4 * Basic PIO and command management functionality.
6 * This code was split off from ide.c. See ide.c for history and original
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/hdreg.h>
44 #include <linux/completion.h>
45 #include <linux/reboot.h>
46 #include <linux/cdrom.h>
47 #include <linux/seq_file.h>
48 #include <linux/device.h>
49 #include <linux/kmod.h>
50 #include <linux/scatterlist.h>
51 #include <linux/bitops.h>
53 #include <asm/byteorder.h>
55 #include <asm/uaccess.h>
58 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
59 int uptodate, unsigned int nr_bytes, int dequeue)
65 error = uptodate ? uptodate : -EIO;
68 * if failfast is set on a request, override number of sectors and
69 * complete the whole request right now
71 if (blk_noretry_request(rq) && error)
72 nr_bytes = rq->hard_nr_sectors << 9;
74 if (!blk_fs_request(rq) && error && !rq->errors)
78 * decide whether to reenable DMA -- 3 is a random magic for now,
79 * if we DMA timeout more than 3 times, just stay in PIO
81 if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
86 if (!__blk_end_request(rq, error, nr_bytes)) {
88 HWGROUP(drive)->rq = NULL;
96 * ide_end_request - complete an IDE I/O
97 * @drive: IDE device for the I/O
99 * @nr_sectors: number of sectors completed
101 * This is our end_request wrapper function. We complete the I/O
102 * update random number input and dequeue the request, which if
103 * it was tagged may be out of order.
106 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
108 unsigned int nr_bytes = nr_sectors << 9;
114 * room for locking improvements here, the calls below don't
115 * need the queue lock held at all
117 spin_lock_irqsave(&ide_lock, flags);
118 rq = HWGROUP(drive)->rq;
121 if (blk_pc_request(rq))
122 nr_bytes = rq->data_len;
124 nr_bytes = rq->hard_cur_sectors << 9;
127 ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
129 spin_unlock_irqrestore(&ide_lock, flags);
132 EXPORT_SYMBOL(ide_end_request);
135 * Power Management state machine. This one is rather trivial for now,
136 * we should probably add more, like switching back to PIO on suspend
137 * to help some BIOSes, re-do the door locking on resume, etc...
141 ide_pm_flush_cache = ide_pm_state_start_suspend,
144 idedisk_pm_restore_pio = ide_pm_state_start_resume,
149 static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
151 struct request_pm_state *pm = rq->data;
153 if (drive->media != ide_disk)
156 switch (pm->pm_step) {
157 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) complete */
158 if (pm->pm_state == PM_EVENT_FREEZE)
159 pm->pm_step = ide_pm_state_completed;
161 pm->pm_step = idedisk_pm_standby;
163 case idedisk_pm_standby: /* Suspend step 2 (standby) complete */
164 pm->pm_step = ide_pm_state_completed;
166 case idedisk_pm_restore_pio: /* Resume step 1 complete */
167 pm->pm_step = idedisk_pm_idle;
169 case idedisk_pm_idle: /* Resume step 2 (idle) complete */
170 pm->pm_step = ide_pm_restore_dma;
175 static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
177 struct request_pm_state *pm = rq->data;
178 ide_task_t *args = rq->special;
180 memset(args, 0, sizeof(*args));
182 switch (pm->pm_step) {
183 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) */
184 if (drive->media != ide_disk)
186 /* Not supported? Switch to next step now. */
187 if (!drive->wcache || ata_id_flush_enabled(drive->id) == 0) {
188 ide_complete_power_step(drive, rq, 0, 0);
191 if (ata_id_flush_ext_enabled(drive->id))
192 args->tf.command = ATA_CMD_FLUSH_EXT;
194 args->tf.command = ATA_CMD_FLUSH;
197 case idedisk_pm_standby: /* Suspend step 2 (standby) */
198 args->tf.command = ATA_CMD_STANDBYNOW1;
201 case idedisk_pm_restore_pio: /* Resume step 1 (restore PIO) */
202 ide_set_max_pio(drive);
204 * skip idedisk_pm_idle for ATAPI devices
206 if (drive->media != ide_disk)
207 pm->pm_step = ide_pm_restore_dma;
209 ide_complete_power_step(drive, rq, 0, 0);
212 case idedisk_pm_idle: /* Resume step 2 (idle) */
213 args->tf.command = ATA_CMD_IDLEIMMEDIATE;
216 case ide_pm_restore_dma: /* Resume step 3 (restore DMA) */
218 * Right now, all we do is call ide_set_dma(drive),
219 * we could be smarter and check for current xfer_speed
220 * in struct drive etc...
222 if (drive->hwif->dma_ops == NULL)
225 * TODO: respect ->using_dma setting
230 pm->pm_step = ide_pm_state_completed;
234 args->tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
235 args->data_phase = TASKFILE_NO_DATA;
236 return do_rw_taskfile(drive, args);
240 * ide_end_dequeued_request - complete an IDE I/O
241 * @drive: IDE device for the I/O
243 * @nr_sectors: number of sectors completed
245 * Complete an I/O that is no longer on the request queue. This
246 * typically occurs when we pull the request and issue a REQUEST_SENSE.
247 * We must still finish the old request but we must not tamper with the
248 * queue in the meantime.
250 * NOTE: This path does not handle barrier, but barrier is not supported
254 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
255 int uptodate, int nr_sectors)
260 spin_lock_irqsave(&ide_lock, flags);
261 BUG_ON(!blk_rq_started(rq));
262 ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
263 spin_unlock_irqrestore(&ide_lock, flags);
267 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
271 * ide_complete_pm_request - end the current Power Management request
272 * @drive: target drive
275 * This function cleans up the current PM request and stops the queue
278 static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
283 printk("%s: completing PM request, %s\n", drive->name,
284 blk_pm_suspend_request(rq) ? "suspend" : "resume");
286 spin_lock_irqsave(&ide_lock, flags);
287 if (blk_pm_suspend_request(rq)) {
288 blk_stop_queue(drive->queue);
291 blk_start_queue(drive->queue);
293 HWGROUP(drive)->rq = NULL;
294 if (__blk_end_request(rq, 0, 0))
296 spin_unlock_irqrestore(&ide_lock, flags);
300 * ide_end_drive_cmd - end an explicit drive command
305 * Clean up after success/failure of an explicit drive command.
306 * These get thrown onto the queue so they are synchronized with
307 * real I/O operations on the drive.
309 * In LBA48 mode we have to read the register set twice to get
310 * all the extra information out.
313 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
318 spin_lock_irqsave(&ide_lock, flags);
319 rq = HWGROUP(drive)->rq;
320 spin_unlock_irqrestore(&ide_lock, flags);
322 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
323 ide_task_t *task = (ide_task_t *)rq->special;
326 rq->errors = !OK_STAT(stat, ATA_DRDY, BAD_STAT);
329 struct ide_taskfile *tf = &task->tf;
334 drive->hwif->tp_ops->tf_read(drive, task);
336 if (task->tf_flags & IDE_TFLAG_DYN)
339 } else if (blk_pm_request(rq)) {
340 struct request_pm_state *pm = rq->data;
342 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
343 drive->name, rq->pm->pm_step, stat, err);
345 ide_complete_power_step(drive, rq, stat, err);
346 if (pm->pm_step == ide_pm_state_completed)
347 ide_complete_pm_request(drive, rq);
351 spin_lock_irqsave(&ide_lock, flags);
352 HWGROUP(drive)->rq = NULL;
354 if (unlikely(__blk_end_request(rq, (rq->errors ? -EIO : 0),
357 spin_unlock_irqrestore(&ide_lock, flags);
360 EXPORT_SYMBOL(ide_end_drive_cmd);
362 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
367 drv = *(ide_driver_t **)rq->rq_disk->private_data;
368 drv->end_request(drive, 0, 0);
370 ide_end_request(drive, 0, 0);
373 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
375 ide_hwif_t *hwif = drive->hwif;
377 if ((stat & ATA_BUSY) || ((stat & ATA_DF) && !drive->nowerr)) {
378 /* other bits are useless when BUSY */
379 rq->errors |= ERROR_RESET;
380 } else if (stat & ATA_ERR) {
381 /* err has different meaning on cdrom and tape */
382 if (err == ATA_ABORTED) {
383 if (drive->select.b.lba &&
384 /* some newer drives don't support ATA_CMD_INIT_DEV_PARAMS */
385 hwif->tp_ops->read_status(hwif) == ATA_CMD_INIT_DEV_PARAMS)
387 } else if ((err & BAD_CRC) == BAD_CRC) {
388 /* UDMA crc error, just retry the operation */
390 } else if (err & (ATA_BBK | ATA_UNC)) {
391 /* retries won't help these */
392 rq->errors = ERROR_MAX;
393 } else if (err & ATA_TRK0NF) {
394 /* help it find track zero */
395 rq->errors |= ERROR_RECAL;
399 if ((stat & ATA_DRQ) && rq_data_dir(rq) == READ &&
400 (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0) {
401 int nsect = drive->mult_count ? drive->mult_count : 1;
403 ide_pad_transfer(drive, READ, nsect * SECTOR_SIZE);
406 if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
407 ide_kill_rq(drive, rq);
411 if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
412 rq->errors |= ERROR_RESET;
414 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
416 return ide_do_reset(drive);
419 if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
420 drive->special.b.recalibrate = 1;
427 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
429 ide_hwif_t *hwif = drive->hwif;
431 if ((stat & ATA_BUSY) || ((stat & ATA_DF) && !drive->nowerr)) {
432 /* other bits are useless when BUSY */
433 rq->errors |= ERROR_RESET;
435 /* add decoding error stuff */
438 if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
440 hwif->tp_ops->exec_command(hwif, ATA_CMD_IDLEIMMEDIATE);
442 if (rq->errors >= ERROR_MAX) {
443 ide_kill_rq(drive, rq);
445 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
447 return ide_do_reset(drive);
456 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
458 if (drive->media == ide_disk)
459 return ide_ata_error(drive, rq, stat, err);
460 return ide_atapi_error(drive, rq, stat, err);
463 EXPORT_SYMBOL_GPL(__ide_error);
466 * ide_error - handle an error on the IDE
467 * @drive: drive the error occurred on
468 * @msg: message to report
471 * ide_error() takes action based on the error returned by the drive.
472 * For normal I/O that may well include retries. We deal with
473 * both new-style (taskfile) and old style command handling here.
474 * In the case of taskfile command handling there is work left to
478 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
483 err = ide_dump_status(drive, msg, stat);
485 if ((rq = HWGROUP(drive)->rq) == NULL)
488 /* retry only "normal" I/O: */
489 if (!blk_fs_request(rq)) {
491 ide_end_drive_cmd(drive, stat, err);
498 drv = *(ide_driver_t **)rq->rq_disk->private_data;
499 return drv->error(drive, rq, stat, err);
501 return __ide_error(drive, rq, stat, err);
504 EXPORT_SYMBOL_GPL(ide_error);
506 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
508 tf->nsect = drive->sect;
509 tf->lbal = drive->sect;
510 tf->lbam = drive->cyl;
511 tf->lbah = drive->cyl >> 8;
512 tf->device = ((drive->head - 1) | drive->select.all) & ~ATA_LBA;
513 tf->command = ATA_CMD_INIT_DEV_PARAMS;
516 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
518 tf->nsect = drive->sect;
519 tf->command = ATA_CMD_RESTORE;
522 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
524 tf->nsect = drive->mult_req;
525 tf->command = ATA_CMD_SET_MULTI;
528 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
530 special_t *s = &drive->special;
533 memset(&args, 0, sizeof(ide_task_t));
534 args.data_phase = TASKFILE_NO_DATA;
536 if (s->b.set_geometry) {
537 s->b.set_geometry = 0;
538 ide_tf_set_specify_cmd(drive, &args.tf);
539 } else if (s->b.recalibrate) {
540 s->b.recalibrate = 0;
541 ide_tf_set_restore_cmd(drive, &args.tf);
542 } else if (s->b.set_multmode) {
543 s->b.set_multmode = 0;
544 ide_tf_set_setmult_cmd(drive, &args.tf);
546 int special = s->all;
548 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
552 args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
553 IDE_TFLAG_CUSTOM_HANDLER;
555 do_rw_taskfile(drive, &args);
561 * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
563 static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
572 return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
575 return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
578 return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
585 * do_special - issue some special commands
586 * @drive: drive the command is for
588 * do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
589 * ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
591 * It used to do much more, but has been scaled back.
594 static ide_startstop_t do_special (ide_drive_t *drive)
596 special_t *s = &drive->special;
599 printk("%s: do_special: 0x%02x\n", drive->name, s->all);
602 ide_hwif_t *hwif = drive->hwif;
603 const struct ide_port_ops *port_ops = hwif->port_ops;
604 u8 req_pio = drive->tune_req;
608 if (set_pio_mode_abuse(drive->hwif, req_pio)) {
610 * take ide_lock for drive->[no_]unmask/[no_]io_32bit
612 if (req_pio == 8 || req_pio == 9) {
615 spin_lock_irqsave(&ide_lock, flags);
616 port_ops->set_pio_mode(drive, req_pio);
617 spin_unlock_irqrestore(&ide_lock, flags);
619 port_ops->set_pio_mode(drive, req_pio);
621 int keep_dma = drive->using_dma;
623 ide_set_pio(drive, req_pio);
625 if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
633 if (drive->media == ide_disk)
634 return ide_disk_special(drive);
642 void ide_map_sg(ide_drive_t *drive, struct request *rq)
644 ide_hwif_t *hwif = drive->hwif;
645 struct scatterlist *sg = hwif->sg_table;
647 if (hwif->sg_mapped) /* needed by ide-scsi */
650 if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
651 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
653 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
658 EXPORT_SYMBOL_GPL(ide_map_sg);
660 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
662 ide_hwif_t *hwif = drive->hwif;
664 hwif->nsect = hwif->nleft = rq->nr_sectors;
669 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
672 * execute_drive_command - issue special drive command
673 * @drive: the drive to issue the command on
674 * @rq: the request structure holding the command
676 * execute_drive_cmd() issues a special drive command, usually
677 * initiated by ioctl() from the external hdparm program. The
678 * command can be a drive command, drive task or taskfile
679 * operation. Weirdly you can call it with NULL to wait for
680 * all commands to finish. Don't do this as that is due to change
683 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
686 ide_hwif_t *hwif = HWIF(drive);
687 ide_task_t *task = rq->special;
690 hwif->data_phase = task->data_phase;
692 switch (hwif->data_phase) {
693 case TASKFILE_MULTI_OUT:
695 case TASKFILE_MULTI_IN:
697 ide_init_sg_cmd(drive, rq);
698 ide_map_sg(drive, rq);
703 return do_rw_taskfile(drive, task);
707 * NULL is actually a valid way of waiting for
708 * all current requests to be flushed from the queue.
711 printk("%s: DRIVE_CMD (null)\n", drive->name);
713 ide_end_drive_cmd(drive, hwif->tp_ops->read_status(hwif),
714 ide_read_error(drive));
719 int ide_devset_execute(ide_drive_t *drive, const struct ide_devset *setting,
722 struct request_queue *q = drive->queue;
726 if (!(setting->flags & DS_SYNC))
727 return setting->set(drive, arg);
729 rq = blk_get_request(q, READ, GFP_KERNEL);
733 rq->cmd_type = REQ_TYPE_SPECIAL;
735 rq->cmd[0] = REQ_DEVSET_EXEC;
736 *(int *)&rq->cmd[1] = arg;
737 rq->special = setting->set;
739 if (blk_execute_rq(q, NULL, rq, 0))
745 EXPORT_SYMBOL_GPL(ide_devset_execute);
747 static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
749 switch (rq->cmd[0]) {
750 case REQ_DEVSET_EXEC:
752 int err, (*setfunc)(ide_drive_t *, int) = rq->special;
754 err = setfunc(drive, *(int *)&rq->cmd[1]);
759 ide_end_request(drive, err, 0);
762 case REQ_DRIVE_RESET:
763 return ide_do_reset(drive);
765 blk_dump_rq_flags(rq, "ide_special_rq - bad request");
766 ide_end_request(drive, 0, 0);
771 static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
773 struct request_pm_state *pm = rq->data;
775 if (blk_pm_suspend_request(rq) &&
776 pm->pm_step == ide_pm_state_start_suspend)
777 /* Mark drive blocked when starting the suspend sequence. */
779 else if (blk_pm_resume_request(rq) &&
780 pm->pm_step == ide_pm_state_start_resume) {
782 * The first thing we do on wakeup is to wait for BSY bit to
783 * go away (with a looong timeout) as a drive on this hwif may
784 * just be POSTing itself.
785 * We do that before even selecting as the "other" device on
786 * the bus may be broken enough to walk on our toes at this
789 ide_hwif_t *hwif = drive->hwif;
792 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
794 rc = ide_wait_not_busy(hwif, 35000);
796 printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
798 hwif->tp_ops->set_irq(hwif, 1);
799 rc = ide_wait_not_busy(hwif, 100000);
801 printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
806 * start_request - start of I/O and command issuing for IDE
808 * start_request() initiates handling of a new I/O request. It
809 * accepts commands and I/O (read/write) requests.
811 * FIXME: this function needs a rename
814 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
816 ide_startstop_t startstop;
818 BUG_ON(!blk_rq_started(rq));
821 printk("%s: start_request: current=0x%08lx\n",
822 HWIF(drive)->name, (unsigned long) rq);
825 /* bail early if we've exceeded max_failures */
826 if (drive->max_failures && (drive->failures > drive->max_failures)) {
827 rq->cmd_flags |= REQ_FAILED;
831 if (blk_pm_request(rq))
832 ide_check_pm_state(drive, rq);
835 if (ide_wait_stat(&startstop, drive, drive->ready_stat,
836 ATA_BUSY | ATA_DRQ, WAIT_READY)) {
837 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
840 if (!drive->special.all) {
844 * We reset the drive so we need to issue a SETFEATURES.
845 * Do it _after_ do_special() restored device parameters.
847 if (drive->current_speed == 0xff)
848 ide_config_drive_speed(drive, drive->desired_speed);
850 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
851 return execute_drive_cmd(drive, rq);
852 else if (blk_pm_request(rq)) {
853 struct request_pm_state *pm = rq->data;
855 printk("%s: start_power_step(step: %d)\n",
856 drive->name, rq->pm->pm_step);
858 startstop = ide_start_power_step(drive, rq);
859 if (startstop == ide_stopped &&
860 pm->pm_step == ide_pm_state_completed)
861 ide_complete_pm_request(drive, rq);
863 } else if (!rq->rq_disk && blk_special_request(rq))
865 * TODO: Once all ULDs have been modified to
866 * check for specific op codes rather than
867 * blindly accepting any special request, the
868 * check for ->rq_disk above may be replaced
869 * by a more suitable mechanism or even
872 return ide_special_rq(drive, rq);
874 drv = *(ide_driver_t **)rq->rq_disk->private_data;
876 return drv->do_request(drive, rq, rq->sector);
878 return do_special(drive);
880 ide_kill_rq(drive, rq);
885 * ide_stall_queue - pause an IDE device
886 * @drive: drive to stall
887 * @timeout: time to stall for (jiffies)
889 * ide_stall_queue() can be used by a drive to give excess bandwidth back
890 * to the hwgroup by sleeping for timeout jiffies.
893 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
895 if (timeout > WAIT_WORSTCASE)
896 timeout = WAIT_WORSTCASE;
897 drive->sleep = timeout + jiffies;
901 EXPORT_SYMBOL(ide_stall_queue);
903 #define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time)
906 * choose_drive - select a drive to service
907 * @hwgroup: hardware group to select on
909 * choose_drive() selects the next drive which will be serviced.
910 * This is necessary because the IDE layer can't issue commands
911 * to both drives on the same cable, unlike SCSI.
914 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
916 ide_drive_t *drive, *best;
920 drive = hwgroup->drive;
923 * drive is doing pre-flush, ordered write, post-flush sequence. even
924 * though that is 3 requests, it must be seen as a single transaction.
925 * we must not preempt this drive until that is complete
927 if (blk_queue_flushing(drive->queue)) {
929 * small race where queue could get replugged during
930 * the 3-request flush cycle, just yank the plug since
931 * we want it to finish asap
933 blk_remove_plug(drive->queue);
938 if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
939 && !elv_queue_empty(drive->queue)) {
941 || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
942 || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
944 if (!blk_queue_plugged(drive->queue))
948 } while ((drive = drive->next) != hwgroup->drive);
949 if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
950 long t = (signed long)(WAKEUP(best) - jiffies);
951 if (t >= WAIT_MIN_SLEEP) {
953 * We *may* have some time to spare, but first let's see if
954 * someone can potentially benefit from our nice mood today..
959 && time_before(jiffies - best->service_time, WAKEUP(drive))
960 && time_before(WAKEUP(drive), jiffies + t))
962 ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
965 } while ((drive = drive->next) != best);
972 * Issue a new request to a drive from hwgroup
973 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
975 * A hwgroup is a serialized group of IDE interfaces. Usually there is
976 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
977 * may have both interfaces in a single hwgroup to "serialize" access.
978 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
979 * together into one hwgroup for serialized access.
981 * Note also that several hwgroups can end up sharing a single IRQ,
982 * possibly along with many other devices. This is especially common in
983 * PCI-based systems with off-board IDE controller cards.
985 * The IDE driver uses the single global ide_lock spinlock to protect
986 * access to the request queues, and to protect the hwgroup->busy flag.
988 * The first thread into the driver for a particular hwgroup sets the
989 * hwgroup->busy flag to indicate that this hwgroup is now active,
990 * and then initiates processing of the top request from the request queue.
992 * Other threads attempting entry notice the busy setting, and will simply
993 * queue their new requests and exit immediately. Note that hwgroup->busy
994 * remains set even when the driver is merely awaiting the next interrupt.
995 * Thus, the meaning is "this hwgroup is busy processing a request".
997 * When processing of a request completes, the completing thread or IRQ-handler
998 * will start the next request from the queue. If no more work remains,
999 * the driver will clear the hwgroup->busy flag and exit.
1001 * The ide_lock (spinlock) is used to protect all access to the
1002 * hwgroup->busy flag, but is otherwise not needed for most processing in
1003 * the driver. This makes the driver much more friendlier to shared IRQs
1004 * than previous designs, while remaining 100% (?) SMP safe and capable.
1006 static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1011 ide_startstop_t startstop;
1014 /* for atari only: POSSIBLY BROKEN HERE(?) */
1015 ide_get_lock(ide_intr, hwgroup);
1017 /* caller must own ide_lock */
1018 BUG_ON(!irqs_disabled());
1020 while (!hwgroup->busy) {
1022 drive = choose_drive(hwgroup);
1023 if (drive == NULL) {
1025 unsigned long sleep = 0; /* shut up, gcc */
1027 drive = hwgroup->drive;
1029 if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1031 sleep = drive->sleep;
1033 } while ((drive = drive->next) != hwgroup->drive);
1036 * Take a short snooze, and then wake up this hwgroup again.
1037 * This gives other hwgroups on the same a chance to
1038 * play fairly with us, just in case there are big differences
1039 * in relative throughputs.. don't want to hog the cpu too much.
1041 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1042 sleep = jiffies + WAIT_MIN_SLEEP;
1044 if (timer_pending(&hwgroup->timer))
1045 printk(KERN_CRIT "ide_set_handler: timer already active\n");
1047 /* so that ide_timer_expiry knows what to do */
1048 hwgroup->sleeping = 1;
1049 hwgroup->req_gen_timer = hwgroup->req_gen;
1050 mod_timer(&hwgroup->timer, sleep);
1051 /* we purposely leave hwgroup->busy==1
1054 /* Ugly, but how can we sleep for the lock
1055 * otherwise? perhaps from tq_disk?
1058 /* for atari only */
1063 /* no more work for this hwgroup (for now) */
1068 if (hwgroup->hwif->sharing_irq && hwif != hwgroup->hwif) {
1070 * set nIEN for previous hwif, drives in the
1071 * quirk_list may not like intr setups/cleanups
1073 if (drive->quirk_list != 1)
1074 hwif->tp_ops->set_irq(hwif, 0);
1076 hwgroup->hwif = hwif;
1077 hwgroup->drive = drive;
1078 drive->sleeping = 0;
1079 drive->service_start = jiffies;
1081 if (blk_queue_plugged(drive->queue)) {
1082 printk(KERN_ERR "ide: huh? queue was plugged!\n");
1087 * we know that the queue isn't empty, but this can happen
1088 * if the q->prep_rq_fn() decides to kill a request
1090 rq = elv_next_request(drive->queue);
1097 * Sanity: don't accept a request that isn't a PM request
1098 * if we are currently power managed. This is very important as
1099 * blk_stop_queue() doesn't prevent the elv_next_request()
1100 * above to return us whatever is in the queue. Since we call
1101 * ide_do_request() ourselves, we end up taking requests while
1102 * the queue is blocked...
1104 * We let requests forced at head of queue with ide-preempt
1105 * though. I hope that doesn't happen too much, hopefully not
1106 * unless the subdriver triggers such a thing in its own PM
1109 * We count how many times we loop here to make sure we service
1110 * all drives in the hwgroup without looping for ever
1112 if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
1113 drive = drive->next ? drive->next : hwgroup->drive;
1114 if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1116 /* We clear busy, there should be no pending ATA command at this point. */
1124 * Some systems have trouble with IDE IRQs arriving while
1125 * the driver is still setting things up. So, here we disable
1126 * the IRQ used by this interface while the request is being started.
1127 * This may look bad at first, but pretty much the same thing
1128 * happens anyway when any interrupt comes in, IDE or otherwise
1129 * -- the kernel masks the IRQ while it is being handled.
1131 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1132 disable_irq_nosync(hwif->irq);
1133 spin_unlock(&ide_lock);
1134 local_irq_enable_in_hardirq();
1135 /* allow other IRQs while we start this request */
1136 startstop = start_request(drive, rq);
1137 spin_lock_irq(&ide_lock);
1138 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1139 enable_irq(hwif->irq);
1140 if (startstop == ide_stopped)
1146 * Passes the stuff to ide_do_request
1148 void do_ide_request(struct request_queue *q)
1150 ide_drive_t *drive = q->queuedata;
1152 ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1156 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1157 * retry the current request in pio mode instead of risking tossing it
1160 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1162 ide_hwif_t *hwif = HWIF(drive);
1164 ide_startstop_t ret = ide_stopped;
1167 * end current dma transaction
1171 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1172 (void)hwif->dma_ops->dma_end(drive);
1173 ret = ide_error(drive, "dma timeout error",
1174 hwif->tp_ops->read_status(hwif));
1176 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1177 hwif->dma_ops->dma_timeout(drive);
1181 * disable dma for now, but remember that we did so because of
1182 * a timeout -- we'll reenable after we finish this next request
1183 * (or rather the first chunk of it) in pio.
1186 drive->state = DMA_PIO_RETRY;
1187 ide_dma_off_quietly(drive);
1190 * un-busy drive etc (hwgroup->busy is cleared on return) and
1191 * make sure request is sane
1193 rq = HWGROUP(drive)->rq;
1198 HWGROUP(drive)->rq = NULL;
1205 rq->sector = rq->bio->bi_sector;
1206 rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1207 rq->hard_cur_sectors = rq->current_nr_sectors;
1208 rq->buffer = bio_data(rq->bio);
1214 * ide_timer_expiry - handle lack of an IDE interrupt
1215 * @data: timer callback magic (hwgroup)
1217 * An IDE command has timed out before the expected drive return
1218 * occurred. At this point we attempt to clean up the current
1219 * mess. If the current handler includes an expiry handler then
1220 * we invoke the expiry handler, and providing it is happy the
1221 * work is done. If that fails we apply generic recovery rules
1222 * invoking the handler and checking the drive DMA status. We
1223 * have an excessively incestuous relationship with the DMA
1224 * logic that wants cleaning up.
1227 void ide_timer_expiry (unsigned long data)
1229 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data;
1230 ide_handler_t *handler;
1231 ide_expiry_t *expiry;
1232 unsigned long flags;
1233 unsigned long wait = -1;
1235 spin_lock_irqsave(&ide_lock, flags);
1237 if (((handler = hwgroup->handler) == NULL) ||
1238 (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1240 * Either a marginal timeout occurred
1241 * (got the interrupt just as timer expired),
1242 * or we were "sleeping" to give other devices a chance.
1243 * Either way, we don't really want to complain about anything.
1245 if (hwgroup->sleeping) {
1246 hwgroup->sleeping = 0;
1250 ide_drive_t *drive = hwgroup->drive;
1252 printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1253 hwgroup->handler = NULL;
1256 ide_startstop_t startstop = ide_stopped;
1257 if (!hwgroup->busy) {
1258 hwgroup->busy = 1; /* paranoia */
1259 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1261 if ((expiry = hwgroup->expiry) != NULL) {
1263 if ((wait = expiry(drive)) > 0) {
1265 hwgroup->timer.expires = jiffies + wait;
1266 hwgroup->req_gen_timer = hwgroup->req_gen;
1267 add_timer(&hwgroup->timer);
1268 spin_unlock_irqrestore(&ide_lock, flags);
1272 hwgroup->handler = NULL;
1274 * We need to simulate a real interrupt when invoking
1275 * the handler() function, which means we need to
1276 * globally mask the specific IRQ:
1278 spin_unlock(&ide_lock);
1280 /* disable_irq_nosync ?? */
1281 disable_irq(hwif->irq);
1283 * as if we were handling an interrupt */
1284 local_irq_disable();
1285 if (hwgroup->polling) {
1286 startstop = handler(drive);
1287 } else if (drive_is_ready(drive)) {
1288 if (drive->waiting_for_dma)
1289 hwif->dma_ops->dma_lost_irq(drive);
1290 (void)ide_ack_intr(hwif);
1291 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1292 startstop = handler(drive);
1294 if (drive->waiting_for_dma) {
1295 startstop = ide_dma_timeout_retry(drive, wait);
1298 ide_error(drive, "irq timeout",
1299 hwif->tp_ops->read_status(hwif));
1301 drive->service_time = jiffies - drive->service_start;
1302 spin_lock_irq(&ide_lock);
1303 enable_irq(hwif->irq);
1304 if (startstop == ide_stopped)
1308 ide_do_request(hwgroup, IDE_NO_IRQ);
1309 spin_unlock_irqrestore(&ide_lock, flags);
1313 * unexpected_intr - handle an unexpected IDE interrupt
1314 * @irq: interrupt line
1315 * @hwgroup: hwgroup being processed
1317 * There's nothing really useful we can do with an unexpected interrupt,
1318 * other than reading the status register (to clear it), and logging it.
1319 * There should be no way that an irq can happen before we're ready for it,
1320 * so we needn't worry much about losing an "important" interrupt here.
1322 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1323 * the drive enters "idle", "standby", or "sleep" mode, so if the status
1324 * looks "good", we just ignore the interrupt completely.
1326 * This routine assumes __cli() is in effect when called.
1328 * If an unexpected interrupt happens on irq15 while we are handling irq14
1329 * and if the two interfaces are "serialized" (CMD640), then it looks like
1330 * we could screw up by interfering with a new request being set up for
1333 * In reality, this is a non-issue. The new command is not sent unless
1334 * the drive is ready to accept one, in which case we know the drive is
1335 * not trying to interrupt us. And ide_set_handler() is always invoked
1336 * before completing the issuance of any new drive command, so we will not
1337 * be accidentally invoked as a result of any valid command completion
1340 * Note that we must walk the entire hwgroup here. We know which hwif
1341 * is doing the current command, but we don't know which hwif burped
1345 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1348 ide_hwif_t *hwif = hwgroup->hwif;
1351 * handle the unexpected interrupt
1354 if (hwif->irq == irq) {
1355 stat = hwif->tp_ops->read_status(hwif);
1357 if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
1358 /* Try to not flood the console with msgs */
1359 static unsigned long last_msgtime, count;
1361 if (time_after(jiffies, last_msgtime + HZ)) {
1362 last_msgtime = jiffies;
1363 printk(KERN_ERR "%s%s: unexpected interrupt, "
1364 "status=0x%02x, count=%ld\n",
1366 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1370 } while ((hwif = hwif->next) != hwgroup->hwif);
1374 * ide_intr - default IDE interrupt handler
1375 * @irq: interrupt number
1376 * @dev_id: hwif group
1377 * @regs: unused weirdness from the kernel irq layer
1379 * This is the default IRQ handler for the IDE layer. You should
1380 * not need to override it. If you do be aware it is subtle in
1383 * hwgroup->hwif is the interface in the group currently performing
1384 * a command. hwgroup->drive is the drive and hwgroup->handler is
1385 * the IRQ handler to call. As we issue a command the handlers
1386 * step through multiple states, reassigning the handler to the
1387 * next step in the process. Unlike a smart SCSI controller IDE
1388 * expects the main processor to sequence the various transfer
1389 * stages. We also manage a poll timer to catch up with most
1390 * timeout situations. There are still a few where the handlers
1391 * don't ever decide to give up.
1393 * The handler eventually returns ide_stopped to indicate the
1394 * request completed. At this point we issue the next request
1395 * on the hwgroup and the process begins again.
1398 irqreturn_t ide_intr (int irq, void *dev_id)
1400 unsigned long flags;
1401 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1404 ide_handler_t *handler;
1405 ide_startstop_t startstop;
1407 spin_lock_irqsave(&ide_lock, flags);
1408 hwif = hwgroup->hwif;
1410 if (!ide_ack_intr(hwif)) {
1411 spin_unlock_irqrestore(&ide_lock, flags);
1415 if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1417 * Not expecting an interrupt from this drive.
1418 * That means this could be:
1419 * (1) an interrupt from another PCI device
1420 * sharing the same PCI INT# as us.
1421 * or (2) a drive just entered sleep or standby mode,
1422 * and is interrupting to let us know.
1423 * or (3) a spurious interrupt of unknown origin.
1425 * For PCI, we cannot tell the difference,
1426 * so in that case we just ignore it and hope it goes away.
1428 * FIXME: unexpected_intr should be hwif-> then we can
1429 * remove all the ifdef PCI crap
1431 #ifdef CONFIG_BLK_DEV_IDEPCI
1432 if (hwif->chipset != ide_pci)
1433 #endif /* CONFIG_BLK_DEV_IDEPCI */
1436 * Probably not a shared PCI interrupt,
1437 * so we can safely try to do something about it:
1439 unexpected_intr(irq, hwgroup);
1440 #ifdef CONFIG_BLK_DEV_IDEPCI
1443 * Whack the status register, just in case
1444 * we have a leftover pending IRQ.
1446 (void)hwif->tp_ops->read_status(hwif);
1447 #endif /* CONFIG_BLK_DEV_IDEPCI */
1449 spin_unlock_irqrestore(&ide_lock, flags);
1452 drive = hwgroup->drive;
1455 * This should NEVER happen, and there isn't much
1456 * we could do about it here.
1458 * [Note - this can occur if the drive is hot unplugged]
1460 spin_unlock_irqrestore(&ide_lock, flags);
1463 if (!drive_is_ready(drive)) {
1465 * This happens regularly when we share a PCI IRQ with
1466 * another device. Unfortunately, it can also happen
1467 * with some buggy drives that trigger the IRQ before
1468 * their status register is up to date. Hopefully we have
1469 * enough advance overhead that the latter isn't a problem.
1471 spin_unlock_irqrestore(&ide_lock, flags);
1474 if (!hwgroup->busy) {
1475 hwgroup->busy = 1; /* paranoia */
1476 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1478 hwgroup->handler = NULL;
1480 del_timer(&hwgroup->timer);
1481 spin_unlock(&ide_lock);
1483 /* Some controllers might set DMA INTR no matter DMA or PIO;
1484 * bmdma status might need to be cleared even for
1485 * PIO interrupts to prevent spurious/lost irq.
1487 if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1488 /* ide_dma_end() needs bmdma status for error checking.
1489 * So, skip clearing bmdma status here and leave it
1490 * to ide_dma_end() if this is dma interrupt.
1492 hwif->ide_dma_clear_irq(drive);
1495 local_irq_enable_in_hardirq();
1496 /* service this interrupt, may set handler for next interrupt */
1497 startstop = handler(drive);
1498 spin_lock_irq(&ide_lock);
1501 * Note that handler() may have set things up for another
1502 * interrupt to occur soon, but it cannot happen until
1503 * we exit from this routine, because it will be the
1504 * same irq as is currently being serviced here, and Linux
1505 * won't allow another of the same (on any CPU) until we return.
1507 drive->service_time = jiffies - drive->service_start;
1508 if (startstop == ide_stopped) {
1509 if (hwgroup->handler == NULL) { /* paranoia */
1511 ide_do_request(hwgroup, hwif->irq);
1513 printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1514 "on exit\n", drive->name);
1517 spin_unlock_irqrestore(&ide_lock, flags);
1522 * ide_do_drive_cmd - issue IDE special command
1523 * @drive: device to issue command
1524 * @rq: request to issue
1526 * This function issues a special IDE device request
1527 * onto the request queue.
1529 * the rq is queued at the head of the request queue, displacing
1530 * the currently-being-processed request and this function
1531 * returns immediately without waiting for the new rq to be
1532 * completed. This is VERY DANGEROUS, and is intended for
1533 * careful use by the ATAPI tape/cdrom driver code.
1536 void ide_do_drive_cmd(ide_drive_t *drive, struct request *rq)
1538 unsigned long flags;
1539 ide_hwgroup_t *hwgroup = HWGROUP(drive);
1541 spin_lock_irqsave(&ide_lock, flags);
1543 __elv_add_request(drive->queue, rq, ELEVATOR_INSERT_FRONT, 1);
1544 __generic_unplug_device(drive->queue);
1545 spin_unlock_irqrestore(&ide_lock, flags);
1548 EXPORT_SYMBOL(ide_do_drive_cmd);
1550 void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1552 ide_hwif_t *hwif = drive->hwif;
1555 memset(&task, 0, sizeof(task));
1556 task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1557 IDE_TFLAG_OUT_FEATURE | tf_flags;
1558 task.tf.feature = dma; /* Use PIO/DMA */
1559 task.tf.lbam = bcount & 0xff;
1560 task.tf.lbah = (bcount >> 8) & 0xff;
1562 ide_tf_dump(drive->name, &task.tf);
1563 hwif->tp_ops->set_irq(hwif, 1);
1564 SELECT_MASK(drive, 0);
1565 hwif->tp_ops->tf_load(drive, &task);
1568 EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);
1570 void ide_pad_transfer(ide_drive_t *drive, int write, int len)
1572 ide_hwif_t *hwif = drive->hwif;
1577 hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
1579 hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
1583 EXPORT_SYMBOL_GPL(ide_pad_transfer);