1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
6 * Defines functions of journalling api
8 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
32 #define MLOG_MASK_PREFIX ML_JOURNAL
33 #include <cluster/masklog.h>
39 #include "extent_map.h"
40 #include "heartbeat.h"
43 #include "localalloc.h"
50 #include "buffer_head_io.h"
52 DEFINE_SPINLOCK(trans_inc_lock);
54 static int ocfs2_force_read_journal(struct inode *inode);
55 static int ocfs2_recover_node(struct ocfs2_super *osb,
57 static int __ocfs2_recovery_thread(void *arg);
58 static int ocfs2_commit_cache(struct ocfs2_super *osb);
59 static int ocfs2_wait_on_mount(struct ocfs2_super *osb);
60 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
62 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
64 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
66 static int ocfs2_commit_thread(void *arg);
68 static int ocfs2_commit_cache(struct ocfs2_super *osb)
73 struct ocfs2_journal *journal = NULL;
77 journal = osb->journal;
79 /* Flush all pending commits and checkpoint the journal. */
80 down_write(&journal->j_trans_barrier);
82 if (atomic_read(&journal->j_num_trans) == 0) {
83 up_write(&journal->j_trans_barrier);
84 mlog(0, "No transactions for me to flush!\n");
88 journal_lock_updates(journal->j_journal);
89 status = journal_flush(journal->j_journal);
90 journal_unlock_updates(journal->j_journal);
92 up_write(&journal->j_trans_barrier);
97 old_id = ocfs2_inc_trans_id(journal);
99 flushed = atomic_read(&journal->j_num_trans);
100 atomic_set(&journal->j_num_trans, 0);
101 up_write(&journal->j_trans_barrier);
103 mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n",
104 journal->j_trans_id, flushed);
106 ocfs2_kick_vote_thread(osb);
107 wake_up(&journal->j_checkpointed);
113 /* pass it NULL and it will allocate a new handle object for you. If
114 * you pass it a handle however, it may still return error, in which
115 * case it has free'd the passed handle for you. */
116 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
118 journal_t *journal = osb->journal->j_journal;
121 BUG_ON(!osb || !osb->journal->j_journal);
123 if (ocfs2_is_hard_readonly(osb))
124 return ERR_PTR(-EROFS);
126 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
127 BUG_ON(max_buffs <= 0);
129 /* JBD might support this, but our journalling code doesn't yet. */
130 if (journal_current_handle()) {
131 mlog(ML_ERROR, "Recursive transaction attempted!\n");
135 down_read(&osb->journal->j_trans_barrier);
137 handle = journal_start(journal, max_buffs);
138 if (IS_ERR(handle)) {
139 up_read(&osb->journal->j_trans_barrier);
141 mlog_errno(PTR_ERR(handle));
143 if (is_journal_aborted(journal)) {
144 ocfs2_abort(osb->sb, "Detected aborted journal");
145 handle = ERR_PTR(-EROFS);
148 if (!ocfs2_mount_local(osb))
149 atomic_inc(&(osb->journal->j_num_trans));
155 int ocfs2_commit_trans(struct ocfs2_super *osb,
159 struct ocfs2_journal *journal = osb->journal;
163 ret = journal_stop(handle);
167 up_read(&journal->j_trans_barrier);
173 * 'nblocks' is what you want to add to the current
174 * transaction. extend_trans will either extend the current handle by
175 * nblocks, or commit it and start a new one with nblocks credits.
177 * WARNING: This will not release any semaphores or disk locks taken
178 * during the transaction, so make sure they were taken *before*
179 * start_trans or we'll have ordering deadlocks.
181 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
182 * good because transaction ids haven't yet been recorded on the
183 * cluster locks associated with this handle.
185 int ocfs2_extend_trans(handle_t *handle, int nblocks)
194 mlog(0, "Trying to extend transaction by %d blocks\n", nblocks);
196 status = journal_extend(handle, nblocks);
203 mlog(0, "journal_extend failed, trying journal_restart\n");
204 status = journal_restart(handle, nblocks);
218 int ocfs2_journal_access(handle_t *handle,
220 struct buffer_head *bh,
229 mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n",
230 (unsigned long long)bh->b_blocknr, type,
231 (type == OCFS2_JOURNAL_ACCESS_CREATE) ?
232 "OCFS2_JOURNAL_ACCESS_CREATE" :
233 "OCFS2_JOURNAL_ACCESS_WRITE",
236 /* we can safely remove this assertion after testing. */
237 if (!buffer_uptodate(bh)) {
238 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
239 mlog(ML_ERROR, "b_blocknr=%llu\n",
240 (unsigned long long)bh->b_blocknr);
244 /* Set the current transaction information on the inode so
245 * that the locking code knows whether it can drop it's locks
246 * on this inode or not. We're protected from the commit
247 * thread updating the current transaction id until
248 * ocfs2_commit_trans() because ocfs2_start_trans() took
249 * j_trans_barrier for us. */
250 ocfs2_set_inode_lock_trans(OCFS2_SB(inode->i_sb)->journal, inode);
252 mutex_lock(&OCFS2_I(inode)->ip_io_mutex);
254 case OCFS2_JOURNAL_ACCESS_CREATE:
255 case OCFS2_JOURNAL_ACCESS_WRITE:
256 status = journal_get_write_access(handle, bh);
259 case OCFS2_JOURNAL_ACCESS_UNDO:
260 status = journal_get_undo_access(handle, bh);
265 mlog(ML_ERROR, "Uknown access type!\n");
267 mutex_unlock(&OCFS2_I(inode)->ip_io_mutex);
270 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
277 int ocfs2_journal_dirty(handle_t *handle,
278 struct buffer_head *bh)
282 mlog_entry("(bh->b_blocknr=%llu)\n",
283 (unsigned long long)bh->b_blocknr);
285 status = journal_dirty_metadata(handle, bh);
287 mlog(ML_ERROR, "Could not dirty metadata buffer. "
288 "(bh->b_blocknr=%llu)\n",
289 (unsigned long long)bh->b_blocknr);
295 int ocfs2_journal_dirty_data(handle_t *handle,
296 struct buffer_head *bh)
298 int err = journal_dirty_data(handle, bh);
301 /* TODO: When we can handle it, abort the handle and go RO on
307 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * 5)
309 void ocfs2_set_journal_params(struct ocfs2_super *osb)
311 journal_t *journal = osb->journal->j_journal;
313 spin_lock(&journal->j_state_lock);
314 journal->j_commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
315 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
316 journal->j_flags |= JFS_BARRIER;
318 journal->j_flags &= ~JFS_BARRIER;
319 spin_unlock(&journal->j_state_lock);
322 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
325 struct inode *inode = NULL; /* the journal inode */
326 journal_t *j_journal = NULL;
327 struct ocfs2_dinode *di = NULL;
328 struct buffer_head *bh = NULL;
329 struct ocfs2_super *osb;
336 osb = journal->j_osb;
338 /* already have the inode for our journal */
339 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
346 if (is_bad_inode(inode)) {
347 mlog(ML_ERROR, "access error (bad inode)\n");
354 SET_INODE_JOURNAL(inode);
355 OCFS2_I(inode)->ip_open_count++;
357 /* Skip recovery waits here - journal inode metadata never
358 * changes in a live cluster so it can be considered an
359 * exception to the rule. */
360 status = ocfs2_meta_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
362 if (status != -ERESTARTSYS)
363 mlog(ML_ERROR, "Could not get lock on journal!\n");
368 di = (struct ocfs2_dinode *)bh->b_data;
370 if (inode->i_size < OCFS2_MIN_JOURNAL_SIZE) {
371 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
377 mlog(0, "inode->i_size = %lld\n", inode->i_size);
378 mlog(0, "inode->i_blocks = %llu\n",
379 (unsigned long long)inode->i_blocks);
380 mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode)->ip_clusters);
382 /* call the kernels journal init function now */
383 j_journal = journal_init_inode(inode);
384 if (j_journal == NULL) {
385 mlog(ML_ERROR, "Linux journal layer error\n");
390 mlog(0, "Returned from journal_init_inode\n");
391 mlog(0, "j_journal->j_maxlen = %u\n", j_journal->j_maxlen);
393 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
394 OCFS2_JOURNAL_DIRTY_FL);
396 journal->j_journal = j_journal;
397 journal->j_inode = inode;
400 ocfs2_set_journal_params(osb);
402 journal->j_state = OCFS2_JOURNAL_LOADED;
408 ocfs2_meta_unlock(inode, 1);
412 OCFS2_I(inode)->ip_open_count--;
421 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
426 struct ocfs2_journal *journal = osb->journal;
427 struct buffer_head *bh = journal->j_bh;
428 struct ocfs2_dinode *fe;
432 fe = (struct ocfs2_dinode *)bh->b_data;
433 if (!OCFS2_IS_VALID_DINODE(fe)) {
434 /* This is called from startup/shutdown which will
435 * handle the errors in a specific manner, so no need
436 * to call ocfs2_error() here. */
437 mlog(ML_ERROR, "Journal dinode %llu has invalid "
439 (unsigned long long)le64_to_cpu(fe->i_blkno), 7,
445 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
447 flags |= OCFS2_JOURNAL_DIRTY_FL;
449 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
450 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
452 status = ocfs2_write_block(osb, bh, journal->j_inode);
462 * If the journal has been kmalloc'd it needs to be freed after this
465 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
467 struct ocfs2_journal *journal = NULL;
469 struct inode *inode = NULL;
470 int num_running_trans = 0;
476 journal = osb->journal;
480 inode = journal->j_inode;
482 if (journal->j_state != OCFS2_JOURNAL_LOADED)
485 /* need to inc inode use count as journal_destroy will iput. */
489 num_running_trans = atomic_read(&(osb->journal->j_num_trans));
490 if (num_running_trans > 0)
491 mlog(0, "Shutting down journal: must wait on %d "
492 "running transactions!\n",
495 /* Do a commit_cache here. It will flush our journal, *and*
496 * release any locks that are still held.
497 * set the SHUTDOWN flag and release the trans lock.
498 * the commit thread will take the trans lock for us below. */
499 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
501 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
502 * drop the trans_lock (which we want to hold until we
503 * completely destroy the journal. */
504 if (osb->commit_task) {
505 /* Wait for the commit thread */
506 mlog(0, "Waiting for ocfs2commit to exit....\n");
507 kthread_stop(osb->commit_task);
508 osb->commit_task = NULL;
511 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
513 if (ocfs2_mount_local(osb)) {
514 journal_lock_updates(journal->j_journal);
515 status = journal_flush(journal->j_journal);
516 journal_unlock_updates(journal->j_journal);
523 * Do not toggle if flush was unsuccessful otherwise
524 * will leave dirty metadata in a "clean" journal
526 status = ocfs2_journal_toggle_dirty(osb, 0);
531 /* Shutdown the kernel journal system */
532 journal_destroy(journal->j_journal);
534 OCFS2_I(inode)->ip_open_count--;
536 /* unlock our journal */
537 ocfs2_meta_unlock(inode, 1);
539 brelse(journal->j_bh);
540 journal->j_bh = NULL;
542 journal->j_state = OCFS2_JOURNAL_FREE;
544 // up_write(&journal->j_trans_barrier);
551 static void ocfs2_clear_journal_error(struct super_block *sb,
557 olderr = journal_errno(journal);
559 mlog(ML_ERROR, "File system error %d recorded in "
560 "journal %u.\n", olderr, slot);
561 mlog(ML_ERROR, "File system on device %s needs checking.\n",
564 journal_ack_err(journal);
565 journal_clear_err(journal);
569 int ocfs2_journal_load(struct ocfs2_journal *journal, int local)
572 struct ocfs2_super *osb;
579 osb = journal->j_osb;
581 status = journal_load(journal->j_journal);
583 mlog(ML_ERROR, "Failed to load journal!\n");
587 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
589 status = ocfs2_journal_toggle_dirty(osb, 1);
595 /* Launch the commit thread */
597 osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
599 if (IS_ERR(osb->commit_task)) {
600 status = PTR_ERR(osb->commit_task);
601 osb->commit_task = NULL;
602 mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
607 osb->commit_task = NULL;
615 /* 'full' flag tells us whether we clear out all blocks or if we just
616 * mark the journal clean */
617 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
625 status = journal_wipe(journal->j_journal, full);
631 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0);
641 * JBD Might read a cached version of another nodes journal file. We
642 * don't want this as this file changes often and we get no
643 * notification on those changes. The only way to be sure that we've
644 * got the most up to date version of those blocks then is to force
645 * read them off disk. Just searching through the buffer cache won't
646 * work as there may be pages backing this file which are still marked
647 * up to date. We know things can't change on this file underneath us
648 * as we have the lock by now :)
650 static int ocfs2_force_read_journal(struct inode *inode)
654 u64 v_blkno, p_blkno, p_blocks, num_blocks;
655 #define CONCURRENT_JOURNAL_FILL 32ULL
656 struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
660 memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
662 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, inode->i_size);
664 while (v_blkno < num_blocks) {
665 status = ocfs2_extent_map_get_blocks(inode, v_blkno,
666 &p_blkno, &p_blocks, NULL);
672 if (p_blocks > CONCURRENT_JOURNAL_FILL)
673 p_blocks = CONCURRENT_JOURNAL_FILL;
675 /* We are reading journal data which should not
676 * be put in the uptodate cache */
677 status = ocfs2_read_blocks(OCFS2_SB(inode->i_sb),
678 p_blkno, p_blocks, bhs, 0,
685 for(i = 0; i < p_blocks; i++) {
694 for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
701 struct ocfs2_la_recovery_item {
702 struct list_head lri_list;
704 struct ocfs2_dinode *lri_la_dinode;
705 struct ocfs2_dinode *lri_tl_dinode;
708 /* Does the second half of the recovery process. By this point, the
709 * node is marked clean and can actually be considered recovered,
710 * hence it's no longer in the recovery map, but there's still some
711 * cleanup we can do which shouldn't happen within the recovery thread
712 * as locking in that context becomes very difficult if we are to take
713 * recovering nodes into account.
715 * NOTE: This function can and will sleep on recovery of other nodes
716 * during cluster locking, just like any other ocfs2 process.
718 void ocfs2_complete_recovery(struct work_struct *work)
721 struct ocfs2_journal *journal =
722 container_of(work, struct ocfs2_journal, j_recovery_work);
723 struct ocfs2_super *osb = journal->j_osb;
724 struct ocfs2_dinode *la_dinode, *tl_dinode;
725 struct ocfs2_la_recovery_item *item;
726 struct list_head *p, *n;
727 LIST_HEAD(tmp_la_list);
731 mlog(0, "completing recovery from keventd\n");
733 spin_lock(&journal->j_lock);
734 list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
735 spin_unlock(&journal->j_lock);
737 list_for_each_safe(p, n, &tmp_la_list) {
738 item = list_entry(p, struct ocfs2_la_recovery_item, lri_list);
739 list_del_init(&item->lri_list);
741 mlog(0, "Complete recovery for slot %d\n", item->lri_slot);
743 la_dinode = item->lri_la_dinode;
745 mlog(0, "Clean up local alloc %llu\n",
746 (unsigned long long)le64_to_cpu(la_dinode->i_blkno));
748 ret = ocfs2_complete_local_alloc_recovery(osb,
756 tl_dinode = item->lri_tl_dinode;
758 mlog(0, "Clean up truncate log %llu\n",
759 (unsigned long long)le64_to_cpu(tl_dinode->i_blkno));
761 ret = ocfs2_complete_truncate_log_recovery(osb,
769 ret = ocfs2_recover_orphans(osb, item->lri_slot);
776 mlog(0, "Recovery completion\n");
780 /* NOTE: This function always eats your references to la_dinode and
781 * tl_dinode, either manually on error, or by passing them to
782 * ocfs2_complete_recovery */
783 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
785 struct ocfs2_dinode *la_dinode,
786 struct ocfs2_dinode *tl_dinode)
788 struct ocfs2_la_recovery_item *item;
790 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
792 /* Though we wish to avoid it, we are in fact safe in
793 * skipping local alloc cleanup as fsck.ocfs2 is more
794 * than capable of reclaiming unused space. */
805 INIT_LIST_HEAD(&item->lri_list);
806 item->lri_la_dinode = la_dinode;
807 item->lri_slot = slot_num;
808 item->lri_tl_dinode = tl_dinode;
810 spin_lock(&journal->j_lock);
811 list_add_tail(&item->lri_list, &journal->j_la_cleanups);
812 queue_work(ocfs2_wq, &journal->j_recovery_work);
813 spin_unlock(&journal->j_lock);
816 /* Called by the mount code to queue recovery the last part of
817 * recovery for it's own slot. */
818 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
820 struct ocfs2_journal *journal = osb->journal;
823 /* No need to queue up our truncate_log as regular
824 * cleanup will catch that. */
825 ocfs2_queue_recovery_completion(journal,
827 osb->local_alloc_copy,
829 ocfs2_schedule_truncate_log_flush(osb, 0);
831 osb->local_alloc_copy = NULL;
836 static int __ocfs2_recovery_thread(void *arg)
838 int status, node_num;
839 struct ocfs2_super *osb = arg;
843 status = ocfs2_wait_on_mount(osb);
849 status = ocfs2_super_lock(osb, 1);
855 while(!ocfs2_node_map_is_empty(osb, &osb->recovery_map)) {
856 node_num = ocfs2_node_map_first_set_bit(osb,
858 if (node_num == O2NM_INVALID_NODE_NUM) {
859 mlog(0, "Out of nodes to recover.\n");
863 status = ocfs2_recover_node(osb, node_num);
866 "Error %d recovering node %d on device (%u,%u)!\n",
868 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
869 mlog(ML_ERROR, "Volume requires unmount.\n");
873 ocfs2_recovery_map_clear(osb, node_num);
875 ocfs2_super_unlock(osb, 1);
877 /* We always run recovery on our own orphan dir - the dead
878 * node(s) may have voted "no" on an inode delete earlier. A
879 * revote is therefore required. */
880 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
884 mutex_lock(&osb->recovery_lock);
886 !ocfs2_node_map_is_empty(osb, &osb->recovery_map)) {
887 mutex_unlock(&osb->recovery_lock);
891 osb->recovery_thread_task = NULL;
892 mb(); /* sync with ocfs2_recovery_thread_running */
893 wake_up(&osb->recovery_event);
895 mutex_unlock(&osb->recovery_lock);
898 /* no one is callint kthread_stop() for us so the kthread() api
899 * requires that we call do_exit(). And it isn't exported, but
900 * complete_and_exit() seems to be a minimal wrapper around it. */
901 complete_and_exit(NULL, status);
905 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
907 mlog_entry("(node_num=%d, osb->node_num = %d)\n",
908 node_num, osb->node_num);
910 mutex_lock(&osb->recovery_lock);
911 if (osb->disable_recovery)
914 /* People waiting on recovery will wait on
915 * the recovery map to empty. */
916 if (!ocfs2_recovery_map_set(osb, node_num))
917 mlog(0, "node %d already be in recovery.\n", node_num);
919 mlog(0, "starting recovery thread...\n");
921 if (osb->recovery_thread_task)
924 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb,
926 if (IS_ERR(osb->recovery_thread_task)) {
927 mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
928 osb->recovery_thread_task = NULL;
932 mutex_unlock(&osb->recovery_lock);
933 wake_up(&osb->recovery_event);
938 /* Does the actual journal replay and marks the journal inode as
939 * clean. Will only replay if the journal inode is marked dirty. */
940 static int ocfs2_replay_journal(struct ocfs2_super *osb,
947 struct inode *inode = NULL;
948 struct ocfs2_dinode *fe;
949 journal_t *journal = NULL;
950 struct buffer_head *bh = NULL;
952 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
959 if (is_bad_inode(inode)) {
966 SET_INODE_JOURNAL(inode);
968 status = ocfs2_meta_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
970 mlog(0, "status returned from ocfs2_meta_lock=%d\n", status);
971 if (status != -ERESTARTSYS)
972 mlog(ML_ERROR, "Could not lock journal!\n");
977 fe = (struct ocfs2_dinode *) bh->b_data;
979 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
981 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
982 mlog(0, "No recovery required for node %d\n", node_num);
986 mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n",
988 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
990 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
992 status = ocfs2_force_read_journal(inode);
998 mlog(0, "calling journal_init_inode\n");
999 journal = journal_init_inode(inode);
1000 if (journal == NULL) {
1001 mlog(ML_ERROR, "Linux journal layer error\n");
1006 status = journal_load(journal);
1011 journal_destroy(journal);
1015 ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1017 /* wipe the journal */
1018 mlog(0, "flushing the journal.\n");
1019 journal_lock_updates(journal);
1020 status = journal_flush(journal);
1021 journal_unlock_updates(journal);
1025 /* This will mark the node clean */
1026 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1027 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1028 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1030 status = ocfs2_write_block(osb, bh, inode);
1037 journal_destroy(journal);
1040 /* drop the lock on this nodes journal */
1042 ocfs2_meta_unlock(inode, 1);
1055 * Do the most important parts of node recovery:
1056 * - Replay it's journal
1057 * - Stamp a clean local allocator file
1058 * - Stamp a clean truncate log
1059 * - Mark the node clean
1061 * If this function completes without error, a node in OCFS2 can be
1062 * said to have been safely recovered. As a result, failure during the
1063 * second part of a nodes recovery process (local alloc recovery) is
1064 * far less concerning.
1066 static int ocfs2_recover_node(struct ocfs2_super *osb,
1071 struct ocfs2_slot_info *si = osb->slot_info;
1072 struct ocfs2_dinode *la_copy = NULL;
1073 struct ocfs2_dinode *tl_copy = NULL;
1075 mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1076 node_num, osb->node_num);
1078 mlog(0, "checking node %d\n", node_num);
1080 /* Should not ever be called to recover ourselves -- in that
1081 * case we should've called ocfs2_journal_load instead. */
1082 BUG_ON(osb->node_num == node_num);
1084 slot_num = ocfs2_node_num_to_slot(si, node_num);
1085 if (slot_num == OCFS2_INVALID_SLOT) {
1087 mlog(0, "no slot for this node, so no recovery required.\n");
1091 mlog(0, "node %d was using slot %d\n", node_num, slot_num);
1093 status = ocfs2_replay_journal(osb, node_num, slot_num);
1099 /* Stamp a clean local alloc file AFTER recovering the journal... */
1100 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1106 /* An error from begin_truncate_log_recovery is not
1107 * serious enough to warrant halting the rest of
1109 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1113 /* Likewise, this would be a strange but ultimately not so
1114 * harmful place to get an error... */
1115 ocfs2_clear_slot(si, slot_num);
1116 status = ocfs2_update_disk_slots(osb, si);
1120 /* This will kfree the memory pointed to by la_copy and tl_copy */
1121 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1131 /* Test node liveness by trylocking his journal. If we get the lock,
1132 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1133 * still alive (we couldn't get the lock) and < 0 on error. */
1134 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1138 struct inode *inode = NULL;
1140 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1142 if (inode == NULL) {
1143 mlog(ML_ERROR, "access error\n");
1147 if (is_bad_inode(inode)) {
1148 mlog(ML_ERROR, "access error (bad inode)\n");
1154 SET_INODE_JOURNAL(inode);
1156 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1157 status = ocfs2_meta_lock_full(inode, NULL, 1, flags);
1159 if (status != -EAGAIN)
1164 ocfs2_meta_unlock(inode, 1);
1172 /* Call this underneath ocfs2_super_lock. It also assumes that the
1173 * slot info struct has been updated from disk. */
1174 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1176 int status, i, node_num;
1177 struct ocfs2_slot_info *si = osb->slot_info;
1179 /* This is called with the super block cluster lock, so we
1180 * know that the slot map can't change underneath us. */
1182 spin_lock(&si->si_lock);
1183 for(i = 0; i < si->si_num_slots; i++) {
1184 if (i == osb->slot_num)
1186 if (ocfs2_is_empty_slot(si, i))
1189 node_num = si->si_global_node_nums[i];
1190 if (ocfs2_node_map_test_bit(osb, &osb->recovery_map, node_num))
1192 spin_unlock(&si->si_lock);
1194 /* Ok, we have a slot occupied by another node which
1195 * is not in the recovery map. We trylock his journal
1196 * file here to test if he's alive. */
1197 status = ocfs2_trylock_journal(osb, i);
1199 /* Since we're called from mount, we know that
1200 * the recovery thread can't race us on
1201 * setting / checking the recovery bits. */
1202 ocfs2_recovery_thread(osb, node_num);
1203 } else if ((status < 0) && (status != -EAGAIN)) {
1208 spin_lock(&si->si_lock);
1210 spin_unlock(&si->si_lock);
1218 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
1220 struct inode **head)
1223 struct inode *orphan_dir_inode = NULL;
1225 unsigned long offset, blk, local;
1226 struct buffer_head *bh = NULL;
1227 struct ocfs2_dir_entry *de;
1228 struct super_block *sb = osb->sb;
1230 orphan_dir_inode = ocfs2_get_system_file_inode(osb,
1231 ORPHAN_DIR_SYSTEM_INODE,
1233 if (!orphan_dir_inode) {
1239 mutex_lock(&orphan_dir_inode->i_mutex);
1240 status = ocfs2_meta_lock(orphan_dir_inode, NULL, 0);
1248 while(offset < i_size_read(orphan_dir_inode)) {
1249 blk = offset >> sb->s_blocksize_bits;
1251 bh = ocfs2_bread(orphan_dir_inode, blk, &status, 0);
1262 while(offset < i_size_read(orphan_dir_inode)
1263 && local < sb->s_blocksize) {
1264 de = (struct ocfs2_dir_entry *) (bh->b_data + local);
1266 if (!ocfs2_check_dir_entry(orphan_dir_inode,
1274 local += le16_to_cpu(de->rec_len);
1275 offset += le16_to_cpu(de->rec_len);
1277 /* I guess we silently fail on no inode? */
1278 if (!le64_to_cpu(de->inode))
1280 if (de->file_type > OCFS2_FT_MAX) {
1282 "block %llu contains invalid de: "
1283 "inode = %llu, rec_len = %u, "
1284 "name_len = %u, file_type = %u, "
1286 (unsigned long long)bh->b_blocknr,
1287 (unsigned long long)le64_to_cpu(de->inode),
1288 le16_to_cpu(de->rec_len),
1295 if (de->name_len == 1 && !strncmp(".", de->name, 1))
1297 if (de->name_len == 2 && !strncmp("..", de->name, 2))
1300 iter = ocfs2_iget(osb, le64_to_cpu(de->inode),
1301 OCFS2_FI_FLAG_ORPHAN_RECOVERY);
1305 mlog(0, "queue orphan %llu\n",
1306 (unsigned long long)OCFS2_I(iter)->ip_blkno);
1307 /* No locking is required for the next_orphan
1308 * queue as there is only ever a single
1309 * process doing orphan recovery. */
1310 OCFS2_I(iter)->ip_next_orphan = *head;
1317 ocfs2_meta_unlock(orphan_dir_inode, 0);
1319 mutex_unlock(&orphan_dir_inode->i_mutex);
1320 iput(orphan_dir_inode);
1324 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
1329 spin_lock(&osb->osb_lock);
1330 ret = !osb->osb_orphan_wipes[slot];
1331 spin_unlock(&osb->osb_lock);
1335 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
1338 spin_lock(&osb->osb_lock);
1339 /* Mark ourselves such that new processes in delete_inode()
1340 * know to quit early. */
1341 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
1342 while (osb->osb_orphan_wipes[slot]) {
1343 /* If any processes are already in the middle of an
1344 * orphan wipe on this dir, then we need to wait for
1346 spin_unlock(&osb->osb_lock);
1347 wait_event_interruptible(osb->osb_wipe_event,
1348 ocfs2_orphan_recovery_can_continue(osb, slot));
1349 spin_lock(&osb->osb_lock);
1351 spin_unlock(&osb->osb_lock);
1354 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
1357 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
1361 * Orphan recovery. Each mounted node has it's own orphan dir which we
1362 * must run during recovery. Our strategy here is to build a list of
1363 * the inodes in the orphan dir and iget/iput them. The VFS does
1364 * (most) of the rest of the work.
1366 * Orphan recovery can happen at any time, not just mount so we have a
1367 * couple of extra considerations.
1369 * - We grab as many inodes as we can under the orphan dir lock -
1370 * doing iget() outside the orphan dir risks getting a reference on
1372 * - We must be sure not to deadlock with other processes on the
1373 * system wanting to run delete_inode(). This can happen when they go
1374 * to lock the orphan dir and the orphan recovery process attempts to
1375 * iget() inside the orphan dir lock. This can be avoided by
1376 * advertising our state to ocfs2_delete_inode().
1378 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
1382 struct inode *inode = NULL;
1384 struct ocfs2_inode_info *oi;
1386 mlog(0, "Recover inodes from orphan dir in slot %d\n", slot);
1388 ocfs2_mark_recovering_orphan_dir(osb, slot);
1389 ret = ocfs2_queue_orphans(osb, slot, &inode);
1390 ocfs2_clear_recovering_orphan_dir(osb, slot);
1392 /* Error here should be noted, but we want to continue with as
1393 * many queued inodes as we've got. */
1398 oi = OCFS2_I(inode);
1399 mlog(0, "iput orphan %llu\n", (unsigned long long)oi->ip_blkno);
1401 iter = oi->ip_next_orphan;
1403 spin_lock(&oi->ip_lock);
1404 /* Delete voting may have set these on the assumption
1405 * that the other node would wipe them successfully.
1406 * If they are still in the node's orphan dir, we need
1407 * to reset that state. */
1408 oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE);
1410 /* Set the proper information to get us going into
1411 * ocfs2_delete_inode. */
1412 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
1413 spin_unlock(&oi->ip_lock);
1423 static int ocfs2_wait_on_mount(struct ocfs2_super *osb)
1425 /* This check is good because ocfs2 will wait on our recovery
1426 * thread before changing it to something other than MOUNTED
1428 wait_event(osb->osb_mount_event,
1429 atomic_read(&osb->vol_state) == VOLUME_MOUNTED ||
1430 atomic_read(&osb->vol_state) == VOLUME_DISABLED);
1432 /* If there's an error on mount, then we may never get to the
1433 * MOUNTED flag, but this is set right before
1434 * dismount_volume() so we can trust it. */
1435 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
1436 mlog(0, "mount error, exiting!\n");
1443 static int ocfs2_commit_thread(void *arg)
1446 struct ocfs2_super *osb = arg;
1447 struct ocfs2_journal *journal = osb->journal;
1449 /* we can trust j_num_trans here because _should_stop() is only set in
1450 * shutdown and nobody other than ourselves should be able to start
1451 * transactions. committing on shutdown might take a few iterations
1452 * as final transactions put deleted inodes on the list */
1453 while (!(kthread_should_stop() &&
1454 atomic_read(&journal->j_num_trans) == 0)) {
1456 wait_event_interruptible(osb->checkpoint_event,
1457 atomic_read(&journal->j_num_trans)
1458 || kthread_should_stop());
1460 status = ocfs2_commit_cache(osb);
1464 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
1466 "commit_thread: %u transactions pending on "
1468 atomic_read(&journal->j_num_trans));
1475 /* Look for a dirty journal without taking any cluster locks. Used for
1476 * hard readonly access to determine whether the file system journals
1477 * require recovery. */
1478 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
1482 struct buffer_head *di_bh;
1483 struct ocfs2_dinode *di;
1484 struct inode *journal = NULL;
1486 for(slot = 0; slot < osb->max_slots; slot++) {
1487 journal = ocfs2_get_system_file_inode(osb,
1488 JOURNAL_SYSTEM_INODE,
1490 if (!journal || is_bad_inode(journal)) {
1497 ret = ocfs2_read_block(osb, OCFS2_I(journal)->ip_blkno, &di_bh,
1504 di = (struct ocfs2_dinode *) di_bh->b_data;
1506 if (le32_to_cpu(di->id1.journal1.ij_flags) &
1507 OCFS2_JOURNAL_DIRTY_FL)