;
1451                         goto out_fd;
1452                 }
1453                 err = move_addr_to_user(address, len, upeer_sockaddr,
1454                                         upeer_addrlen);
1455                 if (err < 0)
1456                         goto out_fd;
1457         }
1458
1459         /* File flags are not inherited via accept() unlike another OSes. */
1460
1461         fd_install(newfd, newfile);
1462         err = newfd;
1463
1464         security_socket_post_accept(sock, newsock);
1465
1466 out_put:
1467         fput_light(sock->file, fput_needed);
1468 out:
1469         return err;
1470 out_fd_simple:
1471         sock_release(newsock);
1472         put_filp(newfile);
1473         put_unused_fd(newfd);
1474         goto out_put;
1475 out_fd:
1476         fput(newfile);
1477         put_unused_fd(newfd);
1478         goto out_put;
1479 }
1480
1481 /*
1482  *      Attempt to connect to a socket with the server address.  The address
1483  *      is in user space so we verify it is OK and move it to kernel space.
1484  *
1485  *      For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1486  *      break bindings
1487  *
1488  *      NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1489  *      other SEQPACKET protocols that take time to connect() as it doesn't
1490  *      include the -EINPROGRESS status for such sockets.
1491  */
1492
1493 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr,
1494                             int addrlen)
1495 {
1496         struct socket *sock;
1497         char address[MAX_SOCK_ADDR];
1498         int err, fput_needed;
1499
1500         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1501         if (!sock)
1502                 goto out;
1503         err = move_addr_to_kernel(uservaddr, addrlen, address);
1504         if (err < 0)
1505                 goto out_put;
1506
1507         err =
1508             security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1509         if (err)
1510                 goto out_put;
1511
1512         err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1513                                  sock->file->f_flags);
1514 out_put:
1515         fput_light(sock->file, fput_needed);
1516 out:
1517         return err;
1518 }
1519
1520 /*
1521  *      Get the local address ('name') of a socket object. Move the obtained
1522  *      name to user space.
1523  */
1524
1525 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1526                                 int __user *usockaddr_len)
1527 {
1528         struct socket *sock;
1529         char address[MAX_SOCK_ADDR];
1530         int len, err, fput_needed;
1531
1532         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1533         if (!sock)
1534                 goto out;
1535
1536         err = security_socket_getsockname(sock);
1537         if (err)
1538                 goto out_put;
1539
1540         err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0);
1541         if (err)
1542                 goto out_put;
1543         err = move_addr_to_user(address, len, usockaddr, usockaddr_len);
1544
1545 out_put:
1546         fput_light(sock->file, fput_needed);
1547 out:
1548         return err;
1549 }
1550
1551 /*
1552  *      Get the remote address ('name') of a socket object. Move the obtained
1553  *      name to user space.
1554  */
1555
1556 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1557                                 int __user *usockaddr_len)
1558 {
1559         struct socket *sock;
1560         char address[MAX_SOCK_ADDR];
1561         int len, err, fput_needed;
1562
1563         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1564         if (sock != NULL) {
1565                 err = security_socket_getpeername(sock);
1566                 if (err) {
1567                         fput_light(sock->file, fput_needed);
1568                         return err;
1569                 }
1570
1571                 err =
1572                     sock->ops->getname(sock, (struct sockaddr *)address, &len,
1573                                        1);
1574                 if (!err)
1575                         err = move_addr_to_user(address, len, usockaddr,
1576                                                 usockaddr_len);
1577                 fput_light(sock->file, fput_needed);
1578         }
1579         return err;
1580 }
1581
1582 /*
1583  *      Send a datagram to a given address. We move the address into kernel
1584  *      space and check the user space data area is readable before invoking
1585  *      the protocol.
1586  */
1587
1588 asmlinkage long sys_sendto(int fd, void __user *buff, size_t len,
1589                            unsigned flags, struct sockaddr __user *addr,
1590                            int addr_len)
1591 {
1592         struct socket *sock;
1593         char address[MAX_SOCK_ADDR];
1594         int err;
1595         struct msghdr msg;
1596         struct iovec iov;
1597         int fput_needed;
1598
1599         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1600         if (!sock)
1601                 goto out;
1602
1603         iov.iov_base = buff;
1604         iov.iov_len = len;
1605         msg.msg_name = NULL;
1606         msg.msg_iov = &iov;
1607         msg.msg_iovlen = 1;
1608         msg.msg_control = NULL;
1609         msg.msg_controllen = 0;
1610         msg.msg_namelen = 0;
1611         if (addr) {
1612                 err = move_addr_to_kernel(addr, addr_len, address);
1613                 if (err < 0)
1614                         goto out_put;
1615                 msg.msg_name = address;
1616                 msg.msg_namelen = addr_len;
1617         }
1618         if (sock->file->f_flags & O_NONBLOCK)
1619                 flags |= MSG_DONTWAIT;
1620         msg.msg_flags = flags;
1621         err = sock_sendmsg(sock, &msg, len);
1622
1623 out_put:
1624         fput_light(sock->file, fput_needed);
1625 out:
1626         return err;
1627 }
1628
1629 /*
1630  *      Send a datagram down a socket.
1631  */
1632
1633 asmlinkage long sys_send(int fd, void __user *buff, size_t len, unsigned flags)
1634 {
1635         return sys_sendto(fd, buff, len, flags, NULL, 0);
1636 }
1637
1638 /*
1639  *      Receive a frame from the socket and optionally record the address of the
1640  *      sender. We verify the buffers are writable and if needed move the
1641  *      sender address from kernel to user space.
1642  */
1643
1644 asmlinkage long sys_recvfrom(int fd, void __user *ubuf, size_t size,
1645                              unsigned flags, struct sockaddr __user *addr,
1646                              int __user *addr_len)
1647 {
1648         struct socket *sock;
1649         struct iovec iov;
1650         struct msghdr msg;
1651         char address[MAX_SOCK_ADDR];
1652         int err, err2;
1653         int fput_needed;
1654
1655         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1656         if (!sock)
1657                 goto out;
1658
1659         msg.msg_control = NULL;
1660         msg.msg_controllen = 0;
1661         msg.msg_iovlen = 1;
1662         msg.msg_iov = &iov;
1663         iov.iov_len = size;
1664         iov.iov_base = ubuf;
1665         msg.msg_name = address;
1666         msg.msg_namelen = MAX_SOCK_ADDR;
1667         if (sock->file->f_flags & O_NONBLOCK)
1668                 flags |= MSG_DONTWAIT;
1669         err = sock_recvmsg(sock, &msg, size, flags);
1670
1671         if (err >= 0 && addr != NULL) {
1672                 err2 = move_addr_to_user(address, msg.msg_namelen, addr, addr_len);
1673                 if (err2 < 0)
1674                         err = err2;
1675         }
1676
1677         fput_light(sock->file, fput_needed);
1678 out:
1679         return err;
1680 }
1681
1682 /*
1683  *      Receive a datagram from a socket.
1684  */
1685
1686 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1687                          unsigned flags)
1688 {
1689         return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1690 }
1691
1692 /*
1693  *      Set a socket option. Because we don't know the option lengths we have
1694  *      to pass the user mode parameter for the protocols to sort out.
1695  */
1696
1697 asmlinkage long sys_setsockopt(int fd, int level, int optname,
1698                                char __user *optval, int optlen)
1699 {
1700         int err, fput_needed;
1701         struct socket *sock;
1702
1703         if (optlen < 0)
1704                 return -EINVAL;
1705
1706         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1707         if (sock != NULL) {
1708                 err = security_socket_setsockopt(sock, level, optname);
1709                 if (err)
1710                         goto out_put;
1711
1712                 if (level == SOL_SOCKET)
1713                         err =
1714                             sock_setsockopt(sock, level, optname, optval,
1715                                             optlen);
1716                 else
1717                         err =
1718                             sock->ops->setsockopt(sock, level, optname, optval,
1719                                                   optlen);
1720 out_put:
1721                 fput_light(sock->file, fput_needed);
1722         }
1723         return err;
1724 }
1725
1726 /*
1727  *      Get a socket option. Because we don't know the option lengths we have
1728  *      to pass a user mode parameter for the protocols to sort out.
1729  */
1730
1731 asmlinkage long sys_getsockopt(int fd, int level, int optname,
1732                                char __user *optval, int __user *optlen)
1733 {
1734         int err, fput_needed;
1735         struct socket *sock;
1736
1737         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1738         if (sock != NULL) {
1739                 err = security_socket_getsockopt(sock, level, optname);
1740                 if (err)
1741                         goto out_put;
1742
1743                 if (level == SOL_SOCKET)
1744                         err =
1745                             sock_getsockopt(sock, level, optname, optval,
1746                                             optlen);
1747                 else
1748                         err =
1749                             sock->ops->getsockopt(sock, level, optname, optval,
1750                                                   optlen);
1751 out_put:
1752                 fput_light(sock->file, fput_needed);
1753         }
1754         return err;
1755 }
1756
1757 /*
1758  *      Shutdown a socket.
1759  */
1760
1761 asmlinkage long sys_shutdown(int fd, int how)
1762 {
1763         int err, fput_needed;
1764         struct socket *sock;
1765
1766         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1767         if (sock != NULL) {
1768                 err = security_socket_shutdown(sock, how);
1769                 if (!err)
1770                         err = sock->ops->shutdown(sock, how);
1771                 fput_light(sock->file, fput_needed);
1772         }
1773         return err;
1774 }
1775
1776 /* A couple of helpful macros for getting the address of the 32/64 bit
1777  * fields which are the same type (int / unsigned) on our platforms.
1778  */
1779 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1780 #define COMPAT_NAMELEN(msg)     COMPAT_MSG(msg, msg_namelen)
1781 #define COMPAT_FLAGS(msg)       COMPAT_MSG(msg, msg_flags)
1782
1783 /*
1784  *      BSD sendmsg interface
1785  */
1786
1787 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
1788 {
1789         struct compat_msghdr __user *msg_compat =
1790             (struct compat_msghdr __user *)msg;
1791         struct socket *sock;
1792         char address[MAX_SOCK_ADDR];
1793         struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1794         unsigned char ctl[sizeof(struct cmsghdr) + 20]
1795             __attribute__ ((aligned(sizeof(__kernel_size_t))));
1796         /* 20 is size of ipv6_pktinfo */
1797         unsigned char *ctl_buf = ctl;
1798         struct msghdr msg_sys;
1799         int err, ctl_len, iov_size, total_len;
1800         int fput_needed;
1801
1802         err = -EFAULT;
1803         if (MSG_CMSG_COMPAT & flags) {
1804                 if (get_compat_msghdr(&msg_sys, msg_compat))
1805                         return -EFAULT;
1806         }
1807         else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1808                 return -EFAULT;
1809
1810         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1811         if (!sock)
1812                 goto out;
1813
1814         /* do not move before msg_sys is valid */
1815         err = -EMSGSIZE;
1816         if (msg_sys.msg_iovlen > UIO_MAXIOV)
1817                 goto out_put;
1818
1819         /* Check whether to allocate the iovec area */
1820         err = -ENOMEM;
1821         iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1822         if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1823                 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1824                 if (!iov)
1825                         goto out_put;
1826         }
1827
1828         /* This will also move the address data into kernel space */
1829         if (MSG_CMSG_COMPAT & flags) {
1830                 err = verify_compat_iovec(&msg_sys, iov, address, VERIFY_READ);
1831         } else
1832                 err = verify_iovec(&msg_sys, iov, address, VERIFY_READ);
1833         if (err < 0)
1834                 goto out_freeiov;
1835         total_len = err;
1836
1837         err = -ENOBUFS;
1838
1839         if (msg_sys.msg_controllen > INT_MAX)
1840                 goto out_freeiov;
1841         ctl_len = msg_sys.msg_controllen;
1842         if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1843                 err =
1844                     cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1845                                                      sizeof(ctl));
1846                 if (err)
1847                         goto out_freeiov;
1848                 ctl_buf = msg_sys.msg_control;
1849                 ctl_len = msg_sys.msg_controllen;
1850         } else if (ctl_len) {
1851                 if (ctl_len > sizeof(ctl)) {
1852                         ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1853                         if (ctl_buf == NULL)
1854                                 goto out_freeiov;
1855                 }
1856                 err = -EFAULT;
1857                 /*
1858                  * Careful! Before this, msg_sys.msg_control contains a user pointer.
1859                  * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1860                  * checking falls down on this.
1861                  */
1862                 if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
1863                                    ctl_len))
1864                         goto out_freectl;
1865                 msg_sys.msg_control = ctl_buf;
1866         }
1867         msg_sys.msg_flags = flags;
1868
1869         if (sock->file->f_flags & O_NONBLOCK)
1870                 msg_sys.msg_flags |= MSG_DONTWAIT;
1871         err = sock_sendmsg(sock, &msg_sys, total_len);
1872
1873 out_freectl:
1874         if (ctl_buf != ctl)
1875                 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1876 out_freeiov:
1877         if (iov != iovstack)
1878                 sock_kfree_s(sock->sk, iov, iov_size);
1879 out_put:
1880         fput_light(sock->file, fput_needed);
1881 out:
1882         return err;
1883 }
1884
1885 /*
1886  *      BSD recvmsg interface
1887  */
1888
1889 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg,
1890                             unsigned int flags)
1891 {
1892         struct compat_msghdr __user *msg_compat =
1893             (struct compat_msghdr __user *)msg;
1894         struct socket *sock;
1895         struct iovec iovstack[UIO_FASTIOV];
1896         struct iovec *iov = iovstack;
1897         struct msghdr msg_sys;
1898         unsigned long cmsg_ptr;
1899         int err, iov_size, total_len, len;
1900         int fput_needed;
1901
1902         /* kernel mode address */
1903         char addr[MAX_SOCK_ADDR];
1904
1905         /* user mode address pointers */
1906         struct sockaddr __user *uaddr;
1907         int __user *uaddr_len;
1908
1909         if (MSG_CMSG_COMPAT & flags) {
1910                 if (get_compat_msghdr(&msg_sys, msg_compat))
1911                         return -EFAULT;
1912         }
1913         else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1914                 return -EFAULT;
1915
1916         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1917         if (!sock)
1918                 goto out;
1919
1920         err = -EMSGSIZE;
1921         if (msg_sys.msg_iovlen > UIO_MAXIOV)
1922                 goto out_put;
1923
1924         /* Check whether to allocate the iovec area */
1925         err = -ENOMEM;
1926         iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1927         if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1928                 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1929                 if (!iov)
1930                         goto out_put;
1931         }
1932
1933         /*
1934          *      Save the user-mode address (verify_iovec will change the
1935          *      kernel msghdr to use the kernel address space)
1936          */
1937
1938         uaddr = (__force void __user *)msg_sys.msg_name;
1939         uaddr_len = COMPAT_NAMELEN(msg);
1940         if (MSG_CMSG_COMPAT & flags) {
1941                 err = verify_compat_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1942         } else
1943                 err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1944         if (err < 0)
1945                 goto out_freeiov;
1946         total_len = err;
1947
1948         cmsg_ptr = (unsigned long)msg_sys.msg_control;
1949         msg_sys.msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
1950
1951         if (sock->file->f_flags & O_NONBLOCK)
1952                 flags |= MSG_DONTWAIT;
1953         err = sock_recvmsg(sock, &msg_sys, total_len, flags);
1954         if (err < 0)
1955                 goto out_freeiov;
1956         len = err;
1957
1958         if (uaddr != NULL) {
1959                 err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr,
1960                                         uaddr_len);
1961                 if (err < 0)
1962                         goto out_freeiov;
1963         }
1964         err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT),
1965                          COMPAT_FLAGS(msg));
1966         if (err)
1967                 goto out_freeiov;
1968         if (MSG_CMSG_COMPAT & flags)
1969                 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
1970                                  &msg_compat->msg_controllen);
1971         else
1972                 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
1973                                  &msg->msg_controllen);
1974         if (err)
1975                 goto out_freeiov;
1976         err = len;
1977
1978 out_freeiov:
1979         if (iov != iovstack)
1980                 sock_kfree_s(sock->sk, iov, iov_size);
1981 out_put:
1982         fput_light(sock->file, fput_needed);
1983 out:
1984         return err;
1985 }
1986
1987 #ifdef __ARCH_WANT_SYS_SOCKETCALL
1988
1989 /* Argument list sizes for sys_socketcall */
1990 #define AL(x) ((x) * sizeof(unsigned long))
1991 static const unsigned char nargs[18]={
1992         AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
1993         AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
1994         AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)
1995 };
1996
1997 #undef AL
1998
1999 /*
2000  *      System call vectors.
2001  *
2002  *      Argument checking cleaned up. Saved 20% in size.
2003  *  This function doesn't need to set the kernel lock because
2004  *  it is set by the callees.
2005  */
2006
2007 asmlinkage long sys_socketcall(int call, unsigned long __user *args)
2008 {
2009         unsigned long a[6];
2010         unsigned long a0, a1;
2011         int err;
2012
2013         if (call < 1 || call > SYS_RECVMSG)
2014                 return -EINVAL;
2015
2016         /* copy_from_user should be SMP safe. */
2017         if (copy_from_user(a, args, nargs[call]))
2018                 return -EFAULT;
2019
2020         err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2021         if (err)
2022                 return err;
2023
2024         a0 = a[0];
2025         a1 = a[1];
2026
2027         switch (call) {
2028         case SYS_SOCKET:
2029                 err = sys_socket(a0, a1, a[2]);
2030                 break;
2031         case SYS_BIND:
2032                 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2033                 break;
2034         case SYS_CONNECT:
2035                 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2036                 break;
2037         case SYS_LISTEN:
2038                 err = sys_listen(a0, a1);
2039                 break;
2040         case SYS_ACCEPT:
2041                 err =
2042                     sys_accept(a0, (struct sockaddr __user *)a1,
2043                                (int __user *)a[2]);
2044                 break;
2045         case SYS_GETSOCKNAME:
2046                 err =
2047                     sys_getsockname(a0, (struct sockaddr __user *)a1,
2048                                     (int __user *)a[2]);
2049                 break;
2050         case SYS_GETPEERNAME:
2051                 err =
2052                     sys_getpeername(a0, (struct sockaddr __user *)a1,
2053                                     (int __user *)a[2]);
2054                 break;
2055         case SYS_SOCKETPAIR:
2056                 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2057                 break;
2058         case SYS_SEND:
2059                 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2060                 break;
2061         case SYS_SENDTO:
2062                 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2063                                  (struct sockaddr __user *)a[4], a[5]);
2064                 break;
2065         case SYS_RECV:
2066                 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2067                 break;
2068         case SYS_RECVFROM:
2069                 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2070                                    (struct sockaddr __user *)a[4],
2071                                    (int __user *)a[5]);
2072                 break;
2073         case SYS_SHUTDOWN:
2074                 err = sys_shutdown(a0, a1);
2075                 break;
2076         case SYS_SETSOCKOPT:
2077                 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2078                 break;
2079         case SYS_GETSOCKOPT:
2080                 err =
2081                     sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2082                                    (int __user *)a[4]);
2083                 break;
2084         case SYS_SENDMSG:
2085                 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2086                 break;
2087         case SYS_RECVMSG:
2088                 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2089                 break;
2090         default:
2091                 err = -EINVAL;
2092                 break;
2093         }
2094         return err;
2095 }
2096
2097 #endif                          /* __ARCH_WANT_SYS_SOCKETCALL */
2098
2099 /**
2100  *      sock_register - add a socket protocol handler
2101  *      @ops: description of protocol
2102  *
2103  *      This function is called by a protocol handler that wants to
2104  *      advertise its address family, and have it linked into the
2105  *      socket interface. The value ops->family coresponds to the
2106  *      socket system call protocol family.
2107  */
2108 int sock_register(const struct net_proto_family *ops)
2109 {
2110         int err;
2111
2112         if (ops->family >= NPROTO) {
2113                 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2114                        NPROTO);
2115                 return -ENOBUFS;
2116         }
2117
2118         spin_lock(&net_family_lock);
2119         if (net_families[ops->family])
2120                 err = -EEXIST;
2121         else {
2122                 net_families[ops->family] = ops;
2123                 err = 0;
2124         }
2125         spin_unlock(&net_family_lock);
2126
2127         printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2128         return err;
2129 }
2130
2131 /**
2132  *      sock_unregister - remove a protocol handler
2133  *      @family: protocol family to remove
2134  *
2135  *      This function is called by a protocol handler that wants to
2136  *      remove its address family, and have it unlinked from the
2137  *      new socket creation.
2138  *
2139  *      If protocol handler is a module, then it can use module reference
2140  *      counts to protect against new references. If protocol handler is not
2141  *      a module then it needs to provide its own protection in
2142  *      the ops->create routine.
2143  */
2144 void sock_unregister(int family)
2145 {
2146         BUG_ON(family < 0 || family >= NPROTO);
2147
2148         spin_lock(&net_family_lock);
2149         net_families[family] = NULL;
2150         spin_unlock(&net_family_lock);
2151
2152         synchronize_rcu();
2153
2154         printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2155 }
2156
2157 static int __init sock_init(void)
2158 {
2159         /*
2160          *      Initialize sock SLAB cache.
2161          */
2162
2163         sk_init();
2164
2165         /*
2166          *      Initialize skbuff SLAB cache
2167          */
2168         skb_init();
2169
2170         /*
2171          *      Initialize the protocols module.
2172          */
2173
2174         init_inodecache();
2175         register_filesystem(&sock_fs_type);
2176         sock_mnt = kern_mount(&sock_fs_type);
2177
2178         /* The real protocol initialization is performed in later initcalls.
2179          */
2180
2181 #ifdef CONFIG_NETFILTER
2182         netfilter_init();
2183 #endif
2184
2185         return 0;
2186 }
2187
2188 core_initcall(sock_init);       /* early initcall */
2189
2190 #ifdef CONFIG_PROC_FS
2191 void socket_seq_show(struct seq_file *seq)
2192 {
2193         int cpu;
2194         int counter = 0;
2195
2196         for_each_possible_cpu(cpu)
2197             counter += per_cpu(sockets_in_use, cpu);
2198
2199         /* It can be negative, by the way. 8) */
2200         if (counter < 0)
2201                 counter = 0;
2202
2203         seq_printf(seq, "sockets: used %d\n", counter);
2204 }
2205 #endif                          /* CONFIG_PROC_FS */
2206
2207 #ifdef CONFIG_COMPAT
2208 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2209                               unsigned long arg)
2210 {
2211         struct socket *sock = file->private_data;
2212         int ret = -ENOIOCTLCMD;
2213
2214         if (sock->ops->compat_ioctl)
2215                 ret = sock->ops->compat_ioctl(sock, cmd, arg);
2216
2217         return ret;
2218 }
2219 #endif
2220
2221 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
2222 {
2223         return sock->ops->bind(sock, addr, addrlen);
2224 }
2225
2226 int kernel_listen(struct socket *sock, int backlog)
2227 {
2228         return sock->ops->listen(sock, backlog);
2229 }
2230
2231 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
2232 {
2233         struct sock *sk = sock->sk;
2234         int err;
2235
2236         err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
2237                                newsock);
2238         if (err < 0)
2239                 goto done;
2240
2241         err = sock->ops->accept(sock, *newsock, flags);
2242         if (err < 0) {
2243                 sock_release(*newsock);
2244                 *newsock = NULL;
2245                 goto done;
2246         }
2247
2248         (*newsock)->ops = sock->ops;
2249
2250 done:
2251         return err;
2252 }
2253
2254 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
2255                    int flags)
2256 {
2257         return sock->ops->connect(sock, addr, addrlen, flags);
2258 }
2259
2260 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
2261                          int *addrlen)
2262 {
2263         return sock->ops->getname(sock, addr, addrlen, 0);
2264 }
2265
2266 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
2267                          int *addrlen)
2268 {
2269         return sock->ops->getname(sock, addr, addrlen, 1);
2270 }
2271
2272 int kernel_getsockopt(struct socket *sock, int level, int optname,
2273                         char *optval, int *optlen)
2274 {
2275         mm_segment_t oldfs = get_fs();
2276         int err;
2277
2278         set_fs(KERNEL_DS);
2279         if (level == SOL_SOCKET)
2280                 err = sock_getsockopt(sock, level, optname, optval, optlen);
2281         else
2282                 err = sock->ops->getsockopt(sock, level, optname, optval,
2283                                             optlen);
2284         set_fs(oldfs);
2285         return err;
2286 }
2287
2288 int kernel_setsockopt(struct socket *sock, int level, int optname,
2289                         char *optval, int optlen)
2290 {
2291         mm_segment_t oldfs = get_fs();
2292         int err;
2293
2294         set_fs(KERNEL_DS);
2295         if (level == SOL_SOCKET)
2296                 err = sock_setsockopt(sock, level, optname, optval, optlen);
2297         else
2298                 err = sock->ops->setsockopt(sock, level, optname, optval,
2299                                             optlen);
2300         set_fs(oldfs);
2301         return err;
2302 }
2303
2304 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
2305                     size_t size, int flags)
2306 {
2307         if (sock->ops->sendpage)
2308                 return sock->ops->sendpage(sock, page, offset, size, flags);
2309
2310         return sock_no_sendpage(sock, page, offset, size, flags);
2311 }
2312
2313 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
2314 {
2315         mm_segment_t oldfs = get_fs();
2316         int err;
2317
2318         set_fs(KERNEL_DS);
2319         err = sock->ops->ioctl(sock, cmd, arg);
2320         set_fs(oldfs);
2321
2322         return err;
2323 }
2324
2325 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
2326 {
2327         return sock->ops->shutdown(sock, how);
2328 }
2329
2330 EXPORT_SYMBOL(sock_create);
2331 EXPORT_SYMBOL(sock_create_kern);
2332 EXPORT_SYMBOL(sock_create_lite);
2333 EXPORT_SYMBOL(sock_map_fd);
2334 EXPORT_SYMBOL(sock_recvmsg);
2335 EXPORT_SYMBOL(sock_register);
2336 EXPORT_SYMBOL(sock_release);
2337 EXPORT_SYMBOL(sock_sendmsg);
2338 EXPORT_SYMBOL(sock_unregister);
2339 EXPORT_SYMBOL(sock_wake_async);
2340 EXPORT_SYMBOL(sockfd_lookup);
2341 EXPORT_SYMBOL(kernel_sendmsg);
2342 EXPORT_SYMBOL(kernel_recvmsg);
2343 EXPORT_SYMBOL(kernel_bind);
2344 EXPORT_SYMBOL(kernel_listen);
2345 EXPORT_SYMBOL(kernel_accept);
2346 EXPORT_SYMBOL(kernel_connect);
2347 EXPORT_SYMBOL(kernel_getsockname);
2348 EXPORT_SYMBOL(kernel_getpeername);
2349 EXPORT_SYMBOL(kernel_getsockopt);
2350 EXPORT_SYMBOL(kernel_setsockopt);
2351 EXPORT_SYMBOL(kernel_sendpage);
2352 EXPORT_SYMBOL(kernel_sock_ioctl);
2353 EXPORT_SYMBOL(kernel_sock_shutdown);