1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
6 * Defines functions of journalling api
8 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
32 #define MLOG_MASK_PREFIX ML_JOURNAL
33 #include <cluster/masklog.h>
40 #include "extent_map.h"
41 #include "heartbeat.h"
44 #include "localalloc.h"
49 #include "buffer_head_io.h"
51 DEFINE_SPINLOCK(trans_inc_lock);
53 static int ocfs2_force_read_journal(struct inode *inode);
54 static int ocfs2_recover_node(struct ocfs2_super *osb,
56 static int __ocfs2_recovery_thread(void *arg);
57 static int ocfs2_commit_cache(struct ocfs2_super *osb);
58 static int ocfs2_wait_on_mount(struct ocfs2_super *osb);
59 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
60 int dirty, int replayed);
61 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
63 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
65 static int ocfs2_commit_thread(void *arg);
69 * The recovery_list is a simple linked list of node numbers to recover.
70 * It is protected by the recovery_lock.
73 struct ocfs2_recovery_map {
75 unsigned int *rm_entries;
78 int ocfs2_recovery_init(struct ocfs2_super *osb)
80 struct ocfs2_recovery_map *rm;
82 mutex_init(&osb->recovery_lock);
83 osb->disable_recovery = 0;
84 osb->recovery_thread_task = NULL;
85 init_waitqueue_head(&osb->recovery_event);
87 rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
88 osb->max_slots * sizeof(unsigned int),
95 rm->rm_entries = (unsigned int *)((char *)rm +
96 sizeof(struct ocfs2_recovery_map));
97 osb->recovery_map = rm;
102 /* we can't grab the goofy sem lock from inside wait_event, so we use
103 * memory barriers to make sure that we'll see the null task before
105 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
108 return osb->recovery_thread_task != NULL;
111 void ocfs2_recovery_exit(struct ocfs2_super *osb)
113 struct ocfs2_recovery_map *rm;
115 /* disable any new recovery threads and wait for any currently
116 * running ones to exit. Do this before setting the vol_state. */
117 mutex_lock(&osb->recovery_lock);
118 osb->disable_recovery = 1;
119 mutex_unlock(&osb->recovery_lock);
120 wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
122 /* At this point, we know that no more recovery threads can be
123 * launched, so wait for any recovery completion work to
125 flush_workqueue(ocfs2_wq);
128 * Now that recovery is shut down, and the osb is about to be
129 * freed, the osb_lock is not taken here.
131 rm = osb->recovery_map;
132 /* XXX: Should we bug if there are dirty entries? */
137 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
138 unsigned int node_num)
141 struct ocfs2_recovery_map *rm = osb->recovery_map;
143 assert_spin_locked(&osb->osb_lock);
145 for (i = 0; i < rm->rm_used; i++) {
146 if (rm->rm_entries[i] == node_num)
153 /* Behaves like test-and-set. Returns the previous value */
154 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
155 unsigned int node_num)
157 struct ocfs2_recovery_map *rm = osb->recovery_map;
159 spin_lock(&osb->osb_lock);
160 if (__ocfs2_recovery_map_test(osb, node_num)) {
161 spin_unlock(&osb->osb_lock);
165 /* XXX: Can this be exploited? Not from o2dlm... */
166 BUG_ON(rm->rm_used >= osb->max_slots);
168 rm->rm_entries[rm->rm_used] = node_num;
170 spin_unlock(&osb->osb_lock);
175 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
176 unsigned int node_num)
179 struct ocfs2_recovery_map *rm = osb->recovery_map;
181 spin_lock(&osb->osb_lock);
183 for (i = 0; i < rm->rm_used; i++) {
184 if (rm->rm_entries[i] == node_num)
188 if (i < rm->rm_used) {
189 /* XXX: be careful with the pointer math */
190 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
191 (rm->rm_used - i - 1) * sizeof(unsigned int));
195 spin_unlock(&osb->osb_lock);
198 static int ocfs2_commit_cache(struct ocfs2_super *osb)
201 unsigned int flushed;
202 unsigned long old_id;
203 struct ocfs2_journal *journal = NULL;
207 journal = osb->journal;
209 /* Flush all pending commits and checkpoint the journal. */
210 down_write(&journal->j_trans_barrier);
212 if (atomic_read(&journal->j_num_trans) == 0) {
213 up_write(&journal->j_trans_barrier);
214 mlog(0, "No transactions for me to flush!\n");
218 journal_lock_updates(journal->j_journal);
219 status = journal_flush(journal->j_journal);
220 journal_unlock_updates(journal->j_journal);
222 up_write(&journal->j_trans_barrier);
227 old_id = ocfs2_inc_trans_id(journal);
229 flushed = atomic_read(&journal->j_num_trans);
230 atomic_set(&journal->j_num_trans, 0);
231 up_write(&journal->j_trans_barrier);
233 mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n",
234 journal->j_trans_id, flushed);
236 ocfs2_wake_downconvert_thread(osb);
237 wake_up(&journal->j_checkpointed);
243 /* pass it NULL and it will allocate a new handle object for you. If
244 * you pass it a handle however, it may still return error, in which
245 * case it has free'd the passed handle for you. */
246 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
248 journal_t *journal = osb->journal->j_journal;
251 BUG_ON(!osb || !osb->journal->j_journal);
253 if (ocfs2_is_hard_readonly(osb))
254 return ERR_PTR(-EROFS);
256 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
257 BUG_ON(max_buffs <= 0);
259 /* JBD might support this, but our journalling code doesn't yet. */
260 if (journal_current_handle()) {
261 mlog(ML_ERROR, "Recursive transaction attempted!\n");
265 down_read(&osb->journal->j_trans_barrier);
267 handle = journal_start(journal, max_buffs);
268 if (IS_ERR(handle)) {
269 up_read(&osb->journal->j_trans_barrier);
271 mlog_errno(PTR_ERR(handle));
273 if (is_journal_aborted(journal)) {
274 ocfs2_abort(osb->sb, "Detected aborted journal");
275 handle = ERR_PTR(-EROFS);
278 if (!ocfs2_mount_local(osb))
279 atomic_inc(&(osb->journal->j_num_trans));
285 int ocfs2_commit_trans(struct ocfs2_super *osb,
289 struct ocfs2_journal *journal = osb->journal;
293 ret = journal_stop(handle);
297 up_read(&journal->j_trans_barrier);
303 * 'nblocks' is what you want to add to the current
304 * transaction. extend_trans will either extend the current handle by
305 * nblocks, or commit it and start a new one with nblocks credits.
307 * This might call journal_restart() which will commit dirty buffers
308 * and then restart the transaction. Before calling
309 * ocfs2_extend_trans(), any changed blocks should have been
310 * dirtied. After calling it, all blocks which need to be changed must
311 * go through another set of journal_access/journal_dirty calls.
313 * WARNING: This will not release any semaphores or disk locks taken
314 * during the transaction, so make sure they were taken *before*
315 * start_trans or we'll have ordering deadlocks.
317 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
318 * good because transaction ids haven't yet been recorded on the
319 * cluster locks associated with this handle.
321 int ocfs2_extend_trans(handle_t *handle, int nblocks)
330 mlog(0, "Trying to extend transaction by %d blocks\n", nblocks);
332 #ifdef CONFIG_OCFS2_DEBUG_FS
335 status = journal_extend(handle, nblocks);
343 mlog(0, "journal_extend failed, trying journal_restart\n");
344 status = journal_restart(handle, nblocks);
358 int ocfs2_journal_access(handle_t *handle,
360 struct buffer_head *bh,
369 mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n",
370 (unsigned long long)bh->b_blocknr, type,
371 (type == OCFS2_JOURNAL_ACCESS_CREATE) ?
372 "OCFS2_JOURNAL_ACCESS_CREATE" :
373 "OCFS2_JOURNAL_ACCESS_WRITE",
376 /* we can safely remove this assertion after testing. */
377 if (!buffer_uptodate(bh)) {
378 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
379 mlog(ML_ERROR, "b_blocknr=%llu\n",
380 (unsigned long long)bh->b_blocknr);
384 /* Set the current transaction information on the inode so
385 * that the locking code knows whether it can drop it's locks
386 * on this inode or not. We're protected from the commit
387 * thread updating the current transaction id until
388 * ocfs2_commit_trans() because ocfs2_start_trans() took
389 * j_trans_barrier for us. */
390 ocfs2_set_inode_lock_trans(OCFS2_SB(inode->i_sb)->journal, inode);
392 mutex_lock(&OCFS2_I(inode)->ip_io_mutex);
394 case OCFS2_JOURNAL_ACCESS_CREATE:
395 case OCFS2_JOURNAL_ACCESS_WRITE:
396 status = journal_get_write_access(handle, bh);
399 case OCFS2_JOURNAL_ACCESS_UNDO:
400 status = journal_get_undo_access(handle, bh);
405 mlog(ML_ERROR, "Uknown access type!\n");
407 mutex_unlock(&OCFS2_I(inode)->ip_io_mutex);
410 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
417 int ocfs2_journal_dirty(handle_t *handle,
418 struct buffer_head *bh)
422 mlog_entry("(bh->b_blocknr=%llu)\n",
423 (unsigned long long)bh->b_blocknr);
425 status = journal_dirty_metadata(handle, bh);
427 mlog(ML_ERROR, "Could not dirty metadata buffer. "
428 "(bh->b_blocknr=%llu)\n",
429 (unsigned long long)bh->b_blocknr);
435 int ocfs2_journal_dirty_data(handle_t *handle,
436 struct buffer_head *bh)
438 int err = journal_dirty_data(handle, bh);
441 /* TODO: When we can handle it, abort the handle and go RO on
447 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD_DEFAULT_MAX_COMMIT_AGE)
449 void ocfs2_set_journal_params(struct ocfs2_super *osb)
451 journal_t *journal = osb->journal->j_journal;
452 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
454 if (osb->osb_commit_interval)
455 commit_interval = osb->osb_commit_interval;
457 spin_lock(&journal->j_state_lock);
458 journal->j_commit_interval = commit_interval;
459 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
460 journal->j_flags |= JFS_BARRIER;
462 journal->j_flags &= ~JFS_BARRIER;
463 spin_unlock(&journal->j_state_lock);
466 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
469 struct inode *inode = NULL; /* the journal inode */
470 journal_t *j_journal = NULL;
471 struct ocfs2_dinode *di = NULL;
472 struct buffer_head *bh = NULL;
473 struct ocfs2_super *osb;
480 osb = journal->j_osb;
482 /* already have the inode for our journal */
483 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
490 if (is_bad_inode(inode)) {
491 mlog(ML_ERROR, "access error (bad inode)\n");
498 SET_INODE_JOURNAL(inode);
499 OCFS2_I(inode)->ip_open_count++;
501 /* Skip recovery waits here - journal inode metadata never
502 * changes in a live cluster so it can be considered an
503 * exception to the rule. */
504 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
506 if (status != -ERESTARTSYS)
507 mlog(ML_ERROR, "Could not get lock on journal!\n");
512 di = (struct ocfs2_dinode *)bh->b_data;
514 if (inode->i_size < OCFS2_MIN_JOURNAL_SIZE) {
515 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
521 mlog(0, "inode->i_size = %lld\n", inode->i_size);
522 mlog(0, "inode->i_blocks = %llu\n",
523 (unsigned long long)inode->i_blocks);
524 mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode)->ip_clusters);
526 /* call the kernels journal init function now */
527 j_journal = journal_init_inode(inode);
528 if (j_journal == NULL) {
529 mlog(ML_ERROR, "Linux journal layer error\n");
534 mlog(0, "Returned from journal_init_inode\n");
535 mlog(0, "j_journal->j_maxlen = %u\n", j_journal->j_maxlen);
537 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
538 OCFS2_JOURNAL_DIRTY_FL);
540 journal->j_journal = j_journal;
541 journal->j_inode = inode;
544 ocfs2_set_journal_params(osb);
546 journal->j_state = OCFS2_JOURNAL_LOADED;
552 ocfs2_inode_unlock(inode, 1);
556 OCFS2_I(inode)->ip_open_count--;
565 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
567 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
570 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
572 return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
575 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
576 int dirty, int replayed)
580 struct ocfs2_journal *journal = osb->journal;
581 struct buffer_head *bh = journal->j_bh;
582 struct ocfs2_dinode *fe;
586 fe = (struct ocfs2_dinode *)bh->b_data;
587 if (!OCFS2_IS_VALID_DINODE(fe)) {
588 /* This is called from startup/shutdown which will
589 * handle the errors in a specific manner, so no need
590 * to call ocfs2_error() here. */
591 mlog(ML_ERROR, "Journal dinode %llu has invalid "
593 (unsigned long long)le64_to_cpu(fe->i_blkno), 7,
599 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
601 flags |= OCFS2_JOURNAL_DIRTY_FL;
603 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
604 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
607 ocfs2_bump_recovery_generation(fe);
609 status = ocfs2_write_block(osb, bh, journal->j_inode);
619 * If the journal has been kmalloc'd it needs to be freed after this
622 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
624 struct ocfs2_journal *journal = NULL;
626 struct inode *inode = NULL;
627 int num_running_trans = 0;
633 journal = osb->journal;
637 inode = journal->j_inode;
639 if (journal->j_state != OCFS2_JOURNAL_LOADED)
642 /* need to inc inode use count as journal_destroy will iput. */
646 num_running_trans = atomic_read(&(osb->journal->j_num_trans));
647 if (num_running_trans > 0)
648 mlog(0, "Shutting down journal: must wait on %d "
649 "running transactions!\n",
652 /* Do a commit_cache here. It will flush our journal, *and*
653 * release any locks that are still held.
654 * set the SHUTDOWN flag and release the trans lock.
655 * the commit thread will take the trans lock for us below. */
656 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
658 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
659 * drop the trans_lock (which we want to hold until we
660 * completely destroy the journal. */
661 if (osb->commit_task) {
662 /* Wait for the commit thread */
663 mlog(0, "Waiting for ocfs2commit to exit....\n");
664 kthread_stop(osb->commit_task);
665 osb->commit_task = NULL;
668 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
670 if (ocfs2_mount_local(osb)) {
671 journal_lock_updates(journal->j_journal);
672 status = journal_flush(journal->j_journal);
673 journal_unlock_updates(journal->j_journal);
680 * Do not toggle if flush was unsuccessful otherwise
681 * will leave dirty metadata in a "clean" journal
683 status = ocfs2_journal_toggle_dirty(osb, 0, 0);
688 /* Shutdown the kernel journal system */
689 journal_destroy(journal->j_journal);
691 OCFS2_I(inode)->ip_open_count--;
693 /* unlock our journal */
694 ocfs2_inode_unlock(inode, 1);
696 brelse(journal->j_bh);
697 journal->j_bh = NULL;
699 journal->j_state = OCFS2_JOURNAL_FREE;
701 // up_write(&journal->j_trans_barrier);
708 static void ocfs2_clear_journal_error(struct super_block *sb,
714 olderr = journal_errno(journal);
716 mlog(ML_ERROR, "File system error %d recorded in "
717 "journal %u.\n", olderr, slot);
718 mlog(ML_ERROR, "File system on device %s needs checking.\n",
721 journal_ack_err(journal);
722 journal_clear_err(journal);
726 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
729 struct ocfs2_super *osb;
735 osb = journal->j_osb;
737 status = journal_load(journal->j_journal);
739 mlog(ML_ERROR, "Failed to load journal!\n");
743 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
745 status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
751 /* Launch the commit thread */
753 osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
755 if (IS_ERR(osb->commit_task)) {
756 status = PTR_ERR(osb->commit_task);
757 osb->commit_task = NULL;
758 mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
763 osb->commit_task = NULL;
771 /* 'full' flag tells us whether we clear out all blocks or if we just
772 * mark the journal clean */
773 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
781 status = journal_wipe(journal->j_journal, full);
787 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
796 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
799 struct ocfs2_recovery_map *rm = osb->recovery_map;
801 spin_lock(&osb->osb_lock);
802 empty = (rm->rm_used == 0);
803 spin_unlock(&osb->osb_lock);
808 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
810 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
814 * JBD Might read a cached version of another nodes journal file. We
815 * don't want this as this file changes often and we get no
816 * notification on those changes. The only way to be sure that we've
817 * got the most up to date version of those blocks then is to force
818 * read them off disk. Just searching through the buffer cache won't
819 * work as there may be pages backing this file which are still marked
820 * up to date. We know things can't change on this file underneath us
821 * as we have the lock by now :)
823 static int ocfs2_force_read_journal(struct inode *inode)
827 u64 v_blkno, p_blkno, p_blocks, num_blocks;
828 #define CONCURRENT_JOURNAL_FILL 32ULL
829 struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
833 memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
835 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, inode->i_size);
837 while (v_blkno < num_blocks) {
838 status = ocfs2_extent_map_get_blocks(inode, v_blkno,
839 &p_blkno, &p_blocks, NULL);
845 if (p_blocks > CONCURRENT_JOURNAL_FILL)
846 p_blocks = CONCURRENT_JOURNAL_FILL;
848 /* We are reading journal data which should not
849 * be put in the uptodate cache */
850 status = ocfs2_read_blocks(OCFS2_SB(inode->i_sb),
851 p_blkno, p_blocks, bhs, 0,
858 for(i = 0; i < p_blocks; i++) {
867 for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
874 struct ocfs2_la_recovery_item {
875 struct list_head lri_list;
877 struct ocfs2_dinode *lri_la_dinode;
878 struct ocfs2_dinode *lri_tl_dinode;
881 /* Does the second half of the recovery process. By this point, the
882 * node is marked clean and can actually be considered recovered,
883 * hence it's no longer in the recovery map, but there's still some
884 * cleanup we can do which shouldn't happen within the recovery thread
885 * as locking in that context becomes very difficult if we are to take
886 * recovering nodes into account.
888 * NOTE: This function can and will sleep on recovery of other nodes
889 * during cluster locking, just like any other ocfs2 process.
891 void ocfs2_complete_recovery(struct work_struct *work)
894 struct ocfs2_journal *journal =
895 container_of(work, struct ocfs2_journal, j_recovery_work);
896 struct ocfs2_super *osb = journal->j_osb;
897 struct ocfs2_dinode *la_dinode, *tl_dinode;
898 struct ocfs2_la_recovery_item *item, *n;
899 LIST_HEAD(tmp_la_list);
903 mlog(0, "completing recovery from keventd\n");
905 spin_lock(&journal->j_lock);
906 list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
907 spin_unlock(&journal->j_lock);
909 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
910 list_del_init(&item->lri_list);
912 mlog(0, "Complete recovery for slot %d\n", item->lri_slot);
914 la_dinode = item->lri_la_dinode;
916 mlog(0, "Clean up local alloc %llu\n",
917 (unsigned long long)le64_to_cpu(la_dinode->i_blkno));
919 ret = ocfs2_complete_local_alloc_recovery(osb,
927 tl_dinode = item->lri_tl_dinode;
929 mlog(0, "Clean up truncate log %llu\n",
930 (unsigned long long)le64_to_cpu(tl_dinode->i_blkno));
932 ret = ocfs2_complete_truncate_log_recovery(osb,
940 ret = ocfs2_recover_orphans(osb, item->lri_slot);
947 mlog(0, "Recovery completion\n");
951 /* NOTE: This function always eats your references to la_dinode and
952 * tl_dinode, either manually on error, or by passing them to
953 * ocfs2_complete_recovery */
954 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
956 struct ocfs2_dinode *la_dinode,
957 struct ocfs2_dinode *tl_dinode)
959 struct ocfs2_la_recovery_item *item;
961 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
963 /* Though we wish to avoid it, we are in fact safe in
964 * skipping local alloc cleanup as fsck.ocfs2 is more
965 * than capable of reclaiming unused space. */
976 INIT_LIST_HEAD(&item->lri_list);
977 item->lri_la_dinode = la_dinode;
978 item->lri_slot = slot_num;
979 item->lri_tl_dinode = tl_dinode;
981 spin_lock(&journal->j_lock);
982 list_add_tail(&item->lri_list, &journal->j_la_cleanups);
983 queue_work(ocfs2_wq, &journal->j_recovery_work);
984 spin_unlock(&journal->j_lock);
987 /* Called by the mount code to queue recovery the last part of
988 * recovery for it's own slot. */
989 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
991 struct ocfs2_journal *journal = osb->journal;
994 /* No need to queue up our truncate_log as regular
995 * cleanup will catch that. */
996 ocfs2_queue_recovery_completion(journal,
998 osb->local_alloc_copy,
1000 ocfs2_schedule_truncate_log_flush(osb, 0);
1002 osb->local_alloc_copy = NULL;
1007 static int __ocfs2_recovery_thread(void *arg)
1009 int status, node_num;
1010 struct ocfs2_super *osb = arg;
1011 struct ocfs2_recovery_map *rm = osb->recovery_map;
1015 status = ocfs2_wait_on_mount(osb);
1021 status = ocfs2_super_lock(osb, 1);
1027 spin_lock(&osb->osb_lock);
1028 while (rm->rm_used) {
1029 /* It's always safe to remove entry zero, as we won't
1030 * clear it until ocfs2_recover_node() has succeeded. */
1031 node_num = rm->rm_entries[0];
1032 spin_unlock(&osb->osb_lock);
1034 status = ocfs2_recover_node(osb, node_num);
1036 ocfs2_recovery_map_clear(osb, node_num);
1039 "Error %d recovering node %d on device (%u,%u)!\n",
1041 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1042 mlog(ML_ERROR, "Volume requires unmount.\n");
1045 spin_lock(&osb->osb_lock);
1047 spin_unlock(&osb->osb_lock);
1048 mlog(0, "All nodes recovered\n");
1050 /* Refresh all journal recovery generations from disk */
1051 status = ocfs2_check_journals_nolocks(osb);
1052 status = (status == -EROFS) ? 0 : status;
1056 ocfs2_super_unlock(osb, 1);
1058 /* We always run recovery on our own orphan dir - the dead
1059 * node(s) may have disallowd a previos inode delete. Re-processing
1060 * is therefore required. */
1061 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1065 mutex_lock(&osb->recovery_lock);
1066 if (!status && !ocfs2_recovery_completed(osb)) {
1067 mutex_unlock(&osb->recovery_lock);
1071 osb->recovery_thread_task = NULL;
1072 mb(); /* sync with ocfs2_recovery_thread_running */
1073 wake_up(&osb->recovery_event);
1075 mutex_unlock(&osb->recovery_lock);
1078 /* no one is callint kthread_stop() for us so the kthread() api
1079 * requires that we call do_exit(). And it isn't exported, but
1080 * complete_and_exit() seems to be a minimal wrapper around it. */
1081 complete_and_exit(NULL, status);
1085 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1087 mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1088 node_num, osb->node_num);
1090 mutex_lock(&osb->recovery_lock);
1091 if (osb->disable_recovery)
1094 /* People waiting on recovery will wait on
1095 * the recovery map to empty. */
1096 if (ocfs2_recovery_map_set(osb, node_num))
1097 mlog(0, "node %d already in recovery map.\n", node_num);
1099 mlog(0, "starting recovery thread...\n");
1101 if (osb->recovery_thread_task)
1104 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb,
1106 if (IS_ERR(osb->recovery_thread_task)) {
1107 mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1108 osb->recovery_thread_task = NULL;
1112 mutex_unlock(&osb->recovery_lock);
1113 wake_up(&osb->recovery_event);
1118 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1120 struct buffer_head **bh,
1121 struct inode **ret_inode)
1123 int status = -EACCES;
1124 struct inode *inode = NULL;
1126 BUG_ON(slot_num >= osb->max_slots);
1128 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1130 if (!inode || is_bad_inode(inode)) {
1134 SET_INODE_JOURNAL(inode);
1136 status = ocfs2_read_block(osb, OCFS2_I(inode)->ip_blkno, bh, 0, inode);
1146 if (status || !ret_inode)
1154 /* Does the actual journal replay and marks the journal inode as
1155 * clean. Will only replay if the journal inode is marked dirty. */
1156 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1163 struct inode *inode = NULL;
1164 struct ocfs2_dinode *fe;
1165 journal_t *journal = NULL;
1166 struct buffer_head *bh = NULL;
1169 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1175 fe = (struct ocfs2_dinode *)bh->b_data;
1176 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1181 * As the fs recovery is asynchronous, there is a small chance that
1182 * another node mounted (and recovered) the slot before the recovery
1183 * thread could get the lock. To handle that, we dirty read the journal
1184 * inode for that slot to get the recovery generation. If it is
1185 * different than what we expected, the slot has been recovered.
1186 * If not, it needs recovery.
1188 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1189 mlog(0, "Slot %u already recovered (old/new=%u/%u)\n", slot_num,
1190 osb->slot_recovery_generations[slot_num], slot_reco_gen);
1191 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1196 /* Continue with recovery as the journal has not yet been recovered */
1198 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1200 mlog(0, "status returned from ocfs2_inode_lock=%d\n", status);
1201 if (status != -ERESTARTSYS)
1202 mlog(ML_ERROR, "Could not lock journal!\n");
1207 fe = (struct ocfs2_dinode *) bh->b_data;
1209 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1210 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1212 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1213 mlog(0, "No recovery required for node %d\n", node_num);
1214 /* Refresh recovery generation for the slot */
1215 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1219 mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n",
1221 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1223 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1225 status = ocfs2_force_read_journal(inode);
1231 mlog(0, "calling journal_init_inode\n");
1232 journal = journal_init_inode(inode);
1233 if (journal == NULL) {
1234 mlog(ML_ERROR, "Linux journal layer error\n");
1239 status = journal_load(journal);
1244 journal_destroy(journal);
1248 ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1250 /* wipe the journal */
1251 mlog(0, "flushing the journal.\n");
1252 journal_lock_updates(journal);
1253 status = journal_flush(journal);
1254 journal_unlock_updates(journal);
1258 /* This will mark the node clean */
1259 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1260 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1261 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1263 /* Increment recovery generation to indicate successful recovery */
1264 ocfs2_bump_recovery_generation(fe);
1265 osb->slot_recovery_generations[slot_num] =
1266 ocfs2_get_recovery_generation(fe);
1268 status = ocfs2_write_block(osb, bh, inode);
1275 journal_destroy(journal);
1278 /* drop the lock on this nodes journal */
1280 ocfs2_inode_unlock(inode, 1);
1293 * Do the most important parts of node recovery:
1294 * - Replay it's journal
1295 * - Stamp a clean local allocator file
1296 * - Stamp a clean truncate log
1297 * - Mark the node clean
1299 * If this function completes without error, a node in OCFS2 can be
1300 * said to have been safely recovered. As a result, failure during the
1301 * second part of a nodes recovery process (local alloc recovery) is
1302 * far less concerning.
1304 static int ocfs2_recover_node(struct ocfs2_super *osb,
1309 struct ocfs2_dinode *la_copy = NULL;
1310 struct ocfs2_dinode *tl_copy = NULL;
1312 mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1313 node_num, osb->node_num);
1315 mlog(0, "checking node %d\n", node_num);
1317 /* Should not ever be called to recover ourselves -- in that
1318 * case we should've called ocfs2_journal_load instead. */
1319 BUG_ON(osb->node_num == node_num);
1321 slot_num = ocfs2_node_num_to_slot(osb, node_num);
1322 if (slot_num == -ENOENT) {
1324 mlog(0, "no slot for this node, so no recovery required.\n");
1328 mlog(0, "node %d was using slot %d\n", node_num, slot_num);
1330 status = ocfs2_replay_journal(osb, node_num, slot_num);
1332 if (status == -EBUSY) {
1333 mlog(0, "Skipping recovery for slot %u (node %u) "
1334 "as another node has recovered it\n", slot_num,
1343 /* Stamp a clean local alloc file AFTER recovering the journal... */
1344 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1350 /* An error from begin_truncate_log_recovery is not
1351 * serious enough to warrant halting the rest of
1353 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1357 /* Likewise, this would be a strange but ultimately not so
1358 * harmful place to get an error... */
1359 status = ocfs2_clear_slot(osb, slot_num);
1363 /* This will kfree the memory pointed to by la_copy and tl_copy */
1364 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1374 /* Test node liveness by trylocking his journal. If we get the lock,
1375 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1376 * still alive (we couldn't get the lock) and < 0 on error. */
1377 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1381 struct inode *inode = NULL;
1383 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1385 if (inode == NULL) {
1386 mlog(ML_ERROR, "access error\n");
1390 if (is_bad_inode(inode)) {
1391 mlog(ML_ERROR, "access error (bad inode)\n");
1397 SET_INODE_JOURNAL(inode);
1399 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1400 status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1402 if (status != -EAGAIN)
1407 ocfs2_inode_unlock(inode, 1);
1415 /* Call this underneath ocfs2_super_lock. It also assumes that the
1416 * slot info struct has been updated from disk. */
1417 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1419 unsigned int node_num;
1421 struct buffer_head *bh = NULL;
1422 struct ocfs2_dinode *di;
1424 /* This is called with the super block cluster lock, so we
1425 * know that the slot map can't change underneath us. */
1427 spin_lock(&osb->osb_lock);
1428 for (i = 0; i < osb->max_slots; i++) {
1429 /* Read journal inode to get the recovery generation */
1430 status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1435 di = (struct ocfs2_dinode *)bh->b_data;
1436 osb->slot_recovery_generations[i] =
1437 ocfs2_get_recovery_generation(di);
1441 mlog(0, "Slot %u recovery generation is %u\n", i,
1442 osb->slot_recovery_generations[i]);
1444 if (i == osb->slot_num)
1447 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1448 if (status == -ENOENT)
1451 if (__ocfs2_recovery_map_test(osb, node_num))
1453 spin_unlock(&osb->osb_lock);
1455 /* Ok, we have a slot occupied by another node which
1456 * is not in the recovery map. We trylock his journal
1457 * file here to test if he's alive. */
1458 status = ocfs2_trylock_journal(osb, i);
1460 /* Since we're called from mount, we know that
1461 * the recovery thread can't race us on
1462 * setting / checking the recovery bits. */
1463 ocfs2_recovery_thread(osb, node_num);
1464 } else if ((status < 0) && (status != -EAGAIN)) {
1469 spin_lock(&osb->osb_lock);
1471 spin_unlock(&osb->osb_lock);
1479 struct ocfs2_orphan_filldir_priv {
1481 struct ocfs2_super *osb;
1484 static int ocfs2_orphan_filldir(void *priv, const char *name, int name_len,
1485 loff_t pos, u64 ino, unsigned type)
1487 struct ocfs2_orphan_filldir_priv *p = priv;
1490 if (name_len == 1 && !strncmp(".", name, 1))
1492 if (name_len == 2 && !strncmp("..", name, 2))
1495 /* Skip bad inodes so that recovery can continue */
1496 iter = ocfs2_iget(p->osb, ino,
1497 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
1501 mlog(0, "queue orphan %llu\n",
1502 (unsigned long long)OCFS2_I(iter)->ip_blkno);
1503 /* No locking is required for the next_orphan queue as there
1504 * is only ever a single process doing orphan recovery. */
1505 OCFS2_I(iter)->ip_next_orphan = p->head;
1511 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
1513 struct inode **head)
1516 struct inode *orphan_dir_inode = NULL;
1517 struct ocfs2_orphan_filldir_priv priv;
1523 orphan_dir_inode = ocfs2_get_system_file_inode(osb,
1524 ORPHAN_DIR_SYSTEM_INODE,
1526 if (!orphan_dir_inode) {
1532 mutex_lock(&orphan_dir_inode->i_mutex);
1533 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
1539 status = ocfs2_dir_foreach(orphan_dir_inode, &pos, &priv,
1540 ocfs2_orphan_filldir);
1549 ocfs2_inode_unlock(orphan_dir_inode, 0);
1551 mutex_unlock(&orphan_dir_inode->i_mutex);
1552 iput(orphan_dir_inode);
1556 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
1561 spin_lock(&osb->osb_lock);
1562 ret = !osb->osb_orphan_wipes[slot];
1563 spin_unlock(&osb->osb_lock);
1567 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
1570 spin_lock(&osb->osb_lock);
1571 /* Mark ourselves such that new processes in delete_inode()
1572 * know to quit early. */
1573 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
1574 while (osb->osb_orphan_wipes[slot]) {
1575 /* If any processes are already in the middle of an
1576 * orphan wipe on this dir, then we need to wait for
1578 spin_unlock(&osb->osb_lock);
1579 wait_event_interruptible(osb->osb_wipe_event,
1580 ocfs2_orphan_recovery_can_continue(osb, slot));
1581 spin_lock(&osb->osb_lock);
1583 spin_unlock(&osb->osb_lock);
1586 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
1589 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
1593 * Orphan recovery. Each mounted node has it's own orphan dir which we
1594 * must run during recovery. Our strategy here is to build a list of
1595 * the inodes in the orphan dir and iget/iput them. The VFS does
1596 * (most) of the rest of the work.
1598 * Orphan recovery can happen at any time, not just mount so we have a
1599 * couple of extra considerations.
1601 * - We grab as many inodes as we can under the orphan dir lock -
1602 * doing iget() outside the orphan dir risks getting a reference on
1604 * - We must be sure not to deadlock with other processes on the
1605 * system wanting to run delete_inode(). This can happen when they go
1606 * to lock the orphan dir and the orphan recovery process attempts to
1607 * iget() inside the orphan dir lock. This can be avoided by
1608 * advertising our state to ocfs2_delete_inode().
1610 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
1614 struct inode *inode = NULL;
1616 struct ocfs2_inode_info *oi;
1618 mlog(0, "Recover inodes from orphan dir in slot %d\n", slot);
1620 ocfs2_mark_recovering_orphan_dir(osb, slot);
1621 ret = ocfs2_queue_orphans(osb, slot, &inode);
1622 ocfs2_clear_recovering_orphan_dir(osb, slot);
1624 /* Error here should be noted, but we want to continue with as
1625 * many queued inodes as we've got. */
1630 oi = OCFS2_I(inode);
1631 mlog(0, "iput orphan %llu\n", (unsigned long long)oi->ip_blkno);
1633 iter = oi->ip_next_orphan;
1635 spin_lock(&oi->ip_lock);
1636 /* The remote delete code may have set these on the
1637 * assumption that the other node would wipe them
1638 * successfully. If they are still in the node's
1639 * orphan dir, we need to reset that state. */
1640 oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE);
1642 /* Set the proper information to get us going into
1643 * ocfs2_delete_inode. */
1644 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
1645 spin_unlock(&oi->ip_lock);
1655 static int ocfs2_wait_on_mount(struct ocfs2_super *osb)
1657 /* This check is good because ocfs2 will wait on our recovery
1658 * thread before changing it to something other than MOUNTED
1660 wait_event(osb->osb_mount_event,
1661 atomic_read(&osb->vol_state) == VOLUME_MOUNTED ||
1662 atomic_read(&osb->vol_state) == VOLUME_DISABLED);
1664 /* If there's an error on mount, then we may never get to the
1665 * MOUNTED flag, but this is set right before
1666 * dismount_volume() so we can trust it. */
1667 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
1668 mlog(0, "mount error, exiting!\n");
1675 static int ocfs2_commit_thread(void *arg)
1678 struct ocfs2_super *osb = arg;
1679 struct ocfs2_journal *journal = osb->journal;
1681 /* we can trust j_num_trans here because _should_stop() is only set in
1682 * shutdown and nobody other than ourselves should be able to start
1683 * transactions. committing on shutdown might take a few iterations
1684 * as final transactions put deleted inodes on the list */
1685 while (!(kthread_should_stop() &&
1686 atomic_read(&journal->j_num_trans) == 0)) {
1688 wait_event_interruptible(osb->checkpoint_event,
1689 atomic_read(&journal->j_num_trans)
1690 || kthread_should_stop());
1692 status = ocfs2_commit_cache(osb);
1696 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
1698 "commit_thread: %u transactions pending on "
1700 atomic_read(&journal->j_num_trans));
1707 /* Reads all the journal inodes without taking any cluster locks. Used
1708 * for hard readonly access to determine whether any journal requires
1709 * recovery. Also used to refresh the recovery generation numbers after
1710 * a journal has been recovered by another node.
1712 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
1716 struct buffer_head *di_bh = NULL;
1717 struct ocfs2_dinode *di;
1718 int journal_dirty = 0;
1720 for(slot = 0; slot < osb->max_slots; slot++) {
1721 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
1727 di = (struct ocfs2_dinode *) di_bh->b_data;
1729 osb->slot_recovery_generations[slot] =
1730 ocfs2_get_recovery_generation(di);
1732 if (le32_to_cpu(di->id1.journal1.ij_flags) &
1733 OCFS2_JOURNAL_DIRTY_FL)