Btrfs: support for items bigger than 1/2 the blocksize
[linux-2.6] / fs / btrfs / ctree.c
1 #include <linux/module.h>
2 #include "ctree.h"
3 #include "disk-io.h"
4 #include "transaction.h"
5
6 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
7                       *root, struct btrfs_path *path, int level);
8 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
9                       *root, struct btrfs_key *ins_key,
10                       struct btrfs_path *path, int data_size);
11 static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
12                           *root, struct buffer_head *dst, struct buffer_head
13                           *src);
14 static int balance_node_right(struct btrfs_trans_handle *trans, struct
15                               btrfs_root *root, struct buffer_head *dst_buf,
16                               struct buffer_head *src_buf);
17 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
18                    struct btrfs_path *path, int level, int slot);
19
20 inline void btrfs_init_path(struct btrfs_path *p)
21 {
22         memset(p, 0, sizeof(*p));
23 }
24
25 struct btrfs_path *btrfs_alloc_path(void)
26 {
27         struct btrfs_path *path;
28         path = kmem_cache_alloc(btrfs_path_cachep, GFP_NOFS);
29         if (path)
30                 btrfs_init_path(path);
31         return path;
32 }
33
34 void btrfs_free_path(struct btrfs_path *p)
35 {
36         btrfs_release_path(NULL, p);
37         kmem_cache_free(btrfs_path_cachep, p);
38 }
39
40 void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
41 {
42         int i;
43         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
44                 if (!p->nodes[i])
45                         break;
46                 btrfs_block_release(root, p->nodes[i]);
47         }
48         memset(p, 0, sizeof(*p));
49 }
50
51 static int btrfs_cow_block(struct btrfs_trans_handle *trans, struct btrfs_root
52                            *root, struct buffer_head *buf, struct buffer_head
53                            *parent, int parent_slot, struct buffer_head
54                            **cow_ret)
55 {
56         struct buffer_head *cow;
57         struct btrfs_node *cow_node;
58
59         if (btrfs_header_generation(btrfs_buffer_header(buf)) ==
60                                     trans->transid) {
61                 *cow_ret = buf;
62                 return 0;
63         }
64         cow = btrfs_alloc_free_block(trans, root);
65         cow_node = btrfs_buffer_node(cow);
66         if (buf->b_size != root->blocksize || cow->b_size != root->blocksize)
67                 WARN_ON(1);
68         memcpy(cow_node, btrfs_buffer_node(buf), root->blocksize);
69         btrfs_set_header_blocknr(&cow_node->header, cow->b_blocknr);
70         btrfs_set_header_generation(&cow_node->header, trans->transid);
71         btrfs_inc_ref(trans, root, buf);
72         if (buf == root->node) {
73                 root->node = cow;
74                 get_bh(cow);
75                 if (buf != root->commit_root) {
76                         btrfs_free_extent(trans, root, buf->b_blocknr, 1, 1);
77                 }
78                 btrfs_block_release(root, buf);
79         } else {
80                 btrfs_set_node_blockptr(btrfs_buffer_node(parent), parent_slot,
81                                         cow->b_blocknr);
82                 btrfs_mark_buffer_dirty(parent);
83                 btrfs_free_extent(trans, root, buf->b_blocknr, 1, 1);
84         }
85         btrfs_block_release(root, buf);
86         mark_buffer_dirty(cow);
87         *cow_ret = cow;
88         return 0;
89 }
90
91 /*
92  * The leaf data grows from end-to-front in the node.
93  * this returns the address of the start of the last item,
94  * which is the stop of the leaf data stack
95  */
96 static inline unsigned int leaf_data_end(struct btrfs_root *root,
97                                          struct btrfs_leaf *leaf)
98 {
99         u32 nr = btrfs_header_nritems(&leaf->header);
100         if (nr == 0)
101                 return BTRFS_LEAF_DATA_SIZE(root);
102         return btrfs_item_offset(leaf->items + nr - 1);
103 }
104
105 /*
106  * compare two keys in a memcmp fashion
107  */
108 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
109 {
110         struct btrfs_key k1;
111
112         btrfs_disk_key_to_cpu(&k1, disk);
113
114         if (k1.objectid > k2->objectid)
115                 return 1;
116         if (k1.objectid < k2->objectid)
117                 return -1;
118         if (k1.offset > k2->offset)
119                 return 1;
120         if (k1.offset < k2->offset)
121                 return -1;
122         if (k1.flags > k2->flags)
123                 return 1;
124         if (k1.flags < k2->flags)
125                 return -1;
126         return 0;
127 }
128
129 static int check_node(struct btrfs_root *root, struct btrfs_path *path,
130                       int level)
131 {
132         int i;
133         struct btrfs_node *parent = NULL;
134         struct btrfs_node *node = btrfs_buffer_node(path->nodes[level]);
135         int parent_slot;
136         u32 nritems = btrfs_header_nritems(&node->header);
137
138         if (path->nodes[level + 1])
139                 parent = btrfs_buffer_node(path->nodes[level + 1]);
140         parent_slot = path->slots[level + 1];
141         BUG_ON(nritems == 0);
142         if (parent) {
143                 struct btrfs_disk_key *parent_key;
144                 parent_key = &parent->ptrs[parent_slot].key;
145                 BUG_ON(memcmp(parent_key, &node->ptrs[0].key,
146                               sizeof(struct btrfs_disk_key)));
147                 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
148                        btrfs_header_blocknr(&node->header));
149         }
150         BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
151         for (i = 0; nritems > 1 && i < nritems - 2; i++) {
152                 struct btrfs_key cpukey;
153                 btrfs_disk_key_to_cpu(&cpukey, &node->ptrs[i + 1].key);
154                 BUG_ON(comp_keys(&node->ptrs[i].key, &cpukey) >= 0);
155         }
156         return 0;
157 }
158
159 static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
160                       int level)
161 {
162         int i;
163         struct btrfs_leaf *leaf = btrfs_buffer_leaf(path->nodes[level]);
164         struct btrfs_node *parent = NULL;
165         int parent_slot;
166         u32 nritems = btrfs_header_nritems(&leaf->header);
167
168         if (path->nodes[level + 1])
169                 parent = btrfs_buffer_node(path->nodes[level + 1]);
170         parent_slot = path->slots[level + 1];
171         BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
172
173         if (nritems == 0)
174                 return 0;
175
176         if (parent) {
177                 struct btrfs_disk_key *parent_key;
178                 parent_key = &parent->ptrs[parent_slot].key;
179                 BUG_ON(memcmp(parent_key, &leaf->items[0].key,
180                        sizeof(struct btrfs_disk_key)));
181                 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
182                        btrfs_header_blocknr(&leaf->header));
183         }
184         for (i = 0; nritems > 1 && i < nritems - 2; i++) {
185                 struct btrfs_key cpukey;
186                 btrfs_disk_key_to_cpu(&cpukey, &leaf->items[i + 1].key);
187                 BUG_ON(comp_keys(&leaf->items[i].key,
188                                  &cpukey) >= 0);
189                 BUG_ON(btrfs_item_offset(leaf->items + i) !=
190                         btrfs_item_end(leaf->items + i + 1));
191                 if (i == 0) {
192                         BUG_ON(btrfs_item_offset(leaf->items + i) +
193                                btrfs_item_size(leaf->items + i) !=
194                                BTRFS_LEAF_DATA_SIZE(root));
195                 }
196         }
197         return 0;
198 }
199
200 static int check_block(struct btrfs_root *root, struct btrfs_path *path,
201                         int level)
202 {
203         if (level == 0)
204                 return check_leaf(root, path, level);
205         return check_node(root, path, level);
206 }
207
208 /*
209  * search for key in the array p.  items p are item_size apart
210  * and there are 'max' items in p
211  * the slot in the array is returned via slot, and it points to
212  * the place where you would insert key if it is not found in
213  * the array.
214  *
215  * slot may point to max if the key is bigger than all of the keys
216  */
217 static int generic_bin_search(char *p, int item_size, struct btrfs_key *key,
218                        int max, int *slot)
219 {
220         int low = 0;
221         int high = max;
222         int mid;
223         int ret;
224         struct btrfs_disk_key *tmp;
225
226         while(low < high) {
227                 mid = (low + high) / 2;
228                 tmp = (struct btrfs_disk_key *)(p + mid * item_size);
229                 ret = comp_keys(tmp, key);
230
231                 if (ret < 0)
232                         low = mid + 1;
233                 else if (ret > 0)
234                         high = mid;
235                 else {
236                         *slot = mid;
237                         return 0;
238                 }
239         }
240         *slot = low;
241         return 1;
242 }
243
244 /*
245  * simple bin_search frontend that does the right thing for
246  * leaves vs nodes
247  */
248 static int bin_search(struct btrfs_node *c, struct btrfs_key *key, int *slot)
249 {
250         if (btrfs_is_leaf(c)) {
251                 struct btrfs_leaf *l = (struct btrfs_leaf *)c;
252                 return generic_bin_search((void *)l->items,
253                                           sizeof(struct btrfs_item),
254                                           key, btrfs_header_nritems(&c->header),
255                                           slot);
256         } else {
257                 return generic_bin_search((void *)c->ptrs,
258                                           sizeof(struct btrfs_key_ptr),
259                                           key, btrfs_header_nritems(&c->header),
260                                           slot);
261         }
262         return -1;
263 }
264
265 static struct buffer_head *read_node_slot(struct btrfs_root *root,
266                                    struct buffer_head *parent_buf,
267                                    int slot)
268 {
269         struct btrfs_node *node = btrfs_buffer_node(parent_buf);
270         if (slot < 0)
271                 return NULL;
272         if (slot >= btrfs_header_nritems(&node->header))
273                 return NULL;
274         return read_tree_block(root, btrfs_node_blockptr(node, slot));
275 }
276
277 static int balance_level(struct btrfs_trans_handle *trans, struct btrfs_root
278                          *root, struct btrfs_path *path, int level)
279 {
280         struct buffer_head *right_buf;
281         struct buffer_head *mid_buf;
282         struct buffer_head *left_buf;
283         struct buffer_head *parent_buf = NULL;
284         struct btrfs_node *right = NULL;
285         struct btrfs_node *mid;
286         struct btrfs_node *left = NULL;
287         struct btrfs_node *parent = NULL;
288         int ret = 0;
289         int wret;
290         int pslot;
291         int orig_slot = path->slots[level];
292         u64 orig_ptr;
293
294         if (level == 0)
295                 return 0;
296
297         mid_buf = path->nodes[level];
298         mid = btrfs_buffer_node(mid_buf);
299         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
300
301         if (level < BTRFS_MAX_LEVEL - 1)
302                 parent_buf = path->nodes[level + 1];
303         pslot = path->slots[level + 1];
304
305         /*
306          * deal with the case where there is only one pointer in the root
307          * by promoting the node below to a root
308          */
309         if (!parent_buf) {
310                 struct buffer_head *child;
311                 u64 blocknr = mid_buf->b_blocknr;
312
313                 if (btrfs_header_nritems(&mid->header) != 1)
314                         return 0;
315
316                 /* promote the child to a root */
317                 child = read_node_slot(root, mid_buf, 0);
318                 BUG_ON(!child);
319                 root->node = child;
320                 path->nodes[level] = NULL;
321                 clean_tree_block(trans, root, mid_buf);
322                 wait_on_buffer(mid_buf);
323                 /* once for the path */
324                 btrfs_block_release(root, mid_buf);
325                 /* once for the root ptr */
326                 btrfs_block_release(root, mid_buf);
327                 return btrfs_free_extent(trans, root, blocknr, 1, 1);
328         }
329         parent = btrfs_buffer_node(parent_buf);
330
331         if (btrfs_header_nritems(&mid->header) >
332             BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
333                 return 0;
334
335         left_buf = read_node_slot(root, parent_buf, pslot - 1);
336         right_buf = read_node_slot(root, parent_buf, pslot + 1);
337
338         /* first, try to make some room in the middle buffer */
339         if (left_buf) {
340                 btrfs_cow_block(trans, root, left_buf, parent_buf, pslot - 1,
341                                 &left_buf);
342                 left = btrfs_buffer_node(left_buf);
343                 orig_slot += btrfs_header_nritems(&left->header);
344                 wret = push_node_left(trans, root, left_buf, mid_buf);
345                 if (wret < 0)
346                         ret = wret;
347         }
348
349         /*
350          * then try to empty the right most buffer into the middle
351          */
352         if (right_buf) {
353                 btrfs_cow_block(trans, root, right_buf, parent_buf, pslot + 1,
354                                 &right_buf);
355                 right = btrfs_buffer_node(right_buf);
356                 wret = push_node_left(trans, root, mid_buf, right_buf);
357                 if (wret < 0)
358                         ret = wret;
359                 if (btrfs_header_nritems(&right->header) == 0) {
360                         u64 blocknr = right_buf->b_blocknr;
361                         clean_tree_block(trans, root, right_buf);
362                         wait_on_buffer(right_buf);
363                         btrfs_block_release(root, right_buf);
364                         right_buf = NULL;
365                         right = NULL;
366                         wret = del_ptr(trans, root, path, level + 1, pslot +
367                                        1);
368                         if (wret)
369                                 ret = wret;
370                         wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
371                         if (wret)
372                                 ret = wret;
373                 } else {
374                         btrfs_memcpy(root, parent,
375                                      &parent->ptrs[pslot + 1].key,
376                                      &right->ptrs[0].key,
377                                      sizeof(struct btrfs_disk_key));
378                         btrfs_mark_buffer_dirty(parent_buf);
379                 }
380         }
381         if (btrfs_header_nritems(&mid->header) == 1) {
382                 /*
383                  * we're not allowed to leave a node with one item in the
384                  * tree during a delete.  A deletion from lower in the tree
385                  * could try to delete the only pointer in this node.
386                  * So, pull some keys from the left.
387                  * There has to be a left pointer at this point because
388                  * otherwise we would have pulled some pointers from the
389                  * right
390                  */
391                 BUG_ON(!left_buf);
392                 wret = balance_node_right(trans, root, mid_buf, left_buf);
393                 if (wret < 0)
394                         ret = wret;
395                 BUG_ON(wret == 1);
396         }
397         if (btrfs_header_nritems(&mid->header) == 0) {
398                 /* we've managed to empty the middle node, drop it */
399                 u64 blocknr = mid_buf->b_blocknr;
400                 clean_tree_block(trans, root, mid_buf);
401                 wait_on_buffer(mid_buf);
402                 btrfs_block_release(root, mid_buf);
403                 mid_buf = NULL;
404                 mid = NULL;
405                 wret = del_ptr(trans, root, path, level + 1, pslot);
406                 if (wret)
407                         ret = wret;
408                 wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
409                 if (wret)
410                         ret = wret;
411         } else {
412                 /* update the parent key to reflect our changes */
413                 btrfs_memcpy(root, parent,
414                              &parent->ptrs[pslot].key, &mid->ptrs[0].key,
415                              sizeof(struct btrfs_disk_key));
416                 btrfs_mark_buffer_dirty(parent_buf);
417         }
418
419         /* update the path */
420         if (left_buf) {
421                 if (btrfs_header_nritems(&left->header) > orig_slot) {
422                         get_bh(left_buf);
423                         path->nodes[level] = left_buf;
424                         path->slots[level + 1] -= 1;
425                         path->slots[level] = orig_slot;
426                         if (mid_buf)
427                                 btrfs_block_release(root, mid_buf);
428                 } else {
429                         orig_slot -= btrfs_header_nritems(&left->header);
430                         path->slots[level] = orig_slot;
431                 }
432         }
433         /* double check we haven't messed things up */
434         check_block(root, path, level);
435         if (orig_ptr !=
436             btrfs_node_blockptr(btrfs_buffer_node(path->nodes[level]),
437                                 path->slots[level]))
438                 BUG();
439
440         if (right_buf)
441                 btrfs_block_release(root, right_buf);
442         if (left_buf)
443                 btrfs_block_release(root, left_buf);
444         return ret;
445 }
446
447 /*
448  * look for key in the tree.  path is filled in with nodes along the way
449  * if key is found, we return zero and you can find the item in the leaf
450  * level of the path (level 0)
451  *
452  * If the key isn't found, the path points to the slot where it should
453  * be inserted, and 1 is returned.  If there are other errors during the
454  * search a negative error number is returned.
455  *
456  * if ins_len > 0, nodes and leaves will be split as we walk down the
457  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
458  * possible)
459  */
460 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
461                       *root, struct btrfs_key *key, struct btrfs_path *p, int
462                       ins_len, int cow)
463 {
464         struct buffer_head *b;
465         struct buffer_head *cow_buf;
466         struct btrfs_node *c;
467         int slot;
468         int ret;
469         int level;
470
471         WARN_ON(p->nodes[0] != NULL);
472         WARN_ON(!mutex_is_locked(&root->fs_info->fs_mutex));
473 again:
474         b = root->node;
475         get_bh(b);
476         while (b) {
477                 c = btrfs_buffer_node(b);
478                 level = btrfs_header_level(&c->header);
479                 if (cow) {
480                         int wret;
481                         wret = btrfs_cow_block(trans, root, b,
482                                                p->nodes[level + 1],
483                                                p->slots[level + 1],
484                                                &cow_buf);
485                         b = cow_buf;
486                         c = btrfs_buffer_node(b);
487                 }
488                 BUG_ON(!cow && ins_len);
489                 if (level != btrfs_header_level(&c->header))
490                         WARN_ON(1);
491                 level = btrfs_header_level(&c->header);
492                 p->nodes[level] = b;
493                 ret = check_block(root, p, level);
494                 if (ret)
495                         return -1;
496                 ret = bin_search(c, key, &slot);
497                 if (!btrfs_is_leaf(c)) {
498                         if (ret && slot > 0)
499                                 slot -= 1;
500                         p->slots[level] = slot;
501                         if (ins_len > 0 && btrfs_header_nritems(&c->header) >=
502                             BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
503                                 int sret = split_node(trans, root, p, level);
504                                 BUG_ON(sret > 0);
505                                 if (sret)
506                                         return sret;
507                                 b = p->nodes[level];
508                                 c = btrfs_buffer_node(b);
509                                 slot = p->slots[level];
510                         } else if (ins_len < 0) {
511                                 int sret = balance_level(trans, root, p,
512                                                          level);
513                                 if (sret)
514                                         return sret;
515                                 b = p->nodes[level];
516                                 if (!b)
517                                         goto again;
518                                 c = btrfs_buffer_node(b);
519                                 slot = p->slots[level];
520                                 BUG_ON(btrfs_header_nritems(&c->header) == 1);
521                         }
522                         b = read_tree_block(root, btrfs_node_blockptr(c, slot));
523                 } else {
524                         struct btrfs_leaf *l = (struct btrfs_leaf *)c;
525                         p->slots[level] = slot;
526                         if (ins_len > 0 && btrfs_leaf_free_space(root, l) <
527                             sizeof(struct btrfs_item) + ins_len) {
528                                 int sret = split_leaf(trans, root, key,
529                                                       p, ins_len);
530                                 BUG_ON(sret > 0);
531                                 if (sret)
532                                         return sret;
533                         }
534                         return ret;
535                 }
536         }
537         return 1;
538 }
539
540 /*
541  * adjust the pointers going up the tree, starting at level
542  * making sure the right key of each node is points to 'key'.
543  * This is used after shifting pointers to the left, so it stops
544  * fixing up pointers when a given leaf/node is not in slot 0 of the
545  * higher levels
546  *
547  * If this fails to write a tree block, it returns -1, but continues
548  * fixing up the blocks in ram so the tree is consistent.
549  */
550 static int fixup_low_keys(struct btrfs_trans_handle *trans, struct btrfs_root
551                           *root, struct btrfs_path *path, struct btrfs_disk_key
552                           *key, int level)
553 {
554         int i;
555         int ret = 0;
556         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
557                 struct btrfs_node *t;
558                 int tslot = path->slots[i];
559                 if (!path->nodes[i])
560                         break;
561                 t = btrfs_buffer_node(path->nodes[i]);
562                 btrfs_memcpy(root, t, &t->ptrs[tslot].key, key, sizeof(*key));
563                 btrfs_mark_buffer_dirty(path->nodes[i]);
564                 if (tslot != 0)
565                         break;
566         }
567         return ret;
568 }
569
570 /*
571  * try to push data from one node into the next node left in the
572  * tree.
573  *
574  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
575  * error, and > 0 if there was no room in the left hand block.
576  */
577 static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
578                           *root, struct buffer_head *dst_buf, struct
579                           buffer_head *src_buf)
580 {
581         struct btrfs_node *src = btrfs_buffer_node(src_buf);
582         struct btrfs_node *dst = btrfs_buffer_node(dst_buf);
583         int push_items = 0;
584         int src_nritems;
585         int dst_nritems;
586         int ret = 0;
587
588         src_nritems = btrfs_header_nritems(&src->header);
589         dst_nritems = btrfs_header_nritems(&dst->header);
590         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
591         if (push_items <= 0) {
592                 return 1;
593         }
594
595         if (src_nritems < push_items)
596                 push_items = src_nritems;
597
598         btrfs_memcpy(root, dst, dst->ptrs + dst_nritems, src->ptrs,
599                      push_items * sizeof(struct btrfs_key_ptr));
600         if (push_items < src_nritems) {
601                 btrfs_memmove(root, src, src->ptrs, src->ptrs + push_items,
602                         (src_nritems - push_items) *
603                         sizeof(struct btrfs_key_ptr));
604         }
605         btrfs_set_header_nritems(&src->header, src_nritems - push_items);
606         btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
607         btrfs_mark_buffer_dirty(src_buf);
608         btrfs_mark_buffer_dirty(dst_buf);
609         return ret;
610 }
611
612 /*
613  * try to push data from one node into the next node right in the
614  * tree.
615  *
616  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
617  * error, and > 0 if there was no room in the right hand block.
618  *
619  * this will  only push up to 1/2 the contents of the left node over
620  */
621 static int balance_node_right(struct btrfs_trans_handle *trans, struct
622                               btrfs_root *root, struct buffer_head *dst_buf,
623                               struct buffer_head *src_buf)
624 {
625         struct btrfs_node *src = btrfs_buffer_node(src_buf);
626         struct btrfs_node *dst = btrfs_buffer_node(dst_buf);
627         int push_items = 0;
628         int max_push;
629         int src_nritems;
630         int dst_nritems;
631         int ret = 0;
632
633         src_nritems = btrfs_header_nritems(&src->header);
634         dst_nritems = btrfs_header_nritems(&dst->header);
635         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
636         if (push_items <= 0) {
637                 return 1;
638         }
639
640         max_push = src_nritems / 2 + 1;
641         /* don't try to empty the node */
642         if (max_push > src_nritems)
643                 return 1;
644         if (max_push < push_items)
645                 push_items = max_push;
646
647         btrfs_memmove(root, dst, dst->ptrs + push_items, dst->ptrs,
648                       dst_nritems * sizeof(struct btrfs_key_ptr));
649
650         btrfs_memcpy(root, dst, dst->ptrs,
651                      src->ptrs + src_nritems - push_items,
652                      push_items * sizeof(struct btrfs_key_ptr));
653
654         btrfs_set_header_nritems(&src->header, src_nritems - push_items);
655         btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
656
657         btrfs_mark_buffer_dirty(src_buf);
658         btrfs_mark_buffer_dirty(dst_buf);
659         return ret;
660 }
661
662 /*
663  * helper function to insert a new root level in the tree.
664  * A new node is allocated, and a single item is inserted to
665  * point to the existing root
666  *
667  * returns zero on success or < 0 on failure.
668  */
669 static int insert_new_root(struct btrfs_trans_handle *trans, struct btrfs_root
670                            *root, struct btrfs_path *path, int level)
671 {
672         struct buffer_head *t;
673         struct btrfs_node *lower;
674         struct btrfs_node *c;
675         struct btrfs_disk_key *lower_key;
676
677         BUG_ON(path->nodes[level]);
678         BUG_ON(path->nodes[level-1] != root->node);
679
680         t = btrfs_alloc_free_block(trans, root);
681         c = btrfs_buffer_node(t);
682         memset(c, 0, root->blocksize);
683         btrfs_set_header_nritems(&c->header, 1);
684         btrfs_set_header_level(&c->header, level);
685         btrfs_set_header_blocknr(&c->header, t->b_blocknr);
686         btrfs_set_header_generation(&c->header, trans->transid);
687         btrfs_set_header_parentid(&c->header,
688               btrfs_header_parentid(btrfs_buffer_header(root->node)));
689         lower = btrfs_buffer_node(path->nodes[level-1]);
690         if (btrfs_is_leaf(lower))
691                 lower_key = &((struct btrfs_leaf *)lower)->items[0].key;
692         else
693                 lower_key = &lower->ptrs[0].key;
694         btrfs_memcpy(root, c, &c->ptrs[0].key, lower_key,
695                      sizeof(struct btrfs_disk_key));
696         btrfs_set_node_blockptr(c, 0, path->nodes[level - 1]->b_blocknr);
697
698         btrfs_mark_buffer_dirty(t);
699
700         /* the super has an extra ref to root->node */
701         btrfs_block_release(root, root->node);
702         root->node = t;
703         get_bh(t);
704         path->nodes[level] = t;
705         path->slots[level] = 0;
706         return 0;
707 }
708
709 /*
710  * worker function to insert a single pointer in a node.
711  * the node should have enough room for the pointer already
712  *
713  * slot and level indicate where you want the key to go, and
714  * blocknr is the block the key points to.
715  *
716  * returns zero on success and < 0 on any error
717  */
718 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
719                       *root, struct btrfs_path *path, struct btrfs_disk_key
720                       *key, u64 blocknr, int slot, int level)
721 {
722         struct btrfs_node *lower;
723         int nritems;
724
725         BUG_ON(!path->nodes[level]);
726         lower = btrfs_buffer_node(path->nodes[level]);
727         nritems = btrfs_header_nritems(&lower->header);
728         if (slot > nritems)
729                 BUG();
730         if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
731                 BUG();
732         if (slot != nritems) {
733                 btrfs_memmove(root, lower, lower->ptrs + slot + 1,
734                               lower->ptrs + slot,
735                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
736         }
737         btrfs_memcpy(root, lower, &lower->ptrs[slot].key,
738                      key, sizeof(struct btrfs_disk_key));
739         btrfs_set_node_blockptr(lower, slot, blocknr);
740         btrfs_set_header_nritems(&lower->header, nritems + 1);
741         btrfs_mark_buffer_dirty(path->nodes[level]);
742         return 0;
743 }
744
745 /*
746  * split the node at the specified level in path in two.
747  * The path is corrected to point to the appropriate node after the split
748  *
749  * Before splitting this tries to make some room in the node by pushing
750  * left and right, if either one works, it returns right away.
751  *
752  * returns 0 on success and < 0 on failure
753  */
754 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
755                       *root, struct btrfs_path *path, int level)
756 {
757         struct buffer_head *t;
758         struct btrfs_node *c;
759         struct buffer_head *split_buffer;
760         struct btrfs_node *split;
761         int mid;
762         int ret;
763         int wret;
764         u32 c_nritems;
765
766         t = path->nodes[level];
767         c = btrfs_buffer_node(t);
768         if (t == root->node) {
769                 /* trying to split the root, lets make a new one */
770                 ret = insert_new_root(trans, root, path, level + 1);
771                 if (ret)
772                         return ret;
773         }
774         c_nritems = btrfs_header_nritems(&c->header);
775         split_buffer = btrfs_alloc_free_block(trans, root);
776         split = btrfs_buffer_node(split_buffer);
777         btrfs_set_header_flags(&split->header, btrfs_header_flags(&c->header));
778         btrfs_set_header_level(&split->header, btrfs_header_level(&c->header));
779         btrfs_set_header_blocknr(&split->header, split_buffer->b_blocknr);
780         btrfs_set_header_generation(&split->header, trans->transid);
781         btrfs_set_header_parentid(&split->header,
782               btrfs_header_parentid(btrfs_buffer_header(root->node)));
783         mid = (c_nritems + 1) / 2;
784         btrfs_memcpy(root, split, split->ptrs, c->ptrs + mid,
785                      (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
786         btrfs_set_header_nritems(&split->header, c_nritems - mid);
787         btrfs_set_header_nritems(&c->header, mid);
788         ret = 0;
789
790         btrfs_mark_buffer_dirty(t);
791         btrfs_mark_buffer_dirty(split_buffer);
792         wret = insert_ptr(trans, root, path, &split->ptrs[0].key,
793                           split_buffer->b_blocknr, path->slots[level + 1] + 1,
794                           level + 1);
795         if (wret)
796                 ret = wret;
797
798         if (path->slots[level] >= mid) {
799                 path->slots[level] -= mid;
800                 btrfs_block_release(root, t);
801                 path->nodes[level] = split_buffer;
802                 path->slots[level + 1] += 1;
803         } else {
804                 btrfs_block_release(root, split_buffer);
805         }
806         return ret;
807 }
808
809 /*
810  * how many bytes are required to store the items in a leaf.  start
811  * and nr indicate which items in the leaf to check.  This totals up the
812  * space used both by the item structs and the item data
813  */
814 static int leaf_space_used(struct btrfs_leaf *l, int start, int nr)
815 {
816         int data_len;
817         int nritems = btrfs_header_nritems(&l->header);
818         int end = min(nritems, start + nr) - 1;
819
820         if (!nr)
821                 return 0;
822         data_len = btrfs_item_end(l->items + start);
823         data_len = data_len - btrfs_item_offset(l->items + end);
824         data_len += sizeof(struct btrfs_item) * nr;
825         WARN_ON(data_len < 0);
826         return data_len;
827 }
828
829 /*
830  * The space between the end of the leaf items and
831  * the start of the leaf data.  IOW, how much room
832  * the leaf has left for both items and data
833  */
834 int btrfs_leaf_free_space(struct btrfs_root *root, struct btrfs_leaf *leaf)
835 {
836         int nritems = btrfs_header_nritems(&leaf->header);
837         return BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
838 }
839
840 /*
841  * push some data in the path leaf to the right, trying to free up at
842  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
843  *
844  * returns 1 if the push failed because the other node didn't have enough
845  * room, 0 if everything worked out and < 0 if there were major errors.
846  */
847 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
848                            *root, struct btrfs_path *path, int data_size)
849 {
850         struct buffer_head *left_buf = path->nodes[0];
851         struct btrfs_leaf *left = btrfs_buffer_leaf(left_buf);
852         struct btrfs_leaf *right;
853         struct buffer_head *right_buf;
854         struct buffer_head *upper;
855         struct btrfs_node *upper_node;
856         int slot;
857         int i;
858         int free_space;
859         int push_space = 0;
860         int push_items = 0;
861         struct btrfs_item *item;
862         u32 left_nritems;
863         u32 right_nritems;
864
865         slot = path->slots[1];
866         if (!path->nodes[1]) {
867                 return 1;
868         }
869         upper = path->nodes[1];
870         upper_node = btrfs_buffer_node(upper);
871         if (slot >= btrfs_header_nritems(&upper_node->header) - 1) {
872                 return 1;
873         }
874         right_buf = read_tree_block(root,
875                     btrfs_node_blockptr(btrfs_buffer_node(upper), slot + 1));
876         right = btrfs_buffer_leaf(right_buf);
877         free_space = btrfs_leaf_free_space(root, right);
878         if (free_space < data_size + sizeof(struct btrfs_item)) {
879                 btrfs_block_release(root, right_buf);
880                 return 1;
881         }
882         /* cow and double check */
883         btrfs_cow_block(trans, root, right_buf, upper, slot + 1, &right_buf);
884         right = btrfs_buffer_leaf(right_buf);
885         free_space = btrfs_leaf_free_space(root, right);
886         if (free_space < data_size + sizeof(struct btrfs_item)) {
887                 btrfs_block_release(root, right_buf);
888                 return 1;
889         }
890
891         left_nritems = btrfs_header_nritems(&left->header);
892         for (i = left_nritems - 1; i >= 0; i--) {
893                 item = left->items + i;
894                 if (path->slots[0] == i)
895                         push_space += data_size + sizeof(*item);
896                 if (btrfs_item_size(item) + sizeof(*item) + push_space >
897                     free_space)
898                         break;
899                 push_items++;
900                 push_space += btrfs_item_size(item) + sizeof(*item);
901         }
902         if (push_items == 0) {
903                 btrfs_block_release(root, right_buf);
904                 return 1;
905         }
906         right_nritems = btrfs_header_nritems(&right->header);
907         /* push left to right */
908         push_space = btrfs_item_end(left->items + left_nritems - push_items);
909         push_space -= leaf_data_end(root, left);
910         /* make room in the right data area */
911         btrfs_memmove(root, right, btrfs_leaf_data(right) +
912                       leaf_data_end(root, right) - push_space,
913                       btrfs_leaf_data(right) +
914                       leaf_data_end(root, right), BTRFS_LEAF_DATA_SIZE(root) -
915                       leaf_data_end(root, right));
916         /* copy from the left data area */
917         btrfs_memcpy(root, right, btrfs_leaf_data(right) +
918                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
919                      btrfs_leaf_data(left) + leaf_data_end(root, left),
920                      push_space);
921         btrfs_memmove(root, right, right->items + push_items, right->items,
922                 right_nritems * sizeof(struct btrfs_item));
923         /* copy the items from left to right */
924         btrfs_memcpy(root, right, right->items, left->items +
925                      left_nritems - push_items,
926                      push_items * sizeof(struct btrfs_item));
927
928         /* update the item pointers */
929         right_nritems += push_items;
930         btrfs_set_header_nritems(&right->header, right_nritems);
931         push_space = BTRFS_LEAF_DATA_SIZE(root);
932         for (i = 0; i < right_nritems; i++) {
933                 btrfs_set_item_offset(right->items + i, push_space -
934                                       btrfs_item_size(right->items + i));
935                 push_space = btrfs_item_offset(right->items + i);
936         }
937         left_nritems -= push_items;
938         btrfs_set_header_nritems(&left->header, left_nritems);
939
940         btrfs_mark_buffer_dirty(left_buf);
941         btrfs_mark_buffer_dirty(right_buf);
942         btrfs_memcpy(root, upper_node, &upper_node->ptrs[slot + 1].key,
943                 &right->items[0].key, sizeof(struct btrfs_disk_key));
944         btrfs_mark_buffer_dirty(upper);
945
946         /* then fixup the leaf pointer in the path */
947         if (path->slots[0] >= left_nritems) {
948                 path->slots[0] -= left_nritems;
949                 btrfs_block_release(root, path->nodes[0]);
950                 path->nodes[0] = right_buf;
951                 path->slots[1] += 1;
952         } else {
953                 btrfs_block_release(root, right_buf);
954         }
955         return 0;
956 }
957 /*
958  * push some data in the path leaf to the left, trying to free up at
959  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
960  */
961 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
962                           *root, struct btrfs_path *path, int data_size)
963 {
964         struct buffer_head *right_buf = path->nodes[0];
965         struct btrfs_leaf *right = btrfs_buffer_leaf(right_buf);
966         struct buffer_head *t;
967         struct btrfs_leaf *left;
968         int slot;
969         int i;
970         int free_space;
971         int push_space = 0;
972         int push_items = 0;
973         struct btrfs_item *item;
974         u32 old_left_nritems;
975         int ret = 0;
976         int wret;
977
978         slot = path->slots[1];
979         if (slot == 0) {
980                 return 1;
981         }
982         if (!path->nodes[1]) {
983                 return 1;
984         }
985         t = read_tree_block(root,
986             btrfs_node_blockptr(btrfs_buffer_node(path->nodes[1]), slot - 1));
987         left = btrfs_buffer_leaf(t);
988         free_space = btrfs_leaf_free_space(root, left);
989         if (free_space < data_size + sizeof(struct btrfs_item)) {
990                 btrfs_block_release(root, t);
991                 return 1;
992         }
993
994         /* cow and double check */
995         btrfs_cow_block(trans, root, t, path->nodes[1], slot - 1, &t);
996         left = btrfs_buffer_leaf(t);
997         free_space = btrfs_leaf_free_space(root, left);
998         if (free_space < data_size + sizeof(struct btrfs_item)) {
999                 btrfs_block_release(root, t);
1000                 return 1;
1001         }
1002
1003         for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
1004                 item = right->items + i;
1005                 if (path->slots[0] == i)
1006                         push_space += data_size + sizeof(*item);
1007                 if (btrfs_item_size(item) + sizeof(*item) + push_space >
1008                     free_space)
1009                         break;
1010                 push_items++;
1011                 push_space += btrfs_item_size(item) + sizeof(*item);
1012         }
1013         if (push_items == 0) {
1014                 btrfs_block_release(root, t);
1015                 return 1;
1016         }
1017         /* push data from right to left */
1018         btrfs_memcpy(root, left, left->items +
1019                      btrfs_header_nritems(&left->header),
1020                      right->items, push_items * sizeof(struct btrfs_item));
1021         push_space = BTRFS_LEAF_DATA_SIZE(root) -
1022                      btrfs_item_offset(right->items + push_items -1);
1023         btrfs_memcpy(root, left, btrfs_leaf_data(left) +
1024                      leaf_data_end(root, left) - push_space,
1025                      btrfs_leaf_data(right) +
1026                      btrfs_item_offset(right->items + push_items - 1),
1027                      push_space);
1028         old_left_nritems = btrfs_header_nritems(&left->header);
1029         BUG_ON(old_left_nritems < 0);
1030
1031         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
1032                 u32 ioff = btrfs_item_offset(left->items + i);
1033                 btrfs_set_item_offset(left->items + i, ioff -
1034                                      (BTRFS_LEAF_DATA_SIZE(root) -
1035                                       btrfs_item_offset(left->items +
1036                                                         old_left_nritems - 1)));
1037         }
1038         btrfs_set_header_nritems(&left->header, old_left_nritems + push_items);
1039
1040         /* fixup right node */
1041         push_space = btrfs_item_offset(right->items + push_items - 1) -
1042                      leaf_data_end(root, right);
1043         btrfs_memmove(root, right, btrfs_leaf_data(right) +
1044                       BTRFS_LEAF_DATA_SIZE(root) - push_space,
1045                       btrfs_leaf_data(right) +
1046                       leaf_data_end(root, right), push_space);
1047         btrfs_memmove(root, right, right->items, right->items + push_items,
1048                 (btrfs_header_nritems(&right->header) - push_items) *
1049                 sizeof(struct btrfs_item));
1050         btrfs_set_header_nritems(&right->header,
1051                                  btrfs_header_nritems(&right->header) -
1052                                  push_items);
1053         push_space = BTRFS_LEAF_DATA_SIZE(root);
1054
1055         for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
1056                 btrfs_set_item_offset(right->items + i, push_space -
1057                                       btrfs_item_size(right->items + i));
1058                 push_space = btrfs_item_offset(right->items + i);
1059         }
1060
1061         btrfs_mark_buffer_dirty(t);
1062         btrfs_mark_buffer_dirty(right_buf);
1063
1064         wret = fixup_low_keys(trans, root, path, &right->items[0].key, 1);
1065         if (wret)
1066                 ret = wret;
1067
1068         /* then fixup the leaf pointer in the path */
1069         if (path->slots[0] < push_items) {
1070                 path->slots[0] += old_left_nritems;
1071                 btrfs_block_release(root, path->nodes[0]);
1072                 path->nodes[0] = t;
1073                 path->slots[1] -= 1;
1074         } else {
1075                 btrfs_block_release(root, t);
1076                 path->slots[0] -= push_items;
1077         }
1078         BUG_ON(path->slots[0] < 0);
1079         return ret;
1080 }
1081
1082 /*
1083  * split the path's leaf in two, making sure there is at least data_size
1084  * available for the resulting leaf level of the path.
1085  *
1086  * returns 0 if all went well and < 0 on failure.
1087  */
1088 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
1089                       *root, struct btrfs_key *ins_key,
1090                       struct btrfs_path *path, int data_size)
1091 {
1092         struct buffer_head *l_buf;
1093         struct btrfs_leaf *l;
1094         u32 nritems;
1095         int mid;
1096         int slot;
1097         struct btrfs_leaf *right;
1098         struct buffer_head *right_buffer;
1099         int space_needed = data_size + sizeof(struct btrfs_item);
1100         int data_copy_size;
1101         int rt_data_off;
1102         int i;
1103         int ret = 0;
1104         int wret;
1105         int double_split = 0;
1106         struct btrfs_disk_key disk_key;
1107
1108         /* first try to make some room by pushing left and right */
1109         wret = push_leaf_left(trans, root, path, data_size);
1110         if (wret < 0)
1111                 return wret;
1112         if (wret) {
1113                 wret = push_leaf_right(trans, root, path, data_size);
1114                 if (wret < 0)
1115                         return wret;
1116         }
1117         l_buf = path->nodes[0];
1118         l = btrfs_buffer_leaf(l_buf);
1119
1120         /* did the pushes work? */
1121         if (btrfs_leaf_free_space(root, l) >=
1122             sizeof(struct btrfs_item) + data_size)
1123                 return 0;
1124
1125         if (!path->nodes[1]) {
1126                 ret = insert_new_root(trans, root, path, 1);
1127                 if (ret)
1128                         return ret;
1129         }
1130         slot = path->slots[0];
1131         nritems = btrfs_header_nritems(&l->header);
1132         mid = (nritems + 1)/ 2;
1133         right_buffer = btrfs_alloc_free_block(trans, root);
1134         BUG_ON(!right_buffer);
1135         right = btrfs_buffer_leaf(right_buffer);
1136         memset(&right->header, 0, sizeof(right->header));
1137         btrfs_set_header_blocknr(&right->header, right_buffer->b_blocknr);
1138         btrfs_set_header_generation(&right->header, trans->transid);
1139         btrfs_set_header_level(&right->header, 0);
1140         btrfs_set_header_parentid(&right->header,
1141               btrfs_header_parentid(btrfs_buffer_header(root->node)));
1142         if (mid <= slot) {
1143                 if (nritems == 1 ||
1144                     leaf_space_used(l, mid, nritems - mid) + space_needed >
1145                         BTRFS_LEAF_DATA_SIZE(root)) {
1146                         if (slot >= nritems) {
1147                                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
1148                                 btrfs_set_header_nritems(&right->header, 0);
1149                                 wret = insert_ptr(trans, root, path,
1150                                                   &disk_key,
1151                                                   right_buffer->b_blocknr,
1152                                                   path->slots[1] + 1, 1);
1153                                 if (wret)
1154                                         ret = wret;
1155                                 btrfs_block_release(root, path->nodes[0]);
1156                                 path->nodes[0] = right_buffer;
1157                                 path->slots[0] = 0;
1158                                 path->slots[1] += 1;
1159                                 return ret;
1160                         }
1161                         mid = slot;
1162                         double_split = 1;
1163                 }
1164         } else {
1165                 if (leaf_space_used(l, 0, mid + 1) + space_needed >
1166                         BTRFS_LEAF_DATA_SIZE(root)) {
1167                         if (slot == 0) {
1168                                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
1169                                 btrfs_set_header_nritems(&right->header, 0);
1170                                 wret = insert_ptr(trans, root, path,
1171                                                   &disk_key,
1172                                                   right_buffer->b_blocknr,
1173                                                   path->slots[1] - 1, 1);
1174                                 if (wret)
1175                                         ret = wret;
1176                                 btrfs_block_release(root, path->nodes[0]);
1177                                 path->nodes[0] = right_buffer;
1178                                 path->slots[0] = 0;
1179                                 path->slots[1] -= 1;
1180                                 return ret;
1181                         }
1182                         mid = slot;
1183                         double_split = 1;
1184                 }
1185         }
1186         btrfs_set_header_nritems(&right->header, nritems - mid);
1187         data_copy_size = btrfs_item_end(l->items + mid) -
1188                          leaf_data_end(root, l);
1189         btrfs_memcpy(root, right, right->items, l->items + mid,
1190                      (nritems - mid) * sizeof(struct btrfs_item));
1191         btrfs_memcpy(root, right,
1192                      btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
1193                      data_copy_size, btrfs_leaf_data(l) +
1194                      leaf_data_end(root, l), data_copy_size);
1195         rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
1196                       btrfs_item_end(l->items + mid);
1197
1198         for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
1199                 u32 ioff = btrfs_item_offset(right->items + i);
1200                 btrfs_set_item_offset(right->items + i, ioff + rt_data_off);
1201         }
1202
1203         btrfs_set_header_nritems(&l->header, mid);
1204         ret = 0;
1205         wret = insert_ptr(trans, root, path, &right->items[0].key,
1206                           right_buffer->b_blocknr, path->slots[1] + 1, 1);
1207         if (wret)
1208                 ret = wret;
1209         btrfs_mark_buffer_dirty(right_buffer);
1210         btrfs_mark_buffer_dirty(l_buf);
1211         BUG_ON(path->slots[0] != slot);
1212         if (mid <= slot) {
1213                 btrfs_block_release(root, path->nodes[0]);
1214                 path->nodes[0] = right_buffer;
1215                 path->slots[0] -= mid;
1216                 path->slots[1] += 1;
1217         } else
1218                 btrfs_block_release(root, right_buffer);
1219         BUG_ON(path->slots[0] < 0);
1220
1221         if (!double_split)
1222                 return ret;
1223         right_buffer = btrfs_alloc_free_block(trans, root);
1224         BUG_ON(!right_buffer);
1225         right = btrfs_buffer_leaf(right_buffer);
1226         memset(&right->header, 0, sizeof(right->header));
1227         btrfs_set_header_blocknr(&right->header, right_buffer->b_blocknr);
1228         btrfs_set_header_generation(&right->header, trans->transid);
1229         btrfs_set_header_level(&right->header, 0);
1230         btrfs_set_header_parentid(&right->header,
1231               btrfs_header_parentid(btrfs_buffer_header(root->node)));
1232         btrfs_cpu_key_to_disk(&disk_key, ins_key);
1233         btrfs_set_header_nritems(&right->header, 0);
1234         wret = insert_ptr(trans, root, path,
1235                           &disk_key,
1236                           right_buffer->b_blocknr,
1237                           path->slots[1], 1);
1238         if (wret)
1239                 ret = wret;
1240         btrfs_block_release(root, path->nodes[0]);
1241         path->nodes[0] = right_buffer;
1242         path->slots[0] = 0;
1243         check_node(root, path, 1);
1244         check_leaf(root, path, 0);
1245         return ret;
1246 }
1247
1248 /*
1249  * Given a key and some data, insert an item into the tree.
1250  * This does all the path init required, making room in the tree if needed.
1251  */
1252 int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, struct btrfs_root
1253                             *root, struct btrfs_path *path, struct btrfs_key
1254                             *cpu_key, u32 data_size)
1255 {
1256         int ret = 0;
1257         int slot;
1258         int slot_orig;
1259         struct btrfs_leaf *leaf;
1260         struct buffer_head *leaf_buf;
1261         u32 nritems;
1262         unsigned int data_end;
1263         struct btrfs_disk_key disk_key;
1264
1265         btrfs_cpu_key_to_disk(&disk_key, cpu_key);
1266
1267         /* create a root if there isn't one */
1268         if (!root->node)
1269                 BUG();
1270         ret = btrfs_search_slot(trans, root, cpu_key, path, data_size, 1);
1271         if (ret == 0) {
1272                 return -EEXIST;
1273         }
1274         if (ret < 0)
1275                 goto out;
1276
1277         slot_orig = path->slots[0];
1278         leaf_buf = path->nodes[0];
1279         leaf = btrfs_buffer_leaf(leaf_buf);
1280
1281         nritems = btrfs_header_nritems(&leaf->header);
1282         data_end = leaf_data_end(root, leaf);
1283
1284         if (btrfs_leaf_free_space(root, leaf) <
1285             sizeof(struct btrfs_item) + data_size) {
1286                 BUG();
1287         }
1288         slot = path->slots[0];
1289         BUG_ON(slot < 0);
1290         if (slot != nritems) {
1291                 int i;
1292                 unsigned int old_data = btrfs_item_end(leaf->items + slot);
1293
1294                 /*
1295                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
1296                  */
1297                 /* first correct the data pointers */
1298                 for (i = slot; i < nritems; i++) {
1299                         u32 ioff = btrfs_item_offset(leaf->items + i);
1300                         btrfs_set_item_offset(leaf->items + i,
1301                                               ioff - data_size);
1302                 }
1303
1304                 /* shift the items */
1305                 btrfs_memmove(root, leaf, leaf->items + slot + 1,
1306                               leaf->items + slot,
1307                               (nritems - slot) * sizeof(struct btrfs_item));
1308
1309                 /* shift the data */
1310                 btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
1311                               data_end - data_size, btrfs_leaf_data(leaf) +
1312                               data_end, old_data - data_end);
1313                 data_end = old_data;
1314         }
1315         /* setup the item for the new data */
1316         btrfs_memcpy(root, leaf, &leaf->items[slot].key, &disk_key,
1317                      sizeof(struct btrfs_disk_key));
1318         btrfs_set_item_offset(leaf->items + slot, data_end - data_size);
1319         btrfs_set_item_size(leaf->items + slot, data_size);
1320         btrfs_set_header_nritems(&leaf->header, nritems + 1);
1321         btrfs_mark_buffer_dirty(leaf_buf);
1322
1323         ret = 0;
1324         if (slot == 0)
1325                 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
1326
1327         if (btrfs_leaf_free_space(root, leaf) < 0)
1328                 BUG();
1329         check_leaf(root, path, 0);
1330 out:
1331         return ret;
1332 }
1333
1334 /*
1335  * Given a key and some data, insert an item into the tree.
1336  * This does all the path init required, making room in the tree if needed.
1337  */
1338 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
1339                       *root, struct btrfs_key *cpu_key, void *data, u32
1340                       data_size)
1341 {
1342         int ret = 0;
1343         struct btrfs_path *path;
1344         u8 *ptr;
1345
1346         path = btrfs_alloc_path();
1347         BUG_ON(!path);
1348         btrfs_init_path(path);
1349         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
1350         if (!ret) {
1351                 ptr = btrfs_item_ptr(btrfs_buffer_leaf(path->nodes[0]),
1352                                      path->slots[0], u8);
1353                 btrfs_memcpy(root, path->nodes[0]->b_data,
1354                              ptr, data, data_size);
1355                 btrfs_mark_buffer_dirty(path->nodes[0]);
1356         }
1357         btrfs_release_path(root, path);
1358         btrfs_free_path(path);
1359         return ret;
1360 }
1361
1362 /*
1363  * delete the pointer from a given node.
1364  *
1365  * If the delete empties a node, the node is removed from the tree,
1366  * continuing all the way the root if required.  The root is converted into
1367  * a leaf if all the nodes are emptied.
1368  */
1369 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1370                    struct btrfs_path *path, int level, int slot)
1371 {
1372         struct btrfs_node *node;
1373         struct buffer_head *parent = path->nodes[level];
1374         u32 nritems;
1375         int ret = 0;
1376         int wret;
1377
1378         node = btrfs_buffer_node(parent);
1379         nritems = btrfs_header_nritems(&node->header);
1380         if (slot != nritems -1) {
1381                 btrfs_memmove(root, node, node->ptrs + slot,
1382                               node->ptrs + slot + 1,
1383                               sizeof(struct btrfs_key_ptr) *
1384                               (nritems - slot - 1));
1385         }
1386         nritems--;
1387         btrfs_set_header_nritems(&node->header, nritems);
1388         if (nritems == 0 && parent == root->node) {
1389                 struct btrfs_header *header = btrfs_buffer_header(root->node);
1390                 BUG_ON(btrfs_header_level(header) != 1);
1391                 /* just turn the root into a leaf and break */
1392                 btrfs_set_header_level(header, 0);
1393         } else if (slot == 0) {
1394                 wret = fixup_low_keys(trans, root, path, &node->ptrs[0].key,
1395                                       level + 1);
1396                 if (wret)
1397                         ret = wret;
1398         }
1399         btrfs_mark_buffer_dirty(parent);
1400         return ret;
1401 }
1402
1403 /*
1404  * delete the item at the leaf level in path.  If that empties
1405  * the leaf, remove it from the tree
1406  */
1407 int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1408                    struct btrfs_path *path)
1409 {
1410         int slot;
1411         struct btrfs_leaf *leaf;
1412         struct buffer_head *leaf_buf;
1413         int doff;
1414         int dsize;
1415         int ret = 0;
1416         int wret;
1417         u32 nritems;
1418
1419         leaf_buf = path->nodes[0];
1420         leaf = btrfs_buffer_leaf(leaf_buf);
1421         slot = path->slots[0];
1422         doff = btrfs_item_offset(leaf->items + slot);
1423         dsize = btrfs_item_size(leaf->items + slot);
1424         nritems = btrfs_header_nritems(&leaf->header);
1425
1426         if (slot != nritems - 1) {
1427                 int i;
1428                 int data_end = leaf_data_end(root, leaf);
1429                 btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
1430                               data_end + dsize,
1431                               btrfs_leaf_data(leaf) + data_end,
1432                               doff - data_end);
1433                 for (i = slot + 1; i < nritems; i++) {
1434                         u32 ioff = btrfs_item_offset(leaf->items + i);
1435                         btrfs_set_item_offset(leaf->items + i, ioff + dsize);
1436                 }
1437                 btrfs_memmove(root, leaf, leaf->items + slot,
1438                               leaf->items + slot + 1,
1439                               sizeof(struct btrfs_item) *
1440                               (nritems - slot - 1));
1441         }
1442         btrfs_set_header_nritems(&leaf->header, nritems - 1);
1443         nritems--;
1444         /* delete the leaf if we've emptied it */
1445         if (nritems == 0) {
1446                 if (leaf_buf == root->node) {
1447                         btrfs_set_header_level(&leaf->header, 0);
1448                 } else {
1449                         clean_tree_block(trans, root, leaf_buf);
1450                         wait_on_buffer(leaf_buf);
1451                         wret = del_ptr(trans, root, path, 1, path->slots[1]);
1452                         if (wret)
1453                                 ret = wret;
1454                         wret = btrfs_free_extent(trans, root,
1455                                                  leaf_buf->b_blocknr, 1, 1);
1456                         if (wret)
1457                                 ret = wret;
1458                 }
1459         } else {
1460                 int used = leaf_space_used(leaf, 0, nritems);
1461                 if (slot == 0) {
1462                         wret = fixup_low_keys(trans, root, path,
1463                                               &leaf->items[0].key, 1);
1464                         if (wret)
1465                                 ret = wret;
1466                 }
1467
1468                 /* delete the leaf if it is mostly empty */
1469                 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
1470                         /* push_leaf_left fixes the path.
1471                          * make sure the path still points to our leaf
1472                          * for possible call to del_ptr below
1473                          */
1474                         slot = path->slots[1];
1475                         get_bh(leaf_buf);
1476                         wret = push_leaf_left(trans, root, path, 1);
1477                         if (wret < 0)
1478                                 ret = wret;
1479                         if (path->nodes[0] == leaf_buf &&
1480                             btrfs_header_nritems(&leaf->header)) {
1481                                 wret = push_leaf_right(trans, root, path, 1);
1482                                 if (wret < 0)
1483                                         ret = wret;
1484                         }
1485                         if (btrfs_header_nritems(&leaf->header) == 0) {
1486                                 u64 blocknr = leaf_buf->b_blocknr;
1487                                 clean_tree_block(trans, root, leaf_buf);
1488                                 wait_on_buffer(leaf_buf);
1489                                 wret = del_ptr(trans, root, path, 1, slot);
1490                                 if (wret)
1491                                         ret = wret;
1492                                 btrfs_block_release(root, leaf_buf);
1493                                 wret = btrfs_free_extent(trans, root, blocknr,
1494                                                          1, 1);
1495                                 if (wret)
1496                                         ret = wret;
1497                         } else {
1498                                 btrfs_mark_buffer_dirty(leaf_buf);
1499                                 btrfs_block_release(root, leaf_buf);
1500                         }
1501                 } else {
1502                         btrfs_mark_buffer_dirty(leaf_buf);
1503                 }
1504         }
1505         return ret;
1506 }
1507
1508 /*
1509  * walk up the tree as far as required to find the next leaf.
1510  * returns 0 if it found something or 1 if there are no greater leaves.
1511  * returns < 0 on io errors.
1512  */
1513 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
1514 {
1515         int slot;
1516         int level = 1;
1517         u64 blocknr;
1518         struct buffer_head *c;
1519         struct btrfs_node *c_node;
1520         struct buffer_head *next = NULL;
1521
1522         while(level < BTRFS_MAX_LEVEL) {
1523                 if (!path->nodes[level])
1524                         return 1;
1525                 slot = path->slots[level] + 1;
1526                 c = path->nodes[level];
1527                 c_node = btrfs_buffer_node(c);
1528                 if (slot >= btrfs_header_nritems(&c_node->header)) {
1529                         level++;
1530                         continue;
1531                 }
1532                 blocknr = btrfs_node_blockptr(c_node, slot);
1533                 if (next)
1534                         btrfs_block_release(root, next);
1535                 next = read_tree_block(root, blocknr);
1536                 break;
1537         }
1538         path->slots[level] = slot;
1539         while(1) {
1540                 level--;
1541                 c = path->nodes[level];
1542                 btrfs_block_release(root, c);
1543                 path->nodes[level] = next;
1544                 path->slots[level] = 0;
1545                 if (!level)
1546                         break;
1547                 next = read_tree_block(root,
1548                        btrfs_node_blockptr(btrfs_buffer_node(next), 0));
1549         }
1550         return 0;
1551 }