2 * Kernel Probes (KProbes)
3 * arch/ia64/kernel/kprobes.c
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 * Copyright (C) IBM Corporation, 2002, 2004
20 * Copyright (C) Intel Corporation, 2005
22 * 2005-Apr Rusty Lynch <rusty.lynch@intel.com> and Anil S Keshavamurthy
23 * <anil.s.keshavamurthy@intel.com> adapted from i386
26 #include <linux/kprobes.h>
27 #include <linux/ptrace.h>
28 #include <linux/string.h>
29 #include <linux/slab.h>
30 #include <linux/preempt.h>
31 #include <linux/moduleloader.h>
33 #include <asm/pgtable.h>
34 #include <asm/kdebug.h>
35 #include <asm/sections.h>
36 #include <asm/uaccess.h>
38 extern void jprobe_inst_return(void);
40 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
41 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
43 enum instruction_type {A, I, M, F, B, L, X, u};
44 static enum instruction_type bundle_encoding[32][3] = {
80 * In this function we check to see if the instruction
81 * is IP relative instruction and update the kprobe
82 * inst flag accordingly
84 static void __kprobes update_kprobe_inst_flag(uint template, uint slot,
86 unsigned long kprobe_inst,
89 p->ainsn.inst_flag = 0;
90 p->ainsn.target_br_reg = 0;
92 /* Check for Break instruction
93 * Bits 37:40 Major opcode to be zero
94 * Bits 27:32 X6 to be zero
95 * Bits 32:35 X3 to be zero
97 if ((!major_opcode) && (!((kprobe_inst >> 27) & 0x1FF)) ) {
98 /* is a break instruction */
99 p->ainsn.inst_flag |= INST_FLAG_BREAK_INST;
103 if (bundle_encoding[template][slot] == B) {
104 switch (major_opcode) {
105 case INDIRECT_CALL_OPCODE:
106 p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
107 p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
109 case IP_RELATIVE_PREDICT_OPCODE:
110 case IP_RELATIVE_BRANCH_OPCODE:
111 p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
113 case IP_RELATIVE_CALL_OPCODE:
114 p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
115 p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
116 p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
119 } else if (bundle_encoding[template][slot] == X) {
120 switch (major_opcode) {
121 case LONG_CALL_OPCODE:
122 p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
123 p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
131 * In this function we check to see if the instruction
132 * on which we are inserting kprobe is supported.
133 * Returns 0 if supported
134 * Returns -EINVAL if unsupported
136 static int __kprobes unsupported_inst(uint template, uint slot,
138 unsigned long kprobe_inst,
141 if (bundle_encoding[template][slot] == I) {
142 switch (major_opcode) {
143 case 0x0: //I_UNIT_MISC_OPCODE:
145 * Check for Integer speculation instruction
146 * - Bit 33-35 to be equal to 0x1
148 if (((kprobe_inst >> 33) & 0x7) == 1) {
150 "Kprobes on speculation inst at <0x%lx> not supported\n",
156 * IP relative mov instruction
157 * - Bit 27-35 to be equal to 0x30
159 if (((kprobe_inst >> 27) & 0x1FF) == 0x30) {
161 "Kprobes on \"mov r1=ip\" at <0x%lx> not supported\n",
173 * In this function we check to see if the instruction
174 * (qp) cmpx.crel.ctype p1,p2=r2,r3
175 * on which we are inserting kprobe is cmp instruction
178 static uint __kprobes is_cmp_ctype_unc_inst(uint template, uint slot,
180 unsigned long kprobe_inst)
185 if (!((bundle_encoding[template][slot] == I) ||
186 (bundle_encoding[template][slot] == M)))
189 if (!((major_opcode == 0xC) || (major_opcode == 0xD) ||
190 (major_opcode == 0xE)))
193 cmp_inst.l = kprobe_inst;
194 if ((cmp_inst.f.x2 == 0) || (cmp_inst.f.x2 == 1)) {
195 /* Integere compare - Register Register (A6 type)*/
196 if ((cmp_inst.f.tb == 0) && (cmp_inst.f.ta == 0)
197 &&(cmp_inst.f.c == 1))
199 } else if ((cmp_inst.f.x2 == 2)||(cmp_inst.f.x2 == 3)) {
200 /* Integere compare - Immediate Register (A8 type)*/
201 if ((cmp_inst.f.ta == 0) &&(cmp_inst.f.c == 1))
209 * In this function we override the bundle with
210 * the break instruction at the given slot.
212 static void __kprobes prepare_break_inst(uint template, uint slot,
214 unsigned long kprobe_inst,
217 unsigned long break_inst = BREAK_INST;
218 bundle_t *bundle = &p->opcode.bundle;
221 * Copy the original kprobe_inst qualifying predicate(qp)
222 * to the break instruction iff !is_cmp_ctype_unc_inst
223 * because for cmp instruction with ctype equal to unc,
224 * which is a special instruction always needs to be
225 * executed regradless of qp
227 if (!is_cmp_ctype_unc_inst(template, slot, major_opcode, kprobe_inst))
228 break_inst |= (0x3f & kprobe_inst);
232 bundle->quad0.slot0 = break_inst;
235 bundle->quad0.slot1_p0 = break_inst;
236 bundle->quad1.slot1_p1 = break_inst >> (64-46);
239 bundle->quad1.slot2 = break_inst;
244 * Update the instruction flag, so that we can
245 * emulate the instruction properly after we
246 * single step on original instruction
248 update_kprobe_inst_flag(template, slot, major_opcode, kprobe_inst, p);
251 static void __kprobes get_kprobe_inst(bundle_t *bundle, uint slot,
252 unsigned long *kprobe_inst, uint *major_opcode)
254 unsigned long kprobe_inst_p0, kprobe_inst_p1;
255 unsigned int template;
257 template = bundle->quad0.template;
261 *major_opcode = (bundle->quad0.slot0 >> SLOT0_OPCODE_SHIFT);
262 *kprobe_inst = bundle->quad0.slot0;
265 *major_opcode = (bundle->quad1.slot1_p1 >> SLOT1_p1_OPCODE_SHIFT);
266 kprobe_inst_p0 = bundle->quad0.slot1_p0;
267 kprobe_inst_p1 = bundle->quad1.slot1_p1;
268 *kprobe_inst = kprobe_inst_p0 | (kprobe_inst_p1 << (64-46));
271 *major_opcode = (bundle->quad1.slot2 >> SLOT2_OPCODE_SHIFT);
272 *kprobe_inst = bundle->quad1.slot2;
277 /* Returns non-zero if the addr is in the Interrupt Vector Table */
278 static int __kprobes in_ivt_functions(unsigned long addr)
280 return (addr >= (unsigned long)__start_ivt_text
281 && addr < (unsigned long)__end_ivt_text);
284 static int __kprobes valid_kprobe_addr(int template, int slot,
287 if ((slot > 2) || ((bundle_encoding[template][1] == L) && slot > 1)) {
288 printk(KERN_WARNING "Attempting to insert unaligned kprobe "
293 if (in_ivt_functions(addr)) {
294 printk(KERN_WARNING "Kprobes can't be inserted inside "
295 "IVT functions at 0x%lx\n", addr);
299 if (slot == 1 && bundle_encoding[template][1] != L) {
300 printk(KERN_WARNING "Inserting kprobes on slot #1 "
301 "is not supported\n");
308 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
310 kcb->prev_kprobe.kp = kprobe_running();
311 kcb->prev_kprobe.status = kcb->kprobe_status;
314 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
316 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
317 kcb->kprobe_status = kcb->prev_kprobe.status;
320 static void __kprobes set_current_kprobe(struct kprobe *p,
321 struct kprobe_ctlblk *kcb)
323 __get_cpu_var(current_kprobe) = p;
326 static void kretprobe_trampoline(void)
331 * At this point the target function has been tricked into
332 * returning into our trampoline. Lookup the associated instance
334 * - call the handler function
335 * - cleanup by marking the instance as unused
336 * - long jump back to the original return address
338 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
340 struct kretprobe_instance *ri = NULL;
341 struct hlist_head *head, empty_rp;
342 struct hlist_node *node, *tmp;
343 unsigned long flags, orig_ret_address = 0;
344 unsigned long trampoline_address =
345 ((struct fnptr *)kretprobe_trampoline)->ip;
347 INIT_HLIST_HEAD(&empty_rp);
348 spin_lock_irqsave(&kretprobe_lock, flags);
349 head = kretprobe_inst_table_head(current);
352 * It is possible to have multiple instances associated with a given
353 * task either because an multiple functions in the call path
354 * have a return probe installed on them, and/or more then one return
355 * return probe was registered for a target function.
357 * We can handle this because:
358 * - instances are always inserted at the head of the list
359 * - when multiple return probes are registered for the same
360 * function, the first instance's ret_addr will point to the
361 * real return address, and all the rest will point to
362 * kretprobe_trampoline
364 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
365 if (ri->task != current)
366 /* another task is sharing our hash bucket */
369 if (ri->rp && ri->rp->handler)
370 ri->rp->handler(ri, regs);
372 orig_ret_address = (unsigned long)ri->ret_addr;
373 recycle_rp_inst(ri, &empty_rp);
375 if (orig_ret_address != trampoline_address)
377 * This is the real return address. Any other
378 * instances associated with this task are for
379 * other calls deeper on the call stack
384 BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address));
385 regs->cr_iip = orig_ret_address;
387 reset_current_kprobe();
388 spin_unlock_irqrestore(&kretprobe_lock, flags);
389 preempt_enable_no_resched();
391 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
392 hlist_del(&ri->hlist);
396 * By returning a non-zero value, we are telling
397 * kprobe_handler() that we don't want the post_handler
398 * to run (and have re-enabled preemption)
403 /* Called with kretprobe_lock held */
404 void __kprobes arch_prepare_kretprobe(struct kretprobe *rp,
405 struct pt_regs *regs)
407 struct kretprobe_instance *ri;
409 if ((ri = get_free_rp_inst(rp)) != NULL) {
412 ri->ret_addr = (kprobe_opcode_t *)regs->b0;
414 /* Replace the return addr with trampoline addr */
415 regs->b0 = ((struct fnptr *)kretprobe_trampoline)->ip;
423 int __kprobes arch_prepare_kprobe(struct kprobe *p)
425 unsigned long addr = (unsigned long) p->addr;
426 unsigned long *kprobe_addr = (unsigned long *)(addr & ~0xFULL);
427 unsigned long kprobe_inst=0;
428 unsigned int slot = addr & 0xf, template, major_opcode = 0;
431 bundle = &((kprobe_opcode_t *)kprobe_addr)->bundle;
432 template = bundle->quad0.template;
434 if(valid_kprobe_addr(template, slot, addr))
437 /* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
438 if (slot == 1 && bundle_encoding[template][1] == L)
441 /* Get kprobe_inst and major_opcode from the bundle */
442 get_kprobe_inst(bundle, slot, &kprobe_inst, &major_opcode);
444 if (unsupported_inst(template, slot, major_opcode, kprobe_inst, addr))
448 p->ainsn.insn = get_insn_slot();
451 memcpy(&p->opcode, kprobe_addr, sizeof(kprobe_opcode_t));
452 memcpy(p->ainsn.insn, kprobe_addr, sizeof(kprobe_opcode_t));
454 prepare_break_inst(template, slot, major_opcode, kprobe_inst, p);
459 void __kprobes arch_arm_kprobe(struct kprobe *p)
461 unsigned long addr = (unsigned long)p->addr;
462 unsigned long arm_addr = addr & ~0xFULL;
464 flush_icache_range((unsigned long)p->ainsn.insn,
465 (unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t));
466 memcpy((char *)arm_addr, &p->opcode, sizeof(kprobe_opcode_t));
467 flush_icache_range(arm_addr, arm_addr + sizeof(kprobe_opcode_t));
470 void __kprobes arch_disarm_kprobe(struct kprobe *p)
472 unsigned long addr = (unsigned long)p->addr;
473 unsigned long arm_addr = addr & ~0xFULL;
475 /* p->ainsn.insn contains the original unaltered kprobe_opcode_t */
476 memcpy((char *) arm_addr, (char *) p->ainsn.insn,
477 sizeof(kprobe_opcode_t));
478 flush_icache_range(arm_addr, arm_addr + sizeof(kprobe_opcode_t));
481 void __kprobes arch_remove_kprobe(struct kprobe *p)
483 mutex_lock(&kprobe_mutex);
484 free_insn_slot(p->ainsn.insn);
485 mutex_unlock(&kprobe_mutex);
488 * We are resuming execution after a single step fault, so the pt_regs
489 * structure reflects the register state after we executed the instruction
490 * located in the kprobe (p->ainsn.insn.bundle). We still need to adjust
491 * the ip to point back to the original stack address. To set the IP address
492 * to original stack address, handle the case where we need to fixup the
493 * relative IP address and/or fixup branch register.
495 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
497 unsigned long bundle_addr = (unsigned long) (&p->ainsn.insn->bundle);
498 unsigned long resume_addr = (unsigned long)p->addr & ~0xFULL;
499 unsigned long template;
500 int slot = ((unsigned long)p->addr & 0xf);
502 template = p->ainsn.insn->bundle.quad0.template;
504 if (slot == 1 && bundle_encoding[template][1] == L)
507 if (p->ainsn.inst_flag) {
509 if (p->ainsn.inst_flag & INST_FLAG_FIX_RELATIVE_IP_ADDR) {
510 /* Fix relative IP address */
511 regs->cr_iip = (regs->cr_iip - bundle_addr) +
515 if (p->ainsn.inst_flag & INST_FLAG_FIX_BRANCH_REG) {
517 * Fix target branch register, software convention is
518 * to use either b0 or b6 or b7, so just checking
519 * only those registers
521 switch (p->ainsn.target_br_reg) {
523 if ((regs->b0 == bundle_addr) ||
524 (regs->b0 == bundle_addr + 0x10)) {
525 regs->b0 = (regs->b0 - bundle_addr) +
530 if ((regs->b6 == bundle_addr) ||
531 (regs->b6 == bundle_addr + 0x10)) {
532 regs->b6 = (regs->b6 - bundle_addr) +
537 if ((regs->b7 == bundle_addr) ||
538 (regs->b7 == bundle_addr + 0x10)) {
539 regs->b7 = (regs->b7 - bundle_addr) +
549 if (regs->cr_iip == bundle_addr + 0x10) {
550 regs->cr_iip = resume_addr + 0x10;
553 if (regs->cr_iip == bundle_addr) {
554 regs->cr_iip = resume_addr;
559 /* Turn off Single Step bit */
560 ia64_psr(regs)->ss = 0;
563 static void __kprobes prepare_ss(struct kprobe *p, struct pt_regs *regs)
565 unsigned long bundle_addr = (unsigned long) &p->ainsn.insn->bundle;
566 unsigned long slot = (unsigned long)p->addr & 0xf;
568 /* single step inline if break instruction */
569 if (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)
570 regs->cr_iip = (unsigned long)p->addr & ~0xFULL;
572 regs->cr_iip = bundle_addr & ~0xFULL;
577 ia64_psr(regs)->ri = slot;
579 /* turn on single stepping */
580 ia64_psr(regs)->ss = 1;
583 static int __kprobes is_ia64_break_inst(struct pt_regs *regs)
585 unsigned int slot = ia64_psr(regs)->ri;
586 unsigned int template, major_opcode;
587 unsigned long kprobe_inst;
588 unsigned long *kprobe_addr = (unsigned long *)regs->cr_iip;
591 memcpy(&bundle, kprobe_addr, sizeof(bundle_t));
592 template = bundle.quad0.template;
594 /* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
595 if (slot == 1 && bundle_encoding[template][1] == L)
598 /* Get Kprobe probe instruction at given slot*/
599 get_kprobe_inst(&bundle, slot, &kprobe_inst, &major_opcode);
601 /* For break instruction,
602 * Bits 37:40 Major opcode to be zero
603 * Bits 27:32 X6 to be zero
604 * Bits 32:35 X3 to be zero
606 if (major_opcode || ((kprobe_inst >> 27) & 0x1FF) ) {
607 /* Not a break instruction */
611 /* Is a break instruction */
615 static int __kprobes pre_kprobes_handler(struct die_args *args)
619 struct pt_regs *regs = args->regs;
620 kprobe_opcode_t *addr = (kprobe_opcode_t *)instruction_pointer(regs);
621 struct kprobe_ctlblk *kcb;
624 * We don't want to be preempted for the entire
625 * duration of kprobe processing
628 kcb = get_kprobe_ctlblk();
630 /* Handle recursion cases */
631 if (kprobe_running()) {
632 p = get_kprobe(addr);
634 if ((kcb->kprobe_status == KPROBE_HIT_SS) &&
635 (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)) {
636 ia64_psr(regs)->ss = 0;
639 /* We have reentered the pre_kprobe_handler(), since
640 * another probe was hit while within the handler.
641 * We here save the original kprobes variables and
642 * just single step on the instruction of the new probe
643 * without calling any user handlers.
645 save_previous_kprobe(kcb);
646 set_current_kprobe(p, kcb);
647 kprobes_inc_nmissed_count(p);
649 kcb->kprobe_status = KPROBE_REENTER;
651 } else if (args->err == __IA64_BREAK_JPROBE) {
653 * jprobe instrumented function just completed
655 p = __get_cpu_var(current_kprobe);
656 if (p->break_handler && p->break_handler(p, regs)) {
659 } else if (!is_ia64_break_inst(regs)) {
660 /* The breakpoint instruction was removed by
661 * another cpu right after we hit, no further
662 * handling of this interrupt is appropriate
672 p = get_kprobe(addr);
674 if (!is_ia64_break_inst(regs)) {
676 * The breakpoint instruction was removed right
677 * after we hit it. Another cpu has removed
678 * either a probepoint or a debugger breakpoint
679 * at this address. In either case, no further
680 * handling of this interrupt is appropriate.
686 /* Not one of our break, let kernel handle it */
690 set_current_kprobe(p, kcb);
691 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
693 if (p->pre_handler && p->pre_handler(p, regs))
695 * Our pre-handler is specifically requesting that we just
696 * do a return. This is used for both the jprobe pre-handler
697 * and the kretprobe trampoline
703 kcb->kprobe_status = KPROBE_HIT_SS;
707 preempt_enable_no_resched();
711 static int __kprobes post_kprobes_handler(struct pt_regs *regs)
713 struct kprobe *cur = kprobe_running();
714 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
719 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
720 kcb->kprobe_status = KPROBE_HIT_SSDONE;
721 cur->post_handler(cur, regs, 0);
724 resume_execution(cur, regs);
726 /*Restore back the original saved kprobes variables and continue. */
727 if (kcb->kprobe_status == KPROBE_REENTER) {
728 restore_previous_kprobe(kcb);
731 reset_current_kprobe();
734 preempt_enable_no_resched();
738 static int __kprobes kprobes_fault_handler(struct pt_regs *regs, int trapnr)
740 struct kprobe *cur = kprobe_running();
741 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
744 switch(kcb->kprobe_status) {
748 * We are here because the instruction being single
749 * stepped caused a page fault. We reset the current
750 * kprobe and the instruction pointer points back to
751 * the probe address and allow the page fault handler
752 * to continue as a normal page fault.
754 regs->cr_iip = ((unsigned long)cur->addr) & ~0xFULL;
755 ia64_psr(regs)->ri = ((unsigned long)cur->addr) & 0xf;
756 if (kcb->kprobe_status == KPROBE_REENTER)
757 restore_previous_kprobe(kcb);
759 reset_current_kprobe();
760 preempt_enable_no_resched();
762 case KPROBE_HIT_ACTIVE:
763 case KPROBE_HIT_SSDONE:
765 * We increment the nmissed count for accounting,
766 * we can also use npre/npostfault count for accouting
767 * these specific fault cases.
769 kprobes_inc_nmissed_count(cur);
772 * We come here because instructions in the pre/post
773 * handler caused the page_fault, this could happen
774 * if handler tries to access user space by
775 * copy_from_user(), get_user() etc. Let the
776 * user-specified handler try to fix it first.
778 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
781 * In case the user-specified fault handler returned
782 * zero, try to fix up.
784 if (ia64_done_with_exception(regs))
788 * Let ia64_do_page_fault() fix it.
798 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
799 unsigned long val, void *data)
801 struct die_args *args = (struct die_args *)data;
802 int ret = NOTIFY_DONE;
804 if (args->regs && user_mode(args->regs))
809 /* err is break number from ia64_bad_break() */
810 if (args->err == 0x80200 || args->err == 0x80300 || args->err == 0)
811 if (pre_kprobes_handler(args))
815 /* err is vector number from ia64_fault() */
817 if (post_kprobes_handler(args->regs))
821 /* kprobe_running() needs smp_processor_id() */
823 if (kprobe_running() &&
824 kprobes_fault_handler(args->regs, args->trapnr))
833 struct param_bsp_cfm {
839 static void ia64_get_bsp_cfm(struct unw_frame_info *info, void *arg)
842 struct param_bsp_cfm *lp = arg;
845 unw_get_ip(info, &ip);
849 unw_get_bsp(info, (unsigned long*)&lp->bsp);
850 unw_get_cfm(info, (unsigned long*)&lp->cfm);
853 } while (unw_unwind(info) >= 0);
859 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
861 struct jprobe *jp = container_of(p, struct jprobe, kp);
862 unsigned long addr = ((struct fnptr *)(jp->entry))->ip;
863 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
864 struct param_bsp_cfm pa;
868 * Callee owns the argument space and could overwrite it, eg
869 * tail call optimization. So to be absolutely safe
870 * we save the argument space before transfering the control
871 * to instrumented jprobe function which runs in
872 * the process context
874 pa.ip = regs->cr_iip;
875 unw_init_running(ia64_get_bsp_cfm, &pa);
876 bytes = (char *)ia64_rse_skip_regs(pa.bsp, pa.cfm & 0x3f)
878 memcpy( kcb->jprobes_saved_stacked_regs,
884 /* save architectural state */
885 kcb->jprobe_saved_regs = *regs;
887 /* after rfi, execute the jprobe instrumented function */
888 regs->cr_iip = addr & ~0xFULL;
889 ia64_psr(regs)->ri = addr & 0xf;
890 regs->r1 = ((struct fnptr *)(jp->entry))->gp;
893 * fix the return address to our jprobe_inst_return() function
894 * in the jprobes.S file
896 regs->b0 = ((struct fnptr *)(jprobe_inst_return))->ip;
901 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
903 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
906 /* restoring architectural state */
907 *regs = kcb->jprobe_saved_regs;
909 /* restoring the original argument space */
910 flush_register_stack();
911 bytes = (char *)ia64_rse_skip_regs(kcb->bsp, kcb->cfm & 0x3f)
914 kcb->jprobes_saved_stacked_regs,
916 invalidate_stacked_regs();
918 preempt_enable_no_resched();
922 static struct kprobe trampoline_p = {
923 .pre_handler = trampoline_probe_handler
926 int __init arch_init_kprobes(void)
929 (kprobe_opcode_t *)((struct fnptr *)kretprobe_trampoline)->ip;
930 return register_kprobe(&trampoline_p);