2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <iiitac@pyr.swan.ac.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 * Version: $Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $
10 * Alan Cox : Fixed the worst of the load
12 * Dave Platt : Interrupt stacking fix.
13 * Richard Kooijman : Timestamp fixes.
14 * Alan Cox : Changed buffer format.
15 * Alan Cox : destructor hook for AF_UNIX etc.
16 * Linus Torvalds : Better skb_clone.
17 * Alan Cox : Added skb_copy.
18 * Alan Cox : Added all the changed routines Linus
19 * only put in the headers
20 * Ray VanTassle : Fixed --skb->lock in free
21 * Alan Cox : skb_copy copy arp field
22 * Andi Kleen : slabified it.
23 * Robert Olsson : Removed skb_head_pool
26 * The __skb_ routines should be called with interrupts
27 * disabled, or you better be *real* sure that the operation is atomic
28 * with respect to whatever list is being frobbed (e.g. via lock_sock()
29 * or via disabling bottom half handlers, etc).
31 * This program is free software; you can redistribute it and/or
32 * modify it under the terms of the GNU General Public License
33 * as published by the Free Software Foundation; either version
34 * 2 of the License, or (at your option) any later version.
38 * The functions in this file will not compile correctly with gcc 2.4.x
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/sched.h>
46 #include <linux/interrupt.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/netdevice.h>
51 #ifdef CONFIG_NET_CLS_ACT
52 #include <net/pkt_sched.h>
54 #include <linux/string.h>
55 #include <linux/skbuff.h>
56 #include <linux/cache.h>
57 #include <linux/rtnetlink.h>
58 #include <linux/init.h>
59 #include <linux/highmem.h>
61 #include <net/protocol.h>
64 #include <net/checksum.h>
67 #include <asm/uaccess.h>
68 #include <asm/system.h>
70 static kmem_cache_t *skbuff_head_cache __read_mostly;
71 static kmem_cache_t *skbuff_fclone_cache __read_mostly;
74 * Keep out-of-line to prevent kernel bloat.
75 * __builtin_return_address is not used because it is not always
80 * skb_over_panic - private function
85 * Out of line support code for skb_put(). Not user callable.
87 void skb_over_panic(struct sk_buff *skb, int sz, void *here)
89 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
90 "data:%p tail:%p end:%p dev:%s\n",
91 here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end,
92 skb->dev ? skb->dev->name : "<NULL>");
97 * skb_under_panic - private function
102 * Out of line support code for skb_push(). Not user callable.
105 void skb_under_panic(struct sk_buff *skb, int sz, void *here)
107 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
108 "data:%p tail:%p end:%p dev:%s\n",
109 here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end,
110 skb->dev ? skb->dev->name : "<NULL>");
114 void skb_truesize_bug(struct sk_buff *skb)
116 printk(KERN_ERR "SKB BUG: Invalid truesize (%u) "
117 "len=%u, sizeof(sk_buff)=%Zd\n",
118 skb->truesize, skb->len, sizeof(struct sk_buff));
120 EXPORT_SYMBOL(skb_truesize_bug);
122 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
123 * 'private' fields and also do memory statistics to find all the
129 * __alloc_skb - allocate a network buffer
130 * @size: size to allocate
131 * @gfp_mask: allocation mask
132 * @fclone: allocate from fclone cache instead of head cache
133 * and allocate a cloned (child) skb
135 * Allocate a new &sk_buff. The returned buffer has no headroom and a
136 * tail room of size bytes. The object has a reference count of one.
137 * The return is the buffer. On a failure the return is %NULL.
139 * Buffers may only be allocated from interrupts using a @gfp_mask of
142 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
146 struct skb_shared_info *shinfo;
150 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
153 skb = kmem_cache_alloc(cache, gfp_mask & ~__GFP_DMA);
157 /* Get the DATA. Size must match skb_add_mtu(). */
158 size = SKB_DATA_ALIGN(size);
159 data = kmalloc_track_caller(size + sizeof(struct skb_shared_info),
164 memset(skb, 0, offsetof(struct sk_buff, truesize));
165 skb->truesize = size + sizeof(struct sk_buff);
166 atomic_set(&skb->users, 1);
170 skb->end = data + size;
171 /* make sure we initialize shinfo sequentially */
172 shinfo = skb_shinfo(skb);
173 atomic_set(&shinfo->dataref, 1);
174 shinfo->nr_frags = 0;
175 shinfo->gso_size = 0;
176 shinfo->gso_segs = 0;
177 shinfo->gso_type = 0;
178 shinfo->ip6_frag_id = 0;
179 shinfo->frag_list = NULL;
182 struct sk_buff *child = skb + 1;
183 atomic_t *fclone_ref = (atomic_t *) (child + 1);
185 skb->fclone = SKB_FCLONE_ORIG;
186 atomic_set(fclone_ref, 1);
188 child->fclone = SKB_FCLONE_UNAVAILABLE;
193 kmem_cache_free(cache, skb);
199 * alloc_skb_from_cache - allocate a network buffer
200 * @cp: kmem_cache from which to allocate the data area
201 * (object size must be big enough for @size bytes + skb overheads)
202 * @size: size to allocate
203 * @gfp_mask: allocation mask
205 * Allocate a new &sk_buff. The returned buffer has no headroom and
206 * tail room of size bytes. The object has a reference count of one.
207 * The return is the buffer. On a failure the return is %NULL.
209 * Buffers may only be allocated from interrupts using a @gfp_mask of
212 struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp,
220 skb = kmem_cache_alloc(skbuff_head_cache,
221 gfp_mask & ~__GFP_DMA);
226 size = SKB_DATA_ALIGN(size);
227 data = kmem_cache_alloc(cp, gfp_mask);
231 memset(skb, 0, offsetof(struct sk_buff, truesize));
232 skb->truesize = size + sizeof(struct sk_buff);
233 atomic_set(&skb->users, 1);
237 skb->end = data + size;
239 atomic_set(&(skb_shinfo(skb)->dataref), 1);
240 skb_shinfo(skb)->nr_frags = 0;
241 skb_shinfo(skb)->gso_size = 0;
242 skb_shinfo(skb)->gso_segs = 0;
243 skb_shinfo(skb)->gso_type = 0;
244 skb_shinfo(skb)->frag_list = NULL;
248 kmem_cache_free(skbuff_head_cache, skb);
254 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
255 * @dev: network device to receive on
256 * @length: length to allocate
257 * @gfp_mask: get_free_pages mask, passed to alloc_skb
259 * Allocate a new &sk_buff and assign it a usage count of one. The
260 * buffer has unspecified headroom built in. Users should allocate
261 * the headroom they think they need without accounting for the
262 * built in space. The built in space is used for optimisations.
264 * %NULL is returned if there is no free memory.
266 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
267 unsigned int length, gfp_t gfp_mask)
271 skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
273 skb_reserve(skb, NET_SKB_PAD);
279 static void skb_drop_list(struct sk_buff **listp)
281 struct sk_buff *list = *listp;
286 struct sk_buff *this = list;
292 static inline void skb_drop_fraglist(struct sk_buff *skb)
294 skb_drop_list(&skb_shinfo(skb)->frag_list);
297 static void skb_clone_fraglist(struct sk_buff *skb)
299 struct sk_buff *list;
301 for (list = skb_shinfo(skb)->frag_list; list; list = list->next)
305 static void skb_release_data(struct sk_buff *skb)
308 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
309 &skb_shinfo(skb)->dataref)) {
310 if (skb_shinfo(skb)->nr_frags) {
312 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
313 put_page(skb_shinfo(skb)->frags[i].page);
316 if (skb_shinfo(skb)->frag_list)
317 skb_drop_fraglist(skb);
324 * Free an skbuff by memory without cleaning the state.
326 void kfree_skbmem(struct sk_buff *skb)
328 struct sk_buff *other;
329 atomic_t *fclone_ref;
331 skb_release_data(skb);
332 switch (skb->fclone) {
333 case SKB_FCLONE_UNAVAILABLE:
334 kmem_cache_free(skbuff_head_cache, skb);
337 case SKB_FCLONE_ORIG:
338 fclone_ref = (atomic_t *) (skb + 2);
339 if (atomic_dec_and_test(fclone_ref))
340 kmem_cache_free(skbuff_fclone_cache, skb);
343 case SKB_FCLONE_CLONE:
344 fclone_ref = (atomic_t *) (skb + 1);
347 /* The clone portion is available for
348 * fast-cloning again.
350 skb->fclone = SKB_FCLONE_UNAVAILABLE;
352 if (atomic_dec_and_test(fclone_ref))
353 kmem_cache_free(skbuff_fclone_cache, other);
359 * __kfree_skb - private function
362 * Free an sk_buff. Release anything attached to the buffer.
363 * Clean the state. This is an internal helper function. Users should
364 * always call kfree_skb
367 void __kfree_skb(struct sk_buff *skb)
369 dst_release(skb->dst);
371 secpath_put(skb->sp);
373 if (skb->destructor) {
375 skb->destructor(skb);
377 #ifdef CONFIG_NETFILTER
378 nf_conntrack_put(skb->nfct);
379 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
380 nf_conntrack_put_reasm(skb->nfct_reasm);
382 #ifdef CONFIG_BRIDGE_NETFILTER
383 nf_bridge_put(skb->nf_bridge);
386 /* XXX: IS this still necessary? - JHS */
387 #ifdef CONFIG_NET_SCHED
389 #ifdef CONFIG_NET_CLS_ACT
398 * kfree_skb - free an sk_buff
399 * @skb: buffer to free
401 * Drop a reference to the buffer and free it if the usage count has
404 void kfree_skb(struct sk_buff *skb)
408 if (likely(atomic_read(&skb->users) == 1))
410 else if (likely(!atomic_dec_and_test(&skb->users)))
416 * skb_clone - duplicate an sk_buff
417 * @skb: buffer to clone
418 * @gfp_mask: allocation priority
420 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
421 * copies share the same packet data but not structure. The new
422 * buffer has a reference count of 1. If the allocation fails the
423 * function returns %NULL otherwise the new buffer is returned.
425 * If this function is called from an interrupt gfp_mask() must be
429 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
434 if (skb->fclone == SKB_FCLONE_ORIG &&
435 n->fclone == SKB_FCLONE_UNAVAILABLE) {
436 atomic_t *fclone_ref = (atomic_t *) (n + 1);
437 n->fclone = SKB_FCLONE_CLONE;
438 atomic_inc(fclone_ref);
440 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
443 n->fclone = SKB_FCLONE_UNAVAILABLE;
446 #define C(x) n->x = skb->x
448 n->next = n->prev = NULL;
459 secpath_get(skb->sp);
461 memcpy(n->cb, skb->cb, sizeof(skb->cb));
471 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
475 n->destructor = NULL;
476 #ifdef CONFIG_NETFILTER
479 nf_conntrack_get(skb->nfct);
481 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
483 nf_conntrack_get_reasm(skb->nfct_reasm);
485 #ifdef CONFIG_BRIDGE_NETFILTER
487 nf_bridge_get(skb->nf_bridge);
489 #endif /*CONFIG_NETFILTER*/
490 #ifdef CONFIG_NET_SCHED
492 #ifdef CONFIG_NET_CLS_ACT
493 n->tc_verd = SET_TC_VERD(skb->tc_verd,0);
494 n->tc_verd = CLR_TC_OK2MUNGE(n->tc_verd);
495 n->tc_verd = CLR_TC_MUNGED(n->tc_verd);
498 skb_copy_secmark(n, skb);
501 atomic_set(&n->users, 1);
507 atomic_inc(&(skb_shinfo(skb)->dataref));
513 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
516 * Shift between the two data areas in bytes
518 unsigned long offset = new->data - old->data;
522 new->priority = old->priority;
523 new->protocol = old->protocol;
524 new->dst = dst_clone(old->dst);
526 new->sp = secpath_get(old->sp);
528 new->h.raw = old->h.raw + offset;
529 new->nh.raw = old->nh.raw + offset;
530 new->mac.raw = old->mac.raw + offset;
531 memcpy(new->cb, old->cb, sizeof(old->cb));
532 new->local_df = old->local_df;
533 new->fclone = SKB_FCLONE_UNAVAILABLE;
534 new->pkt_type = old->pkt_type;
535 new->tstamp = old->tstamp;
536 new->destructor = NULL;
537 #ifdef CONFIG_NETFILTER
538 new->nfmark = old->nfmark;
539 new->nfct = old->nfct;
540 nf_conntrack_get(old->nfct);
541 new->nfctinfo = old->nfctinfo;
542 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
543 new->nfct_reasm = old->nfct_reasm;
544 nf_conntrack_get_reasm(old->nfct_reasm);
546 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
547 new->ipvs_property = old->ipvs_property;
549 #ifdef CONFIG_BRIDGE_NETFILTER
550 new->nf_bridge = old->nf_bridge;
551 nf_bridge_get(old->nf_bridge);
554 #ifdef CONFIG_NET_SCHED
555 #ifdef CONFIG_NET_CLS_ACT
556 new->tc_verd = old->tc_verd;
558 new->tc_index = old->tc_index;
560 skb_copy_secmark(new, old);
561 atomic_set(&new->users, 1);
562 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
563 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
564 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
568 * skb_copy - create private copy of an sk_buff
569 * @skb: buffer to copy
570 * @gfp_mask: allocation priority
572 * Make a copy of both an &sk_buff and its data. This is used when the
573 * caller wishes to modify the data and needs a private copy of the
574 * data to alter. Returns %NULL on failure or the pointer to the buffer
575 * on success. The returned buffer has a reference count of 1.
577 * As by-product this function converts non-linear &sk_buff to linear
578 * one, so that &sk_buff becomes completely private and caller is allowed
579 * to modify all the data of returned buffer. This means that this
580 * function is not recommended for use in circumstances when only
581 * header is going to be modified. Use pskb_copy() instead.
584 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
586 int headerlen = skb->data - skb->head;
588 * Allocate the copy buffer
590 struct sk_buff *n = alloc_skb(skb->end - skb->head + skb->data_len,
595 /* Set the data pointer */
596 skb_reserve(n, headerlen);
597 /* Set the tail pointer and length */
598 skb_put(n, skb->len);
600 n->ip_summed = skb->ip_summed;
602 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
605 copy_skb_header(n, skb);
611 * pskb_copy - create copy of an sk_buff with private head.
612 * @skb: buffer to copy
613 * @gfp_mask: allocation priority
615 * Make a copy of both an &sk_buff and part of its data, located
616 * in header. Fragmented data remain shared. This is used when
617 * the caller wishes to modify only header of &sk_buff and needs
618 * private copy of the header to alter. Returns %NULL on failure
619 * or the pointer to the buffer on success.
620 * The returned buffer has a reference count of 1.
623 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
626 * Allocate the copy buffer
628 struct sk_buff *n = alloc_skb(skb->end - skb->head, gfp_mask);
633 /* Set the data pointer */
634 skb_reserve(n, skb->data - skb->head);
635 /* Set the tail pointer and length */
636 skb_put(n, skb_headlen(skb));
638 memcpy(n->data, skb->data, n->len);
640 n->ip_summed = skb->ip_summed;
642 n->data_len = skb->data_len;
645 if (skb_shinfo(skb)->nr_frags) {
648 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
649 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
650 get_page(skb_shinfo(n)->frags[i].page);
652 skb_shinfo(n)->nr_frags = i;
655 if (skb_shinfo(skb)->frag_list) {
656 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
657 skb_clone_fraglist(n);
660 copy_skb_header(n, skb);
666 * pskb_expand_head - reallocate header of &sk_buff
667 * @skb: buffer to reallocate
668 * @nhead: room to add at head
669 * @ntail: room to add at tail
670 * @gfp_mask: allocation priority
672 * Expands (or creates identical copy, if &nhead and &ntail are zero)
673 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
674 * reference count of 1. Returns zero in the case of success or error,
675 * if expansion failed. In the last case, &sk_buff is not changed.
677 * All the pointers pointing into skb header may change and must be
678 * reloaded after call to this function.
681 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
686 int size = nhead + (skb->end - skb->head) + ntail;
692 size = SKB_DATA_ALIGN(size);
694 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
698 /* Copy only real data... and, alas, header. This should be
699 * optimized for the cases when header is void. */
700 memcpy(data + nhead, skb->head, skb->tail - skb->head);
701 memcpy(data + size, skb->end, sizeof(struct skb_shared_info));
703 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
704 get_page(skb_shinfo(skb)->frags[i].page);
706 if (skb_shinfo(skb)->frag_list)
707 skb_clone_fraglist(skb);
709 skb_release_data(skb);
711 off = (data + nhead) - skb->head;
714 skb->end = data + size;
722 atomic_set(&skb_shinfo(skb)->dataref, 1);
729 /* Make private copy of skb with writable head and some headroom */
731 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
733 struct sk_buff *skb2;
734 int delta = headroom - skb_headroom(skb);
737 skb2 = pskb_copy(skb, GFP_ATOMIC);
739 skb2 = skb_clone(skb, GFP_ATOMIC);
740 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
751 * skb_copy_expand - copy and expand sk_buff
752 * @skb: buffer to copy
753 * @newheadroom: new free bytes at head
754 * @newtailroom: new free bytes at tail
755 * @gfp_mask: allocation priority
757 * Make a copy of both an &sk_buff and its data and while doing so
758 * allocate additional space.
760 * This is used when the caller wishes to modify the data and needs a
761 * private copy of the data to alter as well as more space for new fields.
762 * Returns %NULL on failure or the pointer to the buffer
763 * on success. The returned buffer has a reference count of 1.
765 * You must pass %GFP_ATOMIC as the allocation priority if this function
766 * is called from an interrupt.
768 * BUG ALERT: ip_summed is not copied. Why does this work? Is it used
769 * only by netfilter in the cases when checksum is recalculated? --ANK
771 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
772 int newheadroom, int newtailroom,
776 * Allocate the copy buffer
778 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
780 int head_copy_len, head_copy_off;
785 skb_reserve(n, newheadroom);
787 /* Set the tail pointer and length */
788 skb_put(n, skb->len);
790 head_copy_len = skb_headroom(skb);
792 if (newheadroom <= head_copy_len)
793 head_copy_len = newheadroom;
795 head_copy_off = newheadroom - head_copy_len;
797 /* Copy the linear header and data. */
798 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
799 skb->len + head_copy_len))
802 copy_skb_header(n, skb);
808 * skb_pad - zero pad the tail of an skb
809 * @skb: buffer to pad
812 * Ensure that a buffer is followed by a padding area that is zero
813 * filled. Used by network drivers which may DMA or transfer data
814 * beyond the buffer end onto the wire.
816 * May return error in out of memory cases. The skb is freed on error.
819 int skb_pad(struct sk_buff *skb, int pad)
824 /* If the skbuff is non linear tailroom is always zero.. */
825 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
826 memset(skb->data+skb->len, 0, pad);
830 ntail = skb->data_len + pad - (skb->end - skb->tail);
831 if (likely(skb_cloned(skb) || ntail > 0)) {
832 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
837 /* FIXME: The use of this function with non-linear skb's really needs
840 err = skb_linearize(skb);
844 memset(skb->data + skb->len, 0, pad);
852 /* Trims skb to length len. It can change skb pointers.
855 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
857 struct sk_buff **fragp;
858 struct sk_buff *frag;
859 int offset = skb_headlen(skb);
860 int nfrags = skb_shinfo(skb)->nr_frags;
864 if (skb_cloned(skb) &&
865 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
872 for (; i < nfrags; i++) {
873 int end = offset + skb_shinfo(skb)->frags[i].size;
880 skb_shinfo(skb)->frags[i++].size = len - offset;
883 skb_shinfo(skb)->nr_frags = i;
885 for (; i < nfrags; i++)
886 put_page(skb_shinfo(skb)->frags[i].page);
888 if (skb_shinfo(skb)->frag_list)
889 skb_drop_fraglist(skb);
893 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
894 fragp = &frag->next) {
895 int end = offset + frag->len;
897 if (skb_shared(frag)) {
898 struct sk_buff *nfrag;
900 nfrag = skb_clone(frag, GFP_ATOMIC);
901 if (unlikely(!nfrag))
904 nfrag->next = frag->next;
916 unlikely((err = pskb_trim(frag, len - offset))))
920 skb_drop_list(&frag->next);
925 if (len > skb_headlen(skb)) {
926 skb->data_len -= skb->len - len;
931 skb->tail = skb->data + len;
938 * __pskb_pull_tail - advance tail of skb header
939 * @skb: buffer to reallocate
940 * @delta: number of bytes to advance tail
942 * The function makes a sense only on a fragmented &sk_buff,
943 * it expands header moving its tail forward and copying necessary
944 * data from fragmented part.
946 * &sk_buff MUST have reference count of 1.
948 * Returns %NULL (and &sk_buff does not change) if pull failed
949 * or value of new tail of skb in the case of success.
951 * All the pointers pointing into skb header may change and must be
952 * reloaded after call to this function.
955 /* Moves tail of skb head forward, copying data from fragmented part,
956 * when it is necessary.
957 * 1. It may fail due to malloc failure.
958 * 2. It may change skb pointers.
960 * It is pretty complicated. Luckily, it is called only in exceptional cases.
962 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
964 /* If skb has not enough free space at tail, get new one
965 * plus 128 bytes for future expansions. If we have enough
966 * room at tail, reallocate without expansion only if skb is cloned.
968 int i, k, eat = (skb->tail + delta) - skb->end;
970 if (eat > 0 || skb_cloned(skb)) {
971 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
976 if (skb_copy_bits(skb, skb_headlen(skb), skb->tail, delta))
979 /* Optimization: no fragments, no reasons to preestimate
980 * size of pulled pages. Superb.
982 if (!skb_shinfo(skb)->frag_list)
985 /* Estimate size of pulled pages. */
987 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
988 if (skb_shinfo(skb)->frags[i].size >= eat)
990 eat -= skb_shinfo(skb)->frags[i].size;
993 /* If we need update frag list, we are in troubles.
994 * Certainly, it possible to add an offset to skb data,
995 * but taking into account that pulling is expected to
996 * be very rare operation, it is worth to fight against
997 * further bloating skb head and crucify ourselves here instead.
998 * Pure masohism, indeed. 8)8)
1001 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1002 struct sk_buff *clone = NULL;
1003 struct sk_buff *insp = NULL;
1008 if (list->len <= eat) {
1009 /* Eaten as whole. */
1014 /* Eaten partially. */
1016 if (skb_shared(list)) {
1017 /* Sucks! We need to fork list. :-( */
1018 clone = skb_clone(list, GFP_ATOMIC);
1024 /* This may be pulled without
1028 if (!pskb_pull(list, eat)) {
1037 /* Free pulled out fragments. */
1038 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1039 skb_shinfo(skb)->frag_list = list->next;
1042 /* And insert new clone at head. */
1045 skb_shinfo(skb)->frag_list = clone;
1048 /* Success! Now we may commit changes to skb data. */
1053 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1054 if (skb_shinfo(skb)->frags[i].size <= eat) {
1055 put_page(skb_shinfo(skb)->frags[i].page);
1056 eat -= skb_shinfo(skb)->frags[i].size;
1058 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1060 skb_shinfo(skb)->frags[k].page_offset += eat;
1061 skb_shinfo(skb)->frags[k].size -= eat;
1067 skb_shinfo(skb)->nr_frags = k;
1070 skb->data_len -= delta;
1075 /* Copy some data bits from skb to kernel buffer. */
1077 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1080 int start = skb_headlen(skb);
1082 if (offset > (int)skb->len - len)
1086 if ((copy = start - offset) > 0) {
1089 memcpy(to, skb->data + offset, copy);
1090 if ((len -= copy) == 0)
1096 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1099 BUG_TRAP(start <= offset + len);
1101 end = start + skb_shinfo(skb)->frags[i].size;
1102 if ((copy = end - offset) > 0) {
1108 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1110 vaddr + skb_shinfo(skb)->frags[i].page_offset+
1111 offset - start, copy);
1112 kunmap_skb_frag(vaddr);
1114 if ((len -= copy) == 0)
1122 if (skb_shinfo(skb)->frag_list) {
1123 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1125 for (; list; list = list->next) {
1128 BUG_TRAP(start <= offset + len);
1130 end = start + list->len;
1131 if ((copy = end - offset) > 0) {
1134 if (skb_copy_bits(list, offset - start,
1137 if ((len -= copy) == 0)
1153 * skb_store_bits - store bits from kernel buffer to skb
1154 * @skb: destination buffer
1155 * @offset: offset in destination
1156 * @from: source buffer
1157 * @len: number of bytes to copy
1159 * Copy the specified number of bytes from the source buffer to the
1160 * destination skb. This function handles all the messy bits of
1161 * traversing fragment lists and such.
1164 int skb_store_bits(const struct sk_buff *skb, int offset, void *from, int len)
1167 int start = skb_headlen(skb);
1169 if (offset > (int)skb->len - len)
1172 if ((copy = start - offset) > 0) {
1175 memcpy(skb->data + offset, from, copy);
1176 if ((len -= copy) == 0)
1182 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1183 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1186 BUG_TRAP(start <= offset + len);
1188 end = start + frag->size;
1189 if ((copy = end - offset) > 0) {
1195 vaddr = kmap_skb_frag(frag);
1196 memcpy(vaddr + frag->page_offset + offset - start,
1198 kunmap_skb_frag(vaddr);
1200 if ((len -= copy) == 0)
1208 if (skb_shinfo(skb)->frag_list) {
1209 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1211 for (; list; list = list->next) {
1214 BUG_TRAP(start <= offset + len);
1216 end = start + list->len;
1217 if ((copy = end - offset) > 0) {
1220 if (skb_store_bits(list, offset - start,
1223 if ((len -= copy) == 0)
1238 EXPORT_SYMBOL(skb_store_bits);
1240 /* Checksum skb data. */
1242 unsigned int skb_checksum(const struct sk_buff *skb, int offset,
1243 int len, unsigned int csum)
1245 int start = skb_headlen(skb);
1246 int i, copy = start - offset;
1249 /* Checksum header. */
1253 csum = csum_partial(skb->data + offset, copy, csum);
1254 if ((len -= copy) == 0)
1260 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1263 BUG_TRAP(start <= offset + len);
1265 end = start + skb_shinfo(skb)->frags[i].size;
1266 if ((copy = end - offset) > 0) {
1269 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1273 vaddr = kmap_skb_frag(frag);
1274 csum2 = csum_partial(vaddr + frag->page_offset +
1275 offset - start, copy, 0);
1276 kunmap_skb_frag(vaddr);
1277 csum = csum_block_add(csum, csum2, pos);
1286 if (skb_shinfo(skb)->frag_list) {
1287 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1289 for (; list; list = list->next) {
1292 BUG_TRAP(start <= offset + len);
1294 end = start + list->len;
1295 if ((copy = end - offset) > 0) {
1299 csum2 = skb_checksum(list, offset - start,
1301 csum = csum_block_add(csum, csum2, pos);
1302 if ((len -= copy) == 0)
1315 /* Both of above in one bottle. */
1317 unsigned int skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1318 u8 *to, int len, unsigned int csum)
1320 int start = skb_headlen(skb);
1321 int i, copy = start - offset;
1328 csum = csum_partial_copy_nocheck(skb->data + offset, to,
1330 if ((len -= copy) == 0)
1337 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1340 BUG_TRAP(start <= offset + len);
1342 end = start + skb_shinfo(skb)->frags[i].size;
1343 if ((copy = end - offset) > 0) {
1346 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1350 vaddr = kmap_skb_frag(frag);
1351 csum2 = csum_partial_copy_nocheck(vaddr +
1355 kunmap_skb_frag(vaddr);
1356 csum = csum_block_add(csum, csum2, pos);
1366 if (skb_shinfo(skb)->frag_list) {
1367 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1369 for (; list; list = list->next) {
1373 BUG_TRAP(start <= offset + len);
1375 end = start + list->len;
1376 if ((copy = end - offset) > 0) {
1379 csum2 = skb_copy_and_csum_bits(list,
1382 csum = csum_block_add(csum, csum2, pos);
1383 if ((len -= copy) == 0)
1396 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1401 if (skb->ip_summed == CHECKSUM_PARTIAL)
1402 csstart = skb->h.raw - skb->data;
1404 csstart = skb_headlen(skb);
1406 BUG_ON(csstart > skb_headlen(skb));
1408 memcpy(to, skb->data, csstart);
1411 if (csstart != skb->len)
1412 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1413 skb->len - csstart, 0);
1415 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1416 long csstuff = csstart + skb->csum;
1418 *((unsigned short *)(to + csstuff)) = csum_fold(csum);
1423 * skb_dequeue - remove from the head of the queue
1424 * @list: list to dequeue from
1426 * Remove the head of the list. The list lock is taken so the function
1427 * may be used safely with other locking list functions. The head item is
1428 * returned or %NULL if the list is empty.
1431 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1433 unsigned long flags;
1434 struct sk_buff *result;
1436 spin_lock_irqsave(&list->lock, flags);
1437 result = __skb_dequeue(list);
1438 spin_unlock_irqrestore(&list->lock, flags);
1443 * skb_dequeue_tail - remove from the tail of the queue
1444 * @list: list to dequeue from
1446 * Remove the tail of the list. The list lock is taken so the function
1447 * may be used safely with other locking list functions. The tail item is
1448 * returned or %NULL if the list is empty.
1450 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1452 unsigned long flags;
1453 struct sk_buff *result;
1455 spin_lock_irqsave(&list->lock, flags);
1456 result = __skb_dequeue_tail(list);
1457 spin_unlock_irqrestore(&list->lock, flags);
1462 * skb_queue_purge - empty a list
1463 * @list: list to empty
1465 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1466 * the list and one reference dropped. This function takes the list
1467 * lock and is atomic with respect to other list locking functions.
1469 void skb_queue_purge(struct sk_buff_head *list)
1471 struct sk_buff *skb;
1472 while ((skb = skb_dequeue(list)) != NULL)
1477 * skb_queue_head - queue a buffer at the list head
1478 * @list: list to use
1479 * @newsk: buffer to queue
1481 * Queue a buffer at the start of the list. This function takes the
1482 * list lock and can be used safely with other locking &sk_buff functions
1485 * A buffer cannot be placed on two lists at the same time.
1487 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1489 unsigned long flags;
1491 spin_lock_irqsave(&list->lock, flags);
1492 __skb_queue_head(list, newsk);
1493 spin_unlock_irqrestore(&list->lock, flags);
1497 * skb_queue_tail - queue a buffer at the list tail
1498 * @list: list to use
1499 * @newsk: buffer to queue
1501 * Queue a buffer at the tail of the list. This function takes the
1502 * list lock and can be used safely with other locking &sk_buff functions
1505 * A buffer cannot be placed on two lists at the same time.
1507 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1509 unsigned long flags;
1511 spin_lock_irqsave(&list->lock, flags);
1512 __skb_queue_tail(list, newsk);
1513 spin_unlock_irqrestore(&list->lock, flags);
1517 * skb_unlink - remove a buffer from a list
1518 * @skb: buffer to remove
1519 * @list: list to use
1521 * Remove a packet from a list. The list locks are taken and this
1522 * function is atomic with respect to other list locked calls
1524 * You must know what list the SKB is on.
1526 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1528 unsigned long flags;
1530 spin_lock_irqsave(&list->lock, flags);
1531 __skb_unlink(skb, list);
1532 spin_unlock_irqrestore(&list->lock, flags);
1536 * skb_append - append a buffer
1537 * @old: buffer to insert after
1538 * @newsk: buffer to insert
1539 * @list: list to use
1541 * Place a packet after a given packet in a list. The list locks are taken
1542 * and this function is atomic with respect to other list locked calls.
1543 * A buffer cannot be placed on two lists at the same time.
1545 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1547 unsigned long flags;
1549 spin_lock_irqsave(&list->lock, flags);
1550 __skb_append(old, newsk, list);
1551 spin_unlock_irqrestore(&list->lock, flags);
1556 * skb_insert - insert a buffer
1557 * @old: buffer to insert before
1558 * @newsk: buffer to insert
1559 * @list: list to use
1561 * Place a packet before a given packet in a list. The list locks are
1562 * taken and this function is atomic with respect to other list locked
1565 * A buffer cannot be placed on two lists at the same time.
1567 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1569 unsigned long flags;
1571 spin_lock_irqsave(&list->lock, flags);
1572 __skb_insert(newsk, old->prev, old, list);
1573 spin_unlock_irqrestore(&list->lock, flags);
1578 * Tune the memory allocator for a new MTU size.
1580 void skb_add_mtu(int mtu)
1582 /* Must match allocation in alloc_skb */
1583 mtu = SKB_DATA_ALIGN(mtu) + sizeof(struct skb_shared_info);
1585 kmem_add_cache_size(mtu);
1589 static inline void skb_split_inside_header(struct sk_buff *skb,
1590 struct sk_buff* skb1,
1591 const u32 len, const int pos)
1595 memcpy(skb_put(skb1, pos - len), skb->data + len, pos - len);
1597 /* And move data appendix as is. */
1598 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1599 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
1601 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
1602 skb_shinfo(skb)->nr_frags = 0;
1603 skb1->data_len = skb->data_len;
1604 skb1->len += skb1->data_len;
1607 skb->tail = skb->data + len;
1610 static inline void skb_split_no_header(struct sk_buff *skb,
1611 struct sk_buff* skb1,
1612 const u32 len, int pos)
1615 const int nfrags = skb_shinfo(skb)->nr_frags;
1617 skb_shinfo(skb)->nr_frags = 0;
1618 skb1->len = skb1->data_len = skb->len - len;
1620 skb->data_len = len - pos;
1622 for (i = 0; i < nfrags; i++) {
1623 int size = skb_shinfo(skb)->frags[i].size;
1625 if (pos + size > len) {
1626 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
1630 * We have two variants in this case:
1631 * 1. Move all the frag to the second
1632 * part, if it is possible. F.e.
1633 * this approach is mandatory for TUX,
1634 * where splitting is expensive.
1635 * 2. Split is accurately. We make this.
1637 get_page(skb_shinfo(skb)->frags[i].page);
1638 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
1639 skb_shinfo(skb1)->frags[0].size -= len - pos;
1640 skb_shinfo(skb)->frags[i].size = len - pos;
1641 skb_shinfo(skb)->nr_frags++;
1645 skb_shinfo(skb)->nr_frags++;
1648 skb_shinfo(skb1)->nr_frags = k;
1652 * skb_split - Split fragmented skb to two parts at length len.
1653 * @skb: the buffer to split
1654 * @skb1: the buffer to receive the second part
1655 * @len: new length for skb
1657 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
1659 int pos = skb_headlen(skb);
1661 if (len < pos) /* Split line is inside header. */
1662 skb_split_inside_header(skb, skb1, len, pos);
1663 else /* Second chunk has no header, nothing to copy. */
1664 skb_split_no_header(skb, skb1, len, pos);
1668 * skb_prepare_seq_read - Prepare a sequential read of skb data
1669 * @skb: the buffer to read
1670 * @from: lower offset of data to be read
1671 * @to: upper offset of data to be read
1672 * @st: state variable
1674 * Initializes the specified state variable. Must be called before
1675 * invoking skb_seq_read() for the first time.
1677 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1678 unsigned int to, struct skb_seq_state *st)
1680 st->lower_offset = from;
1681 st->upper_offset = to;
1682 st->root_skb = st->cur_skb = skb;
1683 st->frag_idx = st->stepped_offset = 0;
1684 st->frag_data = NULL;
1688 * skb_seq_read - Sequentially read skb data
1689 * @consumed: number of bytes consumed by the caller so far
1690 * @data: destination pointer for data to be returned
1691 * @st: state variable
1693 * Reads a block of skb data at &consumed relative to the
1694 * lower offset specified to skb_prepare_seq_read(). Assigns
1695 * the head of the data block to &data and returns the length
1696 * of the block or 0 if the end of the skb data or the upper
1697 * offset has been reached.
1699 * The caller is not required to consume all of the data
1700 * returned, i.e. &consumed is typically set to the number
1701 * of bytes already consumed and the next call to
1702 * skb_seq_read() will return the remaining part of the block.
1704 * Note: The size of each block of data returned can be arbitary,
1705 * this limitation is the cost for zerocopy seqeuental
1706 * reads of potentially non linear data.
1708 * Note: Fragment lists within fragments are not implemented
1709 * at the moment, state->root_skb could be replaced with
1710 * a stack for this purpose.
1712 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1713 struct skb_seq_state *st)
1715 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
1718 if (unlikely(abs_offset >= st->upper_offset))
1722 block_limit = skb_headlen(st->cur_skb);
1724 if (abs_offset < block_limit) {
1725 *data = st->cur_skb->data + abs_offset;
1726 return block_limit - abs_offset;
1729 if (st->frag_idx == 0 && !st->frag_data)
1730 st->stepped_offset += skb_headlen(st->cur_skb);
1732 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
1733 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
1734 block_limit = frag->size + st->stepped_offset;
1736 if (abs_offset < block_limit) {
1738 st->frag_data = kmap_skb_frag(frag);
1740 *data = (u8 *) st->frag_data + frag->page_offset +
1741 (abs_offset - st->stepped_offset);
1743 return block_limit - abs_offset;
1746 if (st->frag_data) {
1747 kunmap_skb_frag(st->frag_data);
1748 st->frag_data = NULL;
1752 st->stepped_offset += frag->size;
1755 if (st->cur_skb->next) {
1756 st->cur_skb = st->cur_skb->next;
1759 } else if (st->root_skb == st->cur_skb &&
1760 skb_shinfo(st->root_skb)->frag_list) {
1761 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
1769 * skb_abort_seq_read - Abort a sequential read of skb data
1770 * @st: state variable
1772 * Must be called if skb_seq_read() was not called until it
1775 void skb_abort_seq_read(struct skb_seq_state *st)
1778 kunmap_skb_frag(st->frag_data);
1781 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
1783 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
1784 struct ts_config *conf,
1785 struct ts_state *state)
1787 return skb_seq_read(offset, text, TS_SKB_CB(state));
1790 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
1792 skb_abort_seq_read(TS_SKB_CB(state));
1796 * skb_find_text - Find a text pattern in skb data
1797 * @skb: the buffer to look in
1798 * @from: search offset
1800 * @config: textsearch configuration
1801 * @state: uninitialized textsearch state variable
1803 * Finds a pattern in the skb data according to the specified
1804 * textsearch configuration. Use textsearch_next() to retrieve
1805 * subsequent occurrences of the pattern. Returns the offset
1806 * to the first occurrence or UINT_MAX if no match was found.
1808 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1809 unsigned int to, struct ts_config *config,
1810 struct ts_state *state)
1814 config->get_next_block = skb_ts_get_next_block;
1815 config->finish = skb_ts_finish;
1817 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
1819 ret = textsearch_find(config, state);
1820 return (ret <= to - from ? ret : UINT_MAX);
1824 * skb_append_datato_frags: - append the user data to a skb
1825 * @sk: sock structure
1826 * @skb: skb structure to be appened with user data.
1827 * @getfrag: call back function to be used for getting the user data
1828 * @from: pointer to user message iov
1829 * @length: length of the iov message
1831 * Description: This procedure append the user data in the fragment part
1832 * of the skb if any page alloc fails user this procedure returns -ENOMEM
1834 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1835 int (*getfrag)(void *from, char *to, int offset,
1836 int len, int odd, struct sk_buff *skb),
1837 void *from, int length)
1840 skb_frag_t *frag = NULL;
1841 struct page *page = NULL;
1847 /* Return error if we don't have space for new frag */
1848 frg_cnt = skb_shinfo(skb)->nr_frags;
1849 if (frg_cnt >= MAX_SKB_FRAGS)
1852 /* allocate a new page for next frag */
1853 page = alloc_pages(sk->sk_allocation, 0);
1855 /* If alloc_page fails just return failure and caller will
1856 * free previous allocated pages by doing kfree_skb()
1861 /* initialize the next frag */
1862 sk->sk_sndmsg_page = page;
1863 sk->sk_sndmsg_off = 0;
1864 skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
1865 skb->truesize += PAGE_SIZE;
1866 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
1868 /* get the new initialized frag */
1869 frg_cnt = skb_shinfo(skb)->nr_frags;
1870 frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
1872 /* copy the user data to page */
1873 left = PAGE_SIZE - frag->page_offset;
1874 copy = (length > left)? left : length;
1876 ret = getfrag(from, (page_address(frag->page) +
1877 frag->page_offset + frag->size),
1878 offset, copy, 0, skb);
1882 /* copy was successful so update the size parameters */
1883 sk->sk_sndmsg_off += copy;
1886 skb->data_len += copy;
1890 } while (length > 0);
1896 * skb_pull_rcsum - pull skb and update receive checksum
1897 * @skb: buffer to update
1898 * @start: start of data before pull
1899 * @len: length of data pulled
1901 * This function performs an skb_pull on the packet and updates
1902 * update the CHECKSUM_COMPLETE checksum. It should be used on
1903 * receive path processing instead of skb_pull unless you know
1904 * that the checksum difference is zero (e.g., a valid IP header)
1905 * or you are setting ip_summed to CHECKSUM_NONE.
1907 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
1909 BUG_ON(len > skb->len);
1911 BUG_ON(skb->len < skb->data_len);
1912 skb_postpull_rcsum(skb, skb->data, len);
1913 return skb->data += len;
1916 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
1919 * skb_segment - Perform protocol segmentation on skb.
1920 * @skb: buffer to segment
1921 * @features: features for the output path (see dev->features)
1923 * This function performs segmentation on the given skb. It returns
1924 * the segment at the given position. It returns NULL if there are
1925 * no more segments to generate, or when an error is encountered.
1927 struct sk_buff *skb_segment(struct sk_buff *skb, int features)
1929 struct sk_buff *segs = NULL;
1930 struct sk_buff *tail = NULL;
1931 unsigned int mss = skb_shinfo(skb)->gso_size;
1932 unsigned int doffset = skb->data - skb->mac.raw;
1933 unsigned int offset = doffset;
1934 unsigned int headroom;
1936 int sg = features & NETIF_F_SG;
1937 int nfrags = skb_shinfo(skb)->nr_frags;
1942 __skb_push(skb, doffset);
1943 headroom = skb_headroom(skb);
1944 pos = skb_headlen(skb);
1947 struct sk_buff *nskb;
1953 len = skb->len - offset;
1957 hsize = skb_headlen(skb) - offset;
1960 if (hsize > len || !sg)
1963 nskb = alloc_skb(hsize + doffset + headroom, GFP_ATOMIC);
1964 if (unlikely(!nskb))
1973 nskb->dev = skb->dev;
1974 nskb->priority = skb->priority;
1975 nskb->protocol = skb->protocol;
1976 nskb->dst = dst_clone(skb->dst);
1977 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
1978 nskb->pkt_type = skb->pkt_type;
1979 nskb->mac_len = skb->mac_len;
1981 skb_reserve(nskb, headroom);
1982 nskb->mac.raw = nskb->data;
1983 nskb->nh.raw = nskb->data + skb->mac_len;
1984 nskb->h.raw = nskb->nh.raw + (skb->h.raw - skb->nh.raw);
1985 memcpy(skb_put(nskb, doffset), skb->data, doffset);
1988 nskb->csum = skb_copy_and_csum_bits(skb, offset,
1994 frag = skb_shinfo(nskb)->frags;
1997 nskb->ip_summed = CHECKSUM_PARTIAL;
1998 nskb->csum = skb->csum;
1999 memcpy(skb_put(nskb, hsize), skb->data + offset, hsize);
2001 while (pos < offset + len) {
2002 BUG_ON(i >= nfrags);
2004 *frag = skb_shinfo(skb)->frags[i];
2005 get_page(frag->page);
2009 frag->page_offset += offset - pos;
2010 frag->size -= offset - pos;
2015 if (pos + size <= offset + len) {
2019 frag->size -= pos + size - (offset + len);
2026 skb_shinfo(nskb)->nr_frags = k;
2027 nskb->data_len = len - hsize;
2028 nskb->len += nskb->data_len;
2029 nskb->truesize += nskb->data_len;
2030 } while ((offset += len) < skb->len);
2035 while ((skb = segs)) {
2039 return ERR_PTR(err);
2042 EXPORT_SYMBOL_GPL(skb_segment);
2044 void __init skb_init(void)
2046 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2047 sizeof(struct sk_buff),
2049 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2051 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2052 (2*sizeof(struct sk_buff)) +
2055 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2059 EXPORT_SYMBOL(___pskb_trim);
2060 EXPORT_SYMBOL(__kfree_skb);
2061 EXPORT_SYMBOL(kfree_skb);
2062 EXPORT_SYMBOL(__pskb_pull_tail);
2063 EXPORT_SYMBOL(__alloc_skb);
2064 EXPORT_SYMBOL(__netdev_alloc_skb);
2065 EXPORT_SYMBOL(pskb_copy);
2066 EXPORT_SYMBOL(pskb_expand_head);
2067 EXPORT_SYMBOL(skb_checksum);
2068 EXPORT_SYMBOL(skb_clone);
2069 EXPORT_SYMBOL(skb_clone_fraglist);
2070 EXPORT_SYMBOL(skb_copy);
2071 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2072 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2073 EXPORT_SYMBOL(skb_copy_bits);
2074 EXPORT_SYMBOL(skb_copy_expand);
2075 EXPORT_SYMBOL(skb_over_panic);
2076 EXPORT_SYMBOL(skb_pad);
2077 EXPORT_SYMBOL(skb_realloc_headroom);
2078 EXPORT_SYMBOL(skb_under_panic);
2079 EXPORT_SYMBOL(skb_dequeue);
2080 EXPORT_SYMBOL(skb_dequeue_tail);
2081 EXPORT_SYMBOL(skb_insert);
2082 EXPORT_SYMBOL(skb_queue_purge);
2083 EXPORT_SYMBOL(skb_queue_head);
2084 EXPORT_SYMBOL(skb_queue_tail);
2085 EXPORT_SYMBOL(skb_unlink);
2086 EXPORT_SYMBOL(skb_append);
2087 EXPORT_SYMBOL(skb_split);
2088 EXPORT_SYMBOL(skb_prepare_seq_read);
2089 EXPORT_SYMBOL(skb_seq_read);
2090 EXPORT_SYMBOL(skb_abort_seq_read);
2091 EXPORT_SYMBOL(skb_find_text);
2092 EXPORT_SYMBOL(skb_append_datato_frags);