4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/bug.h>
45 #include <asm/pgtable.h>
46 #include <asm/tlbflush.h>
47 #include <asm/mmu_context.h>
48 #include <asm/paravirt.h>
50 #include <asm/xen/hypercall.h>
51 #include <asm/xen/hypervisor.h>
54 #include <xen/interface/xen.h>
56 #include "multicalls.h"
59 #define P2M_ENTRIES_PER_PAGE (PAGE_SIZE / sizeof(unsigned long))
60 #define TOP_ENTRIES (MAX_DOMAIN_PAGES / P2M_ENTRIES_PER_PAGE)
62 /* Placeholder for holes in the address space */
63 static unsigned long p2m_missing[P2M_ENTRIES_PER_PAGE]
64 __attribute__((section(".data.page_aligned"))) =
65 { [ 0 ... P2M_ENTRIES_PER_PAGE-1 ] = ~0UL };
67 /* Array of pointers to pages containing p2m entries */
68 static unsigned long *p2m_top[TOP_ENTRIES]
69 __attribute__((section(".data.page_aligned"))) =
70 { [ 0 ... TOP_ENTRIES - 1] = &p2m_missing[0] };
72 /* Arrays of p2m arrays expressed in mfns used for save/restore */
73 static unsigned long p2m_top_mfn[TOP_ENTRIES]
74 __attribute__((section(".bss.page_aligned")));
76 static unsigned long p2m_top_mfn_list[
77 PAGE_ALIGN(TOP_ENTRIES / P2M_ENTRIES_PER_PAGE)]
78 __attribute__((section(".bss.page_aligned")));
80 static inline unsigned p2m_top_index(unsigned long pfn)
82 BUG_ON(pfn >= MAX_DOMAIN_PAGES);
83 return pfn / P2M_ENTRIES_PER_PAGE;
86 static inline unsigned p2m_index(unsigned long pfn)
88 return pfn % P2M_ENTRIES_PER_PAGE;
91 /* Build the parallel p2m_top_mfn structures */
92 void xen_setup_mfn_list_list(void)
96 for(pfn = 0; pfn < MAX_DOMAIN_PAGES; pfn += P2M_ENTRIES_PER_PAGE) {
97 unsigned topidx = p2m_top_index(pfn);
99 p2m_top_mfn[topidx] = virt_to_mfn(p2m_top[topidx]);
102 for(idx = 0; idx < ARRAY_SIZE(p2m_top_mfn_list); idx++) {
103 unsigned topidx = idx * P2M_ENTRIES_PER_PAGE;
104 p2m_top_mfn_list[idx] = virt_to_mfn(&p2m_top_mfn[topidx]);
107 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
109 HYPERVISOR_shared_info->arch.pfn_to_mfn_frame_list_list =
110 virt_to_mfn(p2m_top_mfn_list);
111 HYPERVISOR_shared_info->arch.max_pfn = xen_start_info->nr_pages;
114 /* Set up p2m_top to point to the domain-builder provided p2m pages */
115 void __init xen_build_dynamic_phys_to_machine(void)
117 unsigned long *mfn_list = (unsigned long *)xen_start_info->mfn_list;
118 unsigned long max_pfn = min(MAX_DOMAIN_PAGES, xen_start_info->nr_pages);
121 for(pfn = 0; pfn < max_pfn; pfn += P2M_ENTRIES_PER_PAGE) {
122 unsigned topidx = p2m_top_index(pfn);
124 p2m_top[topidx] = &mfn_list[pfn];
128 unsigned long get_phys_to_machine(unsigned long pfn)
130 unsigned topidx, idx;
132 if (unlikely(pfn >= MAX_DOMAIN_PAGES))
133 return INVALID_P2M_ENTRY;
135 topidx = p2m_top_index(pfn);
136 idx = p2m_index(pfn);
137 return p2m_top[topidx][idx];
139 EXPORT_SYMBOL_GPL(get_phys_to_machine);
141 static void alloc_p2m(unsigned long **pp, unsigned long *mfnp)
146 p = (void *)__get_free_page(GFP_KERNEL | __GFP_NOFAIL);
149 for(i = 0; i < P2M_ENTRIES_PER_PAGE; i++)
150 p[i] = INVALID_P2M_ENTRY;
152 if (cmpxchg(pp, p2m_missing, p) != p2m_missing)
153 free_page((unsigned long)p);
155 *mfnp = virt_to_mfn(p);
158 void set_phys_to_machine(unsigned long pfn, unsigned long mfn)
160 unsigned topidx, idx;
162 if (unlikely(xen_feature(XENFEAT_auto_translated_physmap))) {
163 BUG_ON(pfn != mfn && mfn != INVALID_P2M_ENTRY);
167 if (unlikely(pfn >= MAX_DOMAIN_PAGES)) {
168 BUG_ON(mfn != INVALID_P2M_ENTRY);
172 topidx = p2m_top_index(pfn);
173 if (p2m_top[topidx] == p2m_missing) {
174 /* no need to allocate a page to store an invalid entry */
175 if (mfn == INVALID_P2M_ENTRY)
177 alloc_p2m(&p2m_top[topidx], &p2m_top_mfn[topidx]);
180 idx = p2m_index(pfn);
181 p2m_top[topidx][idx] = mfn;
184 xmaddr_t arbitrary_virt_to_machine(unsigned long address)
187 pte_t *pte = lookup_address(address, &level);
188 unsigned offset = address & ~PAGE_MASK;
192 return XMADDR((pte_mfn(*pte) << PAGE_SHIFT) + offset);
195 void make_lowmem_page_readonly(void *vaddr)
198 unsigned long address = (unsigned long)vaddr;
201 pte = lookup_address(address, &level);
204 ptev = pte_wrprotect(*pte);
206 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
210 void make_lowmem_page_readwrite(void *vaddr)
213 unsigned long address = (unsigned long)vaddr;
216 pte = lookup_address(address, &level);
219 ptev = pte_mkwrite(*pte);
221 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
226 static bool page_pinned(void *ptr)
228 struct page *page = virt_to_page(ptr);
230 return PagePinned(page);
233 static void extend_mmu_update(const struct mmu_update *update)
235 struct multicall_space mcs;
236 struct mmu_update *u;
238 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
243 mcs = __xen_mc_entry(sizeof(*u));
244 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
251 void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
259 u.ptr = virt_to_machine(ptr).maddr;
260 u.val = pmd_val_ma(val);
261 extend_mmu_update(&u);
263 xen_mc_issue(PARAVIRT_LAZY_MMU);
268 void xen_set_pmd(pmd_t *ptr, pmd_t val)
270 /* If page is not pinned, we can just update the entry
272 if (!page_pinned(ptr)) {
277 xen_set_pmd_hyper(ptr, val);
281 * Associate a virtual page frame with a given physical page frame
282 * and protection flags for that frame.
284 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
291 pgd = swapper_pg_dir + pgd_index(vaddr);
292 if (pgd_none(*pgd)) {
296 pud = pud_offset(pgd, vaddr);
297 if (pud_none(*pud)) {
301 pmd = pmd_offset(pud, vaddr);
302 if (pmd_none(*pmd)) {
306 pte = pte_offset_kernel(pmd, vaddr);
307 /* <mfn,flags> stored as-is, to permit clearing entries */
308 xen_set_pte(pte, mfn_pte(mfn, flags));
311 * It's enough to flush this one mapping.
312 * (PGE mappings get flushed as well)
314 __flush_tlb_one(vaddr);
317 void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
318 pte_t *ptep, pte_t pteval)
320 /* updates to init_mm may be done without lock */
324 if (mm == current->mm || mm == &init_mm) {
325 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU) {
326 struct multicall_space mcs;
327 mcs = xen_mc_entry(0);
329 MULTI_update_va_mapping(mcs.mc, addr, pteval, 0);
330 xen_mc_issue(PARAVIRT_LAZY_MMU);
333 if (HYPERVISOR_update_va_mapping(addr, pteval, 0) == 0)
336 xen_set_pte(ptep, pteval);
343 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
345 /* Just return the pte as-is. We preserve the bits on commit */
349 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
350 pte_t *ptep, pte_t pte)
356 u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
357 u.val = pte_val_ma(pte);
358 extend_mmu_update(&u);
360 xen_mc_issue(PARAVIRT_LAZY_MMU);
363 /* Assume pteval_t is equivalent to all the other *val_t types. */
364 static pteval_t pte_mfn_to_pfn(pteval_t val)
366 if (val & _PAGE_PRESENT) {
367 unsigned long mfn = (val & PTE_MASK) >> PAGE_SHIFT;
368 pteval_t flags = val & ~PTE_MASK;
369 val = ((pteval_t)mfn_to_pfn(mfn) << PAGE_SHIFT) | flags;
375 static pteval_t pte_pfn_to_mfn(pteval_t val)
377 if (val & _PAGE_PRESENT) {
378 unsigned long pfn = (val & PTE_MASK) >> PAGE_SHIFT;
379 pteval_t flags = val & ~PTE_MASK;
380 val = ((pteval_t)pfn_to_mfn(pfn) << PAGE_SHIFT) | flags;
386 pteval_t xen_pte_val(pte_t pte)
388 return pte_mfn_to_pfn(pte.pte);
391 pgdval_t xen_pgd_val(pgd_t pgd)
393 return pte_mfn_to_pfn(pgd.pgd);
396 pte_t xen_make_pte(pteval_t pte)
398 pte = pte_pfn_to_mfn(pte);
399 return native_make_pte(pte);
402 pgd_t xen_make_pgd(pgdval_t pgd)
404 pgd = pte_pfn_to_mfn(pgd);
405 return native_make_pgd(pgd);
408 pmdval_t xen_pmd_val(pmd_t pmd)
410 return pte_mfn_to_pfn(pmd.pmd);
413 void xen_set_pud_hyper(pud_t *ptr, pud_t val)
421 u.ptr = virt_to_machine(ptr).maddr;
422 u.val = pud_val_ma(val);
423 extend_mmu_update(&u);
425 xen_mc_issue(PARAVIRT_LAZY_MMU);
430 void xen_set_pud(pud_t *ptr, pud_t val)
432 /* If page is not pinned, we can just update the entry
434 if (!page_pinned(ptr)) {
439 xen_set_pud_hyper(ptr, val);
442 void xen_set_pte(pte_t *ptep, pte_t pte)
444 ptep->pte_high = pte.pte_high;
446 ptep->pte_low = pte.pte_low;
449 void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
451 set_64bit((u64 *)ptep, pte_val_ma(pte));
454 void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
457 smp_wmb(); /* make sure low gets written first */
461 void xen_pmd_clear(pmd_t *pmdp)
463 set_pmd(pmdp, __pmd(0));
466 pmd_t xen_make_pmd(pmdval_t pmd)
468 pmd = pte_pfn_to_mfn(pmd);
469 return native_make_pmd(pmd);
473 (Yet another) pagetable walker. This one is intended for pinning a
474 pagetable. This means that it walks a pagetable and calls the
475 callback function on each page it finds making up the page table,
476 at every level. It walks the entire pagetable, but it only bothers
477 pinning pte pages which are below pte_limit. In the normal case
478 this will be TASK_SIZE, but at boot we need to pin up to
479 FIXADDR_TOP. But the important bit is that we don't pin beyond
480 there, because then we start getting into Xen's ptes.
482 static int pgd_walk(pgd_t *pgd_base, int (*func)(struct page *, enum pt_level),
485 pgd_t *pgd = pgd_base;
487 unsigned long addr = 0;
488 unsigned long pgd_next;
490 BUG_ON(limit > FIXADDR_TOP);
492 if (xen_feature(XENFEAT_auto_translated_physmap))
495 for (; addr != FIXADDR_TOP; pgd++, addr = pgd_next) {
497 unsigned long pud_limit, pud_next;
499 pgd_next = pud_limit = pgd_addr_end(addr, FIXADDR_TOP);
504 pud = pud_offset(pgd, 0);
506 if (PTRS_PER_PUD > 1) /* not folded */
507 flush |= (*func)(virt_to_page(pud), PT_PUD);
509 for (; addr != pud_limit; pud++, addr = pud_next) {
511 unsigned long pmd_limit;
513 pud_next = pud_addr_end(addr, pud_limit);
515 if (pud_next < limit)
516 pmd_limit = pud_next;
523 pmd = pmd_offset(pud, 0);
525 if (PTRS_PER_PMD > 1) /* not folded */
526 flush |= (*func)(virt_to_page(pmd), PT_PMD);
528 for (; addr != pmd_limit; pmd++) {
529 addr += (PAGE_SIZE * PTRS_PER_PTE);
530 if ((pmd_limit-1) < (addr-1)) {
538 flush |= (*func)(pmd_page(*pmd), PT_PTE);
543 flush |= (*func)(virt_to_page(pgd_base), PT_PGD);
548 static spinlock_t *lock_pte(struct page *page)
550 spinlock_t *ptl = NULL;
552 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
553 ptl = __pte_lockptr(page);
560 static void do_unlock(void *v)
566 static void xen_do_pin(unsigned level, unsigned long pfn)
568 struct mmuext_op *op;
569 struct multicall_space mcs;
571 mcs = __xen_mc_entry(sizeof(*op));
574 op->arg1.mfn = pfn_to_mfn(pfn);
575 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
578 static int pin_page(struct page *page, enum pt_level level)
580 unsigned pgfl = TestSetPagePinned(page);
584 flush = 0; /* already pinned */
585 else if (PageHighMem(page))
586 /* kmaps need flushing if we found an unpinned
590 void *pt = lowmem_page_address(page);
591 unsigned long pfn = page_to_pfn(page);
592 struct multicall_space mcs = __xen_mc_entry(0);
599 ptl = lock_pte(page);
601 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
602 pfn_pte(pfn, PAGE_KERNEL_RO),
603 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
606 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
609 /* Queue a deferred unlock for when this batch
611 xen_mc_callback(do_unlock, ptl);
618 /* This is called just after a mm has been created, but it has not
619 been used yet. We need to make sure that its pagetable is all
620 read-only, and can be pinned. */
621 void xen_pgd_pin(pgd_t *pgd)
625 if (pgd_walk(pgd, pin_page, TASK_SIZE)) {
626 /* re-enable interrupts for kmap_flush_unused */
632 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
637 * On save, we need to pin all pagetables to make sure they get their
638 * mfns turned into pfns. Search the list for any unpinned pgds and pin
639 * them (unpinned pgds are not currently in use, probably because the
640 * process is under construction or destruction).
642 void xen_mm_pin_all(void)
647 spin_lock_irqsave(&pgd_lock, flags);
649 list_for_each_entry(page, &pgd_list, lru) {
650 if (!PagePinned(page)) {
651 xen_pgd_pin((pgd_t *)page_address(page));
652 SetPageSavePinned(page);
656 spin_unlock_irqrestore(&pgd_lock, flags);
659 /* The init_mm pagetable is really pinned as soon as its created, but
660 that's before we have page structures to store the bits. So do all
661 the book-keeping now. */
662 static __init int mark_pinned(struct page *page, enum pt_level level)
668 void __init xen_mark_init_mm_pinned(void)
670 pgd_walk(init_mm.pgd, mark_pinned, FIXADDR_TOP);
673 static int unpin_page(struct page *page, enum pt_level level)
675 unsigned pgfl = TestClearPagePinned(page);
677 if (pgfl && !PageHighMem(page)) {
678 void *pt = lowmem_page_address(page);
679 unsigned long pfn = page_to_pfn(page);
680 spinlock_t *ptl = NULL;
681 struct multicall_space mcs;
683 if (level == PT_PTE) {
684 ptl = lock_pte(page);
686 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
689 mcs = __xen_mc_entry(0);
691 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
692 pfn_pte(pfn, PAGE_KERNEL),
693 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
696 /* unlock when batch completed */
697 xen_mc_callback(do_unlock, ptl);
701 return 0; /* never need to flush on unpin */
704 /* Release a pagetables pages back as normal RW */
705 static void xen_pgd_unpin(pgd_t *pgd)
709 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
711 pgd_walk(pgd, unpin_page, TASK_SIZE);
717 * On resume, undo any pinning done at save, so that the rest of the
718 * kernel doesn't see any unexpected pinned pagetables.
720 void xen_mm_unpin_all(void)
725 spin_lock_irqsave(&pgd_lock, flags);
727 list_for_each_entry(page, &pgd_list, lru) {
728 if (PageSavePinned(page)) {
729 BUG_ON(!PagePinned(page));
730 printk("unpinning pinned %p\n", page_address(page));
731 xen_pgd_unpin((pgd_t *)page_address(page));
732 ClearPageSavePinned(page);
736 spin_unlock_irqrestore(&pgd_lock, flags);
739 void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
741 spin_lock(&next->page_table_lock);
742 xen_pgd_pin(next->pgd);
743 spin_unlock(&next->page_table_lock);
746 void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
748 spin_lock(&mm->page_table_lock);
749 xen_pgd_pin(mm->pgd);
750 spin_unlock(&mm->page_table_lock);
755 /* Another cpu may still have their %cr3 pointing at the pagetable, so
756 we need to repoint it somewhere else before we can unpin it. */
757 static void drop_other_mm_ref(void *info)
759 struct mm_struct *mm = info;
761 if (__get_cpu_var(cpu_tlbstate).active_mm == mm)
762 leave_mm(smp_processor_id());
764 /* If this cpu still has a stale cr3 reference, then make sure
765 it has been flushed. */
766 if (x86_read_percpu(xen_current_cr3) == __pa(mm->pgd)) {
767 load_cr3(swapper_pg_dir);
768 arch_flush_lazy_cpu_mode();
772 static void drop_mm_ref(struct mm_struct *mm)
777 if (current->active_mm == mm) {
778 if (current->mm == mm)
779 load_cr3(swapper_pg_dir);
781 leave_mm(smp_processor_id());
782 arch_flush_lazy_cpu_mode();
785 /* Get the "official" set of cpus referring to our pagetable. */
786 mask = mm->cpu_vm_mask;
788 /* It's possible that a vcpu may have a stale reference to our
789 cr3, because its in lazy mode, and it hasn't yet flushed
790 its set of pending hypercalls yet. In this case, we can
791 look at its actual current cr3 value, and force it to flush
793 for_each_online_cpu(cpu) {
794 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
798 if (!cpus_empty(mask))
799 xen_smp_call_function_mask(mask, drop_other_mm_ref, mm, 1);
802 static void drop_mm_ref(struct mm_struct *mm)
804 if (current->active_mm == mm)
805 load_cr3(swapper_pg_dir);
810 * While a process runs, Xen pins its pagetables, which means that the
811 * hypervisor forces it to be read-only, and it controls all updates
812 * to it. This means that all pagetable updates have to go via the
813 * hypervisor, which is moderately expensive.
815 * Since we're pulling the pagetable down, we switch to use init_mm,
816 * unpin old process pagetable and mark it all read-write, which
817 * allows further operations on it to be simple memory accesses.
819 * The only subtle point is that another CPU may be still using the
820 * pagetable because of lazy tlb flushing. This means we need need to
821 * switch all CPUs off this pagetable before we can unpin it.
823 void xen_exit_mmap(struct mm_struct *mm)
825 get_cpu(); /* make sure we don't move around */
829 spin_lock(&mm->page_table_lock);
831 /* pgd may not be pinned in the error exit path of execve */
832 if (page_pinned(mm->pgd))
833 xen_pgd_unpin(mm->pgd);
835 spin_unlock(&mm->page_table_lock);