Merge branch 'for-linus' of master.kernel.org:/pub/scm/linux/kernel/git/jikos/hid
[linux-2.6] / drivers / macintosh / therm_pm72.c
1 /*
2  * Device driver for the thermostats & fan controller of  the
3  * Apple G5 "PowerMac7,2" desktop machines.
4  *
5  * (c) Copyright IBM Corp. 2003-2004
6  *
7  * Maintained by: Benjamin Herrenschmidt
8  *                <benh@kernel.crashing.org>
9  * 
10  *
11  * The algorithm used is the PID control algorithm, used the same
12  * way the published Darwin code does, using the same values that
13  * are present in the Darwin 7.0 snapshot property lists.
14  *
15  * As far as the CPUs control loops are concerned, I use the
16  * calibration & PID constants provided by the EEPROM,
17  * I do _not_ embed any value from the property lists, as the ones
18  * provided by Darwin 7.0 seem to always have an older version that
19  * what I've seen on the actual computers.
20  * It would be interesting to verify that though. Darwin has a
21  * version code of 1.0.0d11 for all control loops it seems, while
22  * so far, the machines EEPROMs contain a dataset versioned 1.0.0f
23  *
24  * Darwin doesn't provide source to all parts, some missing
25  * bits like the AppleFCU driver or the actual scale of some
26  * of the values returned by sensors had to be "guessed" some
27  * way... or based on what Open Firmware does.
28  *
29  * I didn't yet figure out how to get the slots power consumption
30  * out of the FCU, so that part has not been implemented yet and
31  * the slots fan is set to a fixed 50% PWM, hoping this value is
32  * safe enough ...
33  *
34  * Note: I have observed strange oscillations of the CPU control
35  * loop on a dual G5 here. When idle, the CPU exhaust fan tend to
36  * oscillates slowly (over several minutes) between the minimum
37  * of 300RPMs and approx. 1000 RPMs. I don't know what is causing
38  * this, it could be some incorrect constant or an error in the
39  * way I ported the algorithm, or it could be just normal. I
40  * don't have full understanding on the way Apple tweaked the PID
41  * algorithm for the CPU control, it is definitely not a standard
42  * implementation...
43  *
44  * TODO:  - Check MPU structure version/signature
45  *        - Add things like /sbin/overtemp for non-critical
46  *          overtemp conditions so userland can take some policy
47  *          decisions, like slewing down CPUs
48  *        - Deal with fan and i2c failures in a better way
49  *        - Maybe do a generic PID based on params used for
50  *          U3 and Drives ? Definitely need to factor code a bit
51  *          bettter... also make sensor detection more robust using
52  *          the device-tree to probe for them
53  *        - Figure out how to get the slots consumption and set the
54  *          slots fan accordingly
55  *
56  * History:
57  *
58  *  Nov. 13, 2003 : 0.5
59  *      - First release
60  *
61  *  Nov. 14, 2003 : 0.6
62  *      - Read fan speed from FCU, low level fan routines now deal
63  *        with errors & check fan status, though higher level don't
64  *        do much.
65  *      - Move a bunch of definitions to .h file
66  *
67  *  Nov. 18, 2003 : 0.7
68  *      - Fix build on ppc64 kernel
69  *      - Move back statics definitions to .c file
70  *      - Avoid calling schedule_timeout with a negative number
71  *
72  *  Dec. 18, 2003 : 0.8
73  *      - Fix typo when reading back fan speed on 2 CPU machines
74  *
75  *  Mar. 11, 2004 : 0.9
76  *      - Rework code accessing the ADC chips, make it more robust and
77  *        closer to the chip spec. Also make sure it is configured properly,
78  *        I've seen yet unexplained cases where on startup, I would have stale
79  *        values in the configuration register
80  *      - Switch back to use of target fan speed for PID, thus lowering
81  *        pressure on i2c
82  *
83  *  Oct. 20, 2004 : 1.1
84  *      - Add device-tree lookup for fan IDs, should detect liquid cooling
85  *        pumps when present
86  *      - Enable driver for PowerMac7,3 machines
87  *      - Split the U3/Backside cooling on U3 & U3H versions as Darwin does
88  *      - Add new CPU cooling algorithm for machines with liquid cooling
89  *      - Workaround for some PowerMac7,3 with empty "fan" node in the devtree
90  *      - Fix a signed/unsigned compare issue in some PID loops
91  *
92  *  Mar. 10, 2005 : 1.2
93  *      - Add basic support for Xserve G5
94  *      - Retreive pumps min/max from EEPROM image in device-tree (broken)
95  *      - Use min/max macros here or there
96  *      - Latest darwin updated U3H min fan speed to 20% PWM
97  *
98  *  July. 06, 2006 : 1.3
99  *      - Fix setting of RPM fans on Xserve G5 (they were going too fast)
100  *      - Add missing slots fan control loop for Xserve G5
101  *      - Lower fixed slots fan speed from 50% to 40% on desktop G5s. We
102  *        still can't properly implement the control loop for these, so let's
103  *        reduce the noise a little bit, it appears that 40% still gives us
104  *        a pretty good air flow
105  *      - Add code to "tickle" the FCU regulary so it doesn't think that
106  *        we are gone while in fact, the machine just didn't need any fan
107  *        speed change lately
108  *
109  */
110
111 #include <linux/types.h>
112 #include <linux/module.h>
113 #include <linux/errno.h>
114 #include <linux/kernel.h>
115 #include <linux/delay.h>
116 #include <linux/sched.h>
117 #include <linux/slab.h>
118 #include <linux/init.h>
119 #include <linux/spinlock.h>
120 #include <linux/smp_lock.h>
121 #include <linux/wait.h>
122 #include <linux/reboot.h>
123 #include <linux/kmod.h>
124 #include <linux/i2c.h>
125 #include <asm/prom.h>
126 #include <asm/machdep.h>
127 #include <asm/io.h>
128 #include <asm/system.h>
129 #include <asm/sections.h>
130 #include <asm/of_device.h>
131 #include <asm/macio.h>
132 #include <asm/of_platform.h>
133
134 #include "therm_pm72.h"
135
136 #define VERSION "1.3"
137
138 #undef DEBUG
139
140 #ifdef DEBUG
141 #define DBG(args...)    printk(args)
142 #else
143 #define DBG(args...)    do { } while(0)
144 #endif
145
146
147 /*
148  * Driver statics
149  */
150
151 static struct of_device *               of_dev;
152 static struct i2c_adapter *             u3_0;
153 static struct i2c_adapter *             u3_1;
154 static struct i2c_adapter *             k2;
155 static struct i2c_client *              fcu;
156 static struct cpu_pid_state             cpu_state[2];
157 static struct basckside_pid_params      backside_params;
158 static struct backside_pid_state        backside_state;
159 static struct drives_pid_state          drives_state;
160 static struct dimm_pid_state            dimms_state;
161 static struct slots_pid_state           slots_state;
162 static int                              state;
163 static int                              cpu_count;
164 static int                              cpu_pid_type;
165 static pid_t                            ctrl_task;
166 static struct completion                ctrl_complete;
167 static int                              critical_state;
168 static int                              rackmac;
169 static s32                              dimm_output_clamp;
170 static int                              fcu_rpm_shift;
171 static int                              fcu_tickle_ticks;
172 static DECLARE_MUTEX(driver_lock);
173
174 /*
175  * We have 3 types of CPU PID control. One is "split" old style control
176  * for intake & exhaust fans, the other is "combined" control for both
177  * CPUs that also deals with the pumps when present. To be "compatible"
178  * with OS X at this point, we only use "COMBINED" on the machines that
179  * are identified as having the pumps (though that identification is at
180  * least dodgy). Ultimately, we could probably switch completely to this
181  * algorithm provided we hack it to deal with the UP case
182  */
183 #define CPU_PID_TYPE_SPLIT      0
184 #define CPU_PID_TYPE_COMBINED   1
185 #define CPU_PID_TYPE_RACKMAC    2
186
187 /*
188  * This table describes all fans in the FCU. The "id" and "type" values
189  * are defaults valid for all earlier machines. Newer machines will
190  * eventually override the table content based on the device-tree
191  */
192 struct fcu_fan_table
193 {
194         char*   loc;    /* location code */
195         int     type;   /* 0 = rpm, 1 = pwm, 2 = pump */
196         int     id;     /* id or -1 */
197 };
198
199 #define FCU_FAN_RPM             0
200 #define FCU_FAN_PWM             1
201
202 #define FCU_FAN_ABSENT_ID       -1
203
204 #define FCU_FAN_COUNT           ARRAY_SIZE(fcu_fans)
205
206 struct fcu_fan_table    fcu_fans[] = {
207         [BACKSIDE_FAN_PWM_INDEX] = {
208                 .loc    = "BACKSIDE,SYS CTRLR FAN",
209                 .type   = FCU_FAN_PWM,
210                 .id     = BACKSIDE_FAN_PWM_DEFAULT_ID,
211         },
212         [DRIVES_FAN_RPM_INDEX] = {
213                 .loc    = "DRIVE BAY",
214                 .type   = FCU_FAN_RPM,
215                 .id     = DRIVES_FAN_RPM_DEFAULT_ID,
216         },
217         [SLOTS_FAN_PWM_INDEX] = {
218                 .loc    = "SLOT,PCI FAN",
219                 .type   = FCU_FAN_PWM,
220                 .id     = SLOTS_FAN_PWM_DEFAULT_ID,
221         },
222         [CPUA_INTAKE_FAN_RPM_INDEX] = {
223                 .loc    = "CPU A INTAKE",
224                 .type   = FCU_FAN_RPM,
225                 .id     = CPUA_INTAKE_FAN_RPM_DEFAULT_ID,
226         },
227         [CPUA_EXHAUST_FAN_RPM_INDEX] = {
228                 .loc    = "CPU A EXHAUST",
229                 .type   = FCU_FAN_RPM,
230                 .id     = CPUA_EXHAUST_FAN_RPM_DEFAULT_ID,
231         },
232         [CPUB_INTAKE_FAN_RPM_INDEX] = {
233                 .loc    = "CPU B INTAKE",
234                 .type   = FCU_FAN_RPM,
235                 .id     = CPUB_INTAKE_FAN_RPM_DEFAULT_ID,
236         },
237         [CPUB_EXHAUST_FAN_RPM_INDEX] = {
238                 .loc    = "CPU B EXHAUST",
239                 .type   = FCU_FAN_RPM,
240                 .id     = CPUB_EXHAUST_FAN_RPM_DEFAULT_ID,
241         },
242         /* pumps aren't present by default, have to be looked up in the
243          * device-tree
244          */
245         [CPUA_PUMP_RPM_INDEX] = {
246                 .loc    = "CPU A PUMP",
247                 .type   = FCU_FAN_RPM,          
248                 .id     = FCU_FAN_ABSENT_ID,
249         },
250         [CPUB_PUMP_RPM_INDEX] = {
251                 .loc    = "CPU B PUMP",
252                 .type   = FCU_FAN_RPM,
253                 .id     = FCU_FAN_ABSENT_ID,
254         },
255         /* Xserve fans */
256         [CPU_A1_FAN_RPM_INDEX] = {
257                 .loc    = "CPU A 1",
258                 .type   = FCU_FAN_RPM,
259                 .id     = FCU_FAN_ABSENT_ID,
260         },
261         [CPU_A2_FAN_RPM_INDEX] = {
262                 .loc    = "CPU A 2",
263                 .type   = FCU_FAN_RPM,
264                 .id     = FCU_FAN_ABSENT_ID,
265         },
266         [CPU_A3_FAN_RPM_INDEX] = {
267                 .loc    = "CPU A 3",
268                 .type   = FCU_FAN_RPM,
269                 .id     = FCU_FAN_ABSENT_ID,
270         },
271         [CPU_B1_FAN_RPM_INDEX] = {
272                 .loc    = "CPU B 1",
273                 .type   = FCU_FAN_RPM,
274                 .id     = FCU_FAN_ABSENT_ID,
275         },
276         [CPU_B2_FAN_RPM_INDEX] = {
277                 .loc    = "CPU B 2",
278                 .type   = FCU_FAN_RPM,
279                 .id     = FCU_FAN_ABSENT_ID,
280         },
281         [CPU_B3_FAN_RPM_INDEX] = {
282                 .loc    = "CPU B 3",
283                 .type   = FCU_FAN_RPM,
284                 .id     = FCU_FAN_ABSENT_ID,
285         },
286 };
287
288 /*
289  * i2c_driver structure to attach to the host i2c controller
290  */
291
292 static int therm_pm72_attach(struct i2c_adapter *adapter);
293 static int therm_pm72_detach(struct i2c_adapter *adapter);
294
295 static struct i2c_driver therm_pm72_driver =
296 {
297         .driver = {
298                 .name   = "therm_pm72",
299         },
300         .attach_adapter = therm_pm72_attach,
301         .detach_adapter = therm_pm72_detach,
302 };
303
304 /*
305  * Utility function to create an i2c_client structure and
306  * attach it to one of u3 adapters
307  */
308 static struct i2c_client *attach_i2c_chip(int id, const char *name)
309 {
310         struct i2c_client *clt;
311         struct i2c_adapter *adap;
312
313         if (id & 0x200)
314                 adap = k2;
315         else if (id & 0x100)
316                 adap = u3_1;
317         else
318                 adap = u3_0;
319         if (adap == NULL)
320                 return NULL;
321
322         clt = kmalloc(sizeof(struct i2c_client), GFP_KERNEL);
323         if (clt == NULL)
324                 return NULL;
325         memset(clt, 0, sizeof(struct i2c_client));
326
327         clt->addr = (id >> 1) & 0x7f;
328         clt->adapter = adap;
329         clt->driver = &therm_pm72_driver;
330         strncpy(clt->name, name, I2C_NAME_SIZE-1);
331
332         if (i2c_attach_client(clt)) {
333                 printk(KERN_ERR "therm_pm72: Failed to attach to i2c ID 0x%x\n", id);
334                 kfree(clt);
335                 return NULL;
336         }
337         return clt;
338 }
339
340 /*
341  * Utility function to get rid of the i2c_client structure
342  * (will also detach from the adapter hopepfully)
343  */
344 static void detach_i2c_chip(struct i2c_client *clt)
345 {
346         i2c_detach_client(clt);
347         kfree(clt);
348 }
349
350 /*
351  * Here are the i2c chip access wrappers
352  */
353
354 static void initialize_adc(struct cpu_pid_state *state)
355 {
356         int rc;
357         u8 buf[2];
358
359         /* Read ADC the configuration register and cache it. We
360          * also make sure Config2 contains proper values, I've seen
361          * cases where we got stale grabage in there, thus preventing
362          * proper reading of conv. values
363          */
364
365         /* Clear Config2 */
366         buf[0] = 5;
367         buf[1] = 0;
368         i2c_master_send(state->monitor, buf, 2);
369
370         /* Read & cache Config1 */
371         buf[0] = 1;
372         rc = i2c_master_send(state->monitor, buf, 1);
373         if (rc > 0) {
374                 rc = i2c_master_recv(state->monitor, buf, 1);
375                 if (rc > 0) {
376                         state->adc_config = buf[0];
377                         DBG("ADC config reg: %02x\n", state->adc_config);
378                         /* Disable shutdown mode */
379                         state->adc_config &= 0xfe;
380                         buf[0] = 1;
381                         buf[1] = state->adc_config;
382                         rc = i2c_master_send(state->monitor, buf, 2);
383                 }
384         }
385         if (rc <= 0)
386                 printk(KERN_ERR "therm_pm72: Error reading ADC config"
387                        " register !\n");
388 }
389
390 static int read_smon_adc(struct cpu_pid_state *state, int chan)
391 {
392         int rc, data, tries = 0;
393         u8 buf[2];
394
395         for (;;) {
396                 /* Set channel */
397                 buf[0] = 1;
398                 buf[1] = (state->adc_config & 0x1f) | (chan << 5);
399                 rc = i2c_master_send(state->monitor, buf, 2);
400                 if (rc <= 0)
401                         goto error;
402                 /* Wait for convertion */
403                 msleep(1);
404                 /* Switch to data register */
405                 buf[0] = 4;
406                 rc = i2c_master_send(state->monitor, buf, 1);
407                 if (rc <= 0)
408                         goto error;
409                 /* Read result */
410                 rc = i2c_master_recv(state->monitor, buf, 2);
411                 if (rc < 0)
412                         goto error;
413                 data = ((u16)buf[0]) << 8 | (u16)buf[1];
414                 return data >> 6;
415         error:
416                 DBG("Error reading ADC, retrying...\n");
417                 if (++tries > 10) {
418                         printk(KERN_ERR "therm_pm72: Error reading ADC !\n");
419                         return -1;
420                 }
421                 msleep(10);
422         }
423 }
424
425 static int read_lm87_reg(struct i2c_client * chip, int reg)
426 {
427         int rc, tries = 0;
428         u8 buf;
429
430         for (;;) {
431                 /* Set address */
432                 buf = (u8)reg;
433                 rc = i2c_master_send(chip, &buf, 1);
434                 if (rc <= 0)
435                         goto error;
436                 rc = i2c_master_recv(chip, &buf, 1);
437                 if (rc <= 0)
438                         goto error;
439                 return (int)buf;
440         error:
441                 DBG("Error reading LM87, retrying...\n");
442                 if (++tries > 10) {
443                         printk(KERN_ERR "therm_pm72: Error reading LM87 !\n");
444                         return -1;
445                 }
446                 msleep(10);
447         }
448 }
449
450 static int fan_read_reg(int reg, unsigned char *buf, int nb)
451 {
452         int tries, nr, nw;
453
454         buf[0] = reg;
455         tries = 0;
456         for (;;) {
457                 nw = i2c_master_send(fcu, buf, 1);
458                 if (nw > 0 || (nw < 0 && nw != -EIO) || tries >= 100)
459                         break;
460                 msleep(10);
461                 ++tries;
462         }
463         if (nw <= 0) {
464                 printk(KERN_ERR "Failure writing address to FCU: %d", nw);
465                 return -EIO;
466         }
467         tries = 0;
468         for (;;) {
469                 nr = i2c_master_recv(fcu, buf, nb);
470                 if (nr > 0 || (nr < 0 && nr != ENODEV) || tries >= 100)
471                         break;
472                 msleep(10);
473                 ++tries;
474         }
475         if (nr <= 0)
476                 printk(KERN_ERR "Failure reading data from FCU: %d", nw);
477         return nr;
478 }
479
480 static int fan_write_reg(int reg, const unsigned char *ptr, int nb)
481 {
482         int tries, nw;
483         unsigned char buf[16];
484
485         buf[0] = reg;
486         memcpy(buf+1, ptr, nb);
487         ++nb;
488         tries = 0;
489         for (;;) {
490                 nw = i2c_master_send(fcu, buf, nb);
491                 if (nw > 0 || (nw < 0 && nw != EIO) || tries >= 100)
492                         break;
493                 msleep(10);
494                 ++tries;
495         }
496         if (nw < 0)
497                 printk(KERN_ERR "Failure writing to FCU: %d", nw);
498         return nw;
499 }
500
501 static int start_fcu(void)
502 {
503         unsigned char buf = 0xff;
504         int rc;
505
506         rc = fan_write_reg(0xe, &buf, 1);
507         if (rc < 0)
508                 return -EIO;
509         rc = fan_write_reg(0x2e, &buf, 1);
510         if (rc < 0)
511                 return -EIO;
512         rc = fan_read_reg(0, &buf, 1);
513         if (rc < 0)
514                 return -EIO;
515         fcu_rpm_shift = (buf == 1) ? 2 : 3;
516         printk(KERN_DEBUG "FCU Initialized, RPM fan shift is %d\n",
517                fcu_rpm_shift);
518
519         return 0;
520 }
521
522 static int set_rpm_fan(int fan_index, int rpm)
523 {
524         unsigned char buf[2];
525         int rc, id, min, max;
526
527         if (fcu_fans[fan_index].type != FCU_FAN_RPM)
528                 return -EINVAL;
529         id = fcu_fans[fan_index].id; 
530         if (id == FCU_FAN_ABSENT_ID)
531                 return -EINVAL;
532
533         min = 2400 >> fcu_rpm_shift;
534         max = 56000 >> fcu_rpm_shift;
535
536         if (rpm < min)
537                 rpm = min;
538         else if (rpm > max)
539                 rpm = max;
540         buf[0] = rpm >> (8 - fcu_rpm_shift);
541         buf[1] = rpm << fcu_rpm_shift;
542         rc = fan_write_reg(0x10 + (id * 2), buf, 2);
543         if (rc < 0)
544                 return -EIO;
545         return 0;
546 }
547
548 static int get_rpm_fan(int fan_index, int programmed)
549 {
550         unsigned char failure;
551         unsigned char active;
552         unsigned char buf[2];
553         int rc, id, reg_base;
554
555         if (fcu_fans[fan_index].type != FCU_FAN_RPM)
556                 return -EINVAL;
557         id = fcu_fans[fan_index].id; 
558         if (id == FCU_FAN_ABSENT_ID)
559                 return -EINVAL;
560
561         rc = fan_read_reg(0xb, &failure, 1);
562         if (rc != 1)
563                 return -EIO;
564         if ((failure & (1 << id)) != 0)
565                 return -EFAULT;
566         rc = fan_read_reg(0xd, &active, 1);
567         if (rc != 1)
568                 return -EIO;
569         if ((active & (1 << id)) == 0)
570                 return -ENXIO;
571
572         /* Programmed value or real current speed */
573         reg_base = programmed ? 0x10 : 0x11;
574         rc = fan_read_reg(reg_base + (id * 2), buf, 2);
575         if (rc != 2)
576                 return -EIO;
577
578         return (buf[0] << (8 - fcu_rpm_shift)) | buf[1] >> fcu_rpm_shift;
579 }
580
581 static int set_pwm_fan(int fan_index, int pwm)
582 {
583         unsigned char buf[2];
584         int rc, id;
585
586         if (fcu_fans[fan_index].type != FCU_FAN_PWM)
587                 return -EINVAL;
588         id = fcu_fans[fan_index].id; 
589         if (id == FCU_FAN_ABSENT_ID)
590                 return -EINVAL;
591
592         if (pwm < 10)
593                 pwm = 10;
594         else if (pwm > 100)
595                 pwm = 100;
596         pwm = (pwm * 2559) / 1000;
597         buf[0] = pwm;
598         rc = fan_write_reg(0x30 + (id * 2), buf, 1);
599         if (rc < 0)
600                 return rc;
601         return 0;
602 }
603
604 static int get_pwm_fan(int fan_index)
605 {
606         unsigned char failure;
607         unsigned char active;
608         unsigned char buf[2];
609         int rc, id;
610
611         if (fcu_fans[fan_index].type != FCU_FAN_PWM)
612                 return -EINVAL;
613         id = fcu_fans[fan_index].id; 
614         if (id == FCU_FAN_ABSENT_ID)
615                 return -EINVAL;
616
617         rc = fan_read_reg(0x2b, &failure, 1);
618         if (rc != 1)
619                 return -EIO;
620         if ((failure & (1 << id)) != 0)
621                 return -EFAULT;
622         rc = fan_read_reg(0x2d, &active, 1);
623         if (rc != 1)
624                 return -EIO;
625         if ((active & (1 << id)) == 0)
626                 return -ENXIO;
627
628         /* Programmed value or real current speed */
629         rc = fan_read_reg(0x30 + (id * 2), buf, 1);
630         if (rc != 1)
631                 return -EIO;
632
633         return (buf[0] * 1000) / 2559;
634 }
635
636 static void tickle_fcu(void)
637 {
638         int pwm;
639
640         pwm = get_pwm_fan(SLOTS_FAN_PWM_INDEX);
641
642         DBG("FCU Tickle, slots fan is: %d\n", pwm);
643         if (pwm < 0)
644                 pwm = 100;
645
646         if (!rackmac) {
647                 pwm = SLOTS_FAN_DEFAULT_PWM;
648         } else if (pwm < SLOTS_PID_OUTPUT_MIN)
649                 pwm = SLOTS_PID_OUTPUT_MIN;
650
651         /* That is hopefully enough to make the FCU happy */
652         set_pwm_fan(SLOTS_FAN_PWM_INDEX, pwm);
653 }
654
655
656 /*
657  * Utility routine to read the CPU calibration EEPROM data
658  * from the device-tree
659  */
660 static int read_eeprom(int cpu, struct mpu_data *out)
661 {
662         struct device_node *np;
663         char nodename[64];
664         const u8 *data;
665         int len;
666
667         /* prom.c routine for finding a node by path is a bit brain dead
668          * and requires exact @xxx unit numbers. This is a bit ugly but
669          * will work for these machines
670          */
671         sprintf(nodename, "/u3@0,f8000000/i2c@f8001000/cpuid@a%d", cpu ? 2 : 0);
672         np = of_find_node_by_path(nodename);
673         if (np == NULL) {
674                 printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid node from device-tree\n");
675                 return -ENODEV;
676         }
677         data = of_get_property(np, "cpuid", &len);
678         if (data == NULL) {
679                 printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid property from device-tree\n");
680                 of_node_put(np);
681                 return -ENODEV;
682         }
683         memcpy(out, data, sizeof(struct mpu_data));
684         of_node_put(np);
685         
686         return 0;
687 }
688
689 static void fetch_cpu_pumps_minmax(void)
690 {
691         struct cpu_pid_state *state0 = &cpu_state[0];
692         struct cpu_pid_state *state1 = &cpu_state[1];
693         u16 pump_min = 0, pump_max = 0xffff;
694         u16 tmp[4];
695
696         /* Try to fetch pumps min/max infos from eeprom */
697
698         memcpy(&tmp, &state0->mpu.processor_part_num, 8);
699         if (tmp[0] != 0xffff && tmp[1] != 0xffff) {
700                 pump_min = max(pump_min, tmp[0]);
701                 pump_max = min(pump_max, tmp[1]);
702         }
703         if (tmp[2] != 0xffff && tmp[3] != 0xffff) {
704                 pump_min = max(pump_min, tmp[2]);
705                 pump_max = min(pump_max, tmp[3]);
706         }
707
708         /* Double check the values, this _IS_ needed as the EEPROM on
709          * some dual 2.5Ghz G5s seem, at least, to have both min & max
710          * same to the same value ... (grrrr)
711          */
712         if (pump_min == pump_max || pump_min == 0 || pump_max == 0xffff) {
713                 pump_min = CPU_PUMP_OUTPUT_MIN;
714                 pump_max = CPU_PUMP_OUTPUT_MAX;
715         }
716
717         state0->pump_min = state1->pump_min = pump_min;
718         state0->pump_max = state1->pump_max = pump_max;
719 }
720
721 /* 
722  * Now, unfortunately, sysfs doesn't give us a nice void * we could
723  * pass around to the attribute functions, so we don't really have
724  * choice but implement a bunch of them...
725  *
726  * That sucks a bit, we take the lock because FIX32TOPRINT evaluates
727  * the input twice... I accept patches :)
728  */
729 #define BUILD_SHOW_FUNC_FIX(name, data)                         \
730 static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf)        \
731 {                                                               \
732         ssize_t r;                                              \
733         down(&driver_lock);                                     \
734         r = sprintf(buf, "%d.%03d", FIX32TOPRINT(data));        \
735         up(&driver_lock);                                       \
736         return r;                                               \
737 }
738 #define BUILD_SHOW_FUNC_INT(name, data)                         \
739 static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf)        \
740 {                                                               \
741         return sprintf(buf, "%d", data);                        \
742 }
743
744 BUILD_SHOW_FUNC_FIX(cpu0_temperature, cpu_state[0].last_temp)
745 BUILD_SHOW_FUNC_FIX(cpu0_voltage, cpu_state[0].voltage)
746 BUILD_SHOW_FUNC_FIX(cpu0_current, cpu_state[0].current_a)
747 BUILD_SHOW_FUNC_INT(cpu0_exhaust_fan_rpm, cpu_state[0].rpm)
748 BUILD_SHOW_FUNC_INT(cpu0_intake_fan_rpm, cpu_state[0].intake_rpm)
749
750 BUILD_SHOW_FUNC_FIX(cpu1_temperature, cpu_state[1].last_temp)
751 BUILD_SHOW_FUNC_FIX(cpu1_voltage, cpu_state[1].voltage)
752 BUILD_SHOW_FUNC_FIX(cpu1_current, cpu_state[1].current_a)
753 BUILD_SHOW_FUNC_INT(cpu1_exhaust_fan_rpm, cpu_state[1].rpm)
754 BUILD_SHOW_FUNC_INT(cpu1_intake_fan_rpm, cpu_state[1].intake_rpm)
755
756 BUILD_SHOW_FUNC_FIX(backside_temperature, backside_state.last_temp)
757 BUILD_SHOW_FUNC_INT(backside_fan_pwm, backside_state.pwm)
758
759 BUILD_SHOW_FUNC_FIX(drives_temperature, drives_state.last_temp)
760 BUILD_SHOW_FUNC_INT(drives_fan_rpm, drives_state.rpm)
761
762 BUILD_SHOW_FUNC_FIX(slots_temperature, slots_state.last_temp)
763 BUILD_SHOW_FUNC_INT(slots_fan_pwm, slots_state.pwm)
764
765 BUILD_SHOW_FUNC_FIX(dimms_temperature, dimms_state.last_temp)
766
767 static DEVICE_ATTR(cpu0_temperature,S_IRUGO,show_cpu0_temperature,NULL);
768 static DEVICE_ATTR(cpu0_voltage,S_IRUGO,show_cpu0_voltage,NULL);
769 static DEVICE_ATTR(cpu0_current,S_IRUGO,show_cpu0_current,NULL);
770 static DEVICE_ATTR(cpu0_exhaust_fan_rpm,S_IRUGO,show_cpu0_exhaust_fan_rpm,NULL);
771 static DEVICE_ATTR(cpu0_intake_fan_rpm,S_IRUGO,show_cpu0_intake_fan_rpm,NULL);
772
773 static DEVICE_ATTR(cpu1_temperature,S_IRUGO,show_cpu1_temperature,NULL);
774 static DEVICE_ATTR(cpu1_voltage,S_IRUGO,show_cpu1_voltage,NULL);
775 static DEVICE_ATTR(cpu1_current,S_IRUGO,show_cpu1_current,NULL);
776 static DEVICE_ATTR(cpu1_exhaust_fan_rpm,S_IRUGO,show_cpu1_exhaust_fan_rpm,NULL);
777 static DEVICE_ATTR(cpu1_intake_fan_rpm,S_IRUGO,show_cpu1_intake_fan_rpm,NULL);
778
779 static DEVICE_ATTR(backside_temperature,S_IRUGO,show_backside_temperature,NULL);
780 static DEVICE_ATTR(backside_fan_pwm,S_IRUGO,show_backside_fan_pwm,NULL);
781
782 static DEVICE_ATTR(drives_temperature,S_IRUGO,show_drives_temperature,NULL);
783 static DEVICE_ATTR(drives_fan_rpm,S_IRUGO,show_drives_fan_rpm,NULL);
784
785 static DEVICE_ATTR(slots_temperature,S_IRUGO,show_slots_temperature,NULL);
786 static DEVICE_ATTR(slots_fan_pwm,S_IRUGO,show_slots_fan_pwm,NULL);
787
788 static DEVICE_ATTR(dimms_temperature,S_IRUGO,show_dimms_temperature,NULL);
789
790 /*
791  * CPUs fans control loop
792  */
793
794 static int do_read_one_cpu_values(struct cpu_pid_state *state, s32 *temp, s32 *power)
795 {
796         s32 ltemp, volts, amps;
797         int index, rc = 0;
798
799         /* Default (in case of error) */
800         *temp = state->cur_temp;
801         *power = state->cur_power;
802
803         if (cpu_pid_type == CPU_PID_TYPE_RACKMAC)
804                 index = (state->index == 0) ?
805                         CPU_A1_FAN_RPM_INDEX : CPU_B1_FAN_RPM_INDEX;
806         else
807                 index = (state->index == 0) ?
808                         CPUA_EXHAUST_FAN_RPM_INDEX : CPUB_EXHAUST_FAN_RPM_INDEX;
809
810         /* Read current fan status */
811         rc = get_rpm_fan(index, !RPM_PID_USE_ACTUAL_SPEED);
812         if (rc < 0) {
813                 /* XXX What do we do now ? Nothing for now, keep old value, but
814                  * return error upstream
815                  */
816                 DBG("  cpu %d, fan reading error !\n", state->index);
817         } else {
818                 state->rpm = rc;
819                 DBG("  cpu %d, exhaust RPM: %d\n", state->index, state->rpm);
820         }
821
822         /* Get some sensor readings and scale it */
823         ltemp = read_smon_adc(state, 1);
824         if (ltemp == -1) {
825                 /* XXX What do we do now ? */
826                 state->overtemp++;
827                 if (rc == 0)
828                         rc = -EIO;
829                 DBG("  cpu %d, temp reading error !\n", state->index);
830         } else {
831                 /* Fixup temperature according to diode calibration
832                  */
833                 DBG("  cpu %d, temp raw: %04x, m_diode: %04x, b_diode: %04x\n",
834                     state->index,
835                     ltemp, state->mpu.mdiode, state->mpu.bdiode);
836                 *temp = ((s32)ltemp * (s32)state->mpu.mdiode + ((s32)state->mpu.bdiode << 12)) >> 2;
837                 state->last_temp = *temp;
838                 DBG("  temp: %d.%03d\n", FIX32TOPRINT((*temp)));
839         }
840
841         /*
842          * Read voltage & current and calculate power
843          */
844         volts = read_smon_adc(state, 3);
845         amps = read_smon_adc(state, 4);
846
847         /* Scale voltage and current raw sensor values according to fixed scales
848          * obtained in Darwin and calculate power from I and V
849          */
850         volts *= ADC_CPU_VOLTAGE_SCALE;
851         amps *= ADC_CPU_CURRENT_SCALE;
852         *power = (((u64)volts) * ((u64)amps)) >> 16;
853         state->voltage = volts;
854         state->current_a = amps;
855         state->last_power = *power;
856
857         DBG("  cpu %d, current: %d.%03d, voltage: %d.%03d, power: %d.%03d W\n",
858             state->index, FIX32TOPRINT(state->current_a),
859             FIX32TOPRINT(state->voltage), FIX32TOPRINT(*power));
860
861         return 0;
862 }
863
864 static void do_cpu_pid(struct cpu_pid_state *state, s32 temp, s32 power)
865 {
866         s32 power_target, integral, derivative, proportional, adj_in_target, sval;
867         s64 integ_p, deriv_p, prop_p, sum; 
868         int i;
869
870         /* Calculate power target value (could be done once for all)
871          * and convert to a 16.16 fp number
872          */
873         power_target = ((u32)(state->mpu.pmaxh - state->mpu.padjmax)) << 16;
874         DBG("  power target: %d.%03d, error: %d.%03d\n",
875             FIX32TOPRINT(power_target), FIX32TOPRINT(power_target - power));
876
877         /* Store temperature and power in history array */
878         state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
879         state->temp_history[state->cur_temp] = temp;
880         state->cur_power = (state->cur_power + 1) % state->count_power;
881         state->power_history[state->cur_power] = power;
882         state->error_history[state->cur_power] = power_target - power;
883         
884         /* If first loop, fill the history table */
885         if (state->first) {
886                 for (i = 0; i < (state->count_power - 1); i++) {
887                         state->cur_power = (state->cur_power + 1) % state->count_power;
888                         state->power_history[state->cur_power] = power;
889                         state->error_history[state->cur_power] = power_target - power;
890                 }
891                 for (i = 0; i < (CPU_TEMP_HISTORY_SIZE - 1); i++) {
892                         state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
893                         state->temp_history[state->cur_temp] = temp;                    
894                 }
895                 state->first = 0;
896         }
897
898         /* Calculate the integral term normally based on the "power" values */
899         sum = 0;
900         integral = 0;
901         for (i = 0; i < state->count_power; i++)
902                 integral += state->error_history[i];
903         integral *= CPU_PID_INTERVAL;
904         DBG("  integral: %08x\n", integral);
905
906         /* Calculate the adjusted input (sense value).
907          *   G_r is 12.20
908          *   integ is 16.16
909          *   so the result is 28.36
910          *
911          * input target is mpu.ttarget, input max is mpu.tmax
912          */
913         integ_p = ((s64)state->mpu.pid_gr) * (s64)integral;
914         DBG("   integ_p: %d\n", (int)(integ_p >> 36));
915         sval = (state->mpu.tmax << 16) - ((integ_p >> 20) & 0xffffffff);
916         adj_in_target = (state->mpu.ttarget << 16);
917         if (adj_in_target > sval)
918                 adj_in_target = sval;
919         DBG("   adj_in_target: %d.%03d, ttarget: %d\n", FIX32TOPRINT(adj_in_target),
920             state->mpu.ttarget);
921
922         /* Calculate the derivative term */
923         derivative = state->temp_history[state->cur_temp] -
924                 state->temp_history[(state->cur_temp + CPU_TEMP_HISTORY_SIZE - 1)
925                                     % CPU_TEMP_HISTORY_SIZE];
926         derivative /= CPU_PID_INTERVAL;
927         deriv_p = ((s64)state->mpu.pid_gd) * (s64)derivative;
928         DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
929         sum += deriv_p;
930
931         /* Calculate the proportional term */
932         proportional = temp - adj_in_target;
933         prop_p = ((s64)state->mpu.pid_gp) * (s64)proportional;
934         DBG("   prop_p: %d\n", (int)(prop_p >> 36));
935         sum += prop_p;
936
937         /* Scale sum */
938         sum >>= 36;
939
940         DBG("   sum: %d\n", (int)sum);
941         state->rpm += (s32)sum;
942 }
943
944 static void do_monitor_cpu_combined(void)
945 {
946         struct cpu_pid_state *state0 = &cpu_state[0];
947         struct cpu_pid_state *state1 = &cpu_state[1];
948         s32 temp0, power0, temp1, power1;
949         s32 temp_combi, power_combi;
950         int rc, intake, pump;
951
952         rc = do_read_one_cpu_values(state0, &temp0, &power0);
953         if (rc < 0) {
954                 /* XXX What do we do now ? */
955         }
956         state1->overtemp = 0;
957         rc = do_read_one_cpu_values(state1, &temp1, &power1);
958         if (rc < 0) {
959                 /* XXX What do we do now ? */
960         }
961         if (state1->overtemp)
962                 state0->overtemp++;
963
964         temp_combi = max(temp0, temp1);
965         power_combi = max(power0, power1);
966
967         /* Check tmax, increment overtemp if we are there. At tmax+8, we go
968          * full blown immediately and try to trigger a shutdown
969          */
970         if (temp_combi >= ((state0->mpu.tmax + 8) << 16)) {
971                 printk(KERN_WARNING "Warning ! Temperature way above maximum (%d) !\n",
972                        temp_combi >> 16);
973                 state0->overtemp += CPU_MAX_OVERTEMP / 4;
974         } else if (temp_combi > (state0->mpu.tmax << 16))
975                 state0->overtemp++;
976         else
977                 state0->overtemp = 0;
978         if (state0->overtemp >= CPU_MAX_OVERTEMP)
979                 critical_state = 1;
980         if (state0->overtemp > 0) {
981                 state0->rpm = state0->mpu.rmaxn_exhaust_fan;
982                 state0->intake_rpm = intake = state0->mpu.rmaxn_intake_fan;
983                 pump = state0->pump_max;
984                 goto do_set_fans;
985         }
986
987         /* Do the PID */
988         do_cpu_pid(state0, temp_combi, power_combi);
989
990         /* Range check */
991         state0->rpm = max(state0->rpm, (int)state0->mpu.rminn_exhaust_fan);
992         state0->rpm = min(state0->rpm, (int)state0->mpu.rmaxn_exhaust_fan);
993
994         /* Calculate intake fan speed */
995         intake = (state0->rpm * CPU_INTAKE_SCALE) >> 16;
996         intake = max(intake, (int)state0->mpu.rminn_intake_fan);
997         intake = min(intake, (int)state0->mpu.rmaxn_intake_fan);
998         state0->intake_rpm = intake;
999
1000         /* Calculate pump speed */
1001         pump = (state0->rpm * state0->pump_max) /
1002                 state0->mpu.rmaxn_exhaust_fan;
1003         pump = min(pump, state0->pump_max);
1004         pump = max(pump, state0->pump_min);
1005         
1006  do_set_fans:
1007         /* We copy values from state 0 to state 1 for /sysfs */
1008         state1->rpm = state0->rpm;
1009         state1->intake_rpm = state0->intake_rpm;
1010
1011         DBG("** CPU %d RPM: %d Ex, %d, Pump: %d, In, overtemp: %d\n",
1012             state1->index, (int)state1->rpm, intake, pump, state1->overtemp);
1013
1014         /* We should check for errors, shouldn't we ? But then, what
1015          * do we do once the error occurs ? For FCU notified fan
1016          * failures (-EFAULT) we probably want to notify userland
1017          * some way...
1018          */
1019         set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
1020         set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state0->rpm);
1021         set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
1022         set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state0->rpm);
1023
1024         if (fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
1025                 set_rpm_fan(CPUA_PUMP_RPM_INDEX, pump);
1026         if (fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
1027                 set_rpm_fan(CPUB_PUMP_RPM_INDEX, pump);
1028 }
1029
1030 static void do_monitor_cpu_split(struct cpu_pid_state *state)
1031 {
1032         s32 temp, power;
1033         int rc, intake;
1034
1035         /* Read current fan status */
1036         rc = do_read_one_cpu_values(state, &temp, &power);
1037         if (rc < 0) {
1038                 /* XXX What do we do now ? */
1039         }
1040
1041         /* Check tmax, increment overtemp if we are there. At tmax+8, we go
1042          * full blown immediately and try to trigger a shutdown
1043          */
1044         if (temp >= ((state->mpu.tmax + 8) << 16)) {
1045                 printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
1046                        " (%d) !\n",
1047                        state->index, temp >> 16);
1048                 state->overtemp += CPU_MAX_OVERTEMP / 4;
1049         } else if (temp > (state->mpu.tmax << 16))
1050                 state->overtemp++;
1051         else
1052                 state->overtemp = 0;
1053         if (state->overtemp >= CPU_MAX_OVERTEMP)
1054                 critical_state = 1;
1055         if (state->overtemp > 0) {
1056                 state->rpm = state->mpu.rmaxn_exhaust_fan;
1057                 state->intake_rpm = intake = state->mpu.rmaxn_intake_fan;
1058                 goto do_set_fans;
1059         }
1060
1061         /* Do the PID */
1062         do_cpu_pid(state, temp, power);
1063
1064         /* Range check */
1065         state->rpm = max(state->rpm, (int)state->mpu.rminn_exhaust_fan);
1066         state->rpm = min(state->rpm, (int)state->mpu.rmaxn_exhaust_fan);
1067
1068         /* Calculate intake fan */
1069         intake = (state->rpm * CPU_INTAKE_SCALE) >> 16;
1070         intake = max(intake, (int)state->mpu.rminn_intake_fan);
1071         intake = min(intake, (int)state->mpu.rmaxn_intake_fan);
1072         state->intake_rpm = intake;
1073
1074  do_set_fans:
1075         DBG("** CPU %d RPM: %d Ex, %d In, overtemp: %d\n",
1076             state->index, (int)state->rpm, intake, state->overtemp);
1077
1078         /* We should check for errors, shouldn't we ? But then, what
1079          * do we do once the error occurs ? For FCU notified fan
1080          * failures (-EFAULT) we probably want to notify userland
1081          * some way...
1082          */
1083         if (state->index == 0) {
1084                 set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
1085                 set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state->rpm);
1086         } else {
1087                 set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
1088                 set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state->rpm);
1089         }
1090 }
1091
1092 static void do_monitor_cpu_rack(struct cpu_pid_state *state)
1093 {
1094         s32 temp, power, fan_min;
1095         int rc;
1096
1097         /* Read current fan status */
1098         rc = do_read_one_cpu_values(state, &temp, &power);
1099         if (rc < 0) {
1100                 /* XXX What do we do now ? */
1101         }
1102
1103         /* Check tmax, increment overtemp if we are there. At tmax+8, we go
1104          * full blown immediately and try to trigger a shutdown
1105          */
1106         if (temp >= ((state->mpu.tmax + 8) << 16)) {
1107                 printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
1108                        " (%d) !\n",
1109                        state->index, temp >> 16);
1110                 state->overtemp = CPU_MAX_OVERTEMP / 4;
1111         } else if (temp > (state->mpu.tmax << 16))
1112                 state->overtemp++;
1113         else
1114                 state->overtemp = 0;
1115         if (state->overtemp >= CPU_MAX_OVERTEMP)
1116                 critical_state = 1;
1117         if (state->overtemp > 0) {
1118                 state->rpm = state->intake_rpm = state->mpu.rmaxn_intake_fan;
1119                 goto do_set_fans;
1120         }
1121
1122         /* Do the PID */
1123         do_cpu_pid(state, temp, power);
1124
1125         /* Check clamp from dimms */
1126         fan_min = dimm_output_clamp;
1127         fan_min = max(fan_min, (int)state->mpu.rminn_intake_fan);
1128
1129         DBG(" CPU min mpu = %d, min dimm = %d\n",
1130             state->mpu.rminn_intake_fan, dimm_output_clamp);
1131
1132         state->rpm = max(state->rpm, (int)fan_min);
1133         state->rpm = min(state->rpm, (int)state->mpu.rmaxn_intake_fan);
1134         state->intake_rpm = state->rpm;
1135
1136  do_set_fans:
1137         DBG("** CPU %d RPM: %d overtemp: %d\n",
1138             state->index, (int)state->rpm, state->overtemp);
1139
1140         /* We should check for errors, shouldn't we ? But then, what
1141          * do we do once the error occurs ? For FCU notified fan
1142          * failures (-EFAULT) we probably want to notify userland
1143          * some way...
1144          */
1145         if (state->index == 0) {
1146                 set_rpm_fan(CPU_A1_FAN_RPM_INDEX, state->rpm);
1147                 set_rpm_fan(CPU_A2_FAN_RPM_INDEX, state->rpm);
1148                 set_rpm_fan(CPU_A3_FAN_RPM_INDEX, state->rpm);
1149         } else {
1150                 set_rpm_fan(CPU_B1_FAN_RPM_INDEX, state->rpm);
1151                 set_rpm_fan(CPU_B2_FAN_RPM_INDEX, state->rpm);
1152                 set_rpm_fan(CPU_B3_FAN_RPM_INDEX, state->rpm);
1153         }
1154 }
1155
1156 /*
1157  * Initialize the state structure for one CPU control loop
1158  */
1159 static int init_cpu_state(struct cpu_pid_state *state, int index)
1160 {
1161         state->index = index;
1162         state->first = 1;
1163         state->rpm = (cpu_pid_type == CPU_PID_TYPE_RACKMAC) ? 4000 : 1000;
1164         state->overtemp = 0;
1165         state->adc_config = 0x00;
1166
1167
1168         if (index == 0)
1169                 state->monitor = attach_i2c_chip(SUPPLY_MONITOR_ID, "CPU0_monitor");
1170         else if (index == 1)
1171                 state->monitor = attach_i2c_chip(SUPPLY_MONITORB_ID, "CPU1_monitor");
1172         if (state->monitor == NULL)
1173                 goto fail;
1174
1175         if (read_eeprom(index, &state->mpu))
1176                 goto fail;
1177
1178         state->count_power = state->mpu.tguardband;
1179         if (state->count_power > CPU_POWER_HISTORY_SIZE) {
1180                 printk(KERN_WARNING "Warning ! too many power history slots\n");
1181                 state->count_power = CPU_POWER_HISTORY_SIZE;
1182         }
1183         DBG("CPU %d Using %d power history entries\n", index, state->count_power);
1184
1185         if (index == 0) {
1186                 device_create_file(&of_dev->dev, &dev_attr_cpu0_temperature);
1187                 device_create_file(&of_dev->dev, &dev_attr_cpu0_voltage);
1188                 device_create_file(&of_dev->dev, &dev_attr_cpu0_current);
1189                 device_create_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
1190                 device_create_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
1191         } else {
1192                 device_create_file(&of_dev->dev, &dev_attr_cpu1_temperature);
1193                 device_create_file(&of_dev->dev, &dev_attr_cpu1_voltage);
1194                 device_create_file(&of_dev->dev, &dev_attr_cpu1_current);
1195                 device_create_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
1196                 device_create_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
1197         }
1198
1199         return 0;
1200  fail:
1201         if (state->monitor)
1202                 detach_i2c_chip(state->monitor);
1203         state->monitor = NULL;
1204         
1205         return -ENODEV;
1206 }
1207
1208 /*
1209  * Dispose of the state data for one CPU control loop
1210  */
1211 static void dispose_cpu_state(struct cpu_pid_state *state)
1212 {
1213         if (state->monitor == NULL)
1214                 return;
1215
1216         if (state->index == 0) {
1217                 device_remove_file(&of_dev->dev, &dev_attr_cpu0_temperature);
1218                 device_remove_file(&of_dev->dev, &dev_attr_cpu0_voltage);
1219                 device_remove_file(&of_dev->dev, &dev_attr_cpu0_current);
1220                 device_remove_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
1221                 device_remove_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
1222         } else {
1223                 device_remove_file(&of_dev->dev, &dev_attr_cpu1_temperature);
1224                 device_remove_file(&of_dev->dev, &dev_attr_cpu1_voltage);
1225                 device_remove_file(&of_dev->dev, &dev_attr_cpu1_current);
1226                 device_remove_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
1227                 device_remove_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
1228         }
1229
1230         detach_i2c_chip(state->monitor);
1231         state->monitor = NULL;
1232 }
1233
1234 /*
1235  * Motherboard backside & U3 heatsink fan control loop
1236  */
1237 static void do_monitor_backside(struct backside_pid_state *state)
1238 {
1239         s32 temp, integral, derivative, fan_min;
1240         s64 integ_p, deriv_p, prop_p, sum; 
1241         int i, rc;
1242
1243         if (--state->ticks != 0)
1244                 return;
1245         state->ticks = backside_params.interval;
1246
1247         DBG("backside:\n");
1248
1249         /* Check fan status */
1250         rc = get_pwm_fan(BACKSIDE_FAN_PWM_INDEX);
1251         if (rc < 0) {
1252                 printk(KERN_WARNING "Error %d reading backside fan !\n", rc);
1253                 /* XXX What do we do now ? */
1254         } else
1255                 state->pwm = rc;
1256         DBG("  current pwm: %d\n", state->pwm);
1257
1258         /* Get some sensor readings */
1259         temp = i2c_smbus_read_byte_data(state->monitor, MAX6690_EXT_TEMP) << 16;
1260         state->last_temp = temp;
1261         DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1262             FIX32TOPRINT(backside_params.input_target));
1263
1264         /* Store temperature and error in history array */
1265         state->cur_sample = (state->cur_sample + 1) % BACKSIDE_PID_HISTORY_SIZE;
1266         state->sample_history[state->cur_sample] = temp;
1267         state->error_history[state->cur_sample] = temp - backside_params.input_target;
1268         
1269         /* If first loop, fill the history table */
1270         if (state->first) {
1271                 for (i = 0; i < (BACKSIDE_PID_HISTORY_SIZE - 1); i++) {
1272                         state->cur_sample = (state->cur_sample + 1) %
1273                                 BACKSIDE_PID_HISTORY_SIZE;
1274                         state->sample_history[state->cur_sample] = temp;
1275                         state->error_history[state->cur_sample] =
1276                                 temp - backside_params.input_target;
1277                 }
1278                 state->first = 0;
1279         }
1280
1281         /* Calculate the integral term */
1282         sum = 0;
1283         integral = 0;
1284         for (i = 0; i < BACKSIDE_PID_HISTORY_SIZE; i++)
1285                 integral += state->error_history[i];
1286         integral *= backside_params.interval;
1287         DBG("  integral: %08x\n", integral);
1288         integ_p = ((s64)backside_params.G_r) * (s64)integral;
1289         DBG("   integ_p: %d\n", (int)(integ_p >> 36));
1290         sum += integ_p;
1291
1292         /* Calculate the derivative term */
1293         derivative = state->error_history[state->cur_sample] -
1294                 state->error_history[(state->cur_sample + BACKSIDE_PID_HISTORY_SIZE - 1)
1295                                     % BACKSIDE_PID_HISTORY_SIZE];
1296         derivative /= backside_params.interval;
1297         deriv_p = ((s64)backside_params.G_d) * (s64)derivative;
1298         DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
1299         sum += deriv_p;
1300
1301         /* Calculate the proportional term */
1302         prop_p = ((s64)backside_params.G_p) * (s64)(state->error_history[state->cur_sample]);
1303         DBG("   prop_p: %d\n", (int)(prop_p >> 36));
1304         sum += prop_p;
1305
1306         /* Scale sum */
1307         sum >>= 36;
1308
1309         DBG("   sum: %d\n", (int)sum);
1310         if (backside_params.additive)
1311                 state->pwm += (s32)sum;
1312         else
1313                 state->pwm = sum;
1314
1315         /* Check for clamp */
1316         fan_min = (dimm_output_clamp * 100) / 14000;
1317         fan_min = max(fan_min, backside_params.output_min);
1318
1319         state->pwm = max(state->pwm, fan_min);
1320         state->pwm = min(state->pwm, backside_params.output_max);
1321
1322         DBG("** BACKSIDE PWM: %d\n", (int)state->pwm);
1323         set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, state->pwm);
1324 }
1325
1326 /*
1327  * Initialize the state structure for the backside fan control loop
1328  */
1329 static int init_backside_state(struct backside_pid_state *state)
1330 {
1331         struct device_node *u3;
1332         int u3h = 1; /* conservative by default */
1333
1334         /*
1335          * There are different PID params for machines with U3 and machines
1336          * with U3H, pick the right ones now
1337          */
1338         u3 = of_find_node_by_path("/u3@0,f8000000");
1339         if (u3 != NULL) {
1340                 const u32 *vers = of_get_property(u3, "device-rev", NULL);
1341                 if (vers)
1342                         if (((*vers) & 0x3f) < 0x34)
1343                                 u3h = 0;
1344                 of_node_put(u3);
1345         }
1346
1347         if (rackmac) {
1348                 backside_params.G_d = BACKSIDE_PID_RACK_G_d;
1349                 backside_params.input_target = BACKSIDE_PID_RACK_INPUT_TARGET;
1350                 backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
1351                 backside_params.interval = BACKSIDE_PID_RACK_INTERVAL;
1352                 backside_params.G_p = BACKSIDE_PID_RACK_G_p;
1353                 backside_params.G_r = BACKSIDE_PID_G_r;
1354                 backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1355                 backside_params.additive = 0;
1356         } else if (u3h) {
1357                 backside_params.G_d = BACKSIDE_PID_U3H_G_d;
1358                 backside_params.input_target = BACKSIDE_PID_U3H_INPUT_TARGET;
1359                 backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
1360                 backside_params.interval = BACKSIDE_PID_INTERVAL;
1361                 backside_params.G_p = BACKSIDE_PID_G_p;
1362                 backside_params.G_r = BACKSIDE_PID_G_r;
1363                 backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1364                 backside_params.additive = 1;
1365         } else {
1366                 backside_params.G_d = BACKSIDE_PID_U3_G_d;
1367                 backside_params.input_target = BACKSIDE_PID_U3_INPUT_TARGET;
1368                 backside_params.output_min = BACKSIDE_PID_U3_OUTPUT_MIN;
1369                 backside_params.interval = BACKSIDE_PID_INTERVAL;
1370                 backside_params.G_p = BACKSIDE_PID_G_p;
1371                 backside_params.G_r = BACKSIDE_PID_G_r;
1372                 backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1373                 backside_params.additive = 1;
1374         }
1375
1376         state->ticks = 1;
1377         state->first = 1;
1378         state->pwm = 50;
1379
1380         state->monitor = attach_i2c_chip(BACKSIDE_MAX_ID, "backside_temp");
1381         if (state->monitor == NULL)
1382                 return -ENODEV;
1383
1384         device_create_file(&of_dev->dev, &dev_attr_backside_temperature);
1385         device_create_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
1386
1387         return 0;
1388 }
1389
1390 /*
1391  * Dispose of the state data for the backside control loop
1392  */
1393 static void dispose_backside_state(struct backside_pid_state *state)
1394 {
1395         if (state->monitor == NULL)
1396                 return;
1397
1398         device_remove_file(&of_dev->dev, &dev_attr_backside_temperature);
1399         device_remove_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
1400
1401         detach_i2c_chip(state->monitor);
1402         state->monitor = NULL;
1403 }
1404  
1405 /*
1406  * Drives bay fan control loop
1407  */
1408 static void do_monitor_drives(struct drives_pid_state *state)
1409 {
1410         s32 temp, integral, derivative;
1411         s64 integ_p, deriv_p, prop_p, sum; 
1412         int i, rc;
1413
1414         if (--state->ticks != 0)
1415                 return;
1416         state->ticks = DRIVES_PID_INTERVAL;
1417
1418         DBG("drives:\n");
1419
1420         /* Check fan status */
1421         rc = get_rpm_fan(DRIVES_FAN_RPM_INDEX, !RPM_PID_USE_ACTUAL_SPEED);
1422         if (rc < 0) {
1423                 printk(KERN_WARNING "Error %d reading drives fan !\n", rc);
1424                 /* XXX What do we do now ? */
1425         } else
1426                 state->rpm = rc;
1427         DBG("  current rpm: %d\n", state->rpm);
1428
1429         /* Get some sensor readings */
1430         temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor,
1431                                                     DS1775_TEMP)) << 8;
1432         state->last_temp = temp;
1433         DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1434             FIX32TOPRINT(DRIVES_PID_INPUT_TARGET));
1435
1436         /* Store temperature and error in history array */
1437         state->cur_sample = (state->cur_sample + 1) % DRIVES_PID_HISTORY_SIZE;
1438         state->sample_history[state->cur_sample] = temp;
1439         state->error_history[state->cur_sample] = temp - DRIVES_PID_INPUT_TARGET;
1440         
1441         /* If first loop, fill the history table */
1442         if (state->first) {
1443                 for (i = 0; i < (DRIVES_PID_HISTORY_SIZE - 1); i++) {
1444                         state->cur_sample = (state->cur_sample + 1) %
1445                                 DRIVES_PID_HISTORY_SIZE;
1446                         state->sample_history[state->cur_sample] = temp;
1447                         state->error_history[state->cur_sample] =
1448                                 temp - DRIVES_PID_INPUT_TARGET;
1449                 }
1450                 state->first = 0;
1451         }
1452
1453         /* Calculate the integral term */
1454         sum = 0;
1455         integral = 0;
1456         for (i = 0; i < DRIVES_PID_HISTORY_SIZE; i++)
1457                 integral += state->error_history[i];
1458         integral *= DRIVES_PID_INTERVAL;
1459         DBG("  integral: %08x\n", integral);
1460         integ_p = ((s64)DRIVES_PID_G_r) * (s64)integral;
1461         DBG("   integ_p: %d\n", (int)(integ_p >> 36));
1462         sum += integ_p;
1463
1464         /* Calculate the derivative term */
1465         derivative = state->error_history[state->cur_sample] -
1466                 state->error_history[(state->cur_sample + DRIVES_PID_HISTORY_SIZE - 1)
1467                                     % DRIVES_PID_HISTORY_SIZE];
1468         derivative /= DRIVES_PID_INTERVAL;
1469         deriv_p = ((s64)DRIVES_PID_G_d) * (s64)derivative;
1470         DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
1471         sum += deriv_p;
1472
1473         /* Calculate the proportional term */
1474         prop_p = ((s64)DRIVES_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1475         DBG("   prop_p: %d\n", (int)(prop_p >> 36));
1476         sum += prop_p;
1477
1478         /* Scale sum */
1479         sum >>= 36;
1480
1481         DBG("   sum: %d\n", (int)sum);
1482         state->rpm += (s32)sum;
1483
1484         state->rpm = max(state->rpm, DRIVES_PID_OUTPUT_MIN);
1485         state->rpm = min(state->rpm, DRIVES_PID_OUTPUT_MAX);
1486
1487         DBG("** DRIVES RPM: %d\n", (int)state->rpm);
1488         set_rpm_fan(DRIVES_FAN_RPM_INDEX, state->rpm);
1489 }
1490
1491 /*
1492  * Initialize the state structure for the drives bay fan control loop
1493  */
1494 static int init_drives_state(struct drives_pid_state *state)
1495 {
1496         state->ticks = 1;
1497         state->first = 1;
1498         state->rpm = 1000;
1499
1500         state->monitor = attach_i2c_chip(DRIVES_DALLAS_ID, "drives_temp");
1501         if (state->monitor == NULL)
1502                 return -ENODEV;
1503
1504         device_create_file(&of_dev->dev, &dev_attr_drives_temperature);
1505         device_create_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
1506
1507         return 0;
1508 }
1509
1510 /*
1511  * Dispose of the state data for the drives control loop
1512  */
1513 static void dispose_drives_state(struct drives_pid_state *state)
1514 {
1515         if (state->monitor == NULL)
1516                 return;
1517
1518         device_remove_file(&of_dev->dev, &dev_attr_drives_temperature);
1519         device_remove_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
1520
1521         detach_i2c_chip(state->monitor);
1522         state->monitor = NULL;
1523 }
1524
1525 /*
1526  * DIMMs temp control loop
1527  */
1528 static void do_monitor_dimms(struct dimm_pid_state *state)
1529 {
1530         s32 temp, integral, derivative, fan_min;
1531         s64 integ_p, deriv_p, prop_p, sum;
1532         int i;
1533
1534         if (--state->ticks != 0)
1535                 return;
1536         state->ticks = DIMM_PID_INTERVAL;
1537
1538         DBG("DIMM:\n");
1539
1540         DBG("  current value: %d\n", state->output);
1541
1542         temp = read_lm87_reg(state->monitor, LM87_INT_TEMP);
1543         if (temp < 0)
1544                 return;
1545         temp <<= 16;
1546         state->last_temp = temp;
1547         DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1548             FIX32TOPRINT(DIMM_PID_INPUT_TARGET));
1549
1550         /* Store temperature and error in history array */
1551         state->cur_sample = (state->cur_sample + 1) % DIMM_PID_HISTORY_SIZE;
1552         state->sample_history[state->cur_sample] = temp;
1553         state->error_history[state->cur_sample] = temp - DIMM_PID_INPUT_TARGET;
1554
1555         /* If first loop, fill the history table */
1556         if (state->first) {
1557                 for (i = 0; i < (DIMM_PID_HISTORY_SIZE - 1); i++) {
1558                         state->cur_sample = (state->cur_sample + 1) %
1559                                 DIMM_PID_HISTORY_SIZE;
1560                         state->sample_history[state->cur_sample] = temp;
1561                         state->error_history[state->cur_sample] =
1562                                 temp - DIMM_PID_INPUT_TARGET;
1563                 }
1564                 state->first = 0;
1565         }
1566
1567         /* Calculate the integral term */
1568         sum = 0;
1569         integral = 0;
1570         for (i = 0; i < DIMM_PID_HISTORY_SIZE; i++)
1571                 integral += state->error_history[i];
1572         integral *= DIMM_PID_INTERVAL;
1573         DBG("  integral: %08x\n", integral);
1574         integ_p = ((s64)DIMM_PID_G_r) * (s64)integral;
1575         DBG("   integ_p: %d\n", (int)(integ_p >> 36));
1576         sum += integ_p;
1577
1578         /* Calculate the derivative term */
1579         derivative = state->error_history[state->cur_sample] -
1580                 state->error_history[(state->cur_sample + DIMM_PID_HISTORY_SIZE - 1)
1581                                     % DIMM_PID_HISTORY_SIZE];
1582         derivative /= DIMM_PID_INTERVAL;
1583         deriv_p = ((s64)DIMM_PID_G_d) * (s64)derivative;
1584         DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
1585         sum += deriv_p;
1586
1587         /* Calculate the proportional term */
1588         prop_p = ((s64)DIMM_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1589         DBG("   prop_p: %d\n", (int)(prop_p >> 36));
1590         sum += prop_p;
1591
1592         /* Scale sum */
1593         sum >>= 36;
1594
1595         DBG("   sum: %d\n", (int)sum);
1596         state->output = (s32)sum;
1597         state->output = max(state->output, DIMM_PID_OUTPUT_MIN);
1598         state->output = min(state->output, DIMM_PID_OUTPUT_MAX);
1599         dimm_output_clamp = state->output;
1600
1601         DBG("** DIMM clamp value: %d\n", (int)state->output);
1602
1603         /* Backside PID is only every 5 seconds, force backside fan clamping now */
1604         fan_min = (dimm_output_clamp * 100) / 14000;
1605         fan_min = max(fan_min, backside_params.output_min);
1606         if (backside_state.pwm < fan_min) {
1607                 backside_state.pwm = fan_min;
1608                 DBG(" -> applying clamp to backside fan now: %d  !\n", fan_min);
1609                 set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, fan_min);
1610         }
1611 }
1612
1613 /*
1614  * Initialize the state structure for the DIMM temp control loop
1615  */
1616 static int init_dimms_state(struct dimm_pid_state *state)
1617 {
1618         state->ticks = 1;
1619         state->first = 1;
1620         state->output = 4000;
1621
1622         state->monitor = attach_i2c_chip(XSERVE_DIMMS_LM87, "dimms_temp");
1623         if (state->monitor == NULL)
1624                 return -ENODEV;
1625
1626         device_create_file(&of_dev->dev, &dev_attr_dimms_temperature);
1627
1628         return 0;
1629 }
1630
1631 /*
1632  * Dispose of the state data for the DIMM control loop
1633  */
1634 static void dispose_dimms_state(struct dimm_pid_state *state)
1635 {
1636         if (state->monitor == NULL)
1637                 return;
1638
1639         device_remove_file(&of_dev->dev, &dev_attr_dimms_temperature);
1640
1641         detach_i2c_chip(state->monitor);
1642         state->monitor = NULL;
1643 }
1644
1645 /*
1646  * Slots fan control loop
1647  */
1648 static void do_monitor_slots(struct slots_pid_state *state)
1649 {
1650         s32 temp, integral, derivative;
1651         s64 integ_p, deriv_p, prop_p, sum;
1652         int i, rc;
1653
1654         if (--state->ticks != 0)
1655                 return;
1656         state->ticks = SLOTS_PID_INTERVAL;
1657
1658         DBG("slots:\n");
1659
1660         /* Check fan status */
1661         rc = get_pwm_fan(SLOTS_FAN_PWM_INDEX);
1662         if (rc < 0) {
1663                 printk(KERN_WARNING "Error %d reading slots fan !\n", rc);
1664                 /* XXX What do we do now ? */
1665         } else
1666                 state->pwm = rc;
1667         DBG("  current pwm: %d\n", state->pwm);
1668
1669         /* Get some sensor readings */
1670         temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor,
1671                                                     DS1775_TEMP)) << 8;
1672         state->last_temp = temp;
1673         DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1674             FIX32TOPRINT(SLOTS_PID_INPUT_TARGET));
1675
1676         /* Store temperature and error in history array */
1677         state->cur_sample = (state->cur_sample + 1) % SLOTS_PID_HISTORY_SIZE;
1678         state->sample_history[state->cur_sample] = temp;
1679         state->error_history[state->cur_sample] = temp - SLOTS_PID_INPUT_TARGET;
1680
1681         /* If first loop, fill the history table */
1682         if (state->first) {
1683                 for (i = 0; i < (SLOTS_PID_HISTORY_SIZE - 1); i++) {
1684                         state->cur_sample = (state->cur_sample + 1) %
1685                                 SLOTS_PID_HISTORY_SIZE;
1686                         state->sample_history[state->cur_sample] = temp;
1687                         state->error_history[state->cur_sample] =
1688                                 temp - SLOTS_PID_INPUT_TARGET;
1689                 }
1690                 state->first = 0;
1691         }
1692
1693         /* Calculate the integral term */
1694         sum = 0;
1695         integral = 0;
1696         for (i = 0; i < SLOTS_PID_HISTORY_SIZE; i++)
1697                 integral += state->error_history[i];
1698         integral *= SLOTS_PID_INTERVAL;
1699         DBG("  integral: %08x\n", integral);
1700         integ_p = ((s64)SLOTS_PID_G_r) * (s64)integral;
1701         DBG("   integ_p: %d\n", (int)(integ_p >> 36));
1702         sum += integ_p;
1703
1704         /* Calculate the derivative term */
1705         derivative = state->error_history[state->cur_sample] -
1706                 state->error_history[(state->cur_sample + SLOTS_PID_HISTORY_SIZE - 1)
1707                                     % SLOTS_PID_HISTORY_SIZE];
1708         derivative /= SLOTS_PID_INTERVAL;
1709         deriv_p = ((s64)SLOTS_PID_G_d) * (s64)derivative;
1710         DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
1711         sum += deriv_p;
1712
1713         /* Calculate the proportional term */
1714         prop_p = ((s64)SLOTS_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1715         DBG("   prop_p: %d\n", (int)(prop_p >> 36));
1716         sum += prop_p;
1717
1718         /* Scale sum */
1719         sum >>= 36;
1720
1721         DBG("   sum: %d\n", (int)sum);
1722         state->pwm = (s32)sum;
1723
1724         state->pwm = max(state->pwm, SLOTS_PID_OUTPUT_MIN);
1725         state->pwm = min(state->pwm, SLOTS_PID_OUTPUT_MAX);
1726
1727         DBG("** DRIVES PWM: %d\n", (int)state->pwm);
1728         set_pwm_fan(SLOTS_FAN_PWM_INDEX, state->pwm);
1729 }
1730
1731 /*
1732  * Initialize the state structure for the slots bay fan control loop
1733  */
1734 static int init_slots_state(struct slots_pid_state *state)
1735 {
1736         state->ticks = 1;
1737         state->first = 1;
1738         state->pwm = 50;
1739
1740         state->monitor = attach_i2c_chip(XSERVE_SLOTS_LM75, "slots_temp");
1741         if (state->monitor == NULL)
1742                 return -ENODEV;
1743
1744         device_create_file(&of_dev->dev, &dev_attr_slots_temperature);
1745         device_create_file(&of_dev->dev, &dev_attr_slots_fan_pwm);
1746
1747         return 0;
1748 }
1749
1750 /*
1751  * Dispose of the state data for the slots control loop
1752  */
1753 static void dispose_slots_state(struct slots_pid_state *state)
1754 {
1755         if (state->monitor == NULL)
1756                 return;
1757
1758         device_remove_file(&of_dev->dev, &dev_attr_slots_temperature);
1759         device_remove_file(&of_dev->dev, &dev_attr_slots_fan_pwm);
1760
1761         detach_i2c_chip(state->monitor);
1762         state->monitor = NULL;
1763 }
1764
1765
1766 static int call_critical_overtemp(void)
1767 {
1768         char *argv[] = { critical_overtemp_path, NULL };
1769         static char *envp[] = { "HOME=/",
1770                                 "TERM=linux",
1771                                 "PATH=/sbin:/usr/sbin:/bin:/usr/bin",
1772                                 NULL };
1773
1774         return call_usermodehelper(critical_overtemp_path, argv, envp, 0);
1775 }
1776
1777
1778 /*
1779  * Here's the kernel thread that calls the various control loops
1780  */
1781 static int main_control_loop(void *x)
1782 {
1783         daemonize("kfand");
1784
1785         DBG("main_control_loop started\n");
1786
1787         down(&driver_lock);
1788
1789         if (start_fcu() < 0) {
1790                 printk(KERN_ERR "kfand: failed to start FCU\n");
1791                 up(&driver_lock);
1792                 goto out;
1793         }
1794
1795         /* Set the PCI fan once for now on non-RackMac */
1796         if (!rackmac)
1797                 set_pwm_fan(SLOTS_FAN_PWM_INDEX, SLOTS_FAN_DEFAULT_PWM);
1798
1799         /* Initialize ADCs */
1800         initialize_adc(&cpu_state[0]);
1801         if (cpu_state[1].monitor != NULL)
1802                 initialize_adc(&cpu_state[1]);
1803
1804         fcu_tickle_ticks = FCU_TICKLE_TICKS;
1805
1806         up(&driver_lock);
1807
1808         while (state == state_attached) {
1809                 unsigned long elapsed, start;
1810
1811                 start = jiffies;
1812
1813                 down(&driver_lock);
1814
1815                 /* Tickle the FCU just in case */
1816                 if (--fcu_tickle_ticks < 0) {
1817                         fcu_tickle_ticks = FCU_TICKLE_TICKS;
1818                         tickle_fcu();
1819                 }
1820
1821                 /* First, we always calculate the new DIMMs state on an Xserve */
1822                 if (rackmac)
1823                         do_monitor_dimms(&dimms_state);
1824
1825                 /* Then, the CPUs */
1826                 if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
1827                         do_monitor_cpu_combined();
1828                 else if (cpu_pid_type == CPU_PID_TYPE_RACKMAC) {
1829                         do_monitor_cpu_rack(&cpu_state[0]);
1830                         if (cpu_state[1].monitor != NULL)
1831                                 do_monitor_cpu_rack(&cpu_state[1]);
1832                         // better deal with UP
1833                 } else {
1834                         do_monitor_cpu_split(&cpu_state[0]);
1835                         if (cpu_state[1].monitor != NULL)
1836                                 do_monitor_cpu_split(&cpu_state[1]);
1837                         // better deal with UP
1838                 }
1839                 /* Then, the rest */
1840                 do_monitor_backside(&backside_state);
1841                 if (rackmac)
1842                         do_monitor_slots(&slots_state);
1843                 else
1844                         do_monitor_drives(&drives_state);
1845                 up(&driver_lock);
1846
1847                 if (critical_state == 1) {
1848                         printk(KERN_WARNING "Temperature control detected a critical condition\n");
1849                         printk(KERN_WARNING "Attempting to shut down...\n");
1850                         if (call_critical_overtemp()) {
1851                                 printk(KERN_WARNING "Can't call %s, power off now!\n",
1852                                        critical_overtemp_path);
1853                                 machine_power_off();
1854                         }
1855                 }
1856                 if (critical_state > 0)
1857                         critical_state++;
1858                 if (critical_state > MAX_CRITICAL_STATE) {
1859                         printk(KERN_WARNING "Shutdown timed out, power off now !\n");
1860                         machine_power_off();
1861                 }
1862
1863                 // FIXME: Deal with signals
1864                 elapsed = jiffies - start;
1865                 if (elapsed < HZ)
1866                         schedule_timeout_interruptible(HZ - elapsed);
1867         }
1868
1869  out:
1870         DBG("main_control_loop ended\n");
1871
1872         ctrl_task = 0;
1873         complete_and_exit(&ctrl_complete, 0);
1874 }
1875
1876 /*
1877  * Dispose the control loops when tearing down
1878  */
1879 static void dispose_control_loops(void)
1880 {
1881         dispose_cpu_state(&cpu_state[0]);
1882         dispose_cpu_state(&cpu_state[1]);
1883         dispose_backside_state(&backside_state);
1884         dispose_drives_state(&drives_state);
1885         dispose_slots_state(&slots_state);
1886         dispose_dimms_state(&dimms_state);
1887 }
1888
1889 /*
1890  * Create the control loops. U3-0 i2c bus is up, so we can now
1891  * get to the various sensors
1892  */
1893 static int create_control_loops(void)
1894 {
1895         struct device_node *np;
1896
1897         /* Count CPUs from the device-tree, we don't care how many are
1898          * actually used by Linux
1899          */
1900         cpu_count = 0;
1901         for (np = NULL; NULL != (np = of_find_node_by_type(np, "cpu"));)
1902                 cpu_count++;
1903
1904         DBG("counted %d CPUs in the device-tree\n", cpu_count);
1905
1906         /* Decide the type of PID algorithm to use based on the presence of
1907          * the pumps, though that may not be the best way, that is good enough
1908          * for now
1909          */
1910         if (rackmac)
1911                 cpu_pid_type = CPU_PID_TYPE_RACKMAC;
1912         else if (machine_is_compatible("PowerMac7,3")
1913             && (cpu_count > 1)
1914             && fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID
1915             && fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID) {
1916                 printk(KERN_INFO "Liquid cooling pumps detected, using new algorithm !\n");
1917                 cpu_pid_type = CPU_PID_TYPE_COMBINED;
1918         } else
1919                 cpu_pid_type = CPU_PID_TYPE_SPLIT;
1920
1921         /* Create control loops for everything. If any fail, everything
1922          * fails
1923          */
1924         if (init_cpu_state(&cpu_state[0], 0))
1925                 goto fail;
1926         if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
1927                 fetch_cpu_pumps_minmax();
1928
1929         if (cpu_count > 1 && init_cpu_state(&cpu_state[1], 1))
1930                 goto fail;
1931         if (init_backside_state(&backside_state))
1932                 goto fail;
1933         if (rackmac && init_dimms_state(&dimms_state))
1934                 goto fail;
1935         if (rackmac && init_slots_state(&slots_state))
1936                 goto fail;
1937         if (!rackmac && init_drives_state(&drives_state))
1938                 goto fail;
1939
1940         DBG("all control loops up !\n");
1941
1942         return 0;
1943         
1944  fail:
1945         DBG("failure creating control loops, disposing\n");
1946
1947         dispose_control_loops();
1948
1949         return -ENODEV;
1950 }
1951
1952 /*
1953  * Start the control loops after everything is up, that is create
1954  * the thread that will make them run
1955  */
1956 static void start_control_loops(void)
1957 {
1958         init_completion(&ctrl_complete);
1959
1960         ctrl_task = kernel_thread(main_control_loop, NULL, SIGCHLD | CLONE_KERNEL);
1961 }
1962
1963 /*
1964  * Stop the control loops when tearing down
1965  */
1966 static void stop_control_loops(void)
1967 {
1968         if (ctrl_task != 0)
1969                 wait_for_completion(&ctrl_complete);
1970 }
1971
1972 /*
1973  * Attach to the i2c FCU after detecting U3-1 bus
1974  */
1975 static int attach_fcu(void)
1976 {
1977         fcu = attach_i2c_chip(FAN_CTRLER_ID, "fcu");
1978         if (fcu == NULL)
1979                 return -ENODEV;
1980
1981         DBG("FCU attached\n");
1982
1983         return 0;
1984 }
1985
1986 /*
1987  * Detach from the i2c FCU when tearing down
1988  */
1989 static void detach_fcu(void)
1990 {
1991         if (fcu)
1992                 detach_i2c_chip(fcu);
1993         fcu = NULL;
1994 }
1995
1996 /*
1997  * Attach to the i2c controller. We probe the various chips based
1998  * on the device-tree nodes and build everything for the driver to
1999  * run, we then kick the driver monitoring thread
2000  */
2001 static int therm_pm72_attach(struct i2c_adapter *adapter)
2002 {
2003         down(&driver_lock);
2004
2005         /* Check state */
2006         if (state == state_detached)
2007                 state = state_attaching;
2008         if (state != state_attaching) {
2009                 up(&driver_lock);
2010                 return 0;
2011         }
2012
2013         /* Check if we are looking for one of these */
2014         if (u3_0 == NULL && !strcmp(adapter->name, "u3 0")) {
2015                 u3_0 = adapter;
2016                 DBG("found U3-0\n");
2017                 if (k2 || !rackmac)
2018                         if (create_control_loops())
2019                                 u3_0 = NULL;
2020         } else if (u3_1 == NULL && !strcmp(adapter->name, "u3 1")) {
2021                 u3_1 = adapter;
2022                 DBG("found U3-1, attaching FCU\n");
2023                 if (attach_fcu())
2024                         u3_1 = NULL;
2025         } else if (k2 == NULL && !strcmp(adapter->name, "mac-io 0")) {
2026                 k2 = adapter;
2027                 DBG("Found K2\n");
2028                 if (u3_0 && rackmac)
2029                         if (create_control_loops())
2030                                 k2 = NULL;
2031         }
2032         /* We got all we need, start control loops */
2033         if (u3_0 != NULL && u3_1 != NULL && (k2 || !rackmac)) {
2034                 DBG("everything up, starting control loops\n");
2035                 state = state_attached;
2036                 start_control_loops();
2037         }
2038         up(&driver_lock);
2039
2040         return 0;
2041 }
2042
2043 /*
2044  * Called on every adapter when the driver or the i2c controller
2045  * is going away.
2046  */
2047 static int therm_pm72_detach(struct i2c_adapter *adapter)
2048 {
2049         down(&driver_lock);
2050
2051         if (state != state_detached)
2052                 state = state_detaching;
2053
2054         /* Stop control loops if any */
2055         DBG("stopping control loops\n");
2056         up(&driver_lock);
2057         stop_control_loops();
2058         down(&driver_lock);
2059
2060         if (u3_0 != NULL && !strcmp(adapter->name, "u3 0")) {
2061                 DBG("lost U3-0, disposing control loops\n");
2062                 dispose_control_loops();
2063                 u3_0 = NULL;
2064         }
2065         
2066         if (u3_1 != NULL && !strcmp(adapter->name, "u3 1")) {
2067                 DBG("lost U3-1, detaching FCU\n");
2068                 detach_fcu();
2069                 u3_1 = NULL;
2070         }
2071         if (u3_0 == NULL && u3_1 == NULL)
2072                 state = state_detached;
2073
2074         up(&driver_lock);
2075
2076         return 0;
2077 }
2078
2079 static int fan_check_loc_match(const char *loc, int fan)
2080 {
2081         char    tmp[64];
2082         char    *c, *e;
2083
2084         strlcpy(tmp, fcu_fans[fan].loc, 64);
2085
2086         c = tmp;
2087         for (;;) {
2088                 e = strchr(c, ',');
2089                 if (e)
2090                         *e = 0;
2091                 if (strcmp(loc, c) == 0)
2092                         return 1;
2093                 if (e == NULL)
2094                         break;
2095                 c = e + 1;
2096         }
2097         return 0;
2098 }
2099
2100 static void fcu_lookup_fans(struct device_node *fcu_node)
2101 {
2102         struct device_node *np = NULL;
2103         int i;
2104
2105         /* The table is filled by default with values that are suitable
2106          * for the old machines without device-tree informations. We scan
2107          * the device-tree and override those values with whatever is
2108          * there
2109          */
2110
2111         DBG("Looking up FCU controls in device-tree...\n");
2112
2113         while ((np = of_get_next_child(fcu_node, np)) != NULL) {
2114                 int type = -1;
2115                 const char *loc;
2116                 const u32 *reg;
2117
2118                 DBG(" control: %s, type: %s\n", np->name, np->type);
2119
2120                 /* Detect control type */
2121                 if (!strcmp(np->type, "fan-rpm-control") ||
2122                     !strcmp(np->type, "fan-rpm"))
2123                         type = FCU_FAN_RPM;
2124                 if (!strcmp(np->type, "fan-pwm-control") ||
2125                     !strcmp(np->type, "fan-pwm"))
2126                         type = FCU_FAN_PWM;
2127                 /* Only care about fans for now */
2128                 if (type == -1)
2129                         continue;
2130
2131                 /* Lookup for a matching location */
2132                 loc = of_get_property(np, "location", NULL);
2133                 reg = of_get_property(np, "reg", NULL);
2134                 if (loc == NULL || reg == NULL)
2135                         continue;
2136                 DBG(" matching location: %s, reg: 0x%08x\n", loc, *reg);
2137
2138                 for (i = 0; i < FCU_FAN_COUNT; i++) {
2139                         int fan_id;
2140
2141                         if (!fan_check_loc_match(loc, i))
2142                                 continue;
2143                         DBG(" location match, index: %d\n", i);
2144                         fcu_fans[i].id = FCU_FAN_ABSENT_ID;
2145                         if (type != fcu_fans[i].type) {
2146                                 printk(KERN_WARNING "therm_pm72: Fan type mismatch "
2147                                        "in device-tree for %s\n", np->full_name);
2148                                 break;
2149                         }
2150                         if (type == FCU_FAN_RPM)
2151                                 fan_id = ((*reg) - 0x10) / 2;
2152                         else
2153                                 fan_id = ((*reg) - 0x30) / 2;
2154                         if (fan_id > 7) {
2155                                 printk(KERN_WARNING "therm_pm72: Can't parse "
2156                                        "fan ID in device-tree for %s\n", np->full_name);
2157                                 break;
2158                         }
2159                         DBG(" fan id -> %d, type -> %d\n", fan_id, type);
2160                         fcu_fans[i].id = fan_id;
2161                 }
2162         }
2163
2164         /* Now dump the array */
2165         printk(KERN_INFO "Detected fan controls:\n");
2166         for (i = 0; i < FCU_FAN_COUNT; i++) {
2167                 if (fcu_fans[i].id == FCU_FAN_ABSENT_ID)
2168                         continue;
2169                 printk(KERN_INFO "  %d: %s fan, id %d, location: %s\n", i,
2170                        fcu_fans[i].type == FCU_FAN_RPM ? "RPM" : "PWM",
2171                        fcu_fans[i].id, fcu_fans[i].loc);
2172         }
2173 }
2174
2175 static int fcu_of_probe(struct of_device* dev, const struct of_device_id *match)
2176 {
2177         state = state_detached;
2178
2179         /* Lookup the fans in the device tree */
2180         fcu_lookup_fans(dev->node);
2181
2182         /* Add the driver */
2183         return i2c_add_driver(&therm_pm72_driver);
2184 }
2185
2186 static int fcu_of_remove(struct of_device* dev)
2187 {
2188         i2c_del_driver(&therm_pm72_driver);
2189
2190         return 0;
2191 }
2192
2193 static struct of_device_id fcu_match[] = 
2194 {
2195         {
2196         .type           = "fcu",
2197         },
2198         {},
2199 };
2200
2201 static struct of_platform_driver fcu_of_platform_driver = 
2202 {
2203         .name           = "temperature",
2204         .match_table    = fcu_match,
2205         .probe          = fcu_of_probe,
2206         .remove         = fcu_of_remove
2207 };
2208
2209 /*
2210  * Check machine type, attach to i2c controller
2211  */
2212 static int __init therm_pm72_init(void)
2213 {
2214         struct device_node *np;
2215
2216         rackmac = machine_is_compatible("RackMac3,1");
2217
2218         if (!machine_is_compatible("PowerMac7,2") &&
2219             !machine_is_compatible("PowerMac7,3") &&
2220             !rackmac)
2221                 return -ENODEV;
2222
2223         printk(KERN_INFO "PowerMac G5 Thermal control driver %s\n", VERSION);
2224
2225         np = of_find_node_by_type(NULL, "fcu");
2226         if (np == NULL) {
2227                 /* Some machines have strangely broken device-tree */
2228                 np = of_find_node_by_path("/u3@0,f8000000/i2c@f8001000/fan@15e");
2229                 if (np == NULL) {
2230                             printk(KERN_ERR "Can't find FCU in device-tree !\n");
2231                             return -ENODEV;
2232                 }
2233         }
2234         of_dev = of_platform_device_create(np, "temperature", NULL);
2235         if (of_dev == NULL) {
2236                 printk(KERN_ERR "Can't register FCU platform device !\n");
2237                 return -ENODEV;
2238         }
2239
2240         of_register_platform_driver(&fcu_of_platform_driver);
2241         
2242         return 0;
2243 }
2244
2245 static void __exit therm_pm72_exit(void)
2246 {
2247         of_unregister_platform_driver(&fcu_of_platform_driver);
2248
2249         if (of_dev)
2250                 of_device_unregister(of_dev);
2251 }
2252
2253 module_init(therm_pm72_init);
2254 module_exit(therm_pm72_exit);
2255
2256 MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
2257 MODULE_DESCRIPTION("Driver for Apple's PowerMac G5 thermal control");
2258 MODULE_LICENSE("GPL");
2259