2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
3 * Ethernet adapters. Based on earlier sk98lin, e100 and
4 * FreeBSD if_sk drivers.
6 * This driver intentionally does not support all the features
7 * of the original driver such as link fail-over and link management because
8 * those should be done at higher levels.
10 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/moduleparam.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/ethtool.h>
34 #include <linux/pci.h>
35 #include <linux/if_vlan.h>
37 #include <linux/delay.h>
38 #include <linux/crc32.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/mii.h>
45 #define DRV_NAME "skge"
46 #define DRV_VERSION "1.8"
47 #define PFX DRV_NAME " "
49 #define DEFAULT_TX_RING_SIZE 128
50 #define DEFAULT_RX_RING_SIZE 512
51 #define MAX_TX_RING_SIZE 1024
52 #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
53 #define MAX_RX_RING_SIZE 4096
54 #define RX_COPY_THRESHOLD 128
55 #define RX_BUF_SIZE 1536
56 #define PHY_RETRIES 1000
57 #define ETH_JUMBO_MTU 9000
58 #define TX_WATCHDOG (5 * HZ)
59 #define NAPI_WEIGHT 64
61 #define LINK_HZ (HZ/2)
63 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
64 MODULE_AUTHOR("Stephen Hemminger <shemminger@osdl.org>");
65 MODULE_LICENSE("GPL");
66 MODULE_VERSION(DRV_VERSION);
68 static const u32 default_msg
69 = NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK
70 | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN;
72 static int debug = -1; /* defaults above */
73 module_param(debug, int, 0);
74 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
76 static const struct pci_device_id skge_id_table[] = {
77 { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
78 { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
79 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
80 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
81 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T), },
82 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* DGE-530T */
83 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
84 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
85 { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
86 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
87 { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015, },
90 MODULE_DEVICE_TABLE(pci, skge_id_table);
92 static int skge_up(struct net_device *dev);
93 static int skge_down(struct net_device *dev);
94 static void skge_phy_reset(struct skge_port *skge);
95 static void skge_tx_clean(struct net_device *dev);
96 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
97 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
98 static void genesis_get_stats(struct skge_port *skge, u64 *data);
99 static void yukon_get_stats(struct skge_port *skge, u64 *data);
100 static void yukon_init(struct skge_hw *hw, int port);
101 static void genesis_mac_init(struct skge_hw *hw, int port);
102 static void genesis_link_up(struct skge_port *skge);
104 /* Avoid conditionals by using array */
105 static const int txqaddr[] = { Q_XA1, Q_XA2 };
106 static const int rxqaddr[] = { Q_R1, Q_R2 };
107 static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
108 static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
109 static const u32 irqmask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
111 static int skge_get_regs_len(struct net_device *dev)
117 * Returns copy of whole control register region
118 * Note: skip RAM address register because accessing it will
121 static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
124 const struct skge_port *skge = netdev_priv(dev);
125 const void __iomem *io = skge->hw->regs;
128 memset(p, 0, regs->len);
129 memcpy_fromio(p, io, B3_RAM_ADDR);
131 memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
132 regs->len - B3_RI_WTO_R1);
135 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
136 static int wol_supported(const struct skge_hw *hw)
138 return !((hw->chip_id == CHIP_ID_GENESIS ||
139 (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)));
142 static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
144 struct skge_port *skge = netdev_priv(dev);
146 wol->supported = wol_supported(skge->hw) ? WAKE_MAGIC : 0;
147 wol->wolopts = skge->wol ? WAKE_MAGIC : 0;
150 static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
152 struct skge_port *skge = netdev_priv(dev);
153 struct skge_hw *hw = skge->hw;
155 if (wol->wolopts != WAKE_MAGIC && wol->wolopts != 0)
158 if (wol->wolopts == WAKE_MAGIC && !wol_supported(hw))
161 skge->wol = wol->wolopts == WAKE_MAGIC;
164 memcpy_toio(hw->regs + WOL_MAC_ADDR, dev->dev_addr, ETH_ALEN);
166 skge_write16(hw, WOL_CTRL_STAT,
167 WOL_CTL_ENA_PME_ON_MAGIC_PKT |
168 WOL_CTL_ENA_MAGIC_PKT_UNIT);
170 skge_write16(hw, WOL_CTRL_STAT, WOL_CTL_DEFAULT);
175 /* Determine supported/advertised modes based on hardware.
176 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
178 static u32 skge_supported_modes(const struct skge_hw *hw)
183 supported = SUPPORTED_10baseT_Half
184 | SUPPORTED_10baseT_Full
185 | SUPPORTED_100baseT_Half
186 | SUPPORTED_100baseT_Full
187 | SUPPORTED_1000baseT_Half
188 | SUPPORTED_1000baseT_Full
189 | SUPPORTED_Autoneg| SUPPORTED_TP;
191 if (hw->chip_id == CHIP_ID_GENESIS)
192 supported &= ~(SUPPORTED_10baseT_Half
193 | SUPPORTED_10baseT_Full
194 | SUPPORTED_100baseT_Half
195 | SUPPORTED_100baseT_Full);
197 else if (hw->chip_id == CHIP_ID_YUKON)
198 supported &= ~SUPPORTED_1000baseT_Half;
200 supported = SUPPORTED_1000baseT_Full | SUPPORTED_FIBRE
206 static int skge_get_settings(struct net_device *dev,
207 struct ethtool_cmd *ecmd)
209 struct skge_port *skge = netdev_priv(dev);
210 struct skge_hw *hw = skge->hw;
212 ecmd->transceiver = XCVR_INTERNAL;
213 ecmd->supported = skge_supported_modes(hw);
216 ecmd->port = PORT_TP;
217 ecmd->phy_address = hw->phy_addr;
219 ecmd->port = PORT_FIBRE;
221 ecmd->advertising = skge->advertising;
222 ecmd->autoneg = skge->autoneg;
223 ecmd->speed = skge->speed;
224 ecmd->duplex = skge->duplex;
228 static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
230 struct skge_port *skge = netdev_priv(dev);
231 const struct skge_hw *hw = skge->hw;
232 u32 supported = skge_supported_modes(hw);
234 if (ecmd->autoneg == AUTONEG_ENABLE) {
235 ecmd->advertising = supported;
241 switch (ecmd->speed) {
243 if (ecmd->duplex == DUPLEX_FULL)
244 setting = SUPPORTED_1000baseT_Full;
245 else if (ecmd->duplex == DUPLEX_HALF)
246 setting = SUPPORTED_1000baseT_Half;
251 if (ecmd->duplex == DUPLEX_FULL)
252 setting = SUPPORTED_100baseT_Full;
253 else if (ecmd->duplex == DUPLEX_HALF)
254 setting = SUPPORTED_100baseT_Half;
260 if (ecmd->duplex == DUPLEX_FULL)
261 setting = SUPPORTED_10baseT_Full;
262 else if (ecmd->duplex == DUPLEX_HALF)
263 setting = SUPPORTED_10baseT_Half;
271 if ((setting & supported) == 0)
274 skge->speed = ecmd->speed;
275 skge->duplex = ecmd->duplex;
278 skge->autoneg = ecmd->autoneg;
279 skge->advertising = ecmd->advertising;
281 if (netif_running(dev))
282 skge_phy_reset(skge);
287 static void skge_get_drvinfo(struct net_device *dev,
288 struct ethtool_drvinfo *info)
290 struct skge_port *skge = netdev_priv(dev);
292 strcpy(info->driver, DRV_NAME);
293 strcpy(info->version, DRV_VERSION);
294 strcpy(info->fw_version, "N/A");
295 strcpy(info->bus_info, pci_name(skge->hw->pdev));
298 static const struct skge_stat {
299 char name[ETH_GSTRING_LEN];
303 { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
304 { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
306 { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
307 { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
308 { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
309 { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
310 { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
311 { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
312 { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
313 { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
315 { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
316 { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
317 { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
318 { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
319 { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
320 { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
322 { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
323 { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
324 { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
325 { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
326 { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
329 static int skge_get_stats_count(struct net_device *dev)
331 return ARRAY_SIZE(skge_stats);
334 static void skge_get_ethtool_stats(struct net_device *dev,
335 struct ethtool_stats *stats, u64 *data)
337 struct skge_port *skge = netdev_priv(dev);
339 if (skge->hw->chip_id == CHIP_ID_GENESIS)
340 genesis_get_stats(skge, data);
342 yukon_get_stats(skge, data);
345 /* Use hardware MIB variables for critical path statistics and
346 * transmit feedback not reported at interrupt.
347 * Other errors are accounted for in interrupt handler.
349 static struct net_device_stats *skge_get_stats(struct net_device *dev)
351 struct skge_port *skge = netdev_priv(dev);
352 u64 data[ARRAY_SIZE(skge_stats)];
354 if (skge->hw->chip_id == CHIP_ID_GENESIS)
355 genesis_get_stats(skge, data);
357 yukon_get_stats(skge, data);
359 skge->net_stats.tx_bytes = data[0];
360 skge->net_stats.rx_bytes = data[1];
361 skge->net_stats.tx_packets = data[2] + data[4] + data[6];
362 skge->net_stats.rx_packets = data[3] + data[5] + data[7];
363 skge->net_stats.multicast = data[3] + data[5];
364 skge->net_stats.collisions = data[10];
365 skge->net_stats.tx_aborted_errors = data[12];
367 return &skge->net_stats;
370 static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
376 for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
377 memcpy(data + i * ETH_GSTRING_LEN,
378 skge_stats[i].name, ETH_GSTRING_LEN);
383 static void skge_get_ring_param(struct net_device *dev,
384 struct ethtool_ringparam *p)
386 struct skge_port *skge = netdev_priv(dev);
388 p->rx_max_pending = MAX_RX_RING_SIZE;
389 p->tx_max_pending = MAX_TX_RING_SIZE;
390 p->rx_mini_max_pending = 0;
391 p->rx_jumbo_max_pending = 0;
393 p->rx_pending = skge->rx_ring.count;
394 p->tx_pending = skge->tx_ring.count;
395 p->rx_mini_pending = 0;
396 p->rx_jumbo_pending = 0;
399 static int skge_set_ring_param(struct net_device *dev,
400 struct ethtool_ringparam *p)
402 struct skge_port *skge = netdev_priv(dev);
405 if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
406 p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
409 skge->rx_ring.count = p->rx_pending;
410 skge->tx_ring.count = p->tx_pending;
412 if (netif_running(dev)) {
422 static u32 skge_get_msglevel(struct net_device *netdev)
424 struct skge_port *skge = netdev_priv(netdev);
425 return skge->msg_enable;
428 static void skge_set_msglevel(struct net_device *netdev, u32 value)
430 struct skge_port *skge = netdev_priv(netdev);
431 skge->msg_enable = value;
434 static int skge_nway_reset(struct net_device *dev)
436 struct skge_port *skge = netdev_priv(dev);
438 if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
441 skge_phy_reset(skge);
445 static int skge_set_sg(struct net_device *dev, u32 data)
447 struct skge_port *skge = netdev_priv(dev);
448 struct skge_hw *hw = skge->hw;
450 if (hw->chip_id == CHIP_ID_GENESIS && data)
452 return ethtool_op_set_sg(dev, data);
455 static int skge_set_tx_csum(struct net_device *dev, u32 data)
457 struct skge_port *skge = netdev_priv(dev);
458 struct skge_hw *hw = skge->hw;
460 if (hw->chip_id == CHIP_ID_GENESIS && data)
463 return ethtool_op_set_tx_csum(dev, data);
466 static u32 skge_get_rx_csum(struct net_device *dev)
468 struct skge_port *skge = netdev_priv(dev);
470 return skge->rx_csum;
473 /* Only Yukon supports checksum offload. */
474 static int skge_set_rx_csum(struct net_device *dev, u32 data)
476 struct skge_port *skge = netdev_priv(dev);
478 if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
481 skge->rx_csum = data;
485 static void skge_get_pauseparam(struct net_device *dev,
486 struct ethtool_pauseparam *ecmd)
488 struct skge_port *skge = netdev_priv(dev);
490 ecmd->tx_pause = (skge->flow_control == FLOW_MODE_LOC_SEND)
491 || (skge->flow_control == FLOW_MODE_SYMMETRIC);
492 ecmd->rx_pause = (skge->flow_control == FLOW_MODE_REM_SEND)
493 || (skge->flow_control == FLOW_MODE_SYMMETRIC);
495 ecmd->autoneg = skge->autoneg;
498 static int skge_set_pauseparam(struct net_device *dev,
499 struct ethtool_pauseparam *ecmd)
501 struct skge_port *skge = netdev_priv(dev);
503 skge->autoneg = ecmd->autoneg;
504 if (ecmd->rx_pause && ecmd->tx_pause)
505 skge->flow_control = FLOW_MODE_SYMMETRIC;
506 else if (ecmd->rx_pause && !ecmd->tx_pause)
507 skge->flow_control = FLOW_MODE_REM_SEND;
508 else if (!ecmd->rx_pause && ecmd->tx_pause)
509 skge->flow_control = FLOW_MODE_LOC_SEND;
511 skge->flow_control = FLOW_MODE_NONE;
513 if (netif_running(dev))
514 skge_phy_reset(skge);
518 /* Chip internal frequency for clock calculations */
519 static inline u32 hwkhz(const struct skge_hw *hw)
521 return (hw->chip_id == CHIP_ID_GENESIS) ? 53125 : 78125;
524 /* Chip HZ to microseconds */
525 static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
527 return (ticks * 1000) / hwkhz(hw);
530 /* Microseconds to chip HZ */
531 static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
533 return hwkhz(hw) * usec / 1000;
536 static int skge_get_coalesce(struct net_device *dev,
537 struct ethtool_coalesce *ecmd)
539 struct skge_port *skge = netdev_priv(dev);
540 struct skge_hw *hw = skge->hw;
541 int port = skge->port;
543 ecmd->rx_coalesce_usecs = 0;
544 ecmd->tx_coalesce_usecs = 0;
546 if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
547 u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
548 u32 msk = skge_read32(hw, B2_IRQM_MSK);
550 if (msk & rxirqmask[port])
551 ecmd->rx_coalesce_usecs = delay;
552 if (msk & txirqmask[port])
553 ecmd->tx_coalesce_usecs = delay;
559 /* Note: interrupt timer is per board, but can turn on/off per port */
560 static int skge_set_coalesce(struct net_device *dev,
561 struct ethtool_coalesce *ecmd)
563 struct skge_port *skge = netdev_priv(dev);
564 struct skge_hw *hw = skge->hw;
565 int port = skge->port;
566 u32 msk = skge_read32(hw, B2_IRQM_MSK);
569 if (ecmd->rx_coalesce_usecs == 0)
570 msk &= ~rxirqmask[port];
571 else if (ecmd->rx_coalesce_usecs < 25 ||
572 ecmd->rx_coalesce_usecs > 33333)
575 msk |= rxirqmask[port];
576 delay = ecmd->rx_coalesce_usecs;
579 if (ecmd->tx_coalesce_usecs == 0)
580 msk &= ~txirqmask[port];
581 else if (ecmd->tx_coalesce_usecs < 25 ||
582 ecmd->tx_coalesce_usecs > 33333)
585 msk |= txirqmask[port];
586 delay = min(delay, ecmd->rx_coalesce_usecs);
589 skge_write32(hw, B2_IRQM_MSK, msk);
591 skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
593 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
594 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
599 enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
600 static void skge_led(struct skge_port *skge, enum led_mode mode)
602 struct skge_hw *hw = skge->hw;
603 int port = skge->port;
605 mutex_lock(&hw->phy_mutex);
606 if (hw->chip_id == CHIP_ID_GENESIS) {
609 if (hw->phy_type == SK_PHY_BCOM)
610 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
612 skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
613 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
615 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
616 skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
617 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
621 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
622 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
624 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
625 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
630 skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
631 skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
632 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
634 if (hw->phy_type == SK_PHY_BCOM)
635 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
637 skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
638 skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
639 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
646 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
647 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
648 PHY_M_LED_MO_DUP(MO_LED_OFF) |
649 PHY_M_LED_MO_10(MO_LED_OFF) |
650 PHY_M_LED_MO_100(MO_LED_OFF) |
651 PHY_M_LED_MO_1000(MO_LED_OFF) |
652 PHY_M_LED_MO_RX(MO_LED_OFF));
655 gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
656 PHY_M_LED_PULS_DUR(PULS_170MS) |
657 PHY_M_LED_BLINK_RT(BLINK_84MS) |
661 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
662 PHY_M_LED_MO_RX(MO_LED_OFF) |
663 (skge->speed == SPEED_100 ?
664 PHY_M_LED_MO_100(MO_LED_ON) : 0));
667 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
668 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
669 PHY_M_LED_MO_DUP(MO_LED_ON) |
670 PHY_M_LED_MO_10(MO_LED_ON) |
671 PHY_M_LED_MO_100(MO_LED_ON) |
672 PHY_M_LED_MO_1000(MO_LED_ON) |
673 PHY_M_LED_MO_RX(MO_LED_ON));
676 mutex_unlock(&hw->phy_mutex);
679 /* blink LED's for finding board */
680 static int skge_phys_id(struct net_device *dev, u32 data)
682 struct skge_port *skge = netdev_priv(dev);
684 enum led_mode mode = LED_MODE_TST;
686 if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
687 ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT / HZ) * 1000;
692 skge_led(skge, mode);
693 mode ^= LED_MODE_TST;
695 if (msleep_interruptible(BLINK_MS))
700 /* back to regular LED state */
701 skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
706 static const struct ethtool_ops skge_ethtool_ops = {
707 .get_settings = skge_get_settings,
708 .set_settings = skge_set_settings,
709 .get_drvinfo = skge_get_drvinfo,
710 .get_regs_len = skge_get_regs_len,
711 .get_regs = skge_get_regs,
712 .get_wol = skge_get_wol,
713 .set_wol = skge_set_wol,
714 .get_msglevel = skge_get_msglevel,
715 .set_msglevel = skge_set_msglevel,
716 .nway_reset = skge_nway_reset,
717 .get_link = ethtool_op_get_link,
718 .get_ringparam = skge_get_ring_param,
719 .set_ringparam = skge_set_ring_param,
720 .get_pauseparam = skge_get_pauseparam,
721 .set_pauseparam = skge_set_pauseparam,
722 .get_coalesce = skge_get_coalesce,
723 .set_coalesce = skge_set_coalesce,
724 .get_sg = ethtool_op_get_sg,
725 .set_sg = skge_set_sg,
726 .get_tx_csum = ethtool_op_get_tx_csum,
727 .set_tx_csum = skge_set_tx_csum,
728 .get_rx_csum = skge_get_rx_csum,
729 .set_rx_csum = skge_set_rx_csum,
730 .get_strings = skge_get_strings,
731 .phys_id = skge_phys_id,
732 .get_stats_count = skge_get_stats_count,
733 .get_ethtool_stats = skge_get_ethtool_stats,
734 .get_perm_addr = ethtool_op_get_perm_addr,
738 * Allocate ring elements and chain them together
739 * One-to-one association of board descriptors with ring elements
741 static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
743 struct skge_tx_desc *d;
744 struct skge_element *e;
747 ring->start = kcalloc(sizeof(*e), ring->count, GFP_KERNEL);
751 for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
753 if (i == ring->count - 1) {
754 e->next = ring->start;
755 d->next_offset = base;
758 d->next_offset = base + (i+1) * sizeof(*d);
761 ring->to_use = ring->to_clean = ring->start;
766 /* Allocate and setup a new buffer for receiving */
767 static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
768 struct sk_buff *skb, unsigned int bufsize)
770 struct skge_rx_desc *rd = e->desc;
773 map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
777 rd->dma_hi = map >> 32;
779 rd->csum1_start = ETH_HLEN;
780 rd->csum2_start = ETH_HLEN;
786 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
787 pci_unmap_addr_set(e, mapaddr, map);
788 pci_unmap_len_set(e, maplen, bufsize);
791 /* Resume receiving using existing skb,
792 * Note: DMA address is not changed by chip.
793 * MTU not changed while receiver active.
795 static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
797 struct skge_rx_desc *rd = e->desc;
800 rd->csum2_start = ETH_HLEN;
804 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
808 /* Free all buffers in receive ring, assumes receiver stopped */
809 static void skge_rx_clean(struct skge_port *skge)
811 struct skge_hw *hw = skge->hw;
812 struct skge_ring *ring = &skge->rx_ring;
813 struct skge_element *e;
817 struct skge_rx_desc *rd = e->desc;
820 pci_unmap_single(hw->pdev,
821 pci_unmap_addr(e, mapaddr),
822 pci_unmap_len(e, maplen),
824 dev_kfree_skb(e->skb);
827 } while ((e = e->next) != ring->start);
831 /* Allocate buffers for receive ring
832 * For receive: to_clean is next received frame.
834 static int skge_rx_fill(struct net_device *dev)
836 struct skge_port *skge = netdev_priv(dev);
837 struct skge_ring *ring = &skge->rx_ring;
838 struct skge_element *e;
844 skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
849 skb_reserve(skb, NET_IP_ALIGN);
850 skge_rx_setup(skge, e, skb, skge->rx_buf_size);
851 } while ( (e = e->next) != ring->start);
853 ring->to_clean = ring->start;
857 static void skge_link_up(struct skge_port *skge)
859 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
860 LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
862 netif_carrier_on(skge->netdev);
863 netif_wake_queue(skge->netdev);
865 if (netif_msg_link(skge))
867 "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
868 skge->netdev->name, skge->speed,
869 skge->duplex == DUPLEX_FULL ? "full" : "half",
870 (skge->flow_control == FLOW_MODE_NONE) ? "none" :
871 (skge->flow_control == FLOW_MODE_LOC_SEND) ? "tx only" :
872 (skge->flow_control == FLOW_MODE_REM_SEND) ? "rx only" :
873 (skge->flow_control == FLOW_MODE_SYMMETRIC) ? "tx and rx" :
877 static void skge_link_down(struct skge_port *skge)
879 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
880 netif_carrier_off(skge->netdev);
881 netif_stop_queue(skge->netdev);
883 if (netif_msg_link(skge))
884 printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name);
887 static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
891 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
892 *val = xm_read16(hw, port, XM_PHY_DATA);
894 if (hw->phy_type == SK_PHY_XMAC)
897 for (i = 0; i < PHY_RETRIES; i++) {
898 if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
905 *val = xm_read16(hw, port, XM_PHY_DATA);
910 static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
913 if (__xm_phy_read(hw, port, reg, &v))
914 printk(KERN_WARNING PFX "%s: phy read timed out\n",
915 hw->dev[port]->name);
919 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
923 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
924 for (i = 0; i < PHY_RETRIES; i++) {
925 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
932 xm_write16(hw, port, XM_PHY_DATA, val);
933 for (i = 0; i < PHY_RETRIES; i++) {
934 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
941 static void genesis_init(struct skge_hw *hw)
943 /* set blink source counter */
944 skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
945 skge_write8(hw, B2_BSC_CTRL, BSC_START);
947 /* configure mac arbiter */
948 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
950 /* configure mac arbiter timeout values */
951 skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
952 skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
953 skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
954 skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
956 skge_write8(hw, B3_MA_RCINI_RX1, 0);
957 skge_write8(hw, B3_MA_RCINI_RX2, 0);
958 skge_write8(hw, B3_MA_RCINI_TX1, 0);
959 skge_write8(hw, B3_MA_RCINI_TX2, 0);
961 /* configure packet arbiter timeout */
962 skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
963 skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
964 skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
965 skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
966 skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
969 static void genesis_reset(struct skge_hw *hw, int port)
971 const u8 zero[8] = { 0 };
973 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
975 /* reset the statistics module */
976 xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
977 xm_write16(hw, port, XM_IMSK, 0xffff); /* disable XMAC IRQs */
978 xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
979 xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
980 xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
982 /* disable Broadcom PHY IRQ */
983 if (hw->phy_type == SK_PHY_BCOM)
984 xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
986 xm_outhash(hw, port, XM_HSM, zero);
990 /* Convert mode to MII values */
991 static const u16 phy_pause_map[] = {
992 [FLOW_MODE_NONE] = 0,
993 [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
994 [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
995 [FLOW_MODE_REM_SEND] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
999 /* Check status of Broadcom phy link */
1000 static void bcom_check_link(struct skge_hw *hw, int port)
1002 struct net_device *dev = hw->dev[port];
1003 struct skge_port *skge = netdev_priv(dev);
1006 /* read twice because of latch */
1007 (void) xm_phy_read(hw, port, PHY_BCOM_STAT);
1008 status = xm_phy_read(hw, port, PHY_BCOM_STAT);
1010 if ((status & PHY_ST_LSYNC) == 0) {
1011 u16 cmd = xm_read16(hw, port, XM_MMU_CMD);
1012 cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1013 xm_write16(hw, port, XM_MMU_CMD, cmd);
1014 /* dummy read to ensure writing */
1015 (void) xm_read16(hw, port, XM_MMU_CMD);
1017 if (netif_carrier_ok(dev))
1018 skge_link_down(skge);
1022 if (skge->autoneg == AUTONEG_ENABLE) {
1025 if (!(status & PHY_ST_AN_OVER))
1028 lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1029 if (lpa & PHY_B_AN_RF) {
1030 printk(KERN_NOTICE PFX "%s: remote fault\n",
1035 aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
1037 /* Check Duplex mismatch */
1038 switch (aux & PHY_B_AS_AN_RES_MSK) {
1039 case PHY_B_RES_1000FD:
1040 skge->duplex = DUPLEX_FULL;
1042 case PHY_B_RES_1000HD:
1043 skge->duplex = DUPLEX_HALF;
1046 printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
1052 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1053 switch (aux & PHY_B_AS_PAUSE_MSK) {
1054 case PHY_B_AS_PAUSE_MSK:
1055 skge->flow_control = FLOW_MODE_SYMMETRIC;
1058 skge->flow_control = FLOW_MODE_REM_SEND;
1061 skge->flow_control = FLOW_MODE_LOC_SEND;
1064 skge->flow_control = FLOW_MODE_NONE;
1066 skge->speed = SPEED_1000;
1069 if (!netif_carrier_ok(dev))
1070 genesis_link_up(skge);
1073 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1074 * Phy on for 100 or 10Mbit operation
1076 static void bcom_phy_init(struct skge_port *skge)
1078 struct skge_hw *hw = skge->hw;
1079 int port = skge->port;
1081 u16 id1, r, ext, ctl;
1083 /* magic workaround patterns for Broadcom */
1084 static const struct {
1088 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1089 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1090 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1091 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1093 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1094 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1097 /* read Id from external PHY (all have the same address) */
1098 id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
1100 /* Optimize MDIO transfer by suppressing preamble. */
1101 r = xm_read16(hw, port, XM_MMU_CMD);
1103 xm_write16(hw, port, XM_MMU_CMD,r);
1106 case PHY_BCOM_ID1_C0:
1108 * Workaround BCOM Errata for the C0 type.
1109 * Write magic patterns to reserved registers.
1111 for (i = 0; i < ARRAY_SIZE(C0hack); i++)
1112 xm_phy_write(hw, port,
1113 C0hack[i].reg, C0hack[i].val);
1116 case PHY_BCOM_ID1_A1:
1118 * Workaround BCOM Errata for the A1 type.
1119 * Write magic patterns to reserved registers.
1121 for (i = 0; i < ARRAY_SIZE(A1hack); i++)
1122 xm_phy_write(hw, port,
1123 A1hack[i].reg, A1hack[i].val);
1128 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1129 * Disable Power Management after reset.
1131 r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
1132 r |= PHY_B_AC_DIS_PM;
1133 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
1136 xm_read16(hw, port, XM_ISRC);
1138 ext = PHY_B_PEC_EN_LTR; /* enable tx led */
1139 ctl = PHY_CT_SP1000; /* always 1000mbit */
1141 if (skge->autoneg == AUTONEG_ENABLE) {
1143 * Workaround BCOM Errata #1 for the C5 type.
1144 * 1000Base-T Link Acquisition Failure in Slave Mode
1145 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1147 u16 adv = PHY_B_1000C_RD;
1148 if (skge->advertising & ADVERTISED_1000baseT_Half)
1149 adv |= PHY_B_1000C_AHD;
1150 if (skge->advertising & ADVERTISED_1000baseT_Full)
1151 adv |= PHY_B_1000C_AFD;
1152 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
1154 ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1156 if (skge->duplex == DUPLEX_FULL)
1157 ctl |= PHY_CT_DUP_MD;
1158 /* Force to slave */
1159 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
1162 /* Set autonegotiation pause parameters */
1163 xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
1164 phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
1166 /* Handle Jumbo frames */
1167 if (hw->dev[port]->mtu > ETH_DATA_LEN) {
1168 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1169 PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
1171 ext |= PHY_B_PEC_HIGH_LA;
1175 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
1176 xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
1178 /* Use link status change interrupt */
1179 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1182 static void xm_phy_init(struct skge_port *skge)
1184 struct skge_hw *hw = skge->hw;
1185 int port = skge->port;
1188 if (skge->autoneg == AUTONEG_ENABLE) {
1189 if (skge->advertising & ADVERTISED_1000baseT_Half)
1190 ctrl |= PHY_X_AN_HD;
1191 if (skge->advertising & ADVERTISED_1000baseT_Full)
1192 ctrl |= PHY_X_AN_FD;
1194 switch(skge->flow_control) {
1195 case FLOW_MODE_NONE:
1196 ctrl |= PHY_X_P_NO_PAUSE;
1198 case FLOW_MODE_LOC_SEND:
1199 ctrl |= PHY_X_P_ASYM_MD;
1201 case FLOW_MODE_SYMMETRIC:
1202 ctrl |= PHY_X_P_BOTH_MD;
1206 xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
1208 /* Restart Auto-negotiation */
1209 ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
1211 /* Set DuplexMode in Config register */
1212 if (skge->duplex == DUPLEX_FULL)
1213 ctrl |= PHY_CT_DUP_MD;
1215 * Do NOT enable Auto-negotiation here. This would hold
1216 * the link down because no IDLEs are transmitted
1220 xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
1222 /* Poll PHY for status changes */
1223 schedule_delayed_work(&skge->link_thread, LINK_HZ);
1226 static void xm_check_link(struct net_device *dev)
1228 struct skge_port *skge = netdev_priv(dev);
1229 struct skge_hw *hw = skge->hw;
1230 int port = skge->port;
1233 /* read twice because of latch */
1234 (void) xm_phy_read(hw, port, PHY_XMAC_STAT);
1235 status = xm_phy_read(hw, port, PHY_XMAC_STAT);
1237 if ((status & PHY_ST_LSYNC) == 0) {
1238 u16 cmd = xm_read16(hw, port, XM_MMU_CMD);
1239 cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1240 xm_write16(hw, port, XM_MMU_CMD, cmd);
1241 /* dummy read to ensure writing */
1242 (void) xm_read16(hw, port, XM_MMU_CMD);
1244 if (netif_carrier_ok(dev))
1245 skge_link_down(skge);
1249 if (skge->autoneg == AUTONEG_ENABLE) {
1252 if (!(status & PHY_ST_AN_OVER))
1255 lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1256 if (lpa & PHY_B_AN_RF) {
1257 printk(KERN_NOTICE PFX "%s: remote fault\n",
1262 res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
1264 /* Check Duplex mismatch */
1265 switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
1267 skge->duplex = DUPLEX_FULL;
1270 skge->duplex = DUPLEX_HALF;
1273 printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
1278 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1279 if (lpa & PHY_X_P_SYM_MD)
1280 skge->flow_control = FLOW_MODE_SYMMETRIC;
1281 else if ((lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
1282 skge->flow_control = FLOW_MODE_REM_SEND;
1283 else if ((lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
1284 skge->flow_control = FLOW_MODE_LOC_SEND;
1286 skge->flow_control = FLOW_MODE_NONE;
1289 skge->speed = SPEED_1000;
1292 if (!netif_carrier_ok(dev))
1293 genesis_link_up(skge);
1296 /* Poll to check for link coming up.
1297 * Since internal PHY is wired to a level triggered pin, can't
1298 * get an interrupt when carrier is detected.
1300 static void xm_link_timer(void *arg)
1302 struct net_device *dev = arg;
1303 struct skge_port *skge = netdev_priv(arg);
1304 struct skge_hw *hw = skge->hw;
1305 int port = skge->port;
1307 if (!netif_running(dev))
1310 if (netif_carrier_ok(dev)) {
1311 xm_read16(hw, port, XM_ISRC);
1312 if (!(xm_read16(hw, port, XM_ISRC) & XM_IS_INP_ASS))
1315 if (xm_read32(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
1317 xm_read16(hw, port, XM_ISRC);
1318 if (xm_read16(hw, port, XM_ISRC) & XM_IS_INP_ASS)
1322 mutex_lock(&hw->phy_mutex);
1324 mutex_unlock(&hw->phy_mutex);
1327 schedule_delayed_work(&skge->link_thread, LINK_HZ);
1330 static void genesis_mac_init(struct skge_hw *hw, int port)
1332 struct net_device *dev = hw->dev[port];
1333 struct skge_port *skge = netdev_priv(dev);
1334 int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
1337 const u8 zero[6] = { 0 };
1339 for (i = 0; i < 10; i++) {
1340 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
1342 if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
1347 printk(KERN_WARNING PFX "%s: genesis reset failed\n", dev->name);
1350 /* Unreset the XMAC. */
1351 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1354 * Perform additional initialization for external PHYs,
1355 * namely for the 1000baseTX cards that use the XMAC's
1358 if (hw->phy_type != SK_PHY_XMAC) {
1359 /* Take external Phy out of reset */
1360 r = skge_read32(hw, B2_GP_IO);
1362 r |= GP_DIR_0|GP_IO_0;
1364 r |= GP_DIR_2|GP_IO_2;
1366 skge_write32(hw, B2_GP_IO, r);
1368 /* Enable GMII interface */
1369 xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
1373 switch(hw->phy_type) {
1378 bcom_phy_init(skge);
1379 bcom_check_link(hw, port);
1382 /* Set Station Address */
1383 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
1385 /* We don't use match addresses so clear */
1386 for (i = 1; i < 16; i++)
1387 xm_outaddr(hw, port, XM_EXM(i), zero);
1389 /* Clear MIB counters */
1390 xm_write16(hw, port, XM_STAT_CMD,
1391 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1392 /* Clear two times according to Errata #3 */
1393 xm_write16(hw, port, XM_STAT_CMD,
1394 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1396 /* configure Rx High Water Mark (XM_RX_HI_WM) */
1397 xm_write16(hw, port, XM_RX_HI_WM, 1450);
1399 /* We don't need the FCS appended to the packet. */
1400 r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
1402 r |= XM_RX_BIG_PK_OK;
1404 if (skge->duplex == DUPLEX_HALF) {
1406 * If in manual half duplex mode the other side might be in
1407 * full duplex mode, so ignore if a carrier extension is not seen
1408 * on frames received
1410 r |= XM_RX_DIS_CEXT;
1412 xm_write16(hw, port, XM_RX_CMD, r);
1415 /* We want short frames padded to 60 bytes. */
1416 xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
1419 * Bump up the transmit threshold. This helps hold off transmit
1420 * underruns when we're blasting traffic from both ports at once.
1422 xm_write16(hw, port, XM_TX_THR, 512);
1425 * Enable the reception of all error frames. This is is
1426 * a necessary evil due to the design of the XMAC. The
1427 * XMAC's receive FIFO is only 8K in size, however jumbo
1428 * frames can be up to 9000 bytes in length. When bad
1429 * frame filtering is enabled, the XMAC's RX FIFO operates
1430 * in 'store and forward' mode. For this to work, the
1431 * entire frame has to fit into the FIFO, but that means
1432 * that jumbo frames larger than 8192 bytes will be
1433 * truncated. Disabling all bad frame filtering causes
1434 * the RX FIFO to operate in streaming mode, in which
1435 * case the XMAC will start transferring frames out of the
1436 * RX FIFO as soon as the FIFO threshold is reached.
1438 xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
1442 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1443 * - Enable all bits excepting 'Octets Rx OK Low CntOv'
1444 * and 'Octets Rx OK Hi Cnt Ov'.
1446 xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
1449 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1450 * - Enable all bits excepting 'Octets Tx OK Low CntOv'
1451 * and 'Octets Tx OK Hi Cnt Ov'.
1453 xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
1455 /* Configure MAC arbiter */
1456 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1458 /* configure timeout values */
1459 skge_write8(hw, B3_MA_TOINI_RX1, 72);
1460 skge_write8(hw, B3_MA_TOINI_RX2, 72);
1461 skge_write8(hw, B3_MA_TOINI_TX1, 72);
1462 skge_write8(hw, B3_MA_TOINI_TX2, 72);
1464 skge_write8(hw, B3_MA_RCINI_RX1, 0);
1465 skge_write8(hw, B3_MA_RCINI_RX2, 0);
1466 skge_write8(hw, B3_MA_RCINI_TX1, 0);
1467 skge_write8(hw, B3_MA_RCINI_TX2, 0);
1469 /* Configure Rx MAC FIFO */
1470 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
1471 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
1472 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1474 /* Configure Tx MAC FIFO */
1475 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
1476 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
1477 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1480 /* Enable frame flushing if jumbo frames used */
1481 skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH);
1483 /* enable timeout timers if normal frames */
1484 skge_write16(hw, B3_PA_CTRL,
1485 (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1489 static void genesis_stop(struct skge_port *skge)
1491 struct skge_hw *hw = skge->hw;
1492 int port = skge->port;
1495 genesis_reset(hw, port);
1497 /* Clear Tx packet arbiter timeout IRQ */
1498 skge_write16(hw, B3_PA_CTRL,
1499 port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
1502 * If the transfer sticks at the MAC the STOP command will not
1503 * terminate if we don't flush the XMAC's transmit FIFO !
1505 xm_write32(hw, port, XM_MODE,
1506 xm_read32(hw, port, XM_MODE)|XM_MD_FTF);
1510 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1512 /* For external PHYs there must be special handling */
1513 if (hw->phy_type != SK_PHY_XMAC) {
1514 reg = skge_read32(hw, B2_GP_IO);
1522 skge_write32(hw, B2_GP_IO, reg);
1523 skge_read32(hw, B2_GP_IO);
1526 xm_write16(hw, port, XM_MMU_CMD,
1527 xm_read16(hw, port, XM_MMU_CMD)
1528 & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1530 xm_read16(hw, port, XM_MMU_CMD);
1534 static void genesis_get_stats(struct skge_port *skge, u64 *data)
1536 struct skge_hw *hw = skge->hw;
1537 int port = skge->port;
1539 unsigned long timeout = jiffies + HZ;
1541 xm_write16(hw, port,
1542 XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
1544 /* wait for update to complete */
1545 while (xm_read16(hw, port, XM_STAT_CMD)
1546 & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
1547 if (time_after(jiffies, timeout))
1552 /* special case for 64 bit octet counter */
1553 data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
1554 | xm_read32(hw, port, XM_TXO_OK_LO);
1555 data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
1556 | xm_read32(hw, port, XM_RXO_OK_LO);
1558 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1559 data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1562 static void genesis_mac_intr(struct skge_hw *hw, int port)
1564 struct skge_port *skge = netdev_priv(hw->dev[port]);
1565 u16 status = xm_read16(hw, port, XM_ISRC);
1567 if (netif_msg_intr(skge))
1568 printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
1569 skge->netdev->name, status);
1571 if (status & XM_IS_TXF_UR) {
1572 xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1573 ++skge->net_stats.tx_fifo_errors;
1575 if (status & XM_IS_RXF_OV) {
1576 xm_write32(hw, port, XM_MODE, XM_MD_FRF);
1577 ++skge->net_stats.rx_fifo_errors;
1581 static void genesis_link_up(struct skge_port *skge)
1583 struct skge_hw *hw = skge->hw;
1584 int port = skge->port;
1588 cmd = xm_read16(hw, port, XM_MMU_CMD);
1591 * enabling pause frame reception is required for 1000BT
1592 * because the XMAC is not reset if the link is going down
1594 if (skge->flow_control == FLOW_MODE_NONE ||
1595 skge->flow_control == FLOW_MODE_LOC_SEND)
1596 /* Disable Pause Frame Reception */
1597 cmd |= XM_MMU_IGN_PF;
1599 /* Enable Pause Frame Reception */
1600 cmd &= ~XM_MMU_IGN_PF;
1602 xm_write16(hw, port, XM_MMU_CMD, cmd);
1604 mode = xm_read32(hw, port, XM_MODE);
1605 if (skge->flow_control == FLOW_MODE_SYMMETRIC ||
1606 skge->flow_control == FLOW_MODE_LOC_SEND) {
1608 * Configure Pause Frame Generation
1609 * Use internal and external Pause Frame Generation.
1610 * Sending pause frames is edge triggered.
1611 * Send a Pause frame with the maximum pause time if
1612 * internal oder external FIFO full condition occurs.
1613 * Send a zero pause time frame to re-start transmission.
1615 /* XM_PAUSE_DA = '010000C28001' (default) */
1616 /* XM_MAC_PTIME = 0xffff (maximum) */
1617 /* remember this value is defined in big endian (!) */
1618 xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1620 mode |= XM_PAUSE_MODE;
1621 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1624 * disable pause frame generation is required for 1000BT
1625 * because the XMAC is not reset if the link is going down
1627 /* Disable Pause Mode in Mode Register */
1628 mode &= ~XM_PAUSE_MODE;
1630 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1633 xm_write32(hw, port, XM_MODE, mode);
1634 xm_write16(hw, port, XM_IMSK, XM_DEF_MSK);
1635 xm_read16(hw, port, XM_ISRC);
1637 /* get MMU Command Reg. */
1638 cmd = xm_read16(hw, port, XM_MMU_CMD);
1639 if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
1640 cmd |= XM_MMU_GMII_FD;
1643 * Workaround BCOM Errata (#10523) for all BCom Phys
1644 * Enable Power Management after link up
1646 if (hw->phy_type == SK_PHY_BCOM) {
1647 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1648 xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
1649 & ~PHY_B_AC_DIS_PM);
1650 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1654 xm_write16(hw, port, XM_MMU_CMD,
1655 cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1660 static inline void bcom_phy_intr(struct skge_port *skge)
1662 struct skge_hw *hw = skge->hw;
1663 int port = skge->port;
1666 isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1667 if (netif_msg_intr(skge))
1668 printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x\n",
1669 skge->netdev->name, isrc);
1671 if (isrc & PHY_B_IS_PSE)
1672 printk(KERN_ERR PFX "%s: uncorrectable pair swap error\n",
1673 hw->dev[port]->name);
1675 /* Workaround BCom Errata:
1676 * enable and disable loopback mode if "NO HCD" occurs.
1678 if (isrc & PHY_B_IS_NO_HDCL) {
1679 u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
1680 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1681 ctrl | PHY_CT_LOOP);
1682 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1683 ctrl & ~PHY_CT_LOOP);
1686 if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
1687 bcom_check_link(hw, port);
1691 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1695 gma_write16(hw, port, GM_SMI_DATA, val);
1696 gma_write16(hw, port, GM_SMI_CTRL,
1697 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
1698 for (i = 0; i < PHY_RETRIES; i++) {
1701 if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1705 printk(KERN_WARNING PFX "%s: phy write timeout\n",
1706 hw->dev[port]->name);
1710 static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1714 gma_write16(hw, port, GM_SMI_CTRL,
1715 GM_SMI_CT_PHY_AD(hw->phy_addr)
1716 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
1718 for (i = 0; i < PHY_RETRIES; i++) {
1720 if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1726 *val = gma_read16(hw, port, GM_SMI_DATA);
1730 static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1733 if (__gm_phy_read(hw, port, reg, &v))
1734 printk(KERN_WARNING PFX "%s: phy read timeout\n",
1735 hw->dev[port]->name);
1739 /* Marvell Phy Initialization */
1740 static void yukon_init(struct skge_hw *hw, int port)
1742 struct skge_port *skge = netdev_priv(hw->dev[port]);
1743 u16 ctrl, ct1000, adv;
1745 if (skge->autoneg == AUTONEG_ENABLE) {
1746 u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1748 ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
1749 PHY_M_EC_MAC_S_MSK);
1750 ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
1752 ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1754 gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1757 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1758 if (skge->autoneg == AUTONEG_DISABLE)
1759 ctrl &= ~PHY_CT_ANE;
1761 ctrl |= PHY_CT_RESET;
1762 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1768 if (skge->autoneg == AUTONEG_ENABLE) {
1770 if (skge->advertising & ADVERTISED_1000baseT_Full)
1771 ct1000 |= PHY_M_1000C_AFD;
1772 if (skge->advertising & ADVERTISED_1000baseT_Half)
1773 ct1000 |= PHY_M_1000C_AHD;
1774 if (skge->advertising & ADVERTISED_100baseT_Full)
1775 adv |= PHY_M_AN_100_FD;
1776 if (skge->advertising & ADVERTISED_100baseT_Half)
1777 adv |= PHY_M_AN_100_HD;
1778 if (skge->advertising & ADVERTISED_10baseT_Full)
1779 adv |= PHY_M_AN_10_FD;
1780 if (skge->advertising & ADVERTISED_10baseT_Half)
1781 adv |= PHY_M_AN_10_HD;
1782 } else /* special defines for FIBER (88E1011S only) */
1783 adv |= PHY_M_AN_1000X_AHD | PHY_M_AN_1000X_AFD;
1785 /* Set Flow-control capabilities */
1786 adv |= phy_pause_map[skge->flow_control];
1788 /* Restart Auto-negotiation */
1789 ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1791 /* forced speed/duplex settings */
1792 ct1000 = PHY_M_1000C_MSE;
1794 if (skge->duplex == DUPLEX_FULL)
1795 ctrl |= PHY_CT_DUP_MD;
1797 switch (skge->speed) {
1799 ctrl |= PHY_CT_SP1000;
1802 ctrl |= PHY_CT_SP100;
1806 ctrl |= PHY_CT_RESET;
1809 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
1811 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
1812 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1814 /* Enable phy interrupt on autonegotiation complete (or link up) */
1815 if (skge->autoneg == AUTONEG_ENABLE)
1816 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
1818 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
1821 static void yukon_reset(struct skge_hw *hw, int port)
1823 gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
1824 gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
1825 gma_write16(hw, port, GM_MC_ADDR_H2, 0);
1826 gma_write16(hw, port, GM_MC_ADDR_H3, 0);
1827 gma_write16(hw, port, GM_MC_ADDR_H4, 0);
1829 gma_write16(hw, port, GM_RX_CTRL,
1830 gma_read16(hw, port, GM_RX_CTRL)
1831 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
1834 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
1835 static int is_yukon_lite_a0(struct skge_hw *hw)
1840 if (hw->chip_id != CHIP_ID_YUKON)
1843 reg = skge_read32(hw, B2_FAR);
1844 skge_write8(hw, B2_FAR + 3, 0xff);
1845 ret = (skge_read8(hw, B2_FAR + 3) != 0);
1846 skge_write32(hw, B2_FAR, reg);
1850 static void yukon_mac_init(struct skge_hw *hw, int port)
1852 struct skge_port *skge = netdev_priv(hw->dev[port]);
1855 const u8 *addr = hw->dev[port]->dev_addr;
1857 /* WA code for COMA mode -- set PHY reset */
1858 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
1859 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
1860 reg = skge_read32(hw, B2_GP_IO);
1861 reg |= GP_DIR_9 | GP_IO_9;
1862 skge_write32(hw, B2_GP_IO, reg);
1866 skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
1867 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
1869 /* WA code for COMA mode -- clear PHY reset */
1870 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
1871 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
1872 reg = skge_read32(hw, B2_GP_IO);
1875 skge_write32(hw, B2_GP_IO, reg);
1878 /* Set hardware config mode */
1879 reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
1880 GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
1881 reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
1883 /* Clear GMC reset */
1884 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
1885 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
1886 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
1888 if (skge->autoneg == AUTONEG_DISABLE) {
1889 reg = GM_GPCR_AU_ALL_DIS;
1890 gma_write16(hw, port, GM_GP_CTRL,
1891 gma_read16(hw, port, GM_GP_CTRL) | reg);
1893 switch (skge->speed) {
1895 reg &= ~GM_GPCR_SPEED_100;
1896 reg |= GM_GPCR_SPEED_1000;
1899 reg &= ~GM_GPCR_SPEED_1000;
1900 reg |= GM_GPCR_SPEED_100;
1903 reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
1907 if (skge->duplex == DUPLEX_FULL)
1908 reg |= GM_GPCR_DUP_FULL;
1910 reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
1912 switch (skge->flow_control) {
1913 case FLOW_MODE_NONE:
1914 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
1915 reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
1917 case FLOW_MODE_LOC_SEND:
1918 /* disable Rx flow-control */
1919 reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
1922 gma_write16(hw, port, GM_GP_CTRL, reg);
1923 skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
1925 yukon_init(hw, port);
1928 reg = gma_read16(hw, port, GM_PHY_ADDR);
1929 gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
1931 for (i = 0; i < GM_MIB_CNT_SIZE; i++)
1932 gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
1933 gma_write16(hw, port, GM_PHY_ADDR, reg);
1935 /* transmit control */
1936 gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
1938 /* receive control reg: unicast + multicast + no FCS */
1939 gma_write16(hw, port, GM_RX_CTRL,
1940 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
1942 /* transmit flow control */
1943 gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
1945 /* transmit parameter */
1946 gma_write16(hw, port, GM_TX_PARAM,
1947 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
1948 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
1949 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
1951 /* serial mode register */
1952 reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
1953 if (hw->dev[port]->mtu > 1500)
1954 reg |= GM_SMOD_JUMBO_ENA;
1956 gma_write16(hw, port, GM_SERIAL_MODE, reg);
1958 /* physical address: used for pause frames */
1959 gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
1960 /* virtual address for data */
1961 gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
1963 /* enable interrupt mask for counter overflows */
1964 gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
1965 gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
1966 gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
1968 /* Initialize Mac Fifo */
1970 /* Configure Rx MAC FIFO */
1971 skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
1972 reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
1974 /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
1975 if (is_yukon_lite_a0(hw))
1976 reg &= ~GMF_RX_F_FL_ON;
1978 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
1979 skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
1981 * because Pause Packet Truncation in GMAC is not working
1982 * we have to increase the Flush Threshold to 64 bytes
1983 * in order to flush pause packets in Rx FIFO on Yukon-1
1985 skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
1987 /* Configure Tx MAC FIFO */
1988 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
1989 skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
1992 /* Go into power down mode */
1993 static void yukon_suspend(struct skge_hw *hw, int port)
1997 ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
1998 ctrl |= PHY_M_PC_POL_R_DIS;
1999 gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
2001 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2002 ctrl |= PHY_CT_RESET;
2003 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2005 /* switch IEEE compatible power down mode on */
2006 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2007 ctrl |= PHY_CT_PDOWN;
2008 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2011 static void yukon_stop(struct skge_port *skge)
2013 struct skge_hw *hw = skge->hw;
2014 int port = skge->port;
2016 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
2017 yukon_reset(hw, port);
2019 gma_write16(hw, port, GM_GP_CTRL,
2020 gma_read16(hw, port, GM_GP_CTRL)
2021 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
2022 gma_read16(hw, port, GM_GP_CTRL);
2024 yukon_suspend(hw, port);
2026 /* set GPHY Control reset */
2027 skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2028 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2031 static void yukon_get_stats(struct skge_port *skge, u64 *data)
2033 struct skge_hw *hw = skge->hw;
2034 int port = skge->port;
2037 data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
2038 | gma_read32(hw, port, GM_TXO_OK_LO);
2039 data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
2040 | gma_read32(hw, port, GM_RXO_OK_LO);
2042 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
2043 data[i] = gma_read32(hw, port,
2044 skge_stats[i].gma_offset);
2047 static void yukon_mac_intr(struct skge_hw *hw, int port)
2049 struct net_device *dev = hw->dev[port];
2050 struct skge_port *skge = netdev_priv(dev);
2051 u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
2053 if (netif_msg_intr(skge))
2054 printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
2057 if (status & GM_IS_RX_FF_OR) {
2058 ++skge->net_stats.rx_fifo_errors;
2059 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
2062 if (status & GM_IS_TX_FF_UR) {
2063 ++skge->net_stats.tx_fifo_errors;
2064 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
2069 static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
2071 switch (aux & PHY_M_PS_SPEED_MSK) {
2072 case PHY_M_PS_SPEED_1000:
2074 case PHY_M_PS_SPEED_100:
2081 static void yukon_link_up(struct skge_port *skge)
2083 struct skge_hw *hw = skge->hw;
2084 int port = skge->port;
2087 /* Enable Transmit FIFO Underrun */
2088 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
2090 reg = gma_read16(hw, port, GM_GP_CTRL);
2091 if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
2092 reg |= GM_GPCR_DUP_FULL;
2095 reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
2096 gma_write16(hw, port, GM_GP_CTRL, reg);
2098 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2102 static void yukon_link_down(struct skge_port *skge)
2104 struct skge_hw *hw = skge->hw;
2105 int port = skge->port;
2108 gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
2110 ctrl = gma_read16(hw, port, GM_GP_CTRL);
2111 ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
2112 gma_write16(hw, port, GM_GP_CTRL, ctrl);
2114 if (skge->flow_control == FLOW_MODE_REM_SEND) {
2115 /* restore Asymmetric Pause bit */
2116 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
2117 gm_phy_read(hw, port,
2123 yukon_reset(hw, port);
2124 skge_link_down(skge);
2126 yukon_init(hw, port);
2129 static void yukon_phy_intr(struct skge_port *skge)
2131 struct skge_hw *hw = skge->hw;
2132 int port = skge->port;
2133 const char *reason = NULL;
2134 u16 istatus, phystat;
2136 istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
2137 phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
2139 if (netif_msg_intr(skge))
2140 printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x 0x%x\n",
2141 skge->netdev->name, istatus, phystat);
2143 if (istatus & PHY_M_IS_AN_COMPL) {
2144 if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
2146 reason = "remote fault";
2150 if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
2151 reason = "master/slave fault";
2155 if (!(phystat & PHY_M_PS_SPDUP_RES)) {
2156 reason = "speed/duplex";
2160 skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
2161 ? DUPLEX_FULL : DUPLEX_HALF;
2162 skge->speed = yukon_speed(hw, phystat);
2164 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
2165 switch (phystat & PHY_M_PS_PAUSE_MSK) {
2166 case PHY_M_PS_PAUSE_MSK:
2167 skge->flow_control = FLOW_MODE_SYMMETRIC;
2169 case PHY_M_PS_RX_P_EN:
2170 skge->flow_control = FLOW_MODE_REM_SEND;
2172 case PHY_M_PS_TX_P_EN:
2173 skge->flow_control = FLOW_MODE_LOC_SEND;
2176 skge->flow_control = FLOW_MODE_NONE;
2179 if (skge->flow_control == FLOW_MODE_NONE ||
2180 (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2181 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2183 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2184 yukon_link_up(skge);
2188 if (istatus & PHY_M_IS_LSP_CHANGE)
2189 skge->speed = yukon_speed(hw, phystat);
2191 if (istatus & PHY_M_IS_DUP_CHANGE)
2192 skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
2193 if (istatus & PHY_M_IS_LST_CHANGE) {
2194 if (phystat & PHY_M_PS_LINK_UP)
2195 yukon_link_up(skge);
2197 yukon_link_down(skge);
2201 printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n",
2202 skge->netdev->name, reason);
2204 /* XXX restart autonegotiation? */
2207 static void skge_phy_reset(struct skge_port *skge)
2209 struct skge_hw *hw = skge->hw;
2210 int port = skge->port;
2212 netif_stop_queue(skge->netdev);
2213 netif_carrier_off(skge->netdev);
2215 mutex_lock(&hw->phy_mutex);
2216 if (hw->chip_id == CHIP_ID_GENESIS) {
2217 genesis_reset(hw, port);
2218 genesis_mac_init(hw, port);
2220 yukon_reset(hw, port);
2221 yukon_init(hw, port);
2223 mutex_unlock(&hw->phy_mutex);
2226 /* Basic MII support */
2227 static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2229 struct mii_ioctl_data *data = if_mii(ifr);
2230 struct skge_port *skge = netdev_priv(dev);
2231 struct skge_hw *hw = skge->hw;
2232 int err = -EOPNOTSUPP;
2234 if (!netif_running(dev))
2235 return -ENODEV; /* Phy still in reset */
2239 data->phy_id = hw->phy_addr;
2244 mutex_lock(&hw->phy_mutex);
2245 if (hw->chip_id == CHIP_ID_GENESIS)
2246 err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2248 err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2249 mutex_unlock(&hw->phy_mutex);
2250 data->val_out = val;
2255 if (!capable(CAP_NET_ADMIN))
2258 mutex_lock(&hw->phy_mutex);
2259 if (hw->chip_id == CHIP_ID_GENESIS)
2260 err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2263 err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2265 mutex_unlock(&hw->phy_mutex);
2271 static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
2277 end = start + len - 1;
2279 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
2280 skge_write32(hw, RB_ADDR(q, RB_START), start);
2281 skge_write32(hw, RB_ADDR(q, RB_WP), start);
2282 skge_write32(hw, RB_ADDR(q, RB_RP), start);
2283 skge_write32(hw, RB_ADDR(q, RB_END), end);
2285 if (q == Q_R1 || q == Q_R2) {
2286 /* Set thresholds on receive queue's */
2287 skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
2289 skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
2292 /* Enable store & forward on Tx queue's because
2293 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2295 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
2298 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
2301 /* Setup Bus Memory Interface */
2302 static void skge_qset(struct skge_port *skge, u16 q,
2303 const struct skge_element *e)
2305 struct skge_hw *hw = skge->hw;
2306 u32 watermark = 0x600;
2307 u64 base = skge->dma + (e->desc - skge->mem);
2309 /* optimization to reduce window on 32bit/33mhz */
2310 if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
2313 skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
2314 skge_write32(hw, Q_ADDR(q, Q_F), watermark);
2315 skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
2316 skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
2319 static int skge_up(struct net_device *dev)
2321 struct skge_port *skge = netdev_priv(dev);
2322 struct skge_hw *hw = skge->hw;
2323 int port = skge->port;
2324 u32 chunk, ram_addr;
2325 size_t rx_size, tx_size;
2328 if (netif_msg_ifup(skge))
2329 printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
2331 if (dev->mtu > RX_BUF_SIZE)
2332 skge->rx_buf_size = dev->mtu + ETH_HLEN;
2334 skge->rx_buf_size = RX_BUF_SIZE;
2337 rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
2338 tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
2339 skge->mem_size = tx_size + rx_size;
2340 skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
2344 BUG_ON(skge->dma & 7);
2346 if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) {
2347 printk(KERN_ERR PFX "pci_alloc_consistent region crosses 4G boundary\n");
2352 memset(skge->mem, 0, skge->mem_size);
2354 err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
2358 err = skge_rx_fill(dev);
2362 err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
2363 skge->dma + rx_size);
2367 /* Initialize MAC */
2368 mutex_lock(&hw->phy_mutex);
2369 if (hw->chip_id == CHIP_ID_GENESIS)
2370 genesis_mac_init(hw, port);
2372 yukon_mac_init(hw, port);
2373 mutex_unlock(&hw->phy_mutex);
2375 /* Configure RAMbuffers */
2376 chunk = hw->ram_size / ((hw->ports + 1)*2);
2377 ram_addr = hw->ram_offset + 2 * chunk * port;
2379 skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
2380 skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
2382 BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
2383 skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
2384 skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
2386 /* Start receiver BMU */
2388 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2389 skge_led(skge, LED_MODE_ON);
2391 netif_poll_enable(dev);
2395 skge_rx_clean(skge);
2396 kfree(skge->rx_ring.start);
2398 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2404 static int skge_down(struct net_device *dev)
2406 struct skge_port *skge = netdev_priv(dev);
2407 struct skge_hw *hw = skge->hw;
2408 int port = skge->port;
2410 if (skge->mem == NULL)
2413 if (netif_msg_ifdown(skge))
2414 printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
2416 netif_stop_queue(dev);
2417 if (hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC)
2418 cancel_rearming_delayed_work(&skge->link_thread);
2420 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
2421 if (hw->chip_id == CHIP_ID_GENESIS)
2426 /* Stop transmitter */
2427 skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
2428 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
2429 RB_RST_SET|RB_DIS_OP_MD);
2432 /* Disable Force Sync bit and Enable Alloc bit */
2433 skge_write8(hw, SK_REG(port, TXA_CTRL),
2434 TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
2436 /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2437 skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
2438 skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2440 /* Reset PCI FIFO */
2441 skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
2442 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
2444 /* Reset the RAM Buffer async Tx queue */
2445 skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
2447 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
2448 skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
2449 RB_RST_SET|RB_DIS_OP_MD);
2450 skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
2452 if (hw->chip_id == CHIP_ID_GENESIS) {
2453 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
2454 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2456 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
2457 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2460 skge_led(skge, LED_MODE_OFF);
2462 netif_poll_disable(dev);
2464 skge_rx_clean(skge);
2466 kfree(skge->rx_ring.start);
2467 kfree(skge->tx_ring.start);
2468 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2473 static inline int skge_avail(const struct skge_ring *ring)
2475 return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
2476 + (ring->to_clean - ring->to_use) - 1;
2479 static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev)
2481 struct skge_port *skge = netdev_priv(dev);
2482 struct skge_hw *hw = skge->hw;
2483 struct skge_element *e;
2484 struct skge_tx_desc *td;
2489 if (skb_padto(skb, ETH_ZLEN))
2490 return NETDEV_TX_OK;
2492 if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
2493 return NETDEV_TX_BUSY;
2495 e = skge->tx_ring.to_use;
2497 BUG_ON(td->control & BMU_OWN);
2499 len = skb_headlen(skb);
2500 map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
2501 pci_unmap_addr_set(e, mapaddr, map);
2502 pci_unmap_len_set(e, maplen, len);
2505 td->dma_hi = map >> 32;
2507 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2508 int offset = skb->h.raw - skb->data;
2510 /* This seems backwards, but it is what the sk98lin
2511 * does. Looks like hardware is wrong?
2513 if (skb->h.ipiph->protocol == IPPROTO_UDP
2514 && hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
2515 control = BMU_TCP_CHECK;
2517 control = BMU_UDP_CHECK;
2520 td->csum_start = offset;
2521 td->csum_write = offset + skb->csum;
2523 control = BMU_CHECK;
2525 if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
2526 control |= BMU_EOF| BMU_IRQ_EOF;
2528 struct skge_tx_desc *tf = td;
2530 control |= BMU_STFWD;
2531 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2532 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2534 map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
2535 frag->size, PCI_DMA_TODEVICE);
2540 BUG_ON(tf->control & BMU_OWN);
2543 tf->dma_hi = (u64) map >> 32;
2544 pci_unmap_addr_set(e, mapaddr, map);
2545 pci_unmap_len_set(e, maplen, frag->size);
2547 tf->control = BMU_OWN | BMU_SW | control | frag->size;
2549 tf->control |= BMU_EOF | BMU_IRQ_EOF;
2551 /* Make sure all the descriptors written */
2553 td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
2556 skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
2558 if (unlikely(netif_msg_tx_queued(skge)))
2559 printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n",
2560 dev->name, e - skge->tx_ring.start, skb->len);
2562 skge->tx_ring.to_use = e->next;
2563 if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
2564 pr_debug("%s: transmit queue full\n", dev->name);
2565 netif_stop_queue(dev);
2568 dev->trans_start = jiffies;
2570 return NETDEV_TX_OK;
2574 /* Free resources associated with this reing element */
2575 static void skge_tx_free(struct skge_port *skge, struct skge_element *e,
2578 struct pci_dev *pdev = skge->hw->pdev;
2582 /* skb header vs. fragment */
2583 if (control & BMU_STF)
2584 pci_unmap_single(pdev, pci_unmap_addr(e, mapaddr),
2585 pci_unmap_len(e, maplen),
2588 pci_unmap_page(pdev, pci_unmap_addr(e, mapaddr),
2589 pci_unmap_len(e, maplen),
2592 if (control & BMU_EOF) {
2593 if (unlikely(netif_msg_tx_done(skge)))
2594 printk(KERN_DEBUG PFX "%s: tx done slot %td\n",
2595 skge->netdev->name, e - skge->tx_ring.start);
2597 dev_kfree_skb(e->skb);
2602 /* Free all buffers in transmit ring */
2603 static void skge_tx_clean(struct net_device *dev)
2605 struct skge_port *skge = netdev_priv(dev);
2606 struct skge_element *e;
2608 netif_tx_lock_bh(dev);
2609 for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
2610 struct skge_tx_desc *td = e->desc;
2611 skge_tx_free(skge, e, td->control);
2615 skge->tx_ring.to_clean = e;
2616 netif_wake_queue(dev);
2617 netif_tx_unlock_bh(dev);
2620 static void skge_tx_timeout(struct net_device *dev)
2622 struct skge_port *skge = netdev_priv(dev);
2624 if (netif_msg_timer(skge))
2625 printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name);
2627 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
2631 static int skge_change_mtu(struct net_device *dev, int new_mtu)
2635 if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
2638 if (!netif_running(dev)) {
2654 static void genesis_set_multicast(struct net_device *dev)
2656 struct skge_port *skge = netdev_priv(dev);
2657 struct skge_hw *hw = skge->hw;
2658 int port = skge->port;
2659 int i, count = dev->mc_count;
2660 struct dev_mc_list *list = dev->mc_list;
2664 mode = xm_read32(hw, port, XM_MODE);
2665 mode |= XM_MD_ENA_HASH;
2666 if (dev->flags & IFF_PROMISC)
2667 mode |= XM_MD_ENA_PROM;
2669 mode &= ~XM_MD_ENA_PROM;
2671 if (dev->flags & IFF_ALLMULTI)
2672 memset(filter, 0xff, sizeof(filter));
2674 memset(filter, 0, sizeof(filter));
2675 for (i = 0; list && i < count; i++, list = list->next) {
2677 crc = ether_crc_le(ETH_ALEN, list->dmi_addr);
2679 filter[bit/8] |= 1 << (bit%8);
2683 xm_write32(hw, port, XM_MODE, mode);
2684 xm_outhash(hw, port, XM_HSM, filter);
2687 static void yukon_set_multicast(struct net_device *dev)
2689 struct skge_port *skge = netdev_priv(dev);
2690 struct skge_hw *hw = skge->hw;
2691 int port = skge->port;
2692 struct dev_mc_list *list = dev->mc_list;
2696 memset(filter, 0, sizeof(filter));
2698 reg = gma_read16(hw, port, GM_RX_CTRL);
2699 reg |= GM_RXCR_UCF_ENA;
2701 if (dev->flags & IFF_PROMISC) /* promiscuous */
2702 reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2703 else if (dev->flags & IFF_ALLMULTI) /* all multicast */
2704 memset(filter, 0xff, sizeof(filter));
2705 else if (dev->mc_count == 0) /* no multicast */
2706 reg &= ~GM_RXCR_MCF_ENA;
2709 reg |= GM_RXCR_MCF_ENA;
2711 for (i = 0; list && i < dev->mc_count; i++, list = list->next) {
2712 u32 bit = ether_crc(ETH_ALEN, list->dmi_addr) & 0x3f;
2713 filter[bit/8] |= 1 << (bit%8);
2718 gma_write16(hw, port, GM_MC_ADDR_H1,
2719 (u16)filter[0] | ((u16)filter[1] << 8));
2720 gma_write16(hw, port, GM_MC_ADDR_H2,
2721 (u16)filter[2] | ((u16)filter[3] << 8));
2722 gma_write16(hw, port, GM_MC_ADDR_H3,
2723 (u16)filter[4] | ((u16)filter[5] << 8));
2724 gma_write16(hw, port, GM_MC_ADDR_H4,
2725 (u16)filter[6] | ((u16)filter[7] << 8));
2727 gma_write16(hw, port, GM_RX_CTRL, reg);
2730 static inline u16 phy_length(const struct skge_hw *hw, u32 status)
2732 if (hw->chip_id == CHIP_ID_GENESIS)
2733 return status >> XMR_FS_LEN_SHIFT;
2735 return status >> GMR_FS_LEN_SHIFT;
2738 static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
2740 if (hw->chip_id == CHIP_ID_GENESIS)
2741 return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
2743 return (status & GMR_FS_ANY_ERR) ||
2744 (status & GMR_FS_RX_OK) == 0;
2748 /* Get receive buffer from descriptor.
2749 * Handles copy of small buffers and reallocation failures
2751 static struct sk_buff *skge_rx_get(struct net_device *dev,
2752 struct skge_element *e,
2753 u32 control, u32 status, u16 csum)
2755 struct skge_port *skge = netdev_priv(dev);
2756 struct sk_buff *skb;
2757 u16 len = control & BMU_BBC;
2759 if (unlikely(netif_msg_rx_status(skge)))
2760 printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n",
2761 dev->name, e - skge->rx_ring.start,
2764 if (len > skge->rx_buf_size)
2767 if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
2770 if (bad_phy_status(skge->hw, status))
2773 if (phy_length(skge->hw, status) != len)
2776 if (len < RX_COPY_THRESHOLD) {
2777 skb = netdev_alloc_skb(dev, len + 2);
2781 skb_reserve(skb, 2);
2782 pci_dma_sync_single_for_cpu(skge->hw->pdev,
2783 pci_unmap_addr(e, mapaddr),
2784 len, PCI_DMA_FROMDEVICE);
2785 memcpy(skb->data, e->skb->data, len);
2786 pci_dma_sync_single_for_device(skge->hw->pdev,
2787 pci_unmap_addr(e, mapaddr),
2788 len, PCI_DMA_FROMDEVICE);
2789 skge_rx_reuse(e, skge->rx_buf_size);
2791 struct sk_buff *nskb;
2792 nskb = netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN);
2796 skb_reserve(nskb, NET_IP_ALIGN);
2797 pci_unmap_single(skge->hw->pdev,
2798 pci_unmap_addr(e, mapaddr),
2799 pci_unmap_len(e, maplen),
2800 PCI_DMA_FROMDEVICE);
2802 prefetch(skb->data);
2803 skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
2807 if (skge->rx_csum) {
2809 skb->ip_summed = CHECKSUM_COMPLETE;
2812 skb->protocol = eth_type_trans(skb, dev);
2817 if (netif_msg_rx_err(skge))
2818 printk(KERN_DEBUG PFX "%s: rx err, slot %td control 0x%x status 0x%x\n",
2819 dev->name, e - skge->rx_ring.start,
2822 if (skge->hw->chip_id == CHIP_ID_GENESIS) {
2823 if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
2824 skge->net_stats.rx_length_errors++;
2825 if (status & XMR_FS_FRA_ERR)
2826 skge->net_stats.rx_frame_errors++;
2827 if (status & XMR_FS_FCS_ERR)
2828 skge->net_stats.rx_crc_errors++;
2830 if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
2831 skge->net_stats.rx_length_errors++;
2832 if (status & GMR_FS_FRAGMENT)
2833 skge->net_stats.rx_frame_errors++;
2834 if (status & GMR_FS_CRC_ERR)
2835 skge->net_stats.rx_crc_errors++;
2839 skge_rx_reuse(e, skge->rx_buf_size);
2843 /* Free all buffers in Tx ring which are no longer owned by device */
2844 static void skge_tx_done(struct net_device *dev)
2846 struct skge_port *skge = netdev_priv(dev);
2847 struct skge_ring *ring = &skge->tx_ring;
2848 struct skge_element *e;
2850 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
2853 for (e = ring->to_clean; e != ring->to_use; e = e->next) {
2854 struct skge_tx_desc *td = e->desc;
2856 if (td->control & BMU_OWN)
2859 skge_tx_free(skge, e, td->control);
2861 skge->tx_ring.to_clean = e;
2863 if (skge_avail(&skge->tx_ring) > TX_LOW_WATER)
2864 netif_wake_queue(dev);
2866 netif_tx_unlock(dev);
2869 static int skge_poll(struct net_device *dev, int *budget)
2871 struct skge_port *skge = netdev_priv(dev);
2872 struct skge_hw *hw = skge->hw;
2873 struct skge_ring *ring = &skge->rx_ring;
2874 struct skge_element *e;
2875 int to_do = min(dev->quota, *budget);
2880 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
2882 for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
2883 struct skge_rx_desc *rd = e->desc;
2884 struct sk_buff *skb;
2888 control = rd->control;
2889 if (control & BMU_OWN)
2892 skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
2894 dev->last_rx = jiffies;
2895 netif_receive_skb(skb);
2902 /* restart receiver */
2904 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
2906 *budget -= work_done;
2907 dev->quota -= work_done;
2909 if (work_done >= to_do)
2910 return 1; /* not done */
2912 spin_lock_irq(&hw->hw_lock);
2913 __netif_rx_complete(dev);
2914 hw->intr_mask |= irqmask[skge->port];
2915 skge_write32(hw, B0_IMSK, hw->intr_mask);
2916 skge_read32(hw, B0_IMSK);
2917 spin_unlock_irq(&hw->hw_lock);
2922 /* Parity errors seem to happen when Genesis is connected to a switch
2923 * with no other ports present. Heartbeat error??
2925 static void skge_mac_parity(struct skge_hw *hw, int port)
2927 struct net_device *dev = hw->dev[port];
2930 struct skge_port *skge = netdev_priv(dev);
2931 ++skge->net_stats.tx_heartbeat_errors;
2934 if (hw->chip_id == CHIP_ID_GENESIS)
2935 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
2938 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
2939 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
2940 (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
2941 ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
2944 static void skge_mac_intr(struct skge_hw *hw, int port)
2946 if (hw->chip_id == CHIP_ID_GENESIS)
2947 genesis_mac_intr(hw, port);
2949 yukon_mac_intr(hw, port);
2952 /* Handle device specific framing and timeout interrupts */
2953 static void skge_error_irq(struct skge_hw *hw)
2955 u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
2957 if (hw->chip_id == CHIP_ID_GENESIS) {
2958 /* clear xmac errors */
2959 if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
2960 skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
2961 if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
2962 skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
2964 /* Timestamp (unused) overflow */
2965 if (hwstatus & IS_IRQ_TIST_OV)
2966 skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
2969 if (hwstatus & IS_RAM_RD_PAR) {
2970 printk(KERN_ERR PFX "Ram read data parity error\n");
2971 skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
2974 if (hwstatus & IS_RAM_WR_PAR) {
2975 printk(KERN_ERR PFX "Ram write data parity error\n");
2976 skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
2979 if (hwstatus & IS_M1_PAR_ERR)
2980 skge_mac_parity(hw, 0);
2982 if (hwstatus & IS_M2_PAR_ERR)
2983 skge_mac_parity(hw, 1);
2985 if (hwstatus & IS_R1_PAR_ERR) {
2986 printk(KERN_ERR PFX "%s: receive queue parity error\n",
2988 skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
2991 if (hwstatus & IS_R2_PAR_ERR) {
2992 printk(KERN_ERR PFX "%s: receive queue parity error\n",
2994 skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
2997 if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
2998 u16 pci_status, pci_cmd;
3000 pci_read_config_word(hw->pdev, PCI_COMMAND, &pci_cmd);
3001 pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
3003 printk(KERN_ERR PFX "%s: PCI error cmd=%#x status=%#x\n",
3004 pci_name(hw->pdev), pci_cmd, pci_status);
3006 /* Write the error bits back to clear them. */
3007 pci_status &= PCI_STATUS_ERROR_BITS;
3008 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3009 pci_write_config_word(hw->pdev, PCI_COMMAND,
3010 pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
3011 pci_write_config_word(hw->pdev, PCI_STATUS, pci_status);
3012 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3014 /* if error still set then just ignore it */
3015 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3016 if (hwstatus & IS_IRQ_STAT) {
3017 printk(KERN_INFO PFX "unable to clear error (so ignoring them)\n");
3018 hw->intr_mask &= ~IS_HW_ERR;
3024 * Interrupt from PHY are handled in work queue
3025 * because accessing phy registers requires spin wait which might
3026 * cause excess interrupt latency.
3028 static void skge_extirq(void *arg)
3030 struct skge_hw *hw = arg;
3033 mutex_lock(&hw->phy_mutex);
3034 for (port = 0; port < hw->ports; port++) {
3035 struct net_device *dev = hw->dev[port];
3036 struct skge_port *skge = netdev_priv(dev);
3038 if (netif_running(dev)) {
3039 if (hw->chip_id != CHIP_ID_GENESIS)
3040 yukon_phy_intr(skge);
3041 else if (hw->phy_type == SK_PHY_BCOM)
3042 bcom_phy_intr(skge);
3045 mutex_unlock(&hw->phy_mutex);
3047 spin_lock_irq(&hw->hw_lock);
3048 hw->intr_mask |= IS_EXT_REG;
3049 skge_write32(hw, B0_IMSK, hw->intr_mask);
3050 skge_read32(hw, B0_IMSK);
3051 spin_unlock_irq(&hw->hw_lock);
3054 static irqreturn_t skge_intr(int irq, void *dev_id, struct pt_regs *regs)
3056 struct skge_hw *hw = dev_id;
3060 spin_lock(&hw->hw_lock);
3061 /* Reading this register masks IRQ */
3062 status = skge_read32(hw, B0_SP_ISRC);
3063 if (status == 0 || status == ~0)
3067 status &= hw->intr_mask;
3068 if (status & IS_EXT_REG) {
3069 hw->intr_mask &= ~IS_EXT_REG;
3070 schedule_work(&hw->phy_work);
3073 if (status & (IS_XA1_F|IS_R1_F)) {
3074 hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
3075 netif_rx_schedule(hw->dev[0]);
3078 if (status & IS_PA_TO_TX1)
3079 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
3081 if (status & IS_PA_TO_RX1) {
3082 struct skge_port *skge = netdev_priv(hw->dev[0]);
3084 ++skge->net_stats.rx_over_errors;
3085 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
3089 if (status & IS_MAC1)
3090 skge_mac_intr(hw, 0);
3093 if (status & (IS_XA2_F|IS_R2_F)) {
3094 hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
3095 netif_rx_schedule(hw->dev[1]);
3098 if (status & IS_PA_TO_RX2) {
3099 struct skge_port *skge = netdev_priv(hw->dev[1]);
3100 ++skge->net_stats.rx_over_errors;
3101 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
3104 if (status & IS_PA_TO_TX2)
3105 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
3107 if (status & IS_MAC2)
3108 skge_mac_intr(hw, 1);
3111 if (status & IS_HW_ERR)
3114 skge_write32(hw, B0_IMSK, hw->intr_mask);
3115 skge_read32(hw, B0_IMSK);
3117 spin_unlock(&hw->hw_lock);
3119 return IRQ_RETVAL(handled);
3122 #ifdef CONFIG_NET_POLL_CONTROLLER
3123 static void skge_netpoll(struct net_device *dev)
3125 struct skge_port *skge = netdev_priv(dev);
3127 disable_irq(dev->irq);
3128 skge_intr(dev->irq, skge->hw, NULL);
3129 enable_irq(dev->irq);
3133 static int skge_set_mac_address(struct net_device *dev, void *p)
3135 struct skge_port *skge = netdev_priv(dev);
3136 struct skge_hw *hw = skge->hw;
3137 unsigned port = skge->port;
3138 const struct sockaddr *addr = p;
3140 if (!is_valid_ether_addr(addr->sa_data))
3141 return -EADDRNOTAVAIL;
3143 mutex_lock(&hw->phy_mutex);
3144 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
3145 memcpy_toio(hw->regs + B2_MAC_1 + port*8,
3146 dev->dev_addr, ETH_ALEN);
3147 memcpy_toio(hw->regs + B2_MAC_2 + port*8,
3148 dev->dev_addr, ETH_ALEN);
3150 if (hw->chip_id == CHIP_ID_GENESIS)
3151 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
3153 gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
3154 gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
3156 mutex_unlock(&hw->phy_mutex);
3161 static const struct {
3165 { CHIP_ID_GENESIS, "Genesis" },
3166 { CHIP_ID_YUKON, "Yukon" },
3167 { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
3168 { CHIP_ID_YUKON_LP, "Yukon-LP"},
3171 static const char *skge_board_name(const struct skge_hw *hw)
3174 static char buf[16];
3176 for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
3177 if (skge_chips[i].id == hw->chip_id)
3178 return skge_chips[i].name;
3180 snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
3186 * Setup the board data structure, but don't bring up
3189 static int skge_reset(struct skge_hw *hw)
3192 u16 ctst, pci_status;
3193 u8 t8, mac_cfg, pmd_type;
3196 ctst = skge_read16(hw, B0_CTST);
3199 skge_write8(hw, B0_CTST, CS_RST_SET);
3200 skge_write8(hw, B0_CTST, CS_RST_CLR);
3202 /* clear PCI errors, if any */
3203 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3204 skge_write8(hw, B2_TST_CTRL2, 0);
3206 pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
3207 pci_write_config_word(hw->pdev, PCI_STATUS,
3208 pci_status | PCI_STATUS_ERROR_BITS);
3209 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3210 skge_write8(hw, B0_CTST, CS_MRST_CLR);
3212 /* restore CLK_RUN bits (for Yukon-Lite) */
3213 skge_write16(hw, B0_CTST,
3214 ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
3216 hw->chip_id = skge_read8(hw, B2_CHIP_ID);
3217 hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
3218 pmd_type = skge_read8(hw, B2_PMD_TYP);
3219 hw->copper = (pmd_type == 'T' || pmd_type == '1');
3221 switch (hw->chip_id) {
3222 case CHIP_ID_GENESIS:
3223 switch (hw->phy_type) {
3225 hw->phy_addr = PHY_ADDR_XMAC;
3228 hw->phy_addr = PHY_ADDR_BCOM;
3231 printk(KERN_ERR PFX "%s: unsupported phy type 0x%x\n",
3232 pci_name(hw->pdev), hw->phy_type);
3238 case CHIP_ID_YUKON_LITE:
3239 case CHIP_ID_YUKON_LP:
3240 if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
3243 hw->phy_addr = PHY_ADDR_MARV;
3247 printk(KERN_ERR PFX "%s: unsupported chip type 0x%x\n",
3248 pci_name(hw->pdev), hw->chip_id);
3252 mac_cfg = skge_read8(hw, B2_MAC_CFG);
3253 hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
3254 hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
3256 /* read the adapters RAM size */
3257 t8 = skge_read8(hw, B2_E_0);
3258 if (hw->chip_id == CHIP_ID_GENESIS) {
3260 /* special case: 4 x 64k x 36, offset = 0x80000 */
3261 hw->ram_size = 0x100000;
3262 hw->ram_offset = 0x80000;
3264 hw->ram_size = t8 * 512;
3267 hw->ram_size = 0x20000;
3269 hw->ram_size = t8 * 4096;
3271 hw->intr_mask = IS_HW_ERR | IS_PORT_1;
3273 hw->intr_mask |= IS_PORT_2;
3275 if (!(hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC))
3276 hw->intr_mask |= IS_EXT_REG;
3278 if (hw->chip_id == CHIP_ID_GENESIS)
3281 /* switch power to VCC (WA for VAUX problem) */
3282 skge_write8(hw, B0_POWER_CTRL,
3283 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
3285 /* avoid boards with stuck Hardware error bits */
3286 if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
3287 (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
3288 printk(KERN_WARNING PFX "stuck hardware sensor bit\n");
3289 hw->intr_mask &= ~IS_HW_ERR;
3292 /* Clear PHY COMA */
3293 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3294 pci_read_config_dword(hw->pdev, PCI_DEV_REG1, ®);
3295 reg &= ~PCI_PHY_COMA;
3296 pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
3297 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3300 for (i = 0; i < hw->ports; i++) {
3301 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
3302 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3306 /* turn off hardware timer (unused) */
3307 skge_write8(hw, B2_TI_CTRL, TIM_STOP);
3308 skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
3309 skge_write8(hw, B0_LED, LED_STAT_ON);
3311 /* enable the Tx Arbiters */
3312 for (i = 0; i < hw->ports; i++)
3313 skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
3315 /* Initialize ram interface */
3316 skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
3318 skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
3319 skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
3320 skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
3321 skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
3322 skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
3323 skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
3324 skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
3325 skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
3326 skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
3327 skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
3328 skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
3329 skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
3331 skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
3333 /* Set interrupt moderation for Transmit only
3334 * Receive interrupts avoided by NAPI
3336 skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
3337 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
3338 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
3340 skge_write32(hw, B0_IMSK, hw->intr_mask);
3342 mutex_lock(&hw->phy_mutex);
3343 for (i = 0; i < hw->ports; i++) {
3344 if (hw->chip_id == CHIP_ID_GENESIS)
3345 genesis_reset(hw, i);
3349 mutex_unlock(&hw->phy_mutex);
3354 /* Initialize network device */
3355 static struct net_device *skge_devinit(struct skge_hw *hw, int port,
3358 struct skge_port *skge;
3359 struct net_device *dev = alloc_etherdev(sizeof(*skge));
3362 printk(KERN_ERR "skge etherdev alloc failed");
3366 SET_MODULE_OWNER(dev);
3367 SET_NETDEV_DEV(dev, &hw->pdev->dev);
3368 dev->open = skge_up;
3369 dev->stop = skge_down;
3370 dev->do_ioctl = skge_ioctl;
3371 dev->hard_start_xmit = skge_xmit_frame;
3372 dev->get_stats = skge_get_stats;
3373 if (hw->chip_id == CHIP_ID_GENESIS)
3374 dev->set_multicast_list = genesis_set_multicast;
3376 dev->set_multicast_list = yukon_set_multicast;
3378 dev->set_mac_address = skge_set_mac_address;
3379 dev->change_mtu = skge_change_mtu;
3380 SET_ETHTOOL_OPS(dev, &skge_ethtool_ops);
3381 dev->tx_timeout = skge_tx_timeout;
3382 dev->watchdog_timeo = TX_WATCHDOG;
3383 dev->poll = skge_poll;
3384 dev->weight = NAPI_WEIGHT;
3385 #ifdef CONFIG_NET_POLL_CONTROLLER
3386 dev->poll_controller = skge_netpoll;
3388 dev->irq = hw->pdev->irq;
3391 dev->features |= NETIF_F_HIGHDMA;
3393 skge = netdev_priv(dev);
3396 skge->msg_enable = netif_msg_init(debug, default_msg);
3397 skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
3398 skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
3400 /* Auto speed and flow control */
3401 skge->autoneg = AUTONEG_ENABLE;
3402 skge->flow_control = FLOW_MODE_SYMMETRIC;
3405 skge->advertising = skge_supported_modes(hw);
3407 hw->dev[port] = dev;
3411 /* Only used for Genesis XMAC */
3412 INIT_WORK(&skge->link_thread, xm_link_timer, dev);
3414 if (hw->chip_id != CHIP_ID_GENESIS) {
3415 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
3419 /* read the mac address */
3420 memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
3421 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
3423 /* device is off until link detection */
3424 netif_carrier_off(dev);
3425 netif_stop_queue(dev);
3430 static void __devinit skge_show_addr(struct net_device *dev)
3432 const struct skge_port *skge = netdev_priv(dev);
3434 if (netif_msg_probe(skge))
3435 printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
3437 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
3438 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
3441 static int __devinit skge_probe(struct pci_dev *pdev,
3442 const struct pci_device_id *ent)
3444 struct net_device *dev, *dev1;
3446 int err, using_dac = 0;
3448 err = pci_enable_device(pdev);
3450 printk(KERN_ERR PFX "%s cannot enable PCI device\n",
3455 err = pci_request_regions(pdev, DRV_NAME);
3457 printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
3459 goto err_out_disable_pdev;
3462 pci_set_master(pdev);
3464 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3466 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3467 } else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
3469 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3473 printk(KERN_ERR PFX "%s no usable DMA configuration\n",
3475 goto err_out_free_regions;
3479 /* byte swap descriptors in hardware */
3483 pci_read_config_dword(pdev, PCI_DEV_REG2, ®);
3484 reg |= PCI_REV_DESC;
3485 pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
3490 hw = kzalloc(sizeof(*hw), GFP_KERNEL);
3492 printk(KERN_ERR PFX "%s: cannot allocate hardware struct\n",
3494 goto err_out_free_regions;
3498 mutex_init(&hw->phy_mutex);
3499 INIT_WORK(&hw->phy_work, skge_extirq, hw);
3500 spin_lock_init(&hw->hw_lock);
3502 hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
3504 printk(KERN_ERR PFX "%s: cannot map device registers\n",
3506 goto err_out_free_hw;
3509 err = skge_reset(hw);
3511 goto err_out_iounmap;
3513 printk(KERN_INFO PFX DRV_VERSION " addr 0x%llx irq %d chip %s rev %d\n",
3514 (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
3515 skge_board_name(hw), hw->chip_rev);
3517 dev = skge_devinit(hw, 0, using_dac);
3519 goto err_out_led_off;
3521 if (!is_valid_ether_addr(dev->dev_addr)) {
3522 printk(KERN_ERR PFX "%s: bad (zero?) ethernet address in rom\n",
3525 goto err_out_free_netdev;
3528 err = register_netdev(dev);
3530 printk(KERN_ERR PFX "%s: cannot register net device\n",
3532 goto err_out_free_netdev;
3535 err = request_irq(pdev->irq, skge_intr, IRQF_SHARED, dev->name, hw);
3537 printk(KERN_ERR PFX "%s: cannot assign irq %d\n",
3538 dev->name, pdev->irq);
3539 goto err_out_unregister;
3541 skge_show_addr(dev);
3543 if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) {
3544 if (register_netdev(dev1) == 0)
3545 skge_show_addr(dev1);
3547 /* Failure to register second port need not be fatal */
3548 printk(KERN_WARNING PFX "register of second port failed\n");
3553 pci_set_drvdata(pdev, hw);
3558 unregister_netdev(dev);
3559 err_out_free_netdev:
3562 skge_write16(hw, B0_LED, LED_STAT_OFF);
3567 err_out_free_regions:
3568 pci_release_regions(pdev);
3569 err_out_disable_pdev:
3570 pci_disable_device(pdev);
3571 pci_set_drvdata(pdev, NULL);
3576 static void __devexit skge_remove(struct pci_dev *pdev)
3578 struct skge_hw *hw = pci_get_drvdata(pdev);
3579 struct net_device *dev0, *dev1;
3584 if ((dev1 = hw->dev[1]))
3585 unregister_netdev(dev1);
3587 unregister_netdev(dev0);
3589 spin_lock_irq(&hw->hw_lock);
3591 skge_write32(hw, B0_IMSK, 0);
3592 skge_read32(hw, B0_IMSK);
3593 spin_unlock_irq(&hw->hw_lock);
3595 skge_write16(hw, B0_LED, LED_STAT_OFF);
3596 skge_write8(hw, B0_CTST, CS_RST_SET);
3598 flush_scheduled_work();
3600 free_irq(pdev->irq, hw);
3601 pci_release_regions(pdev);
3602 pci_disable_device(pdev);
3609 pci_set_drvdata(pdev, NULL);
3613 static int skge_suspend(struct pci_dev *pdev, pm_message_t state)
3615 struct skge_hw *hw = pci_get_drvdata(pdev);
3618 pci_save_state(pdev);
3619 for (i = 0; i < hw->ports; i++) {
3620 struct net_device *dev = hw->dev[i];
3622 if (netif_running(dev)) {
3623 struct skge_port *skge = netdev_priv(dev);
3625 netif_carrier_off(dev);
3627 netif_stop_queue(dev);
3632 netif_device_detach(dev);
3635 skge_write32(hw, B0_IMSK, 0);
3636 pci_enable_wake(pdev, pci_choose_state(pdev, state), wol);
3637 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3642 static int skge_resume(struct pci_dev *pdev)
3644 struct skge_hw *hw = pci_get_drvdata(pdev);
3647 pci_set_power_state(pdev, PCI_D0);
3648 pci_restore_state(pdev);
3649 pci_enable_wake(pdev, PCI_D0, 0);
3651 err = skge_reset(hw);
3655 for (i = 0; i < hw->ports; i++) {
3656 struct net_device *dev = hw->dev[i];
3658 netif_device_attach(dev);
3659 if (netif_running(dev)) {
3663 printk(KERN_ERR PFX "%s: could not up: %d\n",
3675 static struct pci_driver skge_driver = {
3677 .id_table = skge_id_table,
3678 .probe = skge_probe,
3679 .remove = __devexit_p(skge_remove),
3681 .suspend = skge_suspend,
3682 .resume = skge_resume,
3686 static int __init skge_init_module(void)
3688 return pci_register_driver(&skge_driver);
3691 static void __exit skge_cleanup_module(void)
3693 pci_unregister_driver(&skge_driver);
3696 module_init(skge_init_module);
3697 module_exit(skge_cleanup_module);