3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
6 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
7 * Copyright (C) 1996 Paul Mackerras
8 * Amiga/APUS changes by Jesper Skov (jskov@cygnus.co.uk).
9 * PPC44x/36-bit changes by Matt Porter (mporter@mvista.com)
11 * Derived from "arch/i386/mm/init.c"
12 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
14 * This program is free software; you can redistribute it and/or
15 * modify it under the terms of the GNU General Public License
16 * as published by the Free Software Foundation; either version
17 * 2 of the License, or (at your option) any later version.
21 #include <linux/module.h>
22 #include <linux/sched.h>
23 #include <linux/kernel.h>
24 #include <linux/errno.h>
25 #include <linux/string.h>
26 #include <linux/types.h>
28 #include <linux/stddef.h>
29 #include <linux/init.h>
30 #include <linux/bootmem.h>
31 #include <linux/highmem.h>
32 #include <linux/initrd.h>
33 #include <linux/pagemap.h>
35 #include <asm/pgalloc.h>
38 #include <asm/mmu_context.h>
39 #include <asm/pgtable.h>
42 #include <asm/machdep.h>
43 #include <asm/btext.h>
47 #include <asm/sections.h>
52 #ifndef CPU_FTR_COHERENT_ICACHE
53 #define CPU_FTR_COHERENT_ICACHE 0 /* XXX for now */
54 #define CPU_FTR_NOEXECUTE 0
57 int init_bootmem_done;
59 unsigned long memory_limit;
61 int page_is_ram(unsigned long pfn)
63 unsigned long paddr = (pfn << PAGE_SHIFT);
65 #ifndef CONFIG_PPC64 /* XXX for now */
66 return paddr < __pa(high_memory);
69 for (i=0; i < lmb.memory.cnt; i++) {
72 base = lmb.memory.region[i].base;
74 if ((paddr >= base) &&
75 (paddr < (base + lmb.memory.region[i].size))) {
83 EXPORT_SYMBOL(page_is_ram);
85 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
86 unsigned long size, pgprot_t vma_prot)
88 if (ppc_md.phys_mem_access_prot)
89 return ppc_md.phys_mem_access_prot(file, pfn, size, vma_prot);
91 if (!page_is_ram(pfn))
92 vma_prot = __pgprot(pgprot_val(vma_prot)
93 | _PAGE_GUARDED | _PAGE_NO_CACHE);
96 EXPORT_SYMBOL(phys_mem_access_prot);
98 #ifdef CONFIG_MEMORY_HOTPLUG
100 void online_page(struct page *page)
102 ClearPageReserved(page);
103 init_page_count(page);
110 int memory_add_physaddr_to_nid(u64 start)
112 return hot_add_scn_to_nid(start);
116 int __devinit arch_add_memory(int nid, u64 start, u64 size)
118 struct pglist_data *pgdata;
120 unsigned long start_pfn = start >> PAGE_SHIFT;
121 unsigned long nr_pages = size >> PAGE_SHIFT;
123 pgdata = NODE_DATA(nid);
125 start = (unsigned long)__va(start);
126 create_section_mapping(start, start + size);
128 /* this should work for most non-highmem platforms */
129 zone = pgdata->node_zones;
131 return __add_pages(zone, start_pfn, nr_pages);
137 * First pass at this code will check to determine if the remove
138 * request is within the RMO. Do not allow removal within the RMO.
140 int __devinit remove_memory(u64 start, u64 size)
143 unsigned long start_pfn, end_pfn, nr_pages;
145 start_pfn = start >> PAGE_SHIFT;
146 nr_pages = size >> PAGE_SHIFT;
147 end_pfn = start_pfn + nr_pages;
149 printk("%s(): Attempting to remove memoy in range "
150 "%lx to %lx\n", __func__, start, start+size);
152 * check for range within RMO
154 zone = page_zone(pfn_to_page(start_pfn));
156 printk("%s(): memory will be removed from "
157 "the %s zone\n", __func__, zone->name);
160 * not handling removing memory ranges that
161 * overlap multiple zones yet
163 if (end_pfn > (zone->zone_start_pfn + zone->spanned_pages))
166 /* make sure it is NOT in RMO */
167 if ((start < lmb.rmo_size) || ((start+size) < lmb.rmo_size)) {
168 printk("%s(): range to be removed must NOT be in RMO!\n",
173 return __remove_pages(zone, start_pfn, nr_pages);
176 printk("%s(): memory range to be removed overlaps "
177 "multiple zones!!!\n", __func__);
181 #endif /* CONFIG_MEMORY_HOTPLUG */
185 unsigned long total = 0, reserved = 0;
186 unsigned long shared = 0, cached = 0;
187 unsigned long highmem = 0;
192 printk("Mem-info:\n");
194 printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
195 for_each_online_pgdat(pgdat) {
197 pgdat_resize_lock(pgdat, &flags);
198 for (i = 0; i < pgdat->node_spanned_pages; i++) {
199 if (!pfn_valid(pgdat->node_start_pfn + i))
201 page = pgdat_page_nr(pgdat, i);
203 if (PageHighMem(page))
205 if (PageReserved(page))
207 else if (PageSwapCache(page))
209 else if (page_count(page))
210 shared += page_count(page) - 1;
212 pgdat_resize_unlock(pgdat, &flags);
214 printk("%ld pages of RAM\n", total);
215 #ifdef CONFIG_HIGHMEM
216 printk("%ld pages of HIGHMEM\n", highmem);
218 printk("%ld reserved pages\n", reserved);
219 printk("%ld pages shared\n", shared);
220 printk("%ld pages swap cached\n", cached);
224 * Initialize the bootmem system and give it all the memory we
225 * have available. If we are using highmem, we only put the
226 * lowmem into the bootmem system.
228 #ifndef CONFIG_NEED_MULTIPLE_NODES
229 void __init do_init_bootmem(void)
232 unsigned long start, bootmap_pages;
233 unsigned long total_pages;
236 max_pfn = total_pages = lmb_end_of_DRAM() >> PAGE_SHIFT;
237 #ifdef CONFIG_HIGHMEM
238 total_pages = total_lowmem >> PAGE_SHIFT;
242 * Find an area to use for the bootmem bitmap. Calculate the size of
243 * bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE.
244 * Add 1 additional page in case the address isn't page-aligned.
246 bootmap_pages = bootmem_bootmap_pages(total_pages);
248 start = lmb_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE);
250 boot_mapsize = init_bootmem(start >> PAGE_SHIFT, total_pages);
252 /* Add active regions with valid PFNs */
253 for (i = 0; i < lmb.memory.cnt; i++) {
254 unsigned long start_pfn, end_pfn;
255 start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
256 end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
257 add_active_range(0, start_pfn, end_pfn);
260 /* Add all physical memory to the bootmem map, mark each area
263 #ifdef CONFIG_HIGHMEM
264 free_bootmem_with_active_regions(0, total_lowmem >> PAGE_SHIFT);
266 free_bootmem_with_active_regions(0, max_pfn);
269 /* reserve the sections we're already using */
270 for (i = 0; i < lmb.reserved.cnt; i++)
271 reserve_bootmem(lmb.reserved.region[i].base,
272 lmb_size_bytes(&lmb.reserved, i));
274 /* XXX need to clip this if using highmem? */
275 sparse_memory_present_with_active_regions(0);
277 init_bootmem_done = 1;
281 * paging_init() sets up the page tables - in fact we've already done this.
283 void __init paging_init(void)
285 unsigned long total_ram = lmb_phys_mem_size();
286 unsigned long top_of_ram = lmb_end_of_DRAM();
287 unsigned long max_zone_pfns[MAX_NR_ZONES];
289 #ifdef CONFIG_HIGHMEM
290 map_page(PKMAP_BASE, 0, 0); /* XXX gross */
291 pkmap_page_table = pte_offset_kernel(pmd_offset(pgd_offset_k
292 (PKMAP_BASE), PKMAP_BASE), PKMAP_BASE);
293 map_page(KMAP_FIX_BEGIN, 0, 0); /* XXX gross */
294 kmap_pte = pte_offset_kernel(pmd_offset(pgd_offset_k
295 (KMAP_FIX_BEGIN), KMAP_FIX_BEGIN), KMAP_FIX_BEGIN);
296 kmap_prot = PAGE_KERNEL;
297 #endif /* CONFIG_HIGHMEM */
299 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
300 top_of_ram, total_ram);
301 printk(KERN_DEBUG "Memory hole size: %ldMB\n",
302 (top_of_ram - total_ram) >> 20);
303 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
304 #ifdef CONFIG_HIGHMEM
305 max_zone_pfns[ZONE_DMA] = total_lowmem >> PAGE_SHIFT;
306 max_zone_pfns[ZONE_HIGHMEM] = top_of_ram >> PAGE_SHIFT;
308 max_zone_pfns[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
310 free_area_init_nodes(max_zone_pfns);
312 #endif /* ! CONFIG_NEED_MULTIPLE_NODES */
314 void __init mem_init(void)
316 #ifdef CONFIG_NEED_MULTIPLE_NODES
322 unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize;
324 num_physpages = lmb.memory.size >> PAGE_SHIFT;
325 high_memory = (void *) __va(max_low_pfn * PAGE_SIZE);
327 #ifdef CONFIG_NEED_MULTIPLE_NODES
328 for_each_online_node(nid) {
329 if (NODE_DATA(nid)->node_spanned_pages != 0) {
330 printk("freeing bootmem node %d\n", nid);
332 free_all_bootmem_node(NODE_DATA(nid));
337 totalram_pages += free_all_bootmem();
339 for_each_online_pgdat(pgdat) {
340 for (i = 0; i < pgdat->node_spanned_pages; i++) {
341 if (!pfn_valid(pgdat->node_start_pfn + i))
343 page = pgdat_page_nr(pgdat, i);
344 if (PageReserved(page))
349 codesize = (unsigned long)&_sdata - (unsigned long)&_stext;
350 datasize = (unsigned long)&_edata - (unsigned long)&_sdata;
351 initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin;
352 bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start;
354 #ifdef CONFIG_HIGHMEM
356 unsigned long pfn, highmem_mapnr;
358 highmem_mapnr = total_lowmem >> PAGE_SHIFT;
359 for (pfn = highmem_mapnr; pfn < max_mapnr; ++pfn) {
360 struct page *page = pfn_to_page(pfn);
362 ClearPageReserved(page);
363 init_page_count(page);
367 totalram_pages += totalhigh_pages;
368 printk(KERN_DEBUG "High memory: %luk\n",
369 totalhigh_pages << (PAGE_SHIFT-10));
371 #endif /* CONFIG_HIGHMEM */
373 printk(KERN_INFO "Memory: %luk/%luk available (%luk kernel code, "
374 "%luk reserved, %luk data, %luk bss, %luk init)\n",
375 (unsigned long)nr_free_pages() << (PAGE_SHIFT-10),
376 num_physpages << (PAGE_SHIFT-10),
378 reservedpages << (PAGE_SHIFT-10),
387 * This is called when a page has been modified by the kernel.
388 * It just marks the page as not i-cache clean. We do the i-cache
389 * flush later when the page is given to a user process, if necessary.
391 void flush_dcache_page(struct page *page)
393 if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
395 /* avoid an atomic op if possible */
396 if (test_bit(PG_arch_1, &page->flags))
397 clear_bit(PG_arch_1, &page->flags);
399 EXPORT_SYMBOL(flush_dcache_page);
401 void flush_dcache_icache_page(struct page *page)
404 void *start = kmap_atomic(page, KM_PPC_SYNC_ICACHE);
405 __flush_dcache_icache(start);
406 kunmap_atomic(start, KM_PPC_SYNC_ICACHE);
407 #elif defined(CONFIG_8xx) || defined(CONFIG_PPC64)
408 /* On 8xx there is no need to kmap since highmem is not supported */
409 __flush_dcache_icache(page_address(page));
411 __flush_dcache_icache_phys(page_to_pfn(page) << PAGE_SHIFT);
415 void clear_user_page(void *page, unsigned long vaddr, struct page *pg)
420 * We shouldnt have to do this, but some versions of glibc
421 * require it (ld.so assumes zero filled pages are icache clean)
424 flush_dcache_page(pg);
426 EXPORT_SYMBOL(clear_user_page);
428 void copy_user_page(void *vto, void *vfrom, unsigned long vaddr,
431 copy_page(vto, vfrom);
434 * We should be able to use the following optimisation, however
435 * there are two problems.
436 * Firstly a bug in some versions of binutils meant PLT sections
437 * were not marked executable.
438 * Secondly the first word in the GOT section is blrl, used
439 * to establish the GOT address. Until recently the GOT was
440 * not marked executable.
444 if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0))
448 flush_dcache_page(pg);
451 void flush_icache_user_range(struct vm_area_struct *vma, struct page *page,
452 unsigned long addr, int len)
456 maddr = (unsigned long) kmap(page) + (addr & ~PAGE_MASK);
457 flush_icache_range(maddr, maddr + len);
460 EXPORT_SYMBOL(flush_icache_user_range);
463 * This is called at the end of handling a user page fault, when the
464 * fault has been handled by updating a PTE in the linux page tables.
465 * We use it to preload an HPTE into the hash table corresponding to
466 * the updated linux PTE.
468 * This must always be called with the pte lock held.
470 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
473 #ifdef CONFIG_PPC_STD_MMU
474 unsigned long access = 0, trap;
476 unsigned long pfn = pte_pfn(pte);
478 /* handle i-cache coherency */
479 if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE) &&
480 !cpu_has_feature(CPU_FTR_NOEXECUTE) &&
482 struct page *page = pfn_to_page(pfn);
484 /* On 8xx, cache control instructions (particularly
485 * "dcbst" from flush_dcache_icache) fault as write
486 * operation if there is an unpopulated TLB entry
487 * for the address in question. To workaround that,
488 * we invalidate the TLB here, thus avoiding dcbst
493 if (!PageReserved(page)
494 && !test_bit(PG_arch_1, &page->flags)) {
495 if (vma->vm_mm == current->active_mm) {
496 __flush_dcache_icache((void *) address);
498 flush_dcache_icache_page(page);
499 set_bit(PG_arch_1, &page->flags);
503 #ifdef CONFIG_PPC_STD_MMU
504 /* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
505 if (!pte_young(pte) || address >= TASK_SIZE)
508 /* We try to figure out if we are coming from an instruction
509 * access fault and pass that down to __hash_page so we avoid
510 * double-faulting on execution of fresh text. We have to test
511 * for regs NULL since init will get here first thing at boot
513 * We also avoid filling the hash if not coming from a fault
515 if (current->thread.regs == NULL)
517 trap = TRAP(current->thread.regs);
519 access |= _PAGE_EXEC;
520 else if (trap != 0x300)
522 hash_preload(vma->vm_mm, address, access, trap);
523 #endif /* CONFIG_PPC_STD_MMU */