2 * Architecture-specific setup.
4 * Copyright (C) 1998-2003 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 * 04/11/17 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
8 * 2005-10-07 Keith Owens <kaos@sgi.com>
9 * Add notify_die() hooks.
11 #define __KERNEL_SYSCALLS__ /* see <asm/unistd.h> */
12 #include <linux/config.h>
14 #include <linux/cpu.h>
16 #include <linux/elf.h>
17 #include <linux/errno.h>
18 #include <linux/kallsyms.h>
19 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/notifier.h>
23 #include <linux/personality.h>
24 #include <linux/sched.h>
25 #include <linux/slab.h>
26 #include <linux/smp_lock.h>
27 #include <linux/stddef.h>
28 #include <linux/thread_info.h>
29 #include <linux/unistd.h>
30 #include <linux/efi.h>
31 #include <linux/interrupt.h>
32 #include <linux/delay.h>
35 #include <asm/delay.h>
39 #include <asm/kdebug.h>
40 #include <asm/pgalloc.h>
41 #include <asm/processor.h>
43 #include <asm/tlbflush.h>
44 #include <asm/uaccess.h>
45 #include <asm/unwind.h>
51 # include <asm/perfmon.h>
56 void (*ia64_mark_idle)(int);
57 static DEFINE_PER_CPU(unsigned int, cpu_idle_state);
59 unsigned long boot_option_idle_override = 0;
60 EXPORT_SYMBOL(boot_option_idle_override);
63 ia64_do_show_stack (struct unw_frame_info *info, void *arg)
65 unsigned long ip, sp, bsp;
66 char buf[128]; /* don't make it so big that it overflows the stack! */
68 printk("\nCall Trace:\n");
70 unw_get_ip(info, &ip);
74 unw_get_sp(info, &sp);
75 unw_get_bsp(info, &bsp);
76 snprintf(buf, sizeof(buf),
78 " sp=%016lx bsp=%016lx\n",
80 print_symbol(buf, ip);
81 } while (unw_unwind(info) >= 0);
85 show_stack (struct task_struct *task, unsigned long *sp)
88 unw_init_running(ia64_do_show_stack, NULL);
90 struct unw_frame_info info;
92 unw_init_from_blocked_task(&info, task);
93 ia64_do_show_stack(&info, NULL);
100 show_stack(NULL, NULL);
103 EXPORT_SYMBOL(dump_stack);
106 show_regs (struct pt_regs *regs)
108 unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
111 printk("\nPid: %d, CPU %d, comm: %20s\n", current->pid, smp_processor_id(), current->comm);
112 printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s\n",
113 regs->cr_ipsr, regs->cr_ifs, ip, print_tainted());
114 print_symbol("ip is at %s\n", ip);
115 printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
116 regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
117 printk("rnat: %016lx bsps: %016lx pr : %016lx\n",
118 regs->ar_rnat, regs->ar_bspstore, regs->pr);
119 printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
120 regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
121 printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
122 printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7);
123 printk("f6 : %05lx%016lx f7 : %05lx%016lx\n",
124 regs->f6.u.bits[1], regs->f6.u.bits[0],
125 regs->f7.u.bits[1], regs->f7.u.bits[0]);
126 printk("f8 : %05lx%016lx f9 : %05lx%016lx\n",
127 regs->f8.u.bits[1], regs->f8.u.bits[0],
128 regs->f9.u.bits[1], regs->f9.u.bits[0]);
129 printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
130 regs->f10.u.bits[1], regs->f10.u.bits[0],
131 regs->f11.u.bits[1], regs->f11.u.bits[0]);
133 printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3);
134 printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
135 printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
136 printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
137 printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
138 printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
139 printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
140 printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
141 printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
143 if (user_mode(regs)) {
144 /* print the stacked registers */
145 unsigned long val, *bsp, ndirty;
146 int i, sof, is_nat = 0;
148 sof = regs->cr_ifs & 0x7f; /* size of frame */
149 ndirty = (regs->loadrs >> 19);
150 bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
151 for (i = 0; i < sof; ++i) {
152 get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
153 printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
154 ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
157 show_stack(NULL, NULL);
161 do_notify_resume_user (sigset_t *oldset, struct sigscratch *scr, long in_syscall)
163 if (fsys_mode(current, &scr->pt)) {
164 /* defer signal-handling etc. until we return to privilege-level 0. */
165 if (!ia64_psr(&scr->pt)->lp)
166 ia64_psr(&scr->pt)->lp = 1;
170 #ifdef CONFIG_PERFMON
171 if (current->thread.pfm_needs_checking)
175 /* deal with pending signal delivery */
176 if (test_thread_flag(TIF_SIGPENDING))
177 ia64_do_signal(oldset, scr, in_syscall);
180 static int pal_halt = 1;
181 static int can_do_pal_halt = 1;
183 static int __init nohalt_setup(char * str)
185 pal_halt = can_do_pal_halt = 0;
188 __setup("nohalt", nohalt_setup);
191 update_pal_halt_status(int status)
193 can_do_pal_halt = pal_halt && status;
197 * We use this if we don't have any better idle routine..
203 while (!need_resched()) {
211 #ifdef CONFIG_HOTPLUG_CPU
212 /* We don't actually take CPU down, just spin without interrupts. */
213 static inline void play_dead(void)
215 extern void ia64_cpu_local_tick (void);
216 unsigned int this_cpu = smp_processor_id();
219 __get_cpu_var(cpu_state) = CPU_DEAD;
224 ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
226 * The above is a point of no-return, the processor is
227 * expected to be in SAL loop now.
232 static inline void play_dead(void)
236 #endif /* CONFIG_HOTPLUG_CPU */
238 void cpu_idle_wait(void)
240 unsigned int cpu, this_cpu = get_cpu();
243 set_cpus_allowed(current, cpumask_of_cpu(this_cpu));
247 for_each_online_cpu(cpu) {
248 per_cpu(cpu_idle_state, cpu) = 1;
252 __get_cpu_var(cpu_idle_state) = 0;
257 for_each_online_cpu(cpu) {
258 if (cpu_isset(cpu, map) && !per_cpu(cpu_idle_state, cpu))
261 cpus_and(map, map, cpu_online_map);
262 } while (!cpus_empty(map));
264 EXPORT_SYMBOL_GPL(cpu_idle_wait);
266 void __attribute__((noreturn))
269 void (*mark_idle)(int) = ia64_mark_idle;
270 int cpu = smp_processor_id();
272 /* endless idle loop with no priority at all */
275 clear_thread_flag(TIF_POLLING_NRFLAG);
277 set_thread_flag(TIF_POLLING_NRFLAG);
279 if (!need_resched()) {
284 if (__get_cpu_var(cpu_idle_state))
285 __get_cpu_var(cpu_idle_state) = 0;
301 preempt_enable_no_resched();
305 if (cpu_is_offline(cpu))
311 ia64_save_extra (struct task_struct *task)
313 #ifdef CONFIG_PERFMON
317 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
318 ia64_save_debug_regs(&task->thread.dbr[0]);
320 #ifdef CONFIG_PERFMON
321 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
324 info = __get_cpu_var(pfm_syst_info);
325 if (info & PFM_CPUINFO_SYST_WIDE)
326 pfm_syst_wide_update_task(task, info, 0);
329 #ifdef CONFIG_IA32_SUPPORT
330 if (IS_IA32_PROCESS(task_pt_regs(task)))
331 ia32_save_state(task);
336 ia64_load_extra (struct task_struct *task)
338 #ifdef CONFIG_PERFMON
342 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
343 ia64_load_debug_regs(&task->thread.dbr[0]);
345 #ifdef CONFIG_PERFMON
346 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
349 info = __get_cpu_var(pfm_syst_info);
350 if (info & PFM_CPUINFO_SYST_WIDE)
351 pfm_syst_wide_update_task(task, info, 1);
354 #ifdef CONFIG_IA32_SUPPORT
355 if (IS_IA32_PROCESS(task_pt_regs(task)))
356 ia32_load_state(task);
361 * Copy the state of an ia-64 thread.
363 * We get here through the following call chain:
365 * from user-level: from kernel:
367 * <clone syscall> <some kernel call frames>
370 * copy_thread copy_thread
372 * This means that the stack layout is as follows:
374 * +---------------------+ (highest addr)
376 * +---------------------+
377 * | struct switch_stack |
378 * +---------------------+
381 * | | <-- sp (lowest addr)
382 * +---------------------+
384 * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an
385 * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
386 * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the
387 * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since
388 * the stack is page aligned and the page size is at least 4KB, this is always the case,
389 * so there is nothing to worry about.
392 copy_thread (int nr, unsigned long clone_flags,
393 unsigned long user_stack_base, unsigned long user_stack_size,
394 struct task_struct *p, struct pt_regs *regs)
396 extern char ia64_ret_from_clone, ia32_ret_from_clone;
397 struct switch_stack *child_stack, *stack;
398 unsigned long rbs, child_rbs, rbs_size;
399 struct pt_regs *child_ptregs;
404 * For SMP idle threads, fork_by_hand() calls do_fork with
411 stack = ((struct switch_stack *) regs) - 1;
413 child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
414 child_stack = (struct switch_stack *) child_ptregs - 1;
416 /* copy parent's switch_stack & pt_regs to child: */
417 memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
419 rbs = (unsigned long) current + IA64_RBS_OFFSET;
420 child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
421 rbs_size = stack->ar_bspstore - rbs;
423 /* copy the parent's register backing store to the child: */
424 memcpy((void *) child_rbs, (void *) rbs, rbs_size);
426 if (likely(user_mode(child_ptregs))) {
427 if ((clone_flags & CLONE_SETTLS) && !IS_IA32_PROCESS(regs))
428 child_ptregs->r13 = regs->r16; /* see sys_clone2() in entry.S */
429 if (user_stack_base) {
430 child_ptregs->r12 = user_stack_base + user_stack_size - 16;
431 child_ptregs->ar_bspstore = user_stack_base;
432 child_ptregs->ar_rnat = 0;
433 child_ptregs->loadrs = 0;
437 * Note: we simply preserve the relative position of
438 * the stack pointer here. There is no need to
439 * allocate a scratch area here, since that will have
440 * been taken care of by the caller of sys_clone()
443 child_ptregs->r12 = (unsigned long) child_ptregs - 16; /* kernel sp */
444 child_ptregs->r13 = (unsigned long) p; /* set `current' pointer */
446 child_stack->ar_bspstore = child_rbs + rbs_size;
447 if (IS_IA32_PROCESS(regs))
448 child_stack->b0 = (unsigned long) &ia32_ret_from_clone;
450 child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
452 /* copy parts of thread_struct: */
453 p->thread.ksp = (unsigned long) child_stack - 16;
455 /* stop some PSR bits from being inherited.
456 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
457 * therefore we must specify them explicitly here and not include them in
458 * IA64_PSR_BITS_TO_CLEAR.
460 child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
461 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
464 * NOTE: The calling convention considers all floating point
465 * registers in the high partition (fph) to be scratch. Since
466 * the only way to get to this point is through a system call,
467 * we know that the values in fph are all dead. Hence, there
468 * is no need to inherit the fph state from the parent to the
469 * child and all we have to do is to make sure that
470 * IA64_THREAD_FPH_VALID is cleared in the child.
472 * XXX We could push this optimization a bit further by
473 * clearing IA64_THREAD_FPH_VALID on ANY system call.
474 * However, it's not clear this is worth doing. Also, it
475 * would be a slight deviation from the normal Linux system
476 * call behavior where scratch registers are preserved across
477 * system calls (unless used by the system call itself).
479 # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
480 | IA64_THREAD_PM_VALID)
481 # define THREAD_FLAGS_TO_SET 0
482 p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
483 | THREAD_FLAGS_TO_SET);
484 ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */
485 #ifdef CONFIG_IA32_SUPPORT
487 * If we're cloning an IA32 task then save the IA32 extra
488 * state from the current task to the new task
490 if (IS_IA32_PROCESS(task_pt_regs(current))) {
492 if (clone_flags & CLONE_SETTLS)
493 retval = ia32_clone_tls(p, child_ptregs);
495 /* Copy partially mapped page list */
497 retval = ia32_copy_partial_page_list(p, clone_flags);
501 #ifdef CONFIG_PERFMON
502 if (current->thread.pfm_context)
503 pfm_inherit(p, child_ptregs);
509 do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
511 unsigned long mask, sp, nat_bits = 0, ip, ar_rnat, urbs_end, cfm;
512 elf_greg_t *dst = arg;
517 memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */
519 if (unw_unwind_to_user(info) < 0)
522 unw_get_sp(info, &sp);
523 pt = (struct pt_regs *) (sp + 16);
525 urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
527 if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
530 ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
536 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
537 * predicate registers (p0-p63)
540 * ar.rsc ar.bsp ar.bspstore ar.rnat
541 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
545 for (i = 1, mask = (1UL << i); i < 32; ++i) {
546 unw_get_gr(info, i, &dst[i], &nat);
552 unw_get_pr(info, &dst[33]);
554 for (i = 0; i < 8; ++i)
555 unw_get_br(info, i, &dst[34 + i]);
557 unw_get_rp(info, &ip);
558 dst[42] = ip + ia64_psr(pt)->ri;
560 dst[44] = pt->cr_ipsr & IA64_PSR_UM;
562 unw_get_ar(info, UNW_AR_RSC, &dst[45]);
564 * For bsp and bspstore, unw_get_ar() would return the kernel
565 * addresses, but we need the user-level addresses instead:
567 dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */
568 dst[47] = pt->ar_bspstore;
570 unw_get_ar(info, UNW_AR_CCV, &dst[49]);
571 unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
572 unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
573 dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
574 unw_get_ar(info, UNW_AR_LC, &dst[53]);
575 unw_get_ar(info, UNW_AR_EC, &dst[54]);
576 unw_get_ar(info, UNW_AR_CSD, &dst[55]);
577 unw_get_ar(info, UNW_AR_SSD, &dst[56]);
581 do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg)
583 elf_fpreg_t *dst = arg;
586 memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */
588 if (unw_unwind_to_user(info) < 0)
591 /* f0 is 0.0, f1 is 1.0 */
593 for (i = 2; i < 32; ++i)
594 unw_get_fr(info, i, dst + i);
596 ia64_flush_fph(task);
597 if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0)
598 memcpy(dst + 32, task->thread.fph, 96*16);
602 do_copy_regs (struct unw_frame_info *info, void *arg)
604 do_copy_task_regs(current, info, arg);
608 do_dump_fpu (struct unw_frame_info *info, void *arg)
610 do_dump_task_fpu(current, info, arg);
614 dump_task_regs(struct task_struct *task, elf_gregset_t *regs)
616 struct unw_frame_info tcore_info;
618 if (current == task) {
619 unw_init_running(do_copy_regs, regs);
621 memset(&tcore_info, 0, sizeof(tcore_info));
622 unw_init_from_blocked_task(&tcore_info, task);
623 do_copy_task_regs(task, &tcore_info, regs);
629 ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
631 unw_init_running(do_copy_regs, dst);
635 dump_task_fpu (struct task_struct *task, elf_fpregset_t *dst)
637 struct unw_frame_info tcore_info;
639 if (current == task) {
640 unw_init_running(do_dump_fpu, dst);
642 memset(&tcore_info, 0, sizeof(tcore_info));
643 unw_init_from_blocked_task(&tcore_info, task);
644 do_dump_task_fpu(task, &tcore_info, dst);
650 dump_fpu (struct pt_regs *pt, elf_fpregset_t dst)
652 unw_init_running(do_dump_fpu, dst);
653 return 1; /* f0-f31 are always valid so we always return 1 */
657 sys_execve (char __user *filename, char __user * __user *argv, char __user * __user *envp,
658 struct pt_regs *regs)
663 fname = getname(filename);
664 error = PTR_ERR(fname);
667 error = do_execve(fname, argv, envp, regs);
674 kernel_thread (int (*fn)(void *), void *arg, unsigned long flags)
676 extern void start_kernel_thread (void);
677 unsigned long *helper_fptr = (unsigned long *) &start_kernel_thread;
679 struct switch_stack sw;
683 memset(®s, 0, sizeof(regs));
684 regs.pt.cr_iip = helper_fptr[0]; /* set entry point (IP) */
685 regs.pt.r1 = helper_fptr[1]; /* set GP */
686 regs.pt.r9 = (unsigned long) fn; /* 1st argument */
687 regs.pt.r11 = (unsigned long) arg; /* 2nd argument */
688 /* Preserve PSR bits, except for bits 32-34 and 37-45, which we can't read. */
689 regs.pt.cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
690 regs.pt.cr_ifs = 1UL << 63; /* mark as valid, empty frame */
691 regs.sw.ar_fpsr = regs.pt.ar_fpsr = ia64_getreg(_IA64_REG_AR_FPSR);
692 regs.sw.ar_bspstore = (unsigned long) current + IA64_RBS_OFFSET;
693 regs.sw.pr = (1 << PRED_KERNEL_STACK);
694 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s.pt, 0, NULL, NULL);
696 EXPORT_SYMBOL(kernel_thread);
698 /* This gets called from kernel_thread() via ia64_invoke_thread_helper(). */
700 kernel_thread_helper (int (*fn)(void *), void *arg)
702 #ifdef CONFIG_IA32_SUPPORT
703 if (IS_IA32_PROCESS(task_pt_regs(current))) {
704 /* A kernel thread is always a 64-bit process. */
705 current->thread.map_base = DEFAULT_MAP_BASE;
706 current->thread.task_size = DEFAULT_TASK_SIZE;
707 ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob);
708 ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1);
715 * Flush thread state. This is called when a thread does an execve().
720 /* drop floating-point and debug-register state if it exists: */
721 current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
722 ia64_drop_fpu(current);
723 #ifdef CONFIG_IA32_SUPPORT
724 if (IS_IA32_PROCESS(task_pt_regs(current))) {
725 ia32_drop_partial_page_list(current);
726 current->thread.task_size = IA32_PAGE_OFFSET;
733 * Clean up state associated with current thread. This is called when
734 * the thread calls exit().
740 ia64_drop_fpu(current);
741 #ifdef CONFIG_PERFMON
742 /* if needed, stop monitoring and flush state to perfmon context */
743 if (current->thread.pfm_context)
744 pfm_exit_thread(current);
746 /* free debug register resources */
747 if (current->thread.flags & IA64_THREAD_DBG_VALID)
748 pfm_release_debug_registers(current);
750 if (IS_IA32_PROCESS(task_pt_regs(current)))
751 ia32_drop_partial_page_list(current);
755 get_wchan (struct task_struct *p)
757 struct unw_frame_info info;
762 * Note: p may not be a blocked task (it could be current or
763 * another process running on some other CPU. Rather than
764 * trying to determine if p is really blocked, we just assume
765 * it's blocked and rely on the unwind routines to fail
766 * gracefully if the process wasn't really blocked after all.
769 unw_init_from_blocked_task(&info, p);
771 if (unw_unwind(&info) < 0)
773 unw_get_ip(&info, &ip);
774 if (!in_sched_functions(ip))
776 } while (count++ < 16);
783 pal_power_mgmt_info_u_t power_info[8];
784 unsigned long min_power;
785 int i, min_power_state;
787 if (ia64_pal_halt_info(power_info) != 0)
791 min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
792 for (i = 1; i < 8; ++i)
793 if (power_info[i].pal_power_mgmt_info_s.im
794 && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
795 min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
800 ia64_pal_halt(min_power_state);
804 machine_restart (char *restart_cmd)
806 (void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0);
807 (*efi.reset_system)(EFI_RESET_WARM, 0, 0, NULL);
813 (void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0);
818 machine_power_off (void)