powerpc/mm: Rename arch/powerpc/kernel/mmap.c to mmap_64.c
[linux-2.6] / arch / powerpc / mm / mmu_context_hash32.c
1 /*
2  * This file contains the routines for handling the MMU on those
3  * PowerPC implementations where the MMU substantially follows the
4  * architecture specification.  This includes the 6xx, 7xx, 7xxx,
5  * 8260, and POWER3 implementations but excludes the 8xx and 4xx.
6  *  -- paulus
7  *
8  *  Derived from arch/ppc/mm/init.c:
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
12  *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
13  *    Copyright (C) 1996 Paul Mackerras
14  *
15  *  Derived from "arch/i386/mm/init.c"
16  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
17  *
18  *  This program is free software; you can redistribute it and/or
19  *  modify it under the terms of the GNU General Public License
20  *  as published by the Free Software Foundation; either version
21  *  2 of the License, or (at your option) any later version.
22  *
23  */
24
25 #include <linux/mm.h>
26 #include <linux/init.h>
27
28 #include <asm/mmu_context.h>
29 #include <asm/tlbflush.h>
30
31 /*
32  * On 32-bit PowerPC 6xx/7xx/7xxx CPUs, we use a set of 16 VSIDs
33  * (virtual segment identifiers) for each context.  Although the
34  * hardware supports 24-bit VSIDs, and thus >1 million contexts,
35  * we only use 32,768 of them.  That is ample, since there can be
36  * at most around 30,000 tasks in the system anyway, and it means
37  * that we can use a bitmap to indicate which contexts are in use.
38  * Using a bitmap means that we entirely avoid all of the problems
39  * that we used to have when the context number overflowed,
40  * particularly on SMP systems.
41  *  -- paulus.
42  */
43 #define NO_CONTEXT              ((unsigned long) -1)
44 #define LAST_CONTEXT            32767
45 #define FIRST_CONTEXT           1
46
47 /*
48  * This function defines the mapping from contexts to VSIDs (virtual
49  * segment IDs).  We use a skew on both the context and the high 4 bits
50  * of the 32-bit virtual address (the "effective segment ID") in order
51  * to spread out the entries in the MMU hash table.  Note, if this
52  * function is changed then arch/ppc/mm/hashtable.S will have to be
53  * changed to correspond.
54  *
55  *
56  * CTX_TO_VSID(ctx, va) (((ctx) * (897 * 16) + ((va) >> 28) * 0x111) \
57  *                               & 0xffffff)
58  */
59
60 static unsigned long next_mmu_context;
61 static unsigned long context_map[LAST_CONTEXT / BITS_PER_LONG + 1];
62
63
64 /*
65  * Set up the context for a new address space.
66  */
67 int init_new_context(struct task_struct *t, struct mm_struct *mm)
68 {
69         unsigned long ctx = next_mmu_context;
70
71         while (test_and_set_bit(ctx, context_map)) {
72                 ctx = find_next_zero_bit(context_map, LAST_CONTEXT+1, ctx);
73                 if (ctx > LAST_CONTEXT)
74                         ctx = 0;
75         }
76         next_mmu_context = (ctx + 1) & LAST_CONTEXT;
77         mm->context.id = ctx;
78
79         return 0;
80 }
81
82 /*
83  * We're finished using the context for an address space.
84  */
85 void destroy_context(struct mm_struct *mm)
86 {
87         preempt_disable();
88         if (mm->context.id != NO_CONTEXT) {
89                 clear_bit(mm->context.id, context_map);
90                 mm->context.id = NO_CONTEXT;
91         }
92         preempt_enable();
93 }
94
95 /*
96  * Initialize the context management stuff.
97  */
98 void __init mmu_context_init(void)
99 {
100         /* Reserve context 0 for kernel use */
101         context_map[0] = (1 << FIRST_CONTEXT) - 1;
102         next_mmu_context = FIRST_CONTEXT;
103 }