2 * Extensible Firmware Interface
4 * Based on Extensible Firmware Interface Specification version 0.9 April 30, 1999
6 * Copyright (C) 1999 VA Linux Systems
7 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
8 * Copyright (C) 1999-2003 Hewlett-Packard Co.
9 * David Mosberger-Tang <davidm@hpl.hp.com>
10 * Stephane Eranian <eranian@hpl.hp.com>
12 * All EFI Runtime Services are not implemented yet as EFI only
13 * supports physical mode addressing on SoftSDV. This is to be fixed
14 * in a future version. --drummond 1999-07-20
16 * Implemented EFI runtime services and virtual mode calls. --davidm
18 * Goutham Rao: <goutham.rao@intel.com>
19 * Skip non-WB memory and ignore empty memory ranges.
21 #include <linux/config.h>
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/init.h>
25 #include <linux/types.h>
26 #include <linux/time.h>
27 #include <linux/efi.h>
30 #include <asm/kregs.h>
31 #include <asm/meminit.h>
32 #include <asm/pgtable.h>
33 #include <asm/processor.h>
38 extern efi_status_t efi_call_phys (void *, ...);
42 static efi_runtime_services_t *runtime;
43 static unsigned long mem_limit = ~0UL, max_addr = ~0UL;
45 #define efi_call_virt(f, args...) (*(f))(args)
47 #define STUB_GET_TIME(prefix, adjust_arg) \
49 prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc) \
51 struct ia64_fpreg fr[6]; \
52 efi_time_cap_t *atc = NULL; \
56 atc = adjust_arg(tc); \
57 ia64_save_scratch_fpregs(fr); \
58 ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), adjust_arg(tm), atc); \
59 ia64_load_scratch_fpregs(fr); \
63 #define STUB_SET_TIME(prefix, adjust_arg) \
65 prefix##_set_time (efi_time_t *tm) \
67 struct ia64_fpreg fr[6]; \
70 ia64_save_scratch_fpregs(fr); \
71 ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), adjust_arg(tm)); \
72 ia64_load_scratch_fpregs(fr); \
76 #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg) \
78 prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, efi_time_t *tm) \
80 struct ia64_fpreg fr[6]; \
83 ia64_save_scratch_fpregs(fr); \
84 ret = efi_call_##prefix((efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time), \
85 adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm)); \
86 ia64_load_scratch_fpregs(fr); \
90 #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg) \
92 prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm) \
94 struct ia64_fpreg fr[6]; \
95 efi_time_t *atm = NULL; \
99 atm = adjust_arg(tm); \
100 ia64_save_scratch_fpregs(fr); \
101 ret = efi_call_##prefix((efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time), \
103 ia64_load_scratch_fpregs(fr); \
107 #define STUB_GET_VARIABLE(prefix, adjust_arg) \
108 static efi_status_t \
109 prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr, \
110 unsigned long *data_size, void *data) \
112 struct ia64_fpreg fr[6]; \
117 aattr = adjust_arg(attr); \
118 ia64_save_scratch_fpregs(fr); \
119 ret = efi_call_##prefix((efi_get_variable_t *) __va(runtime->get_variable), \
120 adjust_arg(name), adjust_arg(vendor), aattr, \
121 adjust_arg(data_size), adjust_arg(data)); \
122 ia64_load_scratch_fpregs(fr); \
126 #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg) \
127 static efi_status_t \
128 prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, efi_guid_t *vendor) \
130 struct ia64_fpreg fr[6]; \
133 ia64_save_scratch_fpregs(fr); \
134 ret = efi_call_##prefix((efi_get_next_variable_t *) __va(runtime->get_next_variable), \
135 adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor)); \
136 ia64_load_scratch_fpregs(fr); \
140 #define STUB_SET_VARIABLE(prefix, adjust_arg) \
141 static efi_status_t \
142 prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, unsigned long attr, \
143 unsigned long data_size, void *data) \
145 struct ia64_fpreg fr[6]; \
148 ia64_save_scratch_fpregs(fr); \
149 ret = efi_call_##prefix((efi_set_variable_t *) __va(runtime->set_variable), \
150 adjust_arg(name), adjust_arg(vendor), attr, data_size, \
152 ia64_load_scratch_fpregs(fr); \
156 #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg) \
157 static efi_status_t \
158 prefix##_get_next_high_mono_count (u32 *count) \
160 struct ia64_fpreg fr[6]; \
163 ia64_save_scratch_fpregs(fr); \
164 ret = efi_call_##prefix((efi_get_next_high_mono_count_t *) \
165 __va(runtime->get_next_high_mono_count), adjust_arg(count)); \
166 ia64_load_scratch_fpregs(fr); \
170 #define STUB_RESET_SYSTEM(prefix, adjust_arg) \
172 prefix##_reset_system (int reset_type, efi_status_t status, \
173 unsigned long data_size, efi_char16_t *data) \
175 struct ia64_fpreg fr[6]; \
176 efi_char16_t *adata = NULL; \
179 adata = adjust_arg(data); \
181 ia64_save_scratch_fpregs(fr); \
182 efi_call_##prefix((efi_reset_system_t *) __va(runtime->reset_system), \
183 reset_type, status, data_size, adata); \
184 /* should not return, but just in case... */ \
185 ia64_load_scratch_fpregs(fr); \
188 #define phys_ptr(arg) ((__typeof__(arg)) ia64_tpa(arg))
190 STUB_GET_TIME(phys, phys_ptr)
191 STUB_SET_TIME(phys, phys_ptr)
192 STUB_GET_WAKEUP_TIME(phys, phys_ptr)
193 STUB_SET_WAKEUP_TIME(phys, phys_ptr)
194 STUB_GET_VARIABLE(phys, phys_ptr)
195 STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
196 STUB_SET_VARIABLE(phys, phys_ptr)
197 STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
198 STUB_RESET_SYSTEM(phys, phys_ptr)
202 STUB_GET_TIME(virt, id)
203 STUB_SET_TIME(virt, id)
204 STUB_GET_WAKEUP_TIME(virt, id)
205 STUB_SET_WAKEUP_TIME(virt, id)
206 STUB_GET_VARIABLE(virt, id)
207 STUB_GET_NEXT_VARIABLE(virt, id)
208 STUB_SET_VARIABLE(virt, id)
209 STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
210 STUB_RESET_SYSTEM(virt, id)
213 efi_gettimeofday (struct timespec *ts)
217 memset(ts, 0, sizeof(ts));
218 if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS)
221 ts->tv_sec = mktime(tm.year, tm.month, tm.day, tm.hour, tm.minute, tm.second);
222 ts->tv_nsec = tm.nanosecond;
226 is_available_memory (efi_memory_desc_t *md)
228 if (!(md->attribute & EFI_MEMORY_WB))
232 case EFI_LOADER_CODE:
233 case EFI_LOADER_DATA:
234 case EFI_BOOT_SERVICES_CODE:
235 case EFI_BOOT_SERVICES_DATA:
236 case EFI_CONVENTIONAL_MEMORY:
242 typedef struct kern_memdesc {
248 static kern_memdesc_t *kern_memmap;
250 #define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)
253 kmd_end(kern_memdesc_t *kmd)
255 return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
259 efi_md_end(efi_memory_desc_t *md)
261 return (md->phys_addr + efi_md_size(md));
265 efi_wb(efi_memory_desc_t *md)
267 return (md->attribute & EFI_MEMORY_WB);
271 efi_uc(efi_memory_desc_t *md)
273 return (md->attribute & EFI_MEMORY_UC);
277 walk (efi_freemem_callback_t callback, void *arg, u64 attr)
280 u64 start, end, voff;
282 voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
283 for (k = kern_memmap; k->start != ~0UL; k++) {
284 if (k->attribute != attr)
286 start = PAGE_ALIGN(k->start);
287 end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
289 if ((*callback)(start + voff, end + voff, arg) < 0)
295 * Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that
296 * has memory that is available for OS use.
299 efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
301 walk(callback, arg, EFI_MEMORY_WB);
305 * Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that
306 * has memory that is available for uncached allocator.
309 efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
311 walk(callback, arg, EFI_MEMORY_UC);
315 * Look for the PAL_CODE region reported by EFI and maps it using an
316 * ITR to enable safe PAL calls in virtual mode. See IA-64 Processor
317 * Abstraction Layer chapter 11 in ADAG
321 efi_get_pal_addr (void)
323 void *efi_map_start, *efi_map_end, *p;
324 efi_memory_desc_t *md;
326 int pal_code_count = 0;
329 efi_map_start = __va(ia64_boot_param->efi_memmap);
330 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
331 efi_desc_size = ia64_boot_param->efi_memdesc_size;
333 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
335 if (md->type != EFI_PAL_CODE)
338 if (++pal_code_count > 1) {
339 printk(KERN_ERR "Too many EFI Pal Code memory ranges, dropped @ %lx\n",
344 * The only ITLB entry in region 7 that is used is the one installed by
345 * __start(). That entry covers a 64MB range.
347 mask = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
348 vaddr = PAGE_OFFSET + md->phys_addr;
351 * We must check that the PAL mapping won't overlap with the kernel
354 * PAL code is guaranteed to be aligned on a power of 2 between 4k and
355 * 256KB and that only one ITR is needed to map it. This implies that the
356 * PAL code is always aligned on its size, i.e., the closest matching page
357 * size supported by the TLB. Therefore PAL code is guaranteed never to
358 * cross a 64MB unless it is bigger than 64MB (very unlikely!). So for
359 * now the following test is enough to determine whether or not we need a
360 * dedicated ITR for the PAL code.
362 if ((vaddr & mask) == (KERNEL_START & mask)) {
363 printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
368 if (md->num_pages << EFI_PAGE_SHIFT > IA64_GRANULE_SIZE)
369 panic("Woah! PAL code size bigger than a granule!");
372 mask = ~((1 << IA64_GRANULE_SHIFT) - 1);
374 printk(KERN_INFO "CPU %d: mapping PAL code [0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
375 smp_processor_id(), md->phys_addr,
376 md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
377 vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
379 return __va(md->phys_addr);
381 printk(KERN_WARNING "%s: no PAL-code memory-descriptor found",
387 efi_map_pal_code (void)
389 void *pal_vaddr = efi_get_pal_addr ();
396 * Cannot write to CRx with PSR.ic=1
398 psr = ia64_clear_ic();
399 ia64_itr(0x1, IA64_TR_PALCODE, GRANULEROUNDDOWN((unsigned long) pal_vaddr),
400 pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
402 ia64_set_psr(psr); /* restore psr */
409 void *efi_map_start, *efi_map_end;
410 efi_config_table_t *config_tables;
413 char *cp, vendor[100] = "unknown";
414 extern char saved_command_line[];
417 /* it's too early to be able to use the standard kernel command line support... */
418 for (cp = saved_command_line; *cp; ) {
419 if (memcmp(cp, "mem=", 4) == 0) {
420 mem_limit = memparse(cp + 4, &cp);
421 } else if (memcmp(cp, "max_addr=", 9) == 0) {
422 max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
424 while (*cp != ' ' && *cp)
430 if (max_addr != ~0UL)
431 printk(KERN_INFO "Ignoring memory above %luMB\n", max_addr >> 20);
433 efi.systab = __va(ia64_boot_param->efi_systab);
436 * Verify the EFI Table
438 if (efi.systab == NULL)
439 panic("Woah! Can't find EFI system table.\n");
440 if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
441 panic("Woah! EFI system table signature incorrect\n");
442 if ((efi.systab->hdr.revision ^ EFI_SYSTEM_TABLE_REVISION) >> 16 != 0)
443 printk(KERN_WARNING "Warning: EFI system table major version mismatch: "
444 "got %d.%02d, expected %d.%02d\n",
445 efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff,
446 EFI_SYSTEM_TABLE_REVISION >> 16, EFI_SYSTEM_TABLE_REVISION & 0xffff);
448 config_tables = __va(efi.systab->tables);
450 /* Show what we know for posterity */
451 c16 = __va(efi.systab->fw_vendor);
453 for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i)
458 printk(KERN_INFO "EFI v%u.%.02u by %s:",
459 efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff, vendor);
461 efi.mps = EFI_INVALID_TABLE_ADDR;
462 efi.acpi = EFI_INVALID_TABLE_ADDR;
463 efi.acpi20 = EFI_INVALID_TABLE_ADDR;
464 efi.smbios = EFI_INVALID_TABLE_ADDR;
465 efi.sal_systab = EFI_INVALID_TABLE_ADDR;
466 efi.boot_info = EFI_INVALID_TABLE_ADDR;
467 efi.hcdp = EFI_INVALID_TABLE_ADDR;
468 efi.uga = EFI_INVALID_TABLE_ADDR;
470 for (i = 0; i < (int) efi.systab->nr_tables; i++) {
471 if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
472 efi.mps = config_tables[i].table;
473 printk(" MPS=0x%lx", config_tables[i].table);
474 } else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
475 efi.acpi20 = config_tables[i].table;
476 printk(" ACPI 2.0=0x%lx", config_tables[i].table);
477 } else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
478 efi.acpi = config_tables[i].table;
479 printk(" ACPI=0x%lx", config_tables[i].table);
480 } else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
481 efi.smbios = config_tables[i].table;
482 printk(" SMBIOS=0x%lx", config_tables[i].table);
483 } else if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) {
484 efi.sal_systab = config_tables[i].table;
485 printk(" SALsystab=0x%lx", config_tables[i].table);
486 } else if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
487 efi.hcdp = config_tables[i].table;
488 printk(" HCDP=0x%lx", config_tables[i].table);
493 runtime = __va(efi.systab->runtime);
494 efi.get_time = phys_get_time;
495 efi.set_time = phys_set_time;
496 efi.get_wakeup_time = phys_get_wakeup_time;
497 efi.set_wakeup_time = phys_set_wakeup_time;
498 efi.get_variable = phys_get_variable;
499 efi.get_next_variable = phys_get_next_variable;
500 efi.set_variable = phys_set_variable;
501 efi.get_next_high_mono_count = phys_get_next_high_mono_count;
502 efi.reset_system = phys_reset_system;
504 efi_map_start = __va(ia64_boot_param->efi_memmap);
505 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
506 efi_desc_size = ia64_boot_param->efi_memdesc_size;
509 /* print EFI memory map: */
511 efi_memory_desc_t *md;
514 for (i = 0, p = efi_map_start; p < efi_map_end; ++i, p += efi_desc_size) {
516 printk("mem%02u: type=%u, attr=0x%lx, range=[0x%016lx-0x%016lx) (%luMB)\n",
517 i, md->type, md->attribute, md->phys_addr,
518 md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
519 md->num_pages >> (20 - EFI_PAGE_SHIFT));
525 efi_enter_virtual_mode();
529 efi_enter_virtual_mode (void)
531 void *efi_map_start, *efi_map_end, *p;
532 efi_memory_desc_t *md;
536 efi_map_start = __va(ia64_boot_param->efi_memmap);
537 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
538 efi_desc_size = ia64_boot_param->efi_memdesc_size;
540 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
542 if (md->attribute & EFI_MEMORY_RUNTIME) {
544 * Some descriptors have multiple bits set, so the order of
545 * the tests is relevant.
547 if (md->attribute & EFI_MEMORY_WB) {
548 md->virt_addr = (u64) __va(md->phys_addr);
549 } else if (md->attribute & EFI_MEMORY_UC) {
550 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
551 } else if (md->attribute & EFI_MEMORY_WC) {
553 md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P
559 printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
560 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
562 } else if (md->attribute & EFI_MEMORY_WT) {
564 md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P
565 | _PAGE_D | _PAGE_MA_WT
569 printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
570 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
576 status = efi_call_phys(__va(runtime->set_virtual_address_map),
577 ia64_boot_param->efi_memmap_size,
578 efi_desc_size, ia64_boot_param->efi_memdesc_version,
579 ia64_boot_param->efi_memmap);
580 if (status != EFI_SUCCESS) {
581 printk(KERN_WARNING "warning: unable to switch EFI into virtual mode "
582 "(status=%lu)\n", status);
587 * Now that EFI is in virtual mode, we call the EFI functions more efficiently:
589 efi.get_time = virt_get_time;
590 efi.set_time = virt_set_time;
591 efi.get_wakeup_time = virt_get_wakeup_time;
592 efi.set_wakeup_time = virt_set_wakeup_time;
593 efi.get_variable = virt_get_variable;
594 efi.get_next_variable = virt_get_next_variable;
595 efi.set_variable = virt_set_variable;
596 efi.get_next_high_mono_count = virt_get_next_high_mono_count;
597 efi.reset_system = virt_reset_system;
601 * Walk the EFI memory map looking for the I/O port range. There can only be one entry of
602 * this type, other I/O port ranges should be described via ACPI.
605 efi_get_iobase (void)
607 void *efi_map_start, *efi_map_end, *p;
608 efi_memory_desc_t *md;
611 efi_map_start = __va(ia64_boot_param->efi_memmap);
612 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
613 efi_desc_size = ia64_boot_param->efi_memdesc_size;
615 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
617 if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
618 if (md->attribute & EFI_MEMORY_UC)
619 return md->phys_addr;
625 static efi_memory_desc_t *
626 efi_memory_descriptor (unsigned long phys_addr)
628 void *efi_map_start, *efi_map_end, *p;
629 efi_memory_desc_t *md;
632 efi_map_start = __va(ia64_boot_param->efi_memmap);
633 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
634 efi_desc_size = ia64_boot_param->efi_memdesc_size;
636 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
639 if (phys_addr - md->phys_addr < (md->num_pages << EFI_PAGE_SHIFT))
646 efi_memmap_has_mmio (void)
648 void *efi_map_start, *efi_map_end, *p;
649 efi_memory_desc_t *md;
652 efi_map_start = __va(ia64_boot_param->efi_memmap);
653 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
654 efi_desc_size = ia64_boot_param->efi_memdesc_size;
656 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
659 if (md->type == EFI_MEMORY_MAPPED_IO)
666 efi_mem_type (unsigned long phys_addr)
668 efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
676 efi_mem_attributes (unsigned long phys_addr)
678 efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
681 return md->attribute;
684 EXPORT_SYMBOL(efi_mem_attributes);
687 * Determines whether the memory at phys_addr supports the desired
688 * attribute (WB, UC, etc). If this returns 1, the caller can safely
689 * access size bytes at phys_addr with the specified attribute.
692 efi_mem_attribute_range (unsigned long phys_addr, unsigned long size, u64 attr)
694 unsigned long end = phys_addr + size;
695 efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
698 * Some firmware doesn't report MMIO regions in the EFI memory
699 * map. The Intel BigSur (a.k.a. HP i2000) has this problem.
700 * On those platforms, we have to assume UC is valid everywhere.
702 if (!md || (md->attribute & attr) != attr) {
703 if (attr == EFI_MEMORY_UC && !efi_memmap_has_mmio())
709 unsigned long md_end = efi_md_end(md);
714 md = efi_memory_descriptor(md_end);
715 if (!md || (md->attribute & attr) != attr)
722 * For /dev/mem, we only allow read & write system calls to access
723 * write-back memory, because read & write don't allow the user to
724 * control access size.
727 valid_phys_addr_range (unsigned long phys_addr, unsigned long size)
729 return efi_mem_attribute_range(phys_addr, size, EFI_MEMORY_WB);
733 * We allow mmap of anything in the EFI memory map that supports
734 * either write-back or uncacheable access. For uncacheable regions,
735 * the supported access sizes are system-dependent, and the user is
736 * responsible for using the correct size.
738 * Note that this doesn't currently allow access to hot-added memory,
739 * because that doesn't appear in the boot-time EFI memory map.
742 valid_mmap_phys_addr_range (unsigned long phys_addr, unsigned long size)
744 if (efi_mem_attribute_range(phys_addr, size, EFI_MEMORY_WB))
747 if (efi_mem_attribute_range(phys_addr, size, EFI_MEMORY_UC))
754 efi_uart_console_only(void)
757 char *s, name[] = "ConOut";
758 efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
759 efi_char16_t *utf16, name_utf16[32];
760 unsigned char data[1024];
761 unsigned long size = sizeof(data);
762 struct efi_generic_dev_path *hdr, *end_addr;
765 /* Convert to UTF-16 */
769 *utf16++ = *s++ & 0x7f;
772 status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
773 if (status != EFI_SUCCESS) {
774 printk(KERN_ERR "No EFI %s variable?\n", name);
778 hdr = (struct efi_generic_dev_path *) data;
779 end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
780 while (hdr < end_addr) {
781 if (hdr->type == EFI_DEV_MSG &&
782 hdr->sub_type == EFI_DEV_MSG_UART)
784 else if (hdr->type == EFI_DEV_END_PATH ||
785 hdr->type == EFI_DEV_END_PATH2) {
788 if (hdr->sub_type == EFI_DEV_END_ENTIRE)
792 hdr = (struct efi_generic_dev_path *) ((u8 *) hdr + hdr->length);
794 printk(KERN_ERR "Malformed %s value\n", name);
799 * Look for the first granule aligned memory descriptor memory
800 * that is big enough to hold EFI memory map. Make sure this
801 * descriptor is atleast granule sized so it does not get trimmed
803 struct kern_memdesc *
804 find_memmap_space (void)
806 u64 contig_low=0, contig_high=0;
808 void *efi_map_start, *efi_map_end, *p, *q;
809 efi_memory_desc_t *md, *pmd = NULL, *check_md;
810 u64 space_needed, efi_desc_size;
811 unsigned long total_mem = 0;
813 efi_map_start = __va(ia64_boot_param->efi_memmap);
814 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
815 efi_desc_size = ia64_boot_param->efi_memdesc_size;
818 * Worst case: we need 3 kernel descriptors for each efi descriptor
819 * (if every entry has a WB part in the middle, and UC head and tail),
820 * plus one for the end marker.
822 space_needed = sizeof(kern_memdesc_t) *
823 (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
825 for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
830 if (pmd == NULL || !efi_wb(pmd) || efi_md_end(pmd) != md->phys_addr) {
831 contig_low = GRANULEROUNDUP(md->phys_addr);
832 contig_high = efi_md_end(md);
833 for (q = p + efi_desc_size; q < efi_map_end; q += efi_desc_size) {
835 if (!efi_wb(check_md))
837 if (contig_high != check_md->phys_addr)
839 contig_high = efi_md_end(check_md);
841 contig_high = GRANULEROUNDDOWN(contig_high);
843 if (!is_available_memory(md) || md->type == EFI_LOADER_DATA)
846 /* Round ends inward to granule boundaries */
847 as = max(contig_low, md->phys_addr);
848 ae = min(contig_high, efi_md_end(md));
850 /* keep within max_addr= command line arg */
851 ae = min(ae, max_addr);
855 /* avoid going over mem= command line arg */
856 if (total_mem + (ae - as) > mem_limit)
857 ae -= total_mem + (ae - as) - mem_limit;
862 if (ae - as > space_needed)
865 if (p >= efi_map_end)
866 panic("Can't allocate space for kernel memory descriptors");
872 * Walk the EFI memory map and gather all memory available for kernel
873 * to use. We can allocate partial granules only if the unavailable
874 * parts exist, and are WB.
877 efi_memmap_init(unsigned long *s, unsigned long *e)
879 struct kern_memdesc *k, *prev = 0;
880 u64 contig_low=0, contig_high=0;
882 void *efi_map_start, *efi_map_end, *p, *q;
883 efi_memory_desc_t *md, *pmd = NULL, *check_md;
885 unsigned long total_mem = 0;
887 k = kern_memmap = find_memmap_space();
889 efi_map_start = __va(ia64_boot_param->efi_memmap);
890 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
891 efi_desc_size = ia64_boot_param->efi_memdesc_size;
893 for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
896 if (efi_uc(md) && (md->type == EFI_CONVENTIONAL_MEMORY ||
897 md->type == EFI_BOOT_SERVICES_DATA)) {
898 k->attribute = EFI_MEMORY_UC;
899 k->start = md->phys_addr;
900 k->num_pages = md->num_pages;
905 if (pmd == NULL || !efi_wb(pmd) || efi_md_end(pmd) != md->phys_addr) {
906 contig_low = GRANULEROUNDUP(md->phys_addr);
907 contig_high = efi_md_end(md);
908 for (q = p + efi_desc_size; q < efi_map_end; q += efi_desc_size) {
910 if (!efi_wb(check_md))
912 if (contig_high != check_md->phys_addr)
914 contig_high = efi_md_end(check_md);
916 contig_high = GRANULEROUNDDOWN(contig_high);
918 if (!is_available_memory(md))
922 * Round ends inward to granule boundaries
923 * Give trimmings to uncached allocator
925 if (md->phys_addr < contig_low) {
926 lim = min(efi_md_end(md), contig_low);
928 if (k > kern_memmap && (k-1)->attribute == EFI_MEMORY_UC &&
929 kmd_end(k-1) == md->phys_addr) {
930 (k-1)->num_pages += (lim - md->phys_addr) >> EFI_PAGE_SHIFT;
932 k->attribute = EFI_MEMORY_UC;
933 k->start = md->phys_addr;
934 k->num_pages = (lim - md->phys_addr) >> EFI_PAGE_SHIFT;
942 if (efi_md_end(md) > contig_high) {
943 lim = max(md->phys_addr, contig_high);
945 if (lim == md->phys_addr && k > kern_memmap &&
946 (k-1)->attribute == EFI_MEMORY_UC &&
947 kmd_end(k-1) == md->phys_addr) {
948 (k-1)->num_pages += md->num_pages;
950 k->attribute = EFI_MEMORY_UC;
952 k->num_pages = (efi_md_end(md) - lim) >> EFI_PAGE_SHIFT;
960 /* keep within max_addr= command line arg */
961 ae = min(ae, max_addr);
965 /* avoid going over mem= command line arg */
966 if (total_mem + (ae - as) > mem_limit)
967 ae -= total_mem + (ae - as) - mem_limit;
971 if (prev && kmd_end(prev) == md->phys_addr) {
972 prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
973 total_mem += ae - as;
976 k->attribute = EFI_MEMORY_WB;
978 k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
979 total_mem += ae - as;
982 k->start = ~0L; /* end-marker */
984 /* reserve the memory we are using for kern_memmap */
985 *s = (u64)kern_memmap;
990 efi_initialize_iomem_resources(struct resource *code_resource,
991 struct resource *data_resource)
993 struct resource *res;
994 void *efi_map_start, *efi_map_end, *p;
995 efi_memory_desc_t *md;
1000 efi_map_start = __va(ia64_boot_param->efi_memmap);
1001 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
1002 efi_desc_size = ia64_boot_param->efi_memdesc_size;
1006 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1009 if (md->num_pages == 0) /* should not happen */
1012 flags = IORESOURCE_MEM;
1015 case EFI_MEMORY_MAPPED_IO:
1016 case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
1019 case EFI_LOADER_CODE:
1020 case EFI_LOADER_DATA:
1021 case EFI_BOOT_SERVICES_DATA:
1022 case EFI_BOOT_SERVICES_CODE:
1023 case EFI_CONVENTIONAL_MEMORY:
1024 if (md->attribute & EFI_MEMORY_WP) {
1025 name = "System ROM";
1026 flags |= IORESOURCE_READONLY;
1028 name = "System RAM";
1032 case EFI_ACPI_MEMORY_NVS:
1033 name = "ACPI Non-volatile Storage";
1034 flags |= IORESOURCE_BUSY;
1037 case EFI_UNUSABLE_MEMORY:
1039 flags |= IORESOURCE_BUSY | IORESOURCE_DISABLED;
1042 case EFI_RESERVED_TYPE:
1043 case EFI_RUNTIME_SERVICES_CODE:
1044 case EFI_RUNTIME_SERVICES_DATA:
1045 case EFI_ACPI_RECLAIM_MEMORY:
1048 flags |= IORESOURCE_BUSY;
1052 if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) {
1053 printk(KERN_ERR "failed to alocate resource for iomem\n");
1058 res->start = md->phys_addr;
1059 res->end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1;
1062 if (insert_resource(&iomem_resource, res) < 0)
1066 * We don't know which region contains
1067 * kernel data so we try it repeatedly and
1068 * let the resource manager test it.
1070 insert_resource(res, code_resource);
1071 insert_resource(res, data_resource);